Impatto degli aumenti nei livelli fisiologici del Testosterone sulla composizione corporea.

Introduzione:

Con il nuovo anno riprendo la pubblicazione degli articoli e lo faccio trattando un argomento che spesso, direttamente o indirettamente, è emerso nelle discussioni tra clienti e colleghi.

Il Testosterone è senza dubbio l’ormone simbolo per l’uomo della strada, preso dalla frenesia del mondo moderno e dal raggiungimento di obbiettivi tanto futili quanto irrealistici. Lo so che ve lo state domandando e la risposta è “si”. Questa entrata filosofica è perfetta per introdurre una questione legata al Androgeno per eccellenza.

Tanto per fare un esempio: quanti rimedi da banco vi sono stati proposti per migliorare i livelli plasmatici di Testosterone? Tra Tribulus Terrestris, Maca e Boro il conto è presto perso. E quanti di questi supplementi OTC hanno dato reali risultati? Misurabili, quantificabili con i livelli di partenza e che si sono tradotti in significativi miglioramenti della composizione corporea? …

La necessità di un ottimale apporto di Zinco, Vitamina D e altri macro e microelementi implicati nella biosintesi androgena, nella Testosterone:Estradiolo ratio ecc… non sono di certo messi in dubbio. Ad esserlo è il marketing, è l’affermazione sensazionalistica che va sempre con cura soppesata e valutata in concreto.

Ma, ipotizzando un miglioramento dei livelli di Testosterone endogeno rispetto al basale di partenza, ed entro l’intervallo di riferimento standard (es. per gli uomini dai 240 ai 950ng/dl dopo i 18 anni), garantite da trattamenti iatrogeni, quanto può incidere ciò nel miglioramento della composizione corporea?…

L’articolo che segue si basa sulle informazioni raccolte nella Research Review di James Krieger.

Iniziamo dalla letteratura scientifica

È assodato che l’uso AAS, che comporta la somministrazione di dosi sovrafisiologiche di Testosterone o ormoni correlati, provoca marcati aumenti delle dimensioni muscolari, ben oltre ciò che può essere ottenuto di base fisiologica dal soggetto, anche se questi guadagni addizionali sono limitati geneticamente. Nonostante ciò, mentre è assodato che dosi sovrafisiologiche di Testosterone, suoi derivati e analoghi aumenteranno significativamente i potenziali guadagni ipertrofici, questo non ci dice se le variazioni del Testosterone all’interno di un normale intervallo fisiologico possano avere qualche impatto. C’è una vasta gamma di livelli ematici di Testosterone da un uomo all’altro. Ad esempio, in uno studio nel quale sono stati presi in esame 456 uomini sani e non obesi di età compresa tra 19 e 39 anni, l’intervallo delle concentrazioni di Testosterone nel sangue (misurato al mattino dopo un digiuno notturno) era il seguente:

Lo studio di cui sopra è stato eseguito su un campione di individui della  Framingham Heart Study Generation 3. Tuttavia, gli intervalli di concentrazione di Testosterone possono variare a seconda della popolazione e del dosaggio utilizzato per misurare il Testosterone. Anche i laboratori variano molto nei loro intervalli di riferimento. Travison et al. hanno estrapolato i dati da quattro importanti studi di coorte e hanno utilizzato modelli statistici per stabilire intervalli di riferimento che potrebbero essere applicati in diversi laboratori. Ecco la gamma di concentrazioni di Testosterone nel sangue che hanno stabilito:

Indipendentemente dall’intervallo di riferimento utilizzato, non c’è dubbio che vi sia un’ampia variazione nei livelli di Testosterone tra gli uomini, anche tra gli uomini sani e non obesi (poiché, come ben sappiamo, l’obesità è associata a un livello di Testosterone inferiore). Ciò solleva la questione se le variazioni in un intervallo normale possano influire sensibilmente sui guadagni muscolari. Un uomo con livelli di Testosterone naturalmente più alti riesce ad avere un maggior margine ipertrofico muscolare rispetto ad un uomo con livelli più bassi, anche se entrambi gli uomini sono all’interno di un intervallo normale? La risposta a questa domanda può avere particolare rilevanza per gli uomini che invecchiano. Il Testosterone diminuisce con l’età, ed è un altro dato di fatto, sebbene l’attività contro resistenza e una alimentazione sana possono rallentarne il declino. Ad esempio, ecco i dati dello studio French Telecom, che mostra il calo del Testosterone in tutti i percentili con l’età degli uomini.

Percentili di distribuzione plasmatica del Testosterone in un campione di 1.408 uomini caucasici dello studio Telecom, Parigi, Francia, 1985-1987

Ancora una volta, si può vedere l’ampia variazione nei livelli fisiologici di Testosterone, che vanno da 350-400ng/dL nel 5° percentile 850-1000ng/dL nel 95° percentile. Il declino continua negli anni ’60, ’70 e oltre. Ecco i dati che mostrano i livelli medi di Testosterone nei decenni di durata della vita; questi dati sono tratti da sei studi:

Testosterone totale (ng/ml) per fascia di età (moltiplicare per 100 per ottenere ng/dL); dati da 6 diversi studi.

Poiché anche la massa muscolare diminuisce con l’età e poiché gli uomini con bassi livelli di Testosterone mostrano tassi di perdita muscolare più rapidi rispetto agli uomini con livelli più alti, potremmo ipotizzare che gli uomini più anziani potrebbero trarre beneficio dal portare il Testosterone nell’intervallo fisiologico medio-alto.

Pertanto, tutti questi dati sollevano una serie di domande importanti:

  • I livelli di Testosterone di base sono correlati alla risposta all’allenamento?
  • Il Testosterone estremamente basso compromette la massa muscolare e i guadagni muscolari?
  • Le variazioni all’interno del normale range fisiologico influiscono sulla massa muscolare?
  • Se i livelli di Testosterone sono bassi o al limite, portare i livelli fino alla fascia media o superiore aiuta a migliorare la massa muscolare?
  • Se le variazioni nel normale range fisiologico hanno un impatto sulle condizioni muscolari negli uomini, hanno lo stesso impatto anche nelle donne?

Diamo un’occhiata alla ricerca per poter cercare di dare una risposta a queste domande.

I livelli basali di Testosterone sono correlati con la risposta all’allenamento?

Un modo per esaminare se esiste una relazione tra Testosterone in range fisiologico e guadagni muscolari è quello di guardare le risposte all’allenamento di un insieme di individui e vedere se i livelli di Testosterone di base sono correlati alla quantità di muscoli guadagnata da ciascuna persona. McCall et al. non hanno trovato alcuna correlazione tra i livelli basali di Testosterone e i cambiamenti nella dimensione muscolare in giovani uomini allenati a livello amatoriale. Tuttavia, Ahtiainen et al. hanno trovato una forte correlazione tra i livelli di Testosterone di base e il miglioramento della forza isometrica massima in 21 settimane. Ma la correlazione con l’ipertrofia non è stata affrontata.

Data la relazione tra l’ipertrofia e l’espressione di forza isometrica, potremmo ipotizzare che ci fosse una relazione tra il Testosterone di base e l’ipertrofia in questo studio, ma non è possibile saperlo con certezza.

In uno studio di Bhasin et al., uomini con infezione da HIV con Testosterone basso (<349ng/dL) sono stati assegnati in modo casuale a gruppo placebo, solo allenamento contro-resistenza, solo iniezioni di Testosterone o Testosterone e allenamento contro-resistenza combinati.

I livelli di Testosterone al basale non erano correlati con la variazione della massa magra (FFM) e non c’erano differenze significative nel guadagno assoluto di FFM tra uomini che avevano livelli di Testosterone <275ng/dL e uomini che avevano livelli di 275-350ng/dL .

E’ possibile anche confrontare i guadagni muscolari tra maschi e femmine, poiché gli uomini hanno 10 volte più Testosterone delle donne. Se i livelli di Testosterone di base fossero correlati con la risposta all’allenamento, ci aspetteremmo che gli uomini abbiano maggiori guadagni rispetto alle donne. Tuttavia, quando uomini e donne vengono sottoposti a programmi di allenamento contro-resistenza, mentre i guadagni muscolari assoluti sono maggiori negli uomini, i guadagni muscolari relativi (cioè i guadagni percentuali) sono per lo più simili.

Nel complesso, questi dati limitati suggerirebbero che i livelli di Testosterone non influiscono realmente sui guadagni. Tuttavia, si tratta di dati trasversali e non sono realmente progettati per affrontare la questione se le variazioni del Testosterone fisiologico abbiano un impatto sui guadagni di massa muscolare.

Pertanto, è necessario esaminare alcune ricerche in cui i livelli di Testosterone vengono direttamente manipolati.

Livelli di Testosterone estremamente bassi compromettono la massa muscolare e i guadagni muscolari?

Un modo per esaminare l’impatto del Testosterone sui guadagni muscolari è vedere cosa succede quando si sopprime la produzione di Testosterone. Maura et al. ha somministrato a giovani uomini il Lupron, un farmaco antiandrogeno che sopprime la produzione naturale di Testosterone. I livelli di Testosterone sono scesi da 535ng/dL a 31ng/dL dopo 10 settimane. Pertanto, la media dei soggetti trattati con Lupron aveva livelli di Testosterone simili a quelli di una donna.

La massa magra è diminuita di 2,1 kg e la sintesi proteica dell’intero corpo è diminuita del 13%. Naturalmente, non c’era alcun tipo di allenamento in questo studio. Forse l’allenamento con i pesi potrebbe interagire con questa risposta.

Kvorning et al. hanno somministrato a giovani uomini il Goserelin, che sopprime la produzione naturale di Testosterone, o un placebo. Gli uomini, che avevano una minima esperienza di allenamento contro-resistenza, si sono impegnati in un programma di allenamento della forza di 8 settimane. I livelli di Testosterone sono scesi da 651ng/dL a 57ng/dL, e poi 31ng/dL nel gruppo che ha ricevuto il Goserelina.

La soppressione del Testosterone non ha compromesso i miglioramenti nelle prestazioni del 10-RM rispetto al placebo. Tuttavia, i miglioramenti nella forza isometrica erano significativamente inferiori con il Goserelina.

I miglioramenti nella massa magra delle gambe erano significativamente inferiori per il gruppo Goserelina e anche la massa corporea magra totale tendeva verso quella direzione (valore P di 0,07, dove 0,05 è considerato significativo). L’aumento medio della massa magra è stato di 1kg maggiore nel gruppo placebo rispetto al gruppo Goserelina. La differenza nella massa magra della gamba era di 0,2kg.

Pertanto, questo studio ha dimostrato che la soppressione della produzione di Testosterone ha compromesso i guadagni di massa magra, ma la differenza non era marcata, pari a circa 1kg di differenza complessiva nei guadagni di massa magra in 8 settimane.

Non sono state eseguite misurazioni dirette della dimensione muscolare, sebbene le grandi differenze nei guadagni di forza isometrica probabilmente indichino che i guadagni muscolari erano inferiori con la soppressione del Testosterone. Quindi, questi dati suggerirebbero che c’è un impatto del Testosterone sul guadagno muscolare, pur essendo di piccola entità.

Molecola di Goserelina. La Goserelina è un agonista delle gonadotropine iniettabile (agonista GnRH), conosciuta anche come agonista dell’Ormone di Rilascio dell’Ormone Luteinizzante (LHRH). 

Quindi le variazioni all’interno dell’intervallo fisiologico normale influiscono sulla massa muscolare?

Nessuna delle ricerche discusse finora può davvero dirci se le variazioni all’interno del normale range fisiologico possono avere un impatto sulla massa muscolare. Ci sono tre modi in cui è possibile rispondere a questa domanda. Il primo modo è guardare ai dati trasversali. Più semplicemente si tratta di prendere grandi gruppi di uomini e di dividerli in categorie in base ai loro livelli di Testosterone. Quindi si osserva se la massa muscolare differisce tra gli uomini in diverse categorie o se i livelli di Testosterone sono correlati ai livelli di massa muscolare.

  • He et al. hanno esaminato 270 uomini sedentari dell’HERITAGE Family Study. Dopo aver controllato per età e ascendenza, il Testosterone non era correlato alla massa magra. È interessante notare, tuttavia, che era correlato negativamente con l’indice di massa magra (FFM diviso per altezza al quadrato, simile all’IMC), il che significa che le persone con un indice FFM più elevato avevano livelli più bassi di Testosterone. Questo significa che avere più Testosterone significa in realtà avere meno muscoli? No! Questi dati sono confusi dal fatto che alcuni degli uomini erano obesi e che l’indice di massa corporea più elevato e le percentuali di grasso corporeo più elevate erano associate a un livello di Testosterone più basso. Ecco i livelli di testosterone per quartili di BMI; è possibile notare che i livelli di Testosterone diminuiscono all’aumentare dell’IMC.

Poiché gli uomini obesi hanno anche più FFM, questo può far credere che ci sia una relazione negativa tra FFM e livelli di Testosterone. Ciò di cui si ha bisogno per comprendere la questione è una ricerca che esamini la relazione negli individui non obesi.

Testosterone per quartili di BMI negli uomini. 1 nmol/L = 0,0347 ng/dL

Poiché gli uomini obesi hanno anche più FFM, questo può far sembrare che ci sia una relazione negativa tra FFM e livelli di Testosterone. Ciò di cui si necessita per comprendere la questione è una ricerca che esamini la relazione negli individui non obesi.

  • Van Den Beld et al. non hanno trovata alcuna relazione tra Testosterone e massa magra negli uomini anziani (età 73-94 anni).
  • Mouser et al. hanno raccolto dati sul Testosterone e sulla composizione corporea di 252 uomini nel National Health And Nutrition Examination Survey (NHANES) del 1999-2000 di età compresa tra 18 e 85 anni. Uomini che non rientravano nell’intervallo normale per il Testosterone (da 240 a 950ng/dL). ) non sono stati inclusi nell’analisi. Gli uomini sono stati suddivisi in quartili in base ai loro livelli di Testosterone. Gli uomini hanno mostrato quantità progressivamente più elevate di massa magra nella parte inferiore del corpo con livelli crescenti di Testosterone, anche dopo aver aggiustato la media per età, razza, presenza di diabete, partecipazione auto-riferita all’attività fisica, proteina C-reattiva e assunzione di proteine ​​​​nella dieta. I quartili 3 e 4 erano statisticamente significativi rispetto al quartile 1. Un modello in qualche modo simile è emerso per la parte superiore del corpo, sebbene non vi fosse alcuna differenza tra il quartile 3 e 4.

Questi dati hanno mostrato che gli uomini nel 3° quartile avevano il 14,2% in più di massa magra nell’area inferiore e il 5,6% in più di massa magra in quella superiore rispetto agli uomini nel 1° quartile. Gli uomini del 4° quartile avevano il 22,1% in più di massa magra nell’area inferiore e il 5,6% in più di massa magra in quella superiore rispetto agli uomini del 1° quartile. Se si prendesse un ipotetico uomo nel 1° quartile con 17kg di massa magra nell’area inferiore, si potrebbe prevedere che un uomo nel 3° quartile possa avere 19,4kg e un uomo nel 4° quartile 20,6kg. Pertanto, questi dati hanno mostrato che gli uomini nell’estremità superiore dell’intervallo fisiologico del Testosterone avevano una massa corporea magra maggiore rispetto agli uomini nell’estremità inferiore, anche tenendo conto di altre variabili che potrebbero influenzare il Testosterone.

I dati trasversali di Mouser indicano che esiste potenzialmente una relazione tra i livelli di Testosterone nell’intervallo fisiologico e la massa magra di cui si dispone. Tuttavia, un problema con i dati trasversali è che non possono stabilire causa ed effetto. Un altro modo in cui è possibile affrontare la questione se le variazioni all’interno di un intervallo fisiologico influiscano sulla massa muscolare è sopprimere la produzione naturale di Testosterone usando farmaci, quindi somministrare dosi diverse di Testosterone e osservare se c’è un effetto dose-risposta. Ci sono quattro studi che hanno fatto questo.

  • Shalendar Bhasin et al. hanno somministrato a giovani uomini sani un agonista dell’ormone di rilascio delle gonadotropine (GnRH) per sopprimere la secrezione endogena di Testosterone. Hanno quindi somministrato agli uomini iniezioni settimanali di 25, 50, 125, 300 o 600mg di Testosterone Enantato per 20 settimane. Ecco i livelli ematici medi di Testosterone per le diverse dosi; come prevedibile, i livelli ematici sono aumentati con l’aumentare delle dosi e le dosi da 300 e 600mg hanno ovviamente portato a livelli di Testosterone al di sopra del normale intervallo fisiologico.

C’è stato un aumento dose-dipendente della massa magra; maggiori livelli ematici di Testosterone hanno portato a maggiori aumenti della FFM.

Anche il volume muscolare della coscia è aumentato in modo dose-dipendente.

La variazione della massa magra e la variazione del volume muscolare del quadricipite erano significativamente correlate con i livelli ematici di Testosterone.

Nel complesso, questo studio ha mostrato un effetto dose-risposta del Testosterone sulla dimensione muscolare, anche all’interno dell’intervallo fisiologico. Infatti, il solo passaggio dalla fascia bassa del fisiologico (306ng/dL) alla fascia media (542ng/dL) ha comportato un aumento della massa magra di 2,8 kg.

  • Bhasin ha ripetuto lo stesso esperimento in uomini più anziani di età compresa tra 60 e 75 anni. I risultati erano molto simili; i grafici seguenti mostrano gli effetti dose-risposta negli uomini più anziani.
  • Un terzo studio di Shalendar Bhasin ha coinvolto un design simile. La secrezione naturale di Testosterone è stata soppressa utilizzando il Lupron in uomini sani di età compresa tra 18 e 50 anni. Agli uomini sono state quindi somministrate dosi di 50, 125, 300 o 600 mg/settimana di Testosterone Enatnato, con o senza un inibitore della 5α-reduttasi (un farmaco che blocca la conversione del Testosterone in Diidrotestosterone [DHT]). I risultati sono stati ancora una volta simili, con una maggiore massa magra all’aumentare dei livelli ematici di Testosterone.
  • Finkelstein et al. hanno somministrato la Goserelina a 198 uomini sani di età compresa tra 20 e 50 anni per sopprimere i loro livelli di Testosterone. Sono stati quindi assegnati in modo casuale a ricevere giornalmente un gel placebo, o 1,25g, 2,5g, 5g o 10g di un gel contenente Testosterone per 16 settimane. Altri 202 uomini sono stati sottoposti allo stesso protocollo, tranne per il fatto che hanno ricevuto anche un inibitore dell’Aromatasi (Anastrozolo) per sopprimere la conversione del Testosterone in Estradiolo. C’è stato un effetto dose-risposta delle diverse dosi di Testosterone sui livelli ematici del ormone in questione, che vanno da al di sotto dell’intervallo normale fisiologico per le dosi di 0 e 1,25g, fino all’estremità superiore dell’intervallo fisiologico per la dose di 10g. Le barre nere rappresentano il gruppo trattato con Anastrozolo, mentre le barre rosse rappresentano il gruppo non trattato con Anastrozolo.
Livelli di Testosterone nel sangue con diverse dosi di un gel contenente Testosterone, dopo la soppressione del Testosterone endogeno con Goserelina. Le barre rosse rappresentano un gruppo che ha ricevuto Anastrozolo, un inibitore dell’aromatasi, per ridurre la conversione del Testosterone in Estradiolo. Dati da Finkelstein et al., NEJM, 2013

I cambiamenti nella massa magra e nell’area muscolare della coscia hanno mostrato un po’ di effetto dose-risposta, anche se non così chiaro come gli quanto osservato negli articoli di Bhasin che hanno utilizzato somministrazione per iniezioni. Nessuna dose di Testosterone ha provocato una significativa perdita di massa magra, mentre la dose più alta ha portato al guadagno maggiore di questa, sebbene molte delle differenze non fossero statisticamente significative. I numeri uguali non indicano differenze statisticamente significative rispetto ad altre barre.

C’era un’enorme quantità di variazione nel modo in cui gli individui rispondevano al Testosterone, come si può vedere in questo grafico a dispersione.

Un terzo modo per esaminare se le variazioni in un intervallo fisiologico influiscono sui guadagni muscolari è vedere se portare il +stosterone al limite molto superiore dell’intervallo normale (come quello che si verifica negli studi sui contraccettivi maschili di Testosterone) influisce sulla massa magra. Herbst et al. ha studiato l’impatto del testosterone esogeno (100 mg di testosterone enathnato a settimana) su uomini sani con normali livelli di testosterone. I livelli di testosterone sono aumentati da 570 ng/dL a 734 ng/dL (il livello subito prima dell’iniezione successiva), con un picco di 1196 ng/dL (24 ore dopo l’iniezione). Pertanto, il livello di picco era al limite molto superiore del range di normalità e il minimo era nella parte superiore del normale. Massa magra aumentata di 2,5 kg. Nel complesso, questi tre corpi di prove (dati trasversali, dati sulla risposta alla dose e dati sui contraccettivi maschili) indicano che le variazioni all’interno dell’intervallo fisiologicamente normale influiscono sulla massa magra che si trasporta. Ora, qui c’è una differenza tra quanta massa magra porti e quanto guadagnerai da un programma di allenamento (ne parleremo più avanti), ma sembra esserci un effetto. Il che ci porta alla nostra prossima domanda…

Se i livelli di Testosterone sono bassi o al limite del limite basso, portare i livelli fino al livello medio o superiore aiuta a migliorare la condizione della massa muscolare?

Partendo dal precedente quesito, cosa succede se si prendono delle persone con bassi livelli di Testosterone e li si aumenta i livelli con iniezioni di Testosterone esogeno? Fortunatamente c’è la ricerca a darci una risposta.

  • Urban et al. hanno reclutato 6 uomini sani e anziani con un’età media di 67 anni. I loro livelli di Testosterone erano di 480ng/dL o meno e sono stati somministrati loro iniezioni di Testosterone per 4 settimane per raggiungere livelli simili a quelli degli uomini più giovani. Sia la forza muscolare che la sintesi proteica muscolare sono migliorate, suggerendo che aumentare i livelli all’interno dell’intervallo fisiologico può aiutare a migliorare le condizioni della massa e la forza muscolare. Una limitazione è che la massa muscolare non è stata direttamente misurata; sono state determinate solo la sintesi proteica muscolare e la forza.
  • Sullivan et al. hanno reclutato 71 uomini di età compresa tra 65 e 93 anni e li hanno assegnati in modo casuale a uno di 4 gruppi:

Esercizio a bassa resistenza (3 x 8 con 20% del 1-RM) + Placebo

Esercizio a bassa resistenza + 100 mg/settimana di Testosterone

Esercizio di resistenza ad alta intensità (3 x 8 all’80% del 1-RM) + Placebo

Esercizio di resistenza ad alta intensità + 100 mg/settimana di Testosterone

Le iniezioni di Testosterone hanno più che raddoppiato i livelli del ormone rispetto al placebo, portando i livelli alla fascia alta del normale (804 ng/dL contro 304 ng/dL). Anche i guadagni nell’area della sezione trasversale dei muscoli a metà coscia sono stati più del doppio con le iniezioni di Testosterone rispetto al placebo. I guadagni di forza erano molto più alti nella condizione di esercizio a bassa resistenza quando veniva somministrato Testosterone rispetto al placebo. Tuttavia, quando l’allenamento era ad alta intensità, non c’era più un beneficio significativo del Testosterone, indicando che il carico di allenamento aveva un impatto maggiore sulla forza rispetto al Testosterone in questo studio.

  • Bhasin et al. hanno trattato uomini ipogonadici (età 19 – 47 anni) con 100mg di Testosterone Enantato a settimana per 10 settimane. I livelli medi di Testosterone al basale sono aumentati da 72ng/dL (leggermente al di sopra dell’intervallo per una donna media) a 767ng/dL alla settimana 10. La massa magra è aumentata di 5kg, la dimensione del tricipite è aumentata del 12% e la dimensione del quadricipite è aumentata del 8%.
  • Bhasin et al. hanno reclutato uomini con infezione da HIV con bassi livelli di Testosterone e li hanno trattati con una crema topica di Testosterone per 12 settimane. I livelli di Testosterone sono migliorati da 258ng/dL a 367ng/dL. La massa magra è aumentata di 1,4kg.
  • In un altro studio del Dr. Bhasin, uomini con infezione da HIV con bassi livelli di Testosterone (<349 ng/dL) sono stati assegnati in modo casuale a uno dei 4 seguenti gruppi:
  • Placebo
  • Testosterone Enatnato (100 mg/settimana)
  • Allenamento di resistenza
  • Testosterone + allenamento di resistenza

Il trattamento con Testosterone ha aumentato i livelli ematici da una media di 201 – 205ng/dL a 311 – 337ng/dL. La massa magra è aumentata di 4kg nel gruppo solo Testosterone, 2kg nel gruppo solo allenamento e 1,6kg nel gruppo allenamento + Testosterone. Il volume muscolare della coscia è aumentato di 40cm³ nel gruppo solo Testosterone, 62cm³ nel gruppo solo allenamento e 44cm³ nel gruppo combinato. Non è chiaro il motivo per cui non vi è stato alcun effetto combinato nel gruppo allenamento + Testosterone.

  • Sattler e colleghi hanno somministrato a uomini anziani (età media 71 anni) 5 o 10g al giorno di Testosterone transdermico (formulazione per somministrazione sulla pelle). Gli uomini trattati avevano livelli ematici di Testosterone di 550ng/dL o meno (la concentrazione media era 385 nel gruppo 5g/die e 350 nel gruppo 10g/die). Le concentrazioni medie di Testosterone sono aumentate di 150ng/dl nel gruppo 5g/die (aumentando i livelli a circa 535ng/dl) e 500ng/dl nel gruppo 10g (aumentando i livelli a circa 850ng/dl). La massa corporea magra è aumentata di 1kg nel gruppo 5g/die e di 1,6kg nel gruppo 10g/die.
  • Basaria et al. hanno reclutato uomini con Testosterone basso (<350 ng/dL) a causa dell’abuso di oppiacei e hanno somministrato loro un 5g/die di gel contenente Testosterone. Il testosterone medio è aumentato da 243ng/dL a 790ng/dL. La massa magra aumentata di 1kg.
  • Storer et al. hanno reclutati uomini di età superiore ai 59 anni con livelli di Testosterone tra 100 e 400ng/dL. Agli uomini è stato somministrato 7,5g di un gel contenente Testosterone o un placebo al giorno per 3 anni. Il Testosterone ematico è aumentato da 307 ng/dL a 567 ng/dL nel gruppo gel. La massa corporea magra è aumentata di 0,7kg.
  • Brodsky e colleghi hanno osservato gli effetti della somministrazione di Testosterone negli uomini con livelli di questo ormone inferiori a 200 ng/dL. I livelli di Testosterone sono aumentati gradualmente da 106 ng/dL a 576 ng/dL in 4 mesi. E da 432 ng/dL in 6 mesi. Queste erano le concentrazioni più basse osservate prima di ogni iniezione. Le iniezioni sono state somministrate ogni 2 settimane; l’ultimo livello di Testosterone misurato è stato una settimana dopo l’ultima iniezione ed era di 1277ng/dL, appena al di sopra del range fisiologico. La massa magra è aumentata di 8,7kg. La sintesi proteica muscolare mista è aumentata del 56% e la sintesi proteica miofibrillare è aumentata del 46%. La sintesi proteica muscolare totale in tutto il corpo è aumentata del 71-87% (da circa 2,4 grammi all’ora a 4,3 grammi all’ora).
  • Snyder et al. hanno somministrato a uomini con Testosterone basso (a causa di una malattia) un cerotto cutaneo con Testosterone per 3 anni. I livelli di Testosterone sono aumentati da 78ng/dL a 407ng/dL. La massa magra è aumentata di 3,1kg.
  • Wang e colleghi hanno somministrato a uomini con bassi livelli di Testosterone un cerotto o uno dei due diversi gel (50mg o 100 mg/giorno) per 90 giorni. Il Testosterone è aumentato da 236 ng/dL a 417 ng/dL nel gruppo cerotto, da 236 ng/dL a 552 ng/dL nel gruppo del gel da 50mg e da 248 ng/dL a 791 ng/dL nel gruppo del gel da 100mg. La massa corporea magra è aumentata rispettivamente di 1,2 kg, 1,3 kg e 2,7 kg in questi gruppi.
  • In un altro studio di Wang, agli uomini con bassi livelli di Testosterone (<300 ng/dL) sono state somministrate varie dosi di gel di Testosterone per un massimo di 42 mesi. I livelli totali sono aumentati di circa 260 ng/dL e sono rimasti nell’intervallo medio-basso normale per la durata dello studio. La massa magra è aumentata di 2,9kg.
  • Tenover ha reclutato uomini di età compresa tra 57 e 76 anni, con livelli di Testosterone inferiori a 400 ng/dL, e ha iniettato loro 100 mg di Testosterone Enantato a settimana. I livelli ematici medi sono aumentati da 334 ng/dl a 568 ng/dl. La massa magra è aumentata di 1,8kg.
  • Snyder e colleghi hanno assegnato casualmente a uomini di età superiore ai 65 anni un cerotto di Testosterone o a un placebo. I livelli di Testosterone sono aumentati da 367 ng/dL a 625 ng/dL in 6 mesi. La massa magra è aumentata di 1,6 kg in 6 mesi.
  • Ferrando et al. hanno reclutato uomini di età pari o superiore a 60 anni e con livelli di Testosterone nel sangue inferiori a 480 ng/dL somministrando loro Testosterone Enatnato o un placebo su base settimanale per 6 mesi. Il livello medio basale di Testosterone era 363 ng/dL. Le iniezioni di Testosterone sono state regolate individualmente per cercare di mantenere un livello ematico tra 490 e 807 ng/dL, sebbene ciò non abbia avuto un successo totale e molti individui abbiano riscontrato livelli leggermente superiori a tale obiettivo. Il livello medio a 6 mesi era di 882 ng/dL. La massa magra è aumentata di 4,2 kg, mentre è diminuita di 2 kg nel gruppo placebo. Il volume muscolare delle gambe è aumentato di 488 ml, mentre è diminuito di 96 ml nel gruppo placebo. Il Testosterone ha anche determinato un aumento dell’equilibrio netto delle proteine ​​muscolari, a causa di una diminuzione del catabolismo delle proteine ​​muscolari.
  • Dias et al. hanno reclutato uomini di età compresa tra 65-82 anni e livelli di Testosterone <350 ng/dL assegnandoli in modo casuale a un placebo, Anastrozolo (un inibitore dell’Aromatasi) o un gel di Testosterone. Inibendo l’enzima Aromatasi, l’enzima che converte il Testosterone in Estradiolo, è possibile aumentare efficacemente i livelli di Testosterone, ed è una cosa largamente risaputa. L’Anastrozolo ha aumentato il Testosterone da 272 ng/dL a circa 500 ng/dL a 6 mesi; la massa magra è aumentata di 1,5kg. Il Testosterone somministrato attraverso il gel ha aumentato i livelli dell’ormone da 300 ng/dL a circa 650 ng/dL e la massa magra non ha raggiunto un aumento statisticamente significativo (0,9 kg).
  • Magnusson e colleghi hanno randomizzato soggetti diabetici di tipo 2 di età compresa tra 50 e 70 anni trattandoli con un Testosterone gel o un placebo per 6 mesi. I livelli di Testosterone sono aumentati da 205 ng/dL a 637 ng/dL e la massa magra è aumentata di 1,9 kg.
  • Ribeiro e Abucham hanno somministrato a uomini ipogonadici Clomifene Citrato, il quale causa un aumento del Testosterone endogeno legandosi ai recettori degli estrogeni ipotalamici. Legandosi ai recettori degli estrogeni, induce il cervello a percepire che non ci siano così tanti estrogeni nel corpo per garantire l’omeostasi. Questo porta ad un aumento di GnRH seguito da LH e FSH. L’LH (Ormone Luteinizzante), stimola le cellule di Leydig nei testicoli a sintetizzare più Testosterone. I livelli di Testosterone nei “responder” sono aumentati da 201 ng/dL a 435 ng/dL dopo 3 mesi e la massa magra è aumentata di 1 kg.
  • Liu et al. hanno reclutato uomini più anziani con bassi livelli di Testosterone e somministrato loro iniezioni di gonadotropina corionica umana (HCG). L’HCG, mimando l’LH, stimola i testicoli a sintetizzare Testosterone. Il Testosterone è aumentato da 320 ng/dL a circa 720 ng/dL e la massa magra è aumentata di 2 kg.
  • Bayram et al. hanno somministrato a uomini ipogonadici iniezioni di HCG. Il Testosterone è aumentato da 39 ng/dl (nell’intervallo) a 512 ng/dl, con un aumento di 473 ng/dl. La massa magra è aumentata di 2,8 kg.
  • In uno studio di Casaburi et al., uomini con BPCO e basso livello di Testosterone (≤400 ng/dL) sono stati assegnati in modo casuale a uno dei 4 gruppi:

-Placebo
-Testosterone Enantato (100 mg/week)
-Resistance Training
-Testosterone + Resistance Training

Le iniezioni di Testosterone hanno aumentato i livelli ematici da 302 ng/dL nel gruppo senza allenamento a 595 ng/dL e da 408 ng/dL a 656 ng/dL nel gruppo con allenamento. La massa magra è aumentata di 2,3 kg nel gruppo solo Testosterone, 0,2 kg nel gruppo solo resistance training e 3,29 kg nel gruppo Testosterone + resistance training. Va notato che l’allenamento è stato eseguito solo nella parte inferiore del corpo. Se si osservano i guadagni di massa magra delle gambe, erano 1,07kg nel gruppo solo Testosterone, 0,49 kg nel gruppo solo resistance training e 1,41 kg nel gruppo combinato.

Ecco un riassunto di tutti questi studi appena discussi, in cui i livelli bassi o al limite del livello di Testosterone sono stati aumentati in un intervallo fisiologico utilizzando iniezioni o sistemi di somministrazione transdermica. Puoi vedere che tutti hanno mostrato impatti positivi sulla massa magra. Alcuni hanno avuto aumenti relativamente piccoli del Testosterone (come circa 100-250 ng/dL) e hanno mostrato aumenti significativi della massa magra di circa 1-2 kg. In alcuni di questi studi, i soggetti si trovavano nella fascia più bassa del range di normalità (piuttosto che al di sotto del range di riferimento), e anche con quei soggetti, portare i livelli fino alla fascia medio-alta del range fisiologico ha avuto benefici positivamente apprezzabili.

E’ possibile vedere che i guadagni di massa magra con le iniezioni ( righe arancioni) tendono ad essere maggiori rispetto alla somministrazione transdermica ( righe grigie). Ciò è probabilmente legato al fatto che le iniezioni causano un picco iniziale di Testosterone che può essere all’estremità superiore dell’intervallo fisiologico, se non superare leggermente l’intervallo fisiologico.

Tipicamente, in questi studi, il Testosterone viene misurato 1-2 settimane dopo l’iniezione, rappresentando il minimo o il livello più basso di Testosterone. Pertanto, i livelli finali di Testosterone non rappresentano i livelli di picco raggiunti. Si può vedere questa differenza quando si guarda lo studio di Brodsky et al, dove il livello di picco, misurato 1 settimana dopo l’iniezione, era tre volte superiore al livello più basso, misurato 2 settimane dopo l’iniezione. Pertanto, tutti questi studi sulla terapia sostitutiva del Testosterone (TRT) dimostrano un beneficio nella massa magra dallo spostamento al di sotto dell’intervallo fisiologico, o dall’estremità inferiore dell’intervallo fisiologico, all’intervallo fisiologico medio o alto. Pertanto, sembra che anche il passaggio da una fascia bassa della gamma fisiologica a quella superiore abbia un vantaggio.

Testosterone più alto = Muscolo basale più alto, solo tassi di guadagno leggermente maggiori.

Nel complesso, i dati trasversali, gli studi dose-risposta, gli studi sui contraccettivi maschili e gli studi su TRT (compresi quelli in cui il Testosterone al basale era ancora normale) mostrano che le variazioni del Testosterone all’interno dell’intervallo fisiologico hanno un impatto sulla massa magra e muscolare. Questo significa che qualcuno con un livello di Testosterone più alto guadagnerà più velocemente di qualcuno con un livello più basso? Non proprio. Quando si guarda il corpo delle prove, il maggiore impatto del Testosterone sembra essere sul mantenimento di un certo livello di base della massa muscolare, piuttosto che sul tasso di guadagno muscolare. Ad esempio, i malati di cancro alla prostata sono spesso sottoposti a terapia di deprivazione di androgeni, in cui i loro livelli di Testosterone sono stati soppressi. In questo studio, il Testosterone medio era 45,7 ng/dL (all’interno dell’intervallo di una donna), rispetto a 430 ng/dL per i controlli. La sintesi proteica muscolare a riposo e a stomaco pieno era più bassa nei pazienti deprivati ​​di androgeni. Tuttavia, quando l’alimentazione è stata combinata con l’allenamento contro-resistenza, la risposta alla sintesi proteica muscolare non era statisticamente diversa dai controlli (sebbene la media grezza fosse ancora leggermente inferiore).

Tassi di sintesi proteica muscolare in soggetti di controllo rispetto a pazienti in terapia di deprivazione androgenica (ADT). La sintesi proteica muscolare è significativamente più bassa a riposo e anche dopo un pasto (FED). Tuttavia, dopo l’allenamento contro-resistenza, la sintesi proteica muscolare non è significativamente diversa dai controlli dopo un pasto (EX-FED).

Questo è supportato anche quando si confrontano i guadagni muscolari tra maschi e femmine. Gli uomini hanno 10 volte più Testosterone delle donne, con maggiori livelli di base di massa muscolare, ed è risaputo. Tuttavia, quando uomini e donne vengono sottoposti a programmi di allenamento contro-resistenza, mentre i guadagni muscolari assoluti sono maggiori negli uomini, i guadagni muscolari relativi (cioè i guadagni percentuali) sono per lo più simili.

Mentre il guadagno percentuale nello studio di cui sopra era leggermente favorito negli uomini, non lo era di molto. Tuttavia, il guadagno assoluto è stato quasi il doppio di quello negli uomini rispetto alle donne. Pertanto, un aumento del 15% della massa muscolare negli uomini sarà generalmente maggiore su base assoluta rispetto alle donne, poiché gli uomini hanno una linea di base più ampia.

Una terza linea di supporto a questo concetto viene dal famoso studio Bhasin del 1996 sugli steroidi anabolizzanti. In questo studio di 10 settimane, uomini normali sono stati assegnati in modo casuale a uno dei quattro gruppi:

  • Placebo senza allenamento
  • Testosterone senza allenamento
  • Placebo con allenamento contro-resistenza
  • Testosterone con allenamento contro-resistenza.

Il testosterone è stato somministrato in dosi sovrafisiologiche (600 mg/settimana). I livelli di testosterone sono stati elevati a 2828 – 3244 ng/dL con le iniezioni, rispetto ai livelli normali di 453 – 667 ng/dL nel gruppo placebo. L’iniezione di testosterone, senza allenamento, ha comportato un aumento della massa magra di 3,2 kg. Il solo allenamento ha comportato un aumento della massa magra di 2 kg. Quando l’allenamento è stato combinato con l’iniezione di testosterone, l’aumento di massa magra è stato di 6,1 kg. La dimensione del muscolo quadricipite è aumentata in modo simile nel gruppo testosterone + nessun allenamento e nel gruppo solo allenamento, mentre i guadagni sono stati raddoppiati nel gruppo testosterone + allenamento.

La cosa interessante qui è che, quando guardi questi dati, puoi vedere che c’era principalmente un effetto additivo, piuttosto che sinergico, del testosterone e dell’allenamento. La FFM è aumentata di 3,2 kg con il solo testosterone. È aumentato di 2 kg solo con l’allenamento. Quando sommi queste due quantità, ottieni 3,2 + 2 = 5,2 kg, che è ragionevolmente vicino al guadagno di 6,1 kg osservato nel gruppo combinato. In altre parole, solo circa 0,9 kg potrebbero essere spiegati da un effetto sinergico tra testosterone e allenamento. Puoi anche vedere un effetto simile per l’aumento delle dimensioni del quadricipite. Il cambiamento nella dimensione del quadricipite era più o meno lo stesso nei gruppi solo testosterone e solo allenamento, ed era per lo più additivo nel gruppo combinato. Ancora una volta, solo una piccola parte del cambiamento nella dimensione del quadricipite potrebbe essere spiegata da un effetto sinergico tra testosterone e allenamento.

Questo è simile ai dati osservati quando osserviamo uomini e donne. I maggiori livelli di testosterone negli uomini non aumentano molto il tasso di guadagno rispetto alle donne; è solo che dà agli uomini una linea di base più alta per cominciare, e quindi i guadagni assoluti sono maggiori. Se ci fosse un forte effetto sinergico tra testosterone e allenamento, allora i guadagni relativi negli uomini sarebbero significativamente maggiori rispetto alle donne, ma ovviamente non è così.

Una quarta evidenza viene dallo studio di Casaburi e colleghi sugli uomini con BPCO, di cui si è brevemente accennato in precedenza. In questo studio è stato eseguito solo l’allenamento delle gambe. I guadagni di massa magra delle gambe nel gruppo combinato allenamento+testosterone erano 1,41 kg, che è vicino alla somma dei guadagni sperimentati dal gruppo solo testosterone (1,07 kg) e il gruppo solo allenamento (0,49 kg). Questo suggerisce ancora una volta che gli effetti del testosterone e dell’allenamento di resistenza sono per lo più additivi e non sinergici.

Pertanto, i tuoi livelli di testosterone influenzano la quantità di muscoli che porti in giro, indipendentemente dal fatto che ti alleni o meno. Quindi, quando inizi ad allenarti, la tua reattività all’allenamento è per lo più simile indipendentemente dal fatto che tu abbia livelli di testosterone bassi o alti. Potrebbe essere un po’ meno con un testosterone più basso, ma l’impatto maggiore è sulla tua linea di base.

Ad esempio, supponiamo che tu abbia una massa magra di base di 50 kg e che tu abbia un livello di testosterone nella fascia bassa (diciamo circa 300 ng/dL). Guadagni il 10% in 6 mesi, ovvero 5 kg.

Ora, prendi la stessa situazione, ma la persona ha un testosterone di base a 600 ng/dL. La tua massa magra di base ora potrebbe essere di 52 kg. Guadagni ancora il 10% in 6 mesi, ovvero 5,2 kg. Pertanto, il guadagno relativo è simile. Tuttavia, il punto di partenza e il guadagno assoluto sono maggiori a causa del testosterone più alto.

Consideriamo un altro esempio. Diciamo che una persona segue un qualche tipo di sostituzione del testosterone, aumentando il testosterone da 250 ng/dL a 500 o 600 ng/dL. Quella persona inizialmente sperimenterà alcuni guadagni relativi superiori al normale, mentre si muove verso la sua nuova linea di base per il suo nuovo livello di testosterone. Ti sembrerà di guadagnare da “principiante”. Tuttavia, una volta che quella persona ha raggiunto la sua nuova linea di base, i suoi guadagni relativi saranno simili a quando aveva un testosterone più basso.

Quantificare l’impatto delle variazioni del Testosterone fisiologico sulla massa magra
Quindi sappiamo che le variazioni del testosterone fisiologico influiscono sulla quantità di muscoli che hai. Ma quanto? Se passi da 300 ng/dL a 600 ng/dL, quanta massa magra in più puoi aspettarti di avere?

Per rispondere a questa domanda, torniamo agli studi dose-risposta di Shalendar Bhasin di cui abbiamo discusso in precedenza. Possiamo prendere i dati dai tre studi ed eseguire una regressione su di essi per vedere come cambia la massa magra al variare dei livelli di testosterone all’interno dell’intervallo fisiologico.

Ecco la linea di regressione per i dati di Bhasin et al. 2001, 2005 e 2012. Ho usato solo punti dati in cui il testosterone si trovava all’interno di un intervallo fisiologico o appena al di fuori di esso (da 176 ng/dL a 1345 ng/dL). Sono 11 punti dati. Per ogni aumento di 100 ng/dL di testosterone, la massa magra aumenta di 0,6 kg. L’R al quadrato per la vestibilità del modello era 0,85, il che è molto buono.

Variazione della massa magra in relazione al cambiamento del Testosterone rispetto al basale, entro un intervallo di variazione da -340 ng/dL a +691 ng/dL. Pendenza della linea = 0,006, il che significa un ulteriore 0,6 kg in FFM per ogni aumento di 100ng/dL del Testosterone. R-Quadrato = 0,85. Dati di Bhasin et al. 2001, 2005 e 2012.

Il valore di 0,6 kg di FFM per ogni aumento di 100 ng/dL è in accordo con uno studio dose-risposta di Huang e colleghi su donne isterectomizzate. Hanno anche scoperto che la FFM aumenta di 0,6 kg per ogni aumento di 100 ng/dL di testosterone.

Possiamo anche eseguire una regressione sui dati che ho discusso in precedenza da Finkelstein e colleghi, in cui i livelli di testosterone sono stati soppressi e quindi ai soggetti sono state somministrate diverse dosi di un gel di testosterone. Sebbene i numeri effettivi della massa magra non siano stati riportati da questo studio, possiamo stimarli dai valori di base riportati e dalle variazioni percentuali. Per ogni aumento di 100 ng/dL di testosterone, la massa magra aumenta di 0,3 kg. L’R al quadrato per la vestibilità del modello è 0,70, il che è buono.

Cambiamento nella massa magra in relazione al cambiamento nel Testosterone dal basale. Pendenza della linea = 0,003, il che significa un ulteriore 0,3 kg in FFM per ogni aumento di 100ng/dL del Testosterone. R-Quadrato = 0,70. Dati da Finkelstein et al. 2013.

Mentre potremmo anche provare a eseguire una regressione su alcuni degli studi discussi in cui i livelli di testosterone erano bassi e portati in un intervallo normale fisiologico, il problema con questi è che tutti usavano diversi metodi di somministrazione per il testosterone (iniezione vs gel vs. . patch), che possono avere dinamiche diverse in termini di come vengono modificati i livelli ematici. Inoltre, il problema con il tentativo di aggregare diversi studi di iniezione è che variano nel tempo in cui misurano il testosterone e variano anche in termini di frequenza delle iniezioni. Puoi avere una misurazione del testosterone molto diversa se misuri 1 settimana dopo un’iniezione, rispetto a 2 settimane.

Tuttavia, possiamo dare un’occhiata a studi in cui è stato somministrato un farmaco che ha stimolato la produzione naturale di testosterone; tali studi possono imitare meglio il modo in cui la massa magra risponde alle variazioni dei livelli di testosterone endogeno. Dias et al. dato agli uomini Anastrozolo, un inibitore dell’Aromatasi. Inibendo l’Aromatasi, l’enzima che converte il Testosterone in Estrogeno, puoi aumentare efficacemente i livelli di Testosterone. In teoria, questi livelli di Testosterone sarebbero relativamente stabili, poiché rappresenterebbero livelli di testosterone endogeno piuttosto che testosterone esogeno da iniezione o somministrazione transdermica. L’Anastrozolo ha aumentato il testosterone da 272 ng/dL a circa 500 ng/dL a 6 mesi e la massa magra è aumentata di 1,5 kg. Sono circa 0,6 kg di FFM per ogni aumento di 100 ng/dL, il che è in accordo con le nostre analisi precedenti. Ribeiro e Abucham hanno somministrato agli uomini ipogonadici Clomifene Citrato, che aumenta il Testosterone endogeno (i livelli all’interno del corpo, rispetto a quello esogeno come da un’iniezione o da una crema) legandosi ai recettori degli ipotalamici degli Estrogeni. Legandosi ai recettori degli estrogeni, induce il cervello a pensare che non ci siano così tanti estrogeni nel corpo. Questo porta il cervello a pompare più ormone Luteinizzante (LH), che poi stimola i testicoli a produrre più testosterone. I livelli di testosterone nei soggetti responsivi sono aumentati da 201 ng/dL a 435 ng/dL dopo 3 mesi e la massa magra è aumentata di 1 kg. Sono 0,4 kg per ogni aumento di 100 ng/dL di testosterone. Liu et al. iniettato HCG in uomini che avevano bassi livelli di testosterone al limite; L’HCG è un ormone che stimola i testicoli a produrre più testosterone. Il testosterone è aumentato da 320 ng/dL a circa 720 ng/dL, un aumento di 400 ng/dL. Massa magra aumentata di 2 kg. Sono 0,5 kg di massa magra per ogni 100 ng/dL di aumento del testosterone, che è ancora una volta in accordo con il range che abbiamo stabilito. Infine, Bayram et al. uomini ipogonadici iniettati con HCG. Il testosterone è aumentato da 39 ng/dL a 512 ng/dL, un aumento di 473 ng/dL. Massa magra aumentata di 2,8 kg. Sono 0,6 kg per ogni aumento di 100 ng/dL. Pertanto, questi 4 studi suggeriscono un aumento di 0,5 – 0,6 kg di massa magra per ogni aumento di 100 ng/dL di testosterone, che è in accordo con le regressioni di Bhasin e Huang.

Mettendo insieme tutto questo, i dati suggeriscono che la massa magra aumenterà di 0,7 – 1,3 libbre (0,3 – 0,6 kg) per ogni aumento di 100 ng/dL dei livelli ematici di testosterone all’interno dell’intervallo fisiologico. Quindi, se passassi da 300 ng/dL a 600 ng/dL, questo sarebbe 0,9 – 1,8 kg o circa 2,1 – 4 libbre.

Ora, tieni presente che ci sono dei limiti a questa analisi. In primo luogo, si basa su medie; i risultati individuali possono essere diversi. Ad esempio, come accennato in precedenza, Finkelstein et al. hanno mostrato un’ampia variazione nel modo in cui i soggetti hanno risposto a diversi livelli di testosterone. In secondo luogo, si basa su analisi tra soggetti; ciò che accade all’interno delle persone può essere diverso da ciò che si osserva tra le persone. Terzo, parte di esso si basa su iniezioni di testosterone esogeno. Il problema è che, con le iniezioni, i livelli medi di testosterone nel sangue saranno superiori a quelli misurati. Questo perché, quando inietti il ​​testosterone, ottieni un grande picco nei livelli ematici e poi decade lentamente nell’arco di 1-2 settimane. I ricercatori di solito misurano il testosterone alla depressione del decadimento dopo l’iniezione, di solito 1-2 settimane dopo. Questa limitazione diventa evidente quando si osservano alcuni dei dati dose-risposta di Bhasin. Ad esempio, nello studio Bhasin 2001, gli uomini che hanno ricevuto 125 mg di testosterone iniettato hanno guadagnato 3,4 kg di massa magra, ma il livello di testosterone nel sangue misurato di 542 ng/dL era simile al livello di base naturale dei soggetti prima che avessero il loro testosterone livelli soppressi. Pertanto, i loro livelli medi di testosterone erano probabilmente molto più alti di 542 ng/dL.

Sebbene questo sia certamente un grosso limite nell’analisi, va anche ricordato che, con la regressione, stiamo valutando principalmente le differenze nella massa magra tra diversi livelli di testosterone, piuttosto che la relazione con un particolare livello assoluto. In altre parole, stiamo osservando come la massa magra cambia per un cambiamento di 100 ng/dl nel testosterone, piuttosto che come la massa magra si riferisce, ad esempio, a un livello ematico di 500 ng/dl. Quindi, anche se i livelli di testosterone sono dovuti a iniezioni esogene, e anche se i livelli medi sono molto più alti di quelli misurati alla depressione, il rapporto tra i livelli non dovrebbe cambiare drasticamente. Va anche notato che il rapporto di 0,6 kg/100 ng/dL riscontrato negli studi Bhasin ha retto nelle donne a cui sono state somministrate dosi molto più basse. Tuttavia, è ancora una limitazione che deve essere considerata.

Una cosa interessante da notare è che le variazioni all’interno di un intervallo fisiologico possono avere un impatto maggiore rispetto alle variazioni al di fuori dell’intervallo fisiologico. In altre parole, la massa magra non aumenta in modo lineare con l’aumento dei livelli di testosterone. Quando superi l’intervallo fisiologico, la pendenza della relazione diminuisce e il testosterone non ha lo stesso impatto. Ciò diventa evidente quando guardiamo di nuovo alla nostra regressione dei tre studi Bhasin, ma questa volta includiamo i dati che sono ben al di sopra dell’intervallo normale fisiologico.

Puoi vedere che la curva si adatta meglio ai dati rispetto alla linea retta. La pendenza per la linea retta è 0,002, il che significa che la massa magra è aumentata di 0,2 kg per ogni 100 ng/dL di testosterone, che è inferiore agli 0,6 kg che abbiamo osservato con gli stessi dati in precedenza. Anche l’adattamento del modello non è altrettanto buono (R-quadrato = 0,77). Questo perché i livelli estremamente elevati di testosterone attenuano la relazione. Ogni aumento di 100 ng/dL di testosterone non ha un effetto così forte a intervalli soprafisiologici rispetto al normale intervallo fisiologico. Questo è supportato anche quando diamo un’occhiata allo studio Bhasin del 1996 sul testosterone ad alte dosi che ho menzionato prima. Il testosterone nel sangue è aumentato di circa 2326 ng/dL nel gruppo con solo testosterone e la massa magra è aumentata di 3,2 kg. Questo è un aumento di 0,13 kg per ogni aumento di 100 ng/dL di testosterone, che non è lontano dall’aumento di 0,2 kg menzionato in precedenza quando abbiamo incluso alte dosi di testosterone.

E le donne?

Le donne hanno livelli di Testosterone molto più bassi rispetto agli uomini e ci sono dati limitati per stabilire intervalli di riferimento sulle donne. Uno dei problemi è che alcuni test di laboratorio tradizionali per il Testosterone, come i radioimmunodosaggi (RIA), non sono abbastanza sensibili da misurare con precisione il Testosterone nelle donne. Misurazioni accurate del testosterone nelle donne richiedono tecniche sensibili come la cromatografia liquida-spettrometria di massa tandem (LC-MS/MS). Esistono alcuni dati che stabiliscono intervalli di riferimento utilizzando questa tecnica. Ecco i dati di Haring e colleghi che mostrano i percentili più bassi e più alti per le donne in premenopausa di età compresa tra 20 e 49 anni (si noti che sto mescolando alcuni dei dati di distribuzione effettivi per ottenere il 25° e il 75° percentile, con i loro modelli di regressione quantile per ottenere il 2,5° e 97,5° percentile, ma per i nostri scopi va benissimo).

Simile agli uomini, il testosterone diminuisce con l’età.

Testosterone misurato da GC-MS / MS in 985 donne. Dati da Haring et al., J Clin Endocrinol Metab, 2012. 1 nmol/L = 0,0347 ng/dL

È stato anche riscontrato che le donne che assumevano contraccettivi orali o terapia ormonale sostitutiva avevano in media livelli di testosterone più bassi, sebbene l’intervallo percentile superiore fosse più alto. Il 25° percentile per queste donne era 10 ng/dL (vs 13) e il 75° percentile era 56 ng/dL (vs 47).

Testosterone per età nelle donne, confrontando le donne trattate con contraccettivi orali o HRT a quelle che non lo sono. Dati da Haring et al., J Clin Endocrinol Metab, 2012. 1 nmol/L = 0,0347 ng/dL

Rari et al. non ha riscontrato alcuna relazione tra testosterone totale e massa magra nelle donne anziane (età 67-94 anni), ma ha osservato una relazione significativa tra testosterone libero e massa magra (il testosterone libero è la forma che non è legata ad alcuna proteina, da qui il termine “libero”).

Possiamo anche esaminare i dati in cui alle donne con bassi livelli di testosterone è stato somministrato testosterone esogeno. Anche in questo caso, i dati sono limitati, ma ci sono alcuni studi.

Cambiamento nella massa magra con diverse dosi di Testosterone nelle donne in menopausa isterectomizzate. Dati da Huang et al, Menopausa, 2014. Solo la dose di 25mg ha determinato un aumento statisticamente significativo. La massa magra è aumentata di 0,6kg per ogni aumento di 100ng/dL del Testosterone, che è al di fuori del normale intervallo fisiologico per le donne (13 – 56 ng/dL).

Questi dati suggeriscono che è necessario aumentare i livelli ematici di testosterone ben al di fuori di un intervallo normale fisiologico (verso la fascia molto bassa di un maschio) nelle donne in post-menopausa per ottenere aumenti misurabili della massa magra e della funzione sessuale. Nel complesso, questi dati indicano che le variazioni del testosterone nelle donne, all’interno del normale range fisiologico, hanno un impatto misurabile molto piccolo, se non nullo, sul muscolo. Ciò non sorprende se consideriamo l’aumento di 0,3 – 0,6 kg per ogni aumento di 100 ng/dL di testosterone di cui abbiamo discusso. L’intervallo normale per le femmine va da 13 a 56 ng/dL, un intervallo di soli 43 ng/dL. Ciò equivale solo a un quarto di chilogrammo (mezza libbra) o meno nelle donne.

Tiriamo le somme

Quando esaminiamo l’intero corpo di prove, è chiaro che le variazioni nei livelli fisiologici di Testosterone influiscono sulla quantità di muscoli che il soggetto ha, ma avranno un impatto minimo sui guadagni relativi (%). Riassumendo: I dati trasversali, gli studi dose-risposta e gli studi TRT supportano tutti variazioni all’interno dell’intervallo normale in quanto hanno un impatto sulla massa magra e sui muscoli-scheletrici. Le variazioni nei livelli ematici di Testosterone influiscono sul livello “base” dei muscoli, ma hanno un impatto minimo sui guadagni relativi (%). Quindi, avere livelli di Testosterone più alti significa avere un livello base più alto di massa muscolare. Mentre i guadagni relativi saranno per lo più simili, i guadagni assoluti saranno più alti a causa della linea di base più elevata. Gli impatti del Testosterone e dell’allenamento contro-resistenza sulla massa magra e sui muscoli-scheletrici sono principalmente additivi piuttosto che sinergici. La massa magra al basale aumenta di circa 0,7 – 1,3 libbre o 0,3 – 0,6 kg per ogni aumento di 100 ng/dL del Testosterone fisiologico; questo si basa su medie e dati tra soggetti, quindi i risultati individuali possono variare considerevolmente. Ci sono anche limitazioni a questa analisi, come il fatto che parte di essa si basa su dati dose-risposta provenienti da iniezioni, che potrebbero non riflettere accuratamente i cambiamenti nei livelli endogeni. L’impatto del Testosterone sulla FFM è attenuato a livelli sovrafisiologici (>1500 ng/dL); La FFM di base aumenta di circa 0,1-0,2 kg per ogni 100 ng/dL per quei livelli. Le variazioni del Testosterone nelle donne, all’interno del normale range fisiologico, hanno un impatto minimo o nullo sul muscolo-scheletrico. Quindi, sì, i soggetti di sesso maschile con un livello di Testosterone più alto hanno un vantaggio in termini assoluti sulla massa muscolare. Questi dati indicano anche che gli uomini che invecchiano, con livelli di Testosterone al limite o bassi, possono ottenere un beneficio nella costruzione muscolare da terapie progettate per aumentare i livelli di Testosterone in range fisiologici, sia da fonti esogene (come iniezioni o gel) sia da fonti che stimolano la produzione di Testosterone (come il Clomifene). , HCG o inibitori dell’Aromatasi), anche se si allenano già con i pesi.

Però, attenzione a fare comparazioni fuori luogo: la fisiologia e quello che può manifestare non è paragonabile alle sue alterazioni fuori range… nel bene e nel male…

Gabriel Bellizzi

Riferimenti:

Indolo-3-Carbinolo (I3C) e 3,3′-Diindolylmethano (DIM): un potenziale aiuto per il controllo estrogenico?

Introduzione:

Chi mi conosce sa come io prenda con estrema cautela qualsiasi affermazione sensazionalistica nei confronti di derivati erboristici et similari, ma non solo. Ogni qual volta mi capita di leggere qualche studio o serie di dati aneddotici sono solito indagare tutto lo scindibile riguardante l’oggetto che si ritiene causa primaria di un dato evento migliorativo nella composizione corporea e/o nelle prestazioni. Non di rado le mie ricerche mi hanno portato a conclusioni nettamente negative che liquidavano le affermazioni fatte da taluni come “placebo” o “non riconducibili alla molecola in questione. Mi capitò nei primi anni di ricerca con la Carnitina e il suo presunto effetto nel miglioramento del trasporto degli acidi grassi nel mitocondrio (cosa strettamente regolata e non sovraesprimibile con integrazione della medesima), o con il Tribulus Terrestris, la Maca e altri presunti “Testo-booster”. La lista è lunga.

E’ solo di recente che la mia attenzione è stata attirata verso due molecole, un precursore e il suo derivato, contenute in significative concentrazioni (in particolare riferimento al precursore) nelle crucifere (Broccoli, Cavoli ecc…), le quali presentano una interessante, sebbene contenuta, letteratura che ne sottolinea il potenziale di azioni biochimiche tra le quali spicca quella sul metabolismo degli estrogeni. Sto parlando del Indolo-3-Carbinolo (I3C) e del suo derivato 3,3′-Diindolylmethano (DIM).

E’ mia intenzione, quindi, esporre le loro caratteristiche e la possibile portata attualmente ipotizzata dalla loro assunzione.

I3C e DIM- loro caratteristiche molecolari e attività biochimica:

L’Indolo-3-Carbinolo (C9H9NO) è prodotto dalla scomposizione del Glucosinolato Glucobrassicina, che può essere trovato a livelli relativamente alti nelle verdure crocifere come Broccoli, Cavoli, Cavolfiori, Cavolini di Bruxelle ecc… .[1] È disponibile anche sotto forma di integratore alimentare.[2] L’Indolo-3-Carbinolo è oggetto di continua ricerca biomedica sui suoi possibili effetti anticancerogeni,[3] antiossidanti e anti-aterogeni.[4] La ricerca sull’Indolo-3-Carbinolo è stata condotta principalmente utilizzando animali da laboratorio e cellule coltivate in vitro.[5] Sono stati riportati studi umani limitati e per ora inconcludenti. Una recente review della letteratura sulla ricerca biomedica ha rilevato che “l’evidenza di un’associazione inversa tra l’assunzione di verdure crocifere e il cancro al seno o alla prostata negli esseri umani è limitata e incoerente” e “sono necessari studi controllati randomizzati più ampi” per determinare se l’Indolo-3-Carbinolo supplementare ha benefici per la salute.[6]

Lo studio dei meccanismi attraverso i quali il consumo di Indolo-3-carbinolo potrebbe influenzare l’incidenza del cancro si concentra sulla sua capacità di alterare il metabolismo degli estrogeni e altri effetti cellulari. Sono stati condotti studi controllati su animali come ratti, topi e trote arcobaleno, introducendo vari livelli controllati di agenti cancerogeni e livelli di Indolo-3-Carbinolo nella loro dieta quotidiana. I risultati hanno mostrato diminuzioni dose-correlate della suscettibilità al tumore dovute all’Indolo-3-Carbinolo (indotto dalla diminuzione del legame aflatossina-DNA). La prima prova diretta dell’attività anti-iniziale pura di un anticancerogeno naturale (indolo-3-carbinolo) presente nella dieta umana è stata rivendicata da Dashwood et al. nel 1989.[7]

L’Indolo-3-Carbinolo (I3C) agisce principalmente attraverso il suo principale metabolita, il Diindolylmethano (DIM) (può comprendere fino a un terzo dei derivati del I3C[8]) e alcuni altri metaboliti che possono essere prodotti spontaneamente dall’instabile I3C (come l’indolo {3,2-b}carbazolo,[9] un costituente minore[8]). La formazione precisa di questi metaboliti implica la catalizzazione del I3C per formare indoli reattivi che poi si combinano tra loro per “costruire” una molecola più grande ma stabile, essendo il DIM il risultato della formazione di due di questi indoli.[8]

Il Diindolylmethano (DIM), come già accennato, è il principale metabolita derivato dall’acido farmaceuticamente attivo dell’Indolo-3-Carbinolo (I3C) il quale si trova in molte verdure Brassica attraverso il composto madre glucobrassicina.[10][11][12] La glucobrassicina ingerita viene catalizzata tramite l’enzima Mirosinasi (contenuto nei vegetali) convertendo in Indolo-3-Carbinolo, il quale viene rapidamente metabolizzato sia in DIM che in vari altri metaboliti nello stomaco umano tramite reazioni di condensazione acido-mediate.[8][13]

Le fonti di glucosinolati (in generale) sono elencate di seguito, con qualsiasi fonte che citi il Diindolylmethano o il suo precursore (Indole-3-Carbinolo) specificatamente menzionata in grassetto:

  • Cavoletti di Bruxelles, 104mg per 44 g (mezza tazza)[14];
  • Crescione da giardino, 98mg per 25g (mezza tazza)[14];
  • Senape, 79mg per 28g (mezza tazza, tritata)[14];
  • Rapa, 60mg per 65g (mezza tazza, cubetti)[14]
  • Cavolo Verza, 35mg per 45g (mezza tazza, tritato)[14]
  • Cavolo riccio, 67mg per 67g (1 tazza, tritato)[14];
  • Crescione, 32mg per 34g (1 tazza, tritato)[14];
  • Cavolo rapa, 31mg per 67g (mezza tazza, tritato)[14];
  • Cavolo rosso, 29mg per 45g (mezza tazza, tritato)[14];
  • Broccoli, 27mg per 44g (mezza tazza, tritati)[14];
  • Rafano, 24mg per 15g (cucchiaio)[14];
  • Cavolfiore, 22mg per 50g (mezza tazza tritata)[14];
  • Bok Choy, 19mg per 35g (mezza tazza, tritato)[14].

Poiché la glucobrassicina si degrada in I3C per azione dell’enzima Mirosinasi contenuto nella pianta, la disattivazione di questo enzima mediante trattamento termico (cottura) può ridurre la biodisponibilità orale di qualsiasi glucosinolato incluso DIM.[15][16] Tuttavia, una certa biodisponibilità viene conservata a causa dell’espressione della Mirosinasi anche nell’intestino umano.[17]

Tioglucosidasi (Mirosinasi)

L’ebollizione[18] e il microonde (750-900 watt)[19][20] sembrano i maggiori sospettati per la riduzione della biodisponibilità del glucosinolato; il primo a causa dell’eccesso di acqua che assorbe i composti bioattivi solubili in acqua dal cibo. In questo senso, i metodi di cottura che utilizzano meno acqua trattengono più glucosinolati rispetto a quelli che utilizzano molta acqua.[21]

È stato dimostrato che il DIM attiva la segnalazione del Fattore Nucleare Kappa-Beta (NF-kB), l’attivazione della caspasi, l’attivazione del citocromo P450 (in particolare CYP1A1, CYP1A2 e CYP19), la riparazione del DNA, il recettore degli idrocarburi arilici (AHR) e varie protein chinasi.[22][23][24]

Fattore Nucleare Kappa-Beta

L’Indolo-3-Carbinolo alimentare o integrativo, tramite il metabolita DIM, si ritiene che possa aumentare il peso del fegato come riflesso di un aumento generale della produzione dell’enzima P450;[25] questa risposta organica sembra essere dose dipendente tra basse concentrazioni nella dieta (250 ppm ) fino a quelli molto elevati (5.000 ppm) con la 2-idrossilazione degli estrogeni in aumento in relazione al peso complessivo del fegato.[25]

Uno studio che utilizzava Indole-3-Carbinol ha rilevato che le iniezioni giornaliere di 5mg nell’intestino sono state in grado di attenuare l’aumento previsto di grasso corporeo associato a una dieta ricca di grassi/calorie.[26]

Se si rapporta questa dose utilizzata in topi da laboratorio in una adatta per un essere umano adulto di 80kg si arriverebbe a circa 30mg al giorno. Se fosse somministrato per via orale probabilmente si avrebbe bisogno di una dose teoricamente più alta per ipotizzarne una qualche efficacia in tal senso.

È stato notato che il recettore degli idrocarburi arilici (AhR) ha un ruolo in alcune cellule immunitarie e nelle cellule natural killer (NK) l’attivazione di questo recettore (osservata con 10µM di 3,3′-diindolilmetano[27]) può aumentare la produzione di IFN-γ e funzione effettrice, aumentando così la loro inibizione della crescita delle cellule tumorali.[27]

Cellule Natural Killer (NK)

È stato notato che il 3,3′-Diindolylmethano (DIM) attiva sia il sottoinsieme alfa del recettore degli estrogeni (ERα)[28] che il sottoinsieme beta (ERβ),[29][30] con promozione da parte della molecola della crescita cellulare tramite ERα[ 28] non essendo un ligando diretto[31] mentre anche l’aumento della segnalazione tramite ERβ (15μM) sembra essere mediato indirettamente.[29][30] L’attivazione di ERα può dipendere dal tipo di cellula, poiché concentrazioni simili (10-15 μM; la concentrazione più bassa proposta per essere raggiunta tramite una dieta ricca di crocifere[32]) hanno mostrato efficacia nell’agire su questo recettore nel cancro al seno MCF7 e T47D cellule [28] ma non cellule MDA-MB-231 o HeLa,[29] o può essere dovuto alla sensibilità, poiché anche nelle cellule reattive concentrazioni più elevate (50μM) non riescono a causare una risposta.[28] È noto che l’attivazione indiretta è mediata prevalentemente dall’attivazione di PKA[29][31] che poi attiva MAPK e CREB.[31]

Recettore degli Estrogeni alfa (ERα), noto anche come NR3A1 (sottofamiglia del recettore nucleare 3, gruppo A, membro 1).

La maggiore concentrazione di DIM sembra indurre geni sensibili ad AhR nelle cellule del cancro al seno (CYP1A1 e CYP1B1[28-21]) suggerendo un diverso meccanismo dipendente dalla concentrazione. L’attivazione dell’AhR di per sé induce la produzione di alcuni di questi enzimi di fase I[33] che è un meccanismo di estrogenicità (attraverso l’aumento dell’attività dell’Aromatasi) osservato con pochi estrogeni ambientali[34] ma a causa della minore affinità del DIM verso l’AhR rispetto alla selezionare degli estrogeni ambientali (PCB, diossine e PAH) la combinazione dei due può comportare una minore estrogenicità relativa rispetto ai soli estrogeni ambientali.[35][36][37]

Il DIM è stato implicato nella modifica degli estrogeni preesistenti in altri metaboliti. Il processo di 2-idrossilazione, probabilmente secondario all’attivazione di AhR,[38] può aumentare il rapporto tra 2-idrossiestrone e 16α-idrossiestrone, che si pensa sia un profilo meno estrogenico dato dagli estrogeni.[39] I processi di 4-idrossilazione e 16-idrossilazione non sembrano significativamente influenzati.[40] È stato osservato che l’Indolo-3-Carbinolo induce la formazione di 2-idrossiestrone secondario ad un aumento del processo di 2-idrossilazione[41] e l’integrazione orale di DIM (108mg) nelle donne con anamnesi di carcinoma mammario in fase iniziale aumenta l’incremento delle vie urinarie. concentrazioni di 2-idrossiestrone (insieme a un aumento non significativo del rapporto tra 2-idrossiestrone e 16α-idrossiestrone.[42] Nei ratti trattati con I3C nella dieta per un periodo di tempo prolungato 200-1.000ppm sembravano essere efficaci nell’aumentare la 2-idrossilazione dell’Estradiolo con l’efficacia raggiunta quasi al doppio di circa 600-1.000ppm (17,6-36,3mg/kg),[32] traducendosi in circa 3-6mg/kg in un essere umano adulto.

2-Idrossiestrone 

Le iniezioni di DIM nei ratti per due settimane prima dell’irradiazione corporea totale hanno fatto notare miglioramenti dose-dipendenti della sopravvivenza (fino al 60% da 75 mg/kg), e mentre 7,5mg/kg erano inefficaci se somministrati in questo periodo di tempo mentre una singola dose un giorno prima della irradiazione è sembrato conferire il 55% di sopravvivenza.[43] Si pensava che questo effetto protettivo fosse dovuto all’attivazione dell’atassia-teleangectasia mutata (ATM), un enzima riparatore che aumenta l’attività in risposta al danno genetico,[44] osservato con DIM 300nM ritenuto secondario all’inibizione di PP2A (MRE11 e BRCA1 anche richiesto);[43] PP2A normalmente si complessa con ATM mantenendolo in uno stato inattivo e la sua inibizione consente ad ATM di diventare iperattivo in risposta al danno genetico.[48]

Nel tessuto normale, il DIM (300nM) può attivare la via di riparazione genetica ATM in risposta al danno da irradiazione in modo dipendente da BRCA1 (uno dei suoi bersagli[43]) senza aumentare la sopravvivenza delle cellule del cancro al seno (MDA-MB-231[43]); ci sono alterazioni note in questo percorso in alcuni tumori al seno in cui BRCA1 è ridotto mentre l’ATM stesso sembra essere iperattivo ed è stato notato che l’integrazione orale di 300mg di DIM aumenta i livelli di mRNA di BRCA1 dopo 4-6 settimane di integrazione (misurata nei globuli bianchi) nelle donne che avevano una mutazione a bassa attività.[49] Alcuni studi sugli animali (usando DIM o il suo precursore I3C) che trovano effetti antitumorali sulle cellule del cancro al seno notano che questi cambiamenti si verificano insieme all’aumento della 2-idrossilazione dell’Estradiolo,[50] che sembra essere dose-dipendente fino a dosi orali molto grandi (5.000ppm nei topi o oltre 10g/kg rispetto al peso corporeo).[50]

Idrossilazione dell’Estradiolo

Nei ratti, l’ingestione orale di Indolo-3-Carbinolo (I3C) per una settimana prima dell’induzione del cancro mammario tramite DMBA ha ridotto significativamente l’incidenza (70-90%) e la molteplicità (91-96%) rispetto al controllo cancerogeno,[50] dimostrando efficacia anche sul cancerogeno ad azione diretta N-Nitroso-N-metilurea ma in misura minore (riduzione del 65% della molteplicità).[50] Anche la crescita tumorale spontanea piuttosto che indotta da tossine sembra essere appena dimezzata in uno studio (della durata di 250 giorni) in ratti alimentati con 64-128mg/kg di I3C nella dieta (l’assunzione stimata rispetto al peso corporeo è di 4,8-9,6g/kg) rispetto al controllo, con anche la molteplicità in qualche modo ridotta.[50]

Nei ratti predisposti al cancro dell’endometrio (ratti Donryu) trattati con livelli dietetici di Indolo-3-Carbinolo (I3C; 200-1.000ppm) e valutati per un periodo sperimentale prolungato, i tassi di neoplasie spontanee nell’utero dopo 660 giorni erano significativamente più alti nei controlli (38%) piuttosto che negli esemplari trattati a bassa dose di I3C (25%) con 600-1.000ppm con prestazioni uguali (14-16%);[32] questo effetto è stato osservato insieme all’aumento della 2-idrossilazione dell’Estradiolo.[32]

È stato notato che il DIM antagonizza gli effetti del Diidrotestosterone (DHT) nelle cellule del cancro prostatico (LNCaP e PC-3) di oltre il 50% a una concentrazione di 1μM in modo dipendente dal Recettore degli Androgeni, sembrava essere un antagonista diretto al recettore con affinità simile a Casodex (Bicalutamide).[51] Gli effetti antitumorali del DIM a livello della cellula prostatica non sembrano essere completamente dipendenti da questo recettore sebbene non siano dipendenti da p53 (cellule DU145[42]) e possono indurre l’arresto cellulare in un modo dipendente dall’induzione di p27 (Kip1 ) tramite Sp1 (10μM),[52] due proteine che tendono ad avere una minore attività nelle cellule della prostata androgeno-indipendenti.[53] Questa era l’attivazione di p38 a valle[52] nota che si verifica con DIM anche in altre cellule tumorali.[53]

Bicalutamide

Conclusioni sul uso di I3C o DIM per il controllo estrogenico:

Nel tessuto mammario, ma anche in altri tessuti come quello adiposo, il CYP19 (Aromatasi) catalizza le fasi finali della conversione degli androgeni (Testosterone o Androstenedione) in estrogeni (rispettivamente 17β-Estradiolo o Estrone). Ora sappiamo che il I3C, maggiormente per via della sua conversione in DIM, riduce l’espressione di CYP19 nelle cellule mammarie non tumorali e tumorigeniche estrogeno-responsive (ER+), mentre l’espressione di CYP19 è aumentata nelle cellule mammarie tumorigeniche estrogeno-indipendenti (ER-) trattate con I3C/DIM [54]. Tale effetto potrebbe verificarsi a livello sistemico il che potrebbe comportare un uso di integratori di I3C o DIM come mezzo di controllo estrogenico in quei soggetti nei quali il CYP19 viene espresso in maniera maggiore anche in situazioni di terapia ormonale sostitutiva (vedi TRT).

Ruolo dell’Aromatasi nella sintesi degli Estrogeni.

Come abbiamo visto, gli enzimi metabolizzanti di fase I, CYP1A1, CYP1A2 e CYP1B1, sono stati coinvolti nel metabolismo ossidativo degli estrogeni. Il 17β-Estradiolo può essere convertito in 2-idrossiestradiolo (2HE2) e 4-idrossiestradiolo (4HE2) rispettivamente da CYP1A1/2 e CYP1B1. 2HE2 e 4HE2 sono ulteriormente metabolizzati a 2- e 4-metossimetaboliti dall’enzima di fase II, catecol-O-metiltransferasi (COMT) [55]. Il 2HE2 è un agente non cancerogeno con un potenziale estrogenico più debole del 17β-estradiolo, mentre il 4-HE2 può essere convertito in radicali liberi che possono formare addotti del DNA e promuovere la carcinogenesi [56-57]. In diverse linee cellulari di cancro al seno, è stato dimostrato che I3C e DIM, in particolare, sovraregolano l’espressione di CYP1A1, CYP1A2 e CYP1B1 a livello di trascritto (mRNA) ma non a livello di proteina [58]. Inoltre, gli estrogeni endogeni 17β-Estradiolo ed Estrone possono essere metabolizzati irreversibilmente a 16a-idrossiestrone (16HE1) [59]. A differenza del 2-idrossiestrone (2HE1), il 16HE1 è altamente estrogenico ed è stato scoperto che stimola la proliferazione di diverse linee cellulari tumorali sensibili agli estrogeni [60-61]. È stato ipotizzato che spostare il metabolismo del 17β-Estradiolo verso 2HE1 e lontano da 16HE1, potrebbe ridurre il rischio di tumori sensibili agli estrogeni, come il cancro al seno [62]. Negli studi clinici controllati, l’integrazione orale con I3C o DIM ha costantemente aumentato le concentrazioni urinarie di 2HE1 oi rapporti urinari 2HE1:16HE1 nelle donne [63-64]. Tuttavia, ampi studi caso-controllo e prospettici di coorte non sono riusciti a trovare associazioni significative tra i rapporti urinari 2HE1:16HE1 e il rischio di cancro al seno e all’endometrio [65-66].

16a-idrossiestrone (16HE1)

Gli estrogeni endogeni, compreso il 17β-Estradiolo, esercitano i loro effetti estrogenici legandosi a specifici recettori nucleari chiamati Recettori per gli Estrogeni (ER). All’interno del nucleo, gli ER attivati dagli estrogeni possono legarsi a specifiche sequenze di DNA, note come Elementi di Risposta agli Estrogeni (ERE), nei promotori dei geni che rispondono agli estrogeni. I complessi estrogeno-ER legati all’ERE agiscono come fattori di trascrizione reclutando proteine coattivatrici e fattori di rimodellamento della cromatina nei promotori, innescando così la trascrizione dei geni bersaglio [67]. Come sappiamo, esistono due principali sottotipi di ER, ERα ed ERβ, codificati rispettivamente da due geni separati ESR1 e ESR2. Il ERα è il principale driver dell’effetto proliferativo degli estrogeni, mentre l’espressione del ERβ è stata inversamente associata alla tumorigenesi della ghiandola mammaria [68]. Livelli elevati di ERα promuovono la proliferazione cellulare nel seno e nell’utero, aumentando probabilmente il rischio di sviluppare tumori sensibili agli estrogeni [69].

Nelle cellule del cancro al seno umano sensibili agli estrogeni fatte interagire con il 17β-Estradiolo, è stato scoperto che l’I3C inibisce la trascrizione dei geni sensibili agli estrogeni senza legarsi né al ERβ né al ERα [70-71]. In effetti, è stato dimostrato che il legame di I3C ad AhR innesca la degradazione dipendente dal proteasoma di ERα [72]. La perdita del ERα indotta da I3C ha portato alla sotto-regolazione dei prodotti genici che rispondono al ERα come il fattore di trascrizione GATA3. Poiché GATA3 regola la trascrizione del gene codificante ERα ESR1, l’I3C ha impedito la sintesi di nuove trascrizioni e proteine ​​ERα, sopprimendo infine la via di segnalazione ERα. L’interruzione dell’anello cross-regolatorio GATA3/ERα da parte del I3C ha infine arrestato la proliferazione cellulare ERα-dipendente [73]. I prodotti di condensazione acida del I3C che legano e attivano AhR possono anche inibire la trascrizione dei geni sensibili agli estrogeni competendo per i co-attivatori o aumentando la degradazione del ERα [74]. Il trattamento con I3C ha anche influenzato l’espressione di altri geni ERα-responsivi, compresi quelli che codificano per il Recettore del Fattore di Crescita Insulino-Simile-1 (IGFR1) e il substrato del recettore dell’Insulina-1 (IRS-1), coinvolti nella proliferazione cellulare e deregolati nel cancro al seno ( Figura seguente) [75].

Recettore del Fattore di Crescita Insulino-Simile-1 (IGFR1)

In base alle informazioni riportate in letteratura, sebbene limitate, possiamo ipotizzare che una supplementazione di I3C o DIM possa essere funzionale ad un controllo estrogenico in soggetti trattati con terapia sostitutiva del Testosterone (TRT) che presentano superiori espressioni dell’enzima Aromatasi legate a fattori non controllabili attraverso la semplice dieta e l’allenamento (vedi riduzione della massa grassa). Parliamo quindi di condizioni di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile (cioè non quantificabile con l’intervallo di riferimento standard ma solo con analisi dei sintomi legati ad una aumentata attività estrogenica). La sua efficacia di controllo estrogenico potrebbe però non essere sufficiente in contesti di uso di dosi sovrafisiologiche di AAS aromatizzabili, specie se queste superano i 180mg di Testosterone (netto) a settimana [dati raccolti aneddoticamente].

L’I3C è disponibile come prodotto da banco senza prescrizione medica anche in Italia, da solo o in combinazione con altre molecole. Il dosaggio varia tra 200 mg/die e 800 mg/die [76]. L’integrazione di I3C ha aumentato le concentrazioni urinarie di 2HE1 negli adulti a dosi da 300 a 400 mg/die [77]. Dosi di I3C di 200 mg/die o 400 mg/die hanno migliorato la regressione della neoplasia intraepiteliale cervicale (CIN) in uno studio clinico preliminare [78]. L’I3C in dosi fino a 400 mg/die è stato usato per trattare la papillomatosi respiratoria ricorrente (vedi Trattamento della malattia) [79-80]. In caso di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile, il dosaggio di 400mg/die ha portato benefici apprezzabili, sebbene con risposte soggettive, nel giro di 7-14 giorni di somministrazione continua [dati raccolti aneddoticamente].

Il DIM è anch’esso disponibile senza prescrizione medica come integratore alimentare da banco, nonostante sia più difficile da trovare, da solo o in combinazione con altre molecole. In un piccolo studio clinico, l’integrazione di DIM alla dose di 108mg/die per 30 giorni ha aumentato l’escrezione urinaria di 2HE1 nelle donne in postmenopausa con anamnesi di cancro al seno [81]. Dosaggi di 100-200mg/die si sono dimostrati discretamente efficaci in caso di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile in individui in terapia sostitutiva del Testosterone [dati raccolti aneddoticamente].

Leggeri aumenti delle concentrazioni sieriche dell’enzima epatico, alanina aminotransferasi (ALT) sono stati osservati in due donne che hanno assunto dosi non specificate di integratori di I3C per quattro settimane [64]. Una persona ha riportato un’eruzione cutanea durante l’assunzione di 375 mg/die di I3C [82]. Alte dosi di I3C (800 mg/die) sono state associate a sintomi di squilibrio e tremore, che si sono risolti quando la dose è stata ridotta [83]. In uno studio di fase I in donne ad alto rischio di cancro al seno, 5 partecipanti su 20 hanno manifestato sintomi gastrointestinali con dosi singole ≥600 mg, sebbene altri non abbiano avuto effetti avversi con dosi singole fino a 1.200mg [84]. Non sono stati segnalati effetti avversi con il consumo giornaliero di 400mg di I3C per quattro settimane [84]. In alcuni modelli animali, è stato scoperto che l’integrazione di I3C migliora lo sviluppo del cancro indotto dal cancerogeno quando somministrato cronicamente dopo il cancerogeno [85-86]. Quando somministrato prima o contemporaneamente al cancerogeno, l’I3C orale ha inibito la tumorigenesi in modelli animali di tumori della ghiandola mammaria [87-88], dell’utero [89], dello stomaco [90], del colon [91-92], del polmone [93] e fegato [94-95]. Sebbene non siano noti gli effetti a lungo termine dell’integrazione di I3C sul rischio di cancro nell’uomo, i risultati contraddittori degli studi sugli animali hanno portato diversi esperti a mettere in guardia contro l’uso diffuso di integratori di I3C e DIM negli esseri umani fino a quando i loro potenziali rischi e benefici non saranno meglio compresi [86-96-97]. La sicurezza degli integratori contenenti I3C o DIM durante la gravidanza o l’allattamento non è stata stabilita [98].

Non sono state segnalate interazioni farmacologiche con l’integrazione di I3C o DIM nell’uomo. Tuttavia, l’evidenza preliminare che I3C e DIM possono aumentare l’attività del CYP1A2 [99-100] suggerisce che l’integrazione con I3C o DIM può ridurre le concentrazioni sieriche dei farmaci metabolizzati dal CYP1A2 [101]. Sia I3C che DIM aumentano modestamente l’attività del CYP3A4 nei ratti quando somministrati cronicamente [102]. Questa osservazione aumenta il potenziale di interazioni farmacologiche avverse nell’uomo poiché il CYP3A4 è coinvolto nel metabolismo di circa il 60% dei farmaci terapeutici. L’ambiente acido dello stomaco consente alle molecole I3C di condensare e generare un numero di oligomeri I3C biologicamente attivi. I farmaci che bloccano la produzione di acidi dello stomaco, come gli antiacidi, gli antagonisti del recettore dell’istamina2 (H2) e gli inibitori della pompa protonica, probabilmente impedirebbero la generazione di DIM e ICZ. Tuttavia, non è noto se questi farmaci limitino le attività biologiche attribuite all’I3C e ai suoi derivati ​​[98].

Si esorta il lettore ad avere cautela nell’uso delle summenzionate molecole. A causa del loro effetto sui livelli di Estrogeni (ricordo che gli estrogeni hanno, tra le altre cose, un impatto significativo sulla funzione cerebrale, metabolismo osseo e comportamento/attività sessuale).[103][104] Prima di procedere con il trattamento assicurarsi, per via di analisi specifiche e consulto di specialisti, che i livelli estrogenici e/o la loro attività tissutale necessitino di un controllo per via di trattamento con molecole esogene.

Gabriel Bellizzi

Riferimenti:

  1. https://www.chemblink.com/products/700-06-1.htm
  2. https://www.chemblink.com/products/700-06-1.htm
  3. Sarubin-Fragakis, A.; Thomson, C.; American Dietetic Association (2007). The Health Professional’s Guide to Popular Dietary Supplements. American Dietetic Association. p. 312. ISBN 9780880913638.
  4. Park, N. I.; Kim, J. K.; Park, W. T.; Cho, J. W.; Lim, Y. P.; Park, S. U. (2010). “An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes”. Molecular Biology Reports38(8): 4947–4953. 
  5. “indole-3-methanol (CHEBI:24814)”Chemical Entities of Biological Interest (ChEBI). European Bioinformatics Institute. Retrieved 2016-03-25.
  6. Tilton, S. C.; Hendricks, J. D.; Orner, G. A.; Pereira, C. B.; Bailey, G. S.; Williams, D. E. (2007). “Gene expression analysis during tumor enhancement by the dietary phytochemical, 3,3′-diindolylmethane, in rainbow trout”Carcinogenesis28 (7): 1589–1598.
  7. Higdon, J.; Delage, B.; Williams, D.; Dashwood, R. (2007). “Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis”Pharmacological Research55 (3): 224–236. 
  8. Dashwood, R. H.; Arbogast, D. N.; Fong, A. T.; Pereira, C.; Hendricks, J. D.; Bailey, G. S. (1989). “Quantitative inter-relationships between aflatoxin B1 carcinogen dose, indole-3-carbinol anti-carcinogen dose, target organ DNA adduction and final tumor response”. Carcinogenesis10 (1): 175–181. 
  9. Grose KR, Bjeldanes LF. Oligomerization of indole-3-carbinol in aqueous acidChem Res Toxicol. (1992)
  10. Riby JE1, et al. The major cyclic trimeric product of indole-3-carbinol is a strong agonist of the estrogen receptor signaling pathwayBiochemistry. (2000)
  11. Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivativesCell Cycle. (2005)
  12. Pappa G, et al. Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitroCarcinogenesis. (2007)
  13. Bradfield CA, Bjeldanes LF. Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolismJ Toxicol Environ Health. (1987)
  14. De Kruif CA, et al. Structure elucidation of acid reaction products of indole-3-carbinol: detection in vivo and enzyme induction in vitroChem Biol Interact. (1991)
  15. McNaughton SA, Marks GC. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetablesBr J Nutr. (2003)
  16. Shapiro TA, et al. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humansCancer Epidemiol Biomarkers Prev. (2001)
  17. Conaway CC, et al. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoliNutr Cancer. (2000)
  18. Shapiro TA, et al. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetablesCancer Epidemiol Biomarkers Prev. (1998)
  19. Rouzaud G, Young SA, Duncan AJ. Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteersCancer Epidemiol Biomarkers Prev. (2004)
  20. Verkerk R, Dekker M. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatmentsJ Agric Food Chem. (2004)
  21. Rungapamestry V, et al. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durationsJ Agric Food Chem. (2006)
  22. Song L, Thornalley PJ. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetablesFood Chem Toxicol. (2007)
  23. Weng JR, et al. Indole-3-carbinol as a chemopreventive and anti-cancer agentCancer Lett. (2008)
  24.  Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin.
  25. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Diindolylmethanes Differentially Induce Cytochrome P450 1A1, 1B1, and 19 in H295R Human Adrenocortical Carcinoma.
  26.  Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice.
  27. Chang HP, et al. Antiobesity activities of indole-3-carbinol in high-fat-diet-induced obese miceNutrition. (2011)
  28. Shin JH1, et al. Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptorProc Natl Acad Sci U S A. (2013)
  29. Marques M, et al. Low levels of 3,3′-diindolylmethane activate estrogen receptor α and induce proliferation of breast cancer cells in the absence of estradiolBMC Cancer. (2014)
  30. Selective Activation of Estrogen Receptor-β Target Genes by 3,3′-Diindolylmethane.
  31. Lo R, Matthews J. A new class of estrogen receptor beta-selective activatorsMol Interv. (2010)
  32. Leong H1, et al. Potent ligand-independent estrogen receptor activation by 3,3′-diindolylmethane is mediated by cross talk between the protein kinase A and mitogen-activated protein kinase signaling pathwaysMol Endocrinol. (2004)
  33. Leong H1, Firestone GL, Bjeldanes LF. Cytostatic effects of 3,3′-diindolylmethane in human endometrial cancer cells result from an estrogen receptor-mediated increase in transforming growth factor-alpha expressionCarcinogenesis. (2001)
  34. Sanderson JT, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and diindolylmethanes differentially induce cytochrome P450 1A1, 1B1, and 19 in H295R human adrenocortical carcinoma cellsToxicol Sci. (2001)
  35. Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms.
  36. Okino ST, et al. Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer preventionCancer Prev Res (Phila). (2009)
  37. Parkin DR, et al. Inhibitory effects of a dietary phytochemical 3,3′-diindolylmethane on the phenobarbital-induced hepatic CYP mRNA expression and CYP-catalyzed reactions in female ratsFood Chem Toxicol. (2008)
  38. Wattenberg LW, Loub WD. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indolesCancer Res. (1978)
  39. Jellinck PH1, et al. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylationBiochem Pharmacol. (1993)
  40. Estrogenic and antiestrogenic activities of 16α- and 2-hydroxy metabolites of 17β-estradiol in MCF-7 and T47D human breast cancer cells.
  41. Sepkovic DW, et al. Catechol estrogen production in rat microsomes after treatment with indole-3-carbinol, ascorbigen, or beta-naphthaflavone: a comparison of stable isotope dilution gas chromatography-mass spectrometry and radiometric methodsSteroids. (1994)
  42. Bradlow HL, et al. 2-hydroxyestrone: the ‘good’ estrogenJ Endocrinol. (1996)
  43. Dalessandri KM1, et al. Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancerNutr Cancer. (2004)
  44. Fan S1, et al. DIM (3,3′-diindolylmethane) confers protection against ionizing radiation by a unique mechanismProc Natl Acad Sci U S A. (2013)
  45. Kitagawa R1, Kastan MB. The ATM-dependent DNA damage signaling pathwayCold Spring Harb Symp Quant Biol. (2005)
  46. Goodarzi AA1, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2AEMBO J. (2004)
  47. Kotsopoulos J1, et al. BRCA1 mRNA levels following a 4-6-week intervention with oral 3,3′-diindolylmethaneBr J Cancer. (2014)
  48. Grubbs CJ1, et al. Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinolAnticancer Res. (1995)
  49. Le HT, et al. Plant-derived 3,3′-Diindolylmethane is a strong androgen antagonist in human prostate cancer cellsJ Biol Chem. (2003)
  50. Vivar OI1, et al. 3,3′-Diindolylmethane induces a G(1) arrest in human prostate cancer cells irrespective of androgen receptor and p53 statusBiochem Pharmacol. (2009)
  51. Karan D1, et al. Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cellsCarcinogenesis. (2002)
  52. Xue L1, Firestone GL, Bjeldanes LF. DIM stimulates IFNgamma gene expression in human breast cancer cells via the specific activation of JNK and p38 pathwaysOncogene. (2005)
  53. Saw CL, et al. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanatesBiopharm Drug Dispos. (2011)
  54. Belous AR, Hachey DL, Dawling S, Roodi N, Parl FF. Cytochrome P450 1B1-mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer Res. 2007;67(2):812-817.
  55. Jefcoate CR, Liehr JG, Santen RJ, et al. Tissue-specific synthesis and oxidative metabolism of estrogens. J Natl Cancer Inst Monogr. 2000(27):95-112.
  56. Kwon YJ, Baek HS, Ye DJ, Shin S, Kim D, Chun YJ. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/beta-catenin signaling via Sp1 upregulation. PLoS One. 2016;11(3):e0151598.  
  57. Park SA, Lee MH, Na HK, Surh YJ. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression. Oncotarget. 2016;8(1):164-178. 
  58. Szaefer H, Licznerska B, Krajka-Kuzniak V, Bartoszek A, Baer-Dubowska W. Modulation of CYP1A1, CYP1A2 and CYP1B1 expression by cabbage juices and indoles in human breast cell lines. Nutr Cancer. 2012;64(6):879-888.
  59. Ziegler RG, Fuhrman BJ, Moore SC, Matthews CE. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids. 2015;99(Pt A):67-75. 
  60. Telang NT, Suto A, Wong GY, Osborne MP, Bradlow HL. Induction by estrogen metabolite 16 alpha-hydroxyestrone of genotoxic damage and aberrant proliferation in mouse mammary epithelial cells. J Natl Cancer Inst. 1992;84(8):634-638.  
  61. Yuan F, Chen DZ, Liu K, Sepkovic DW, Bradlow HL, Auborn K. Anti-estrogenic activities of indole-3-carbinol in cervical cells: implication for prevention of cervical cancer. Anticancer Res. 1999;19(3A):1673-1680.  
  62.  Bradlow HL, Telang NT, Sepkovic DW, Osborne MP. 2-Hydroxyestrone: the ‘good’ estrogen. J Endocrinol. 1996;150 Suppl:S259-265.
  63. Bradlow HL, Michnovicz JJ, Halper M, Miller DG, Wong GY, Osborne MP. Long-term responses of women to indole-3-carbinol or a high fiber diet. Cancer Epidemiol Biomarkers Prev. 1994;3(7):591-595. 
  64. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP. Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl. 1997;28-29:111-116.
  65. Arslan AA, Shore RE, Afanasyeva Y, Koenig KL, Toniolo P, Zeleniuch-Jacquotte A. Circulating estrogen metabolites and risk for breast cancer in premenopausal women. Cancer Epidemiol Biomarkers Prev. 2009;18(8):2273-2279.
  66. Zeleniuch-Jacquotte A, Shore RE, Afanasyeva Y, et al. Postmenopausal circulating levels of 2- and 16alpha-hydroxyestrone and risk of endometrial cancer. Br J Cancer. 2011;105(9):1458-1464.
  67. Liehr JG. Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev. 2000;21(1):40-54. 
  68. Ashok BT, Chen Y, Liu X, Bradlow HL, Mittelman A, Tiwari RK. Abrogation of estrogen-mediated cellular and biochemical effects by indole-3-carbinol. Nutr Cancer. 2001;41(1-2):180-187. 
  69. Meng Q, Yuan F, Goldberg ID, Rosen EM, Auborn K, Fan S. Indole-3-carbinol is a negative regulator of estrogen receptor-alpha signaling in human tumor cells. J Nutr. 2000;130(12):2927-2931.  
  70. Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL. Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell. 2010;21(7):1166-1177.  
  71. Chen I, McDougal A, Wang F, Safe S. Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane. Carcinogenesis. 1998;19(9):1631-1639. 
  72. Marconett CN, Singhal AK, Sundar SN, Firestone GL. Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol. 2012;363(1-2):74-84. 
  73. Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci. 2003;24(3):139-145.  (PubMed)
  74. Mao CG, Tao ZZ, Chen Z, Chen C, Chen SM, Wan LJ. Indole-3-carbinol inhibits nasopharyngeal carcinoma cell growth in vivo and in vitro through inhibition of the PI3K/Akt pathway. Exp Ther Med. 2014;8(1):207-212.  (PubMed)
  75. Leem SH, Li XJ, Park MH, Park BH, Kim SM. Genome-wide transcriptome analysis reveals inactivation of Wnt/beta-catenin by 3,3′-diindolylmethane inhibiting proliferation of colon cancer cells. Int J Oncol. 2015;47(3):918-926.  (PubMed)
  76. Hendler SS, Rorvik DM. PDR for Nutritional Supplements. 2nd ed: Thomson Reuters; 2008.
  77. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP. Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl. 1997;28-29:111-116. 
  78.  Bell MC, Crowley-Nowick P, Bradlow HL, et al. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol. 2000;78(2):123-129. 
  79. Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810-815. 
  80. Rosen CA, Bryson PC. Indole-3-carbinol for recurrent respiratory papillomatosis: long-term results. J Voice. 2004;18(2):248-253. 
  81. Dalessandri KM, Firestone GL, Fitch MD, Bradlow HL, Bjeldanes LF. Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. Nutr Cancer. 2004;50(2):161-167.  (PubMed)
  82. McAlindon TE, Gulin J, Chen T, Klug T, Lahita R, Nuite M. Indole-3-carbinol in women with SLE: effect on estrogen metabolism and disease activity. Lupus. 2001;10(11):779-783. 
  83. Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810-815.
  84. Reed GA, Arneson DW, Putnam WC, et al. Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3′-diindolylmethane. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2477-2481.
  85. Kim DJ, Han BS, Ahn B, et al. Enhancement by indole-3-carbinol of liver and thyroid gland neoplastic development in a rat medium-term multiorgan carcinogenesis model. Carcinogenesis. 1997;18(2):377-381.
  86. Stoner G, Casto B, Ralston S, Roebuck B, Pereira C, Bailey G. Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indole-3-carbinol. Carcinogenesis. 2002;23(2):265-272. 
  87. Grubbs CJ, Steele VE, Casebolt T, et al. Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res. 1995;15(3):709-716.  
  88. Bradlow HL, Michnovicz J, Telang NT, Osborne MP. Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis. 1991;12(9):1571-1574. 
  89. Kojima T, Tanaka T, Mori H. Chemoprevention of spontaneous endometrial cancer in female Donryu rats by dietary indole-3-carbinol. Cancer Res. 1994;54(6):1446-1449.  
  90. Wattenberg LW, Loub WD. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res. 1978;38(5):1410-1413. 
  91. Wargovich MJ, Chen CD, Jimenez A, et al. Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat. Cancer Epidemiol Biomarkers Prev. 1996;5(5):355-360.  
  92. Guo D, Schut HA, Davis CD, Snyderwine EG, Bailey GS, Dashwood RH. Protection by chlorophyllin and indole-3-carbinol against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis. 1995;16(12):2931-2937. 
  93. Morse MA, LaGreca SD, Amin SG, Chung FL. Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res. 1990;50(9):2613-2617.
  94. Dashwood RH, Arbogast DN, Fong AT, Hendricks JD, Bailey GS. Mechanisms of anti-carcinogenesis by indole-3-carbinol: detailed in vivo DNA binding dose-response studies after dietary administration with aflatoxin B1. Carcinogenesis. 1988;9(3):427-432. 
  95. Oganesian A, Hendricks JD, Williams DE. Long term dietary indole-3-carbinol inhibits diethylnitrosamine-initiated hepatocarcinogenesis in the infant mouse model. Cancer Lett. 1997;118(1):87-94. 
  96. Dashwood RH. Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact. 1998;110(1-2):1-5. 
  97. Lee BM, Park KK. Beneficial and adverse effects of chemopreventive agents. Mutat Res. 2003;523-524:265-278.
  98. Hendler SS, Rorvik DM. PDR for Nutritional Supplements. 2nd ed: Thomson Reuters; 2008.
  99. He YH, Friesen MD, Ruch RJ, Schut HA. Indole-3-carbinol as a chemopreventive agent in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) carcinogenesis: inhibition of PhIP-DNA adduct formation, acceleration of PhIP metabolism, and induction of cytochrome P450 in female F344 rats. Food Chem Toxicol. 2000;38(1):15-23. 
  100. Lake BG, Tredger JM, Renwick AB, Barton PT, Price RJ. 3,3′-Diindolylmethane induces CYP1A2 in cultured precision-cut human liver slices. Xenobiotica. 1998;28(8):803-811. 
  101. Natural Medicines. Professional monograph: Indole-3-carbinol/Interactions with drugs; 2016.
  102. Leibelt DA, Hedstrom OR, Fischer KA, Pereira CB, Williams DE. Evaluation of chronic dietary exposure to indole-3-carbinol and absorption-enhanced 3,3′-diindolylmethane in Sprague-Dawley rats. Toxicol Sci. 2003;74(1):10-21.
  103. Culmsee, C.; Vedder, H.; Ravati, A.; Junker, V.; Otto, D.; Ahlemeyer, B.; Krieg, J.-C.; Krieglstein, J. (1999). “Neuroprotection by Estrogens in a Mouse Model of Focal Cerebral Ischemia and in Cultured Neurons: Evidence for a Receptor-Independent Antioxidative Mechanism”Journal of Cerebral Blood Flow & Metabolism19 (11): 1263–1269. 
  104. “Estrogen’s Influence on the Brain”. Society for Neuroscience.

L’efficacia della PCT [Post-Cycle Therapy]alla luce dello studio HAARLEM.

Introduzione:

Chiunque segua questo sito o si sia interessato minimamente alla questione “doping”, è a conoscenza del fatto che durante l’uso di AAS e/o SARM, la produzione endogena di Testosterone subisce un calo marcato in misura maggiormente dipendente dalla molecola/e utilizzata/e e in minor parte dal tempo di utilizzo. Una volta interrotta la somministrazione di AAS e/o SARM, la produzione di Testosterone rimane (a diverso grado ma, pur sempre, significativo) soppressa per un periodo di tempo transitorio. Durante questo periodo di tempo, il soggetto si trova in una condizione di ipogonadismo, cioè sarà carente di Testosterone con importanti alterazioni di Estradiolo, DHT e Prolattina. Sappiamo allo stesso modo che è usanza comune l’utilizzo di alcuni farmaci dopo il termine d’uso di AAS e/o SARM con il fine, sperato, di accelerare il processo di recupero dell’attività dell’Asse HPT e la stabilizzazione della normale produzione di Testosterone. Questa pratica è ovviamente la conosciutissima, almeno per nome, PCT (Post-Cycle Therapy).

Tre tipi di farmaci sono frequentemente utilizzati per la PCT, e questi sono:

  • Modulatori Selettivi del Recettore degli Estrogeni (SERM), cioè Tamoxifene e Clomifene Citrato;
  • Inibitori dell’Aromatasi (IA), come Letrozolo, Anastrozolo ed Exemestane;
  • Gonadotropina Corionica umana (hCG).

Il ragionamento dietro l’uso di questi farmaci è abbastanza semplice. I SERM agiscono a livello del recettore degli estrogeni bloccando l’attività, principalmente, dell’Estradiolo portando ad un feedback negativo a livello ipofisario il quale, a cascata, porta ad un aumento del rilascio di GnRH e di LH ed FSH i quali, rispettivamente, andranno a stimolare la sintesi di Testosterone e la spermatogenesi. Allo stesso modo, gli Inibitori dell’Aromatasi causano una riduzione dei livelli di Estradiolo e, quindi, della sua attività portando ad un medesimo ciclo di feedback negativo stimolante il rilascio di GnRH e, consequenzialmente, di LH ed FSH. In fine, l’hCG viene usato inizialmente al fine di compensare i livelli bassi di LH e FSH, prima del loro incremento legato all’uso di SERM e AI, incrementando l’attività delle cellule di Leydig e del Sertoli stimolando la sintesi di Testosterone e la spermatogenesi.

Asse Ipotalamo-Ipofisi-Gonadi (HPGA; conosciuta anche come HPTA, Asse Ipotalamo-Ipofisi-Testicoli)

Di questi farmaci, i SERM sono solitamente il pilastro portante della PCT. E, in effetti, i SERM hanno dimostrato di aumentare il Testosterone in vari stati di ipogonadismo. Tuttavia, nessuno studio fino ad oggi aveva effettivamente esaminato in modo prospettico la sua efficacia nell’ipogonadismo indotto da AAS. Nemmeno la tanto acclamata PCT di Scally riporta scientificamente buone certezze d’efficacia. Di recente è uscito uno studio che ci mostra quanta efficacia possa avere una PCT nella “corsa al recupero” post ciclo di AAS e/o SARM. Parlo dello studio HAARLEM.[1]

Lo studio HAARLEM

Lo studio HAARLEM è uno studio prospettico e osservazionale a cui hanno partecipato 100 utilizzatori di AAS. Si tratta di un’iniziativa dell’ambulatorio per i consumatori di steroidi anabolizzanti di Haarlem, nei Paesi Bassi. L’ambulatorio nasce nel 2010 ed è gestito dai due endocrinologi dott. de Ronde e il dott. Smit.

L’obiettivo dello studio HAARLEM era quello di ottenere informazioni preziose sui rischi per la salute coinvolti nell’uso di AAS. Le caratteristiche di base di questa coorte sono state pubblicate in precedenza.[2]

In breve: nello studio sono stati inclusi un totale di 100 soggetti (tutti uomini) che intendevano iniziare un ciclo di steroidi anabolizzanti entro 2 settimane. Diverse misurazioni dello stato di salute, tra cui gli esami del sangue, sono state eseguite su tutti i partecipanti prima del ciclo (T0), durante l’ultima settimana del ciclo (T1), 3 mesi dopo la fine del ciclo (T2), e 1 anno dopo l’inizio del ciclo (T3). Per essere chiari: i soggetti stavano usando AAS che essi stessi si erano procurati, gli endocrinologi non hanno prescritto nessun AAS.

Ciò che è di particolare rilevanza per questo articolo è che i ricercatori hanno anche misurato i livelli di Testosterone e, quindi, hanno potuto osservare come potesse avvenire la ripresa dell’attività dell’Asse HPT dopo un ciclo. Inoltre, 80 dei soggetti in osservazione hanno eseguito la PCT (mentre i restanti 20 non hanno svolto alcuna PCT). Quindi, detto ciò, questo sarebbe il primo studio prospettico in cui l’efficacia della PCT potrebbe diventare evidente. Alla fine, però, i dati erano disponibili per 79 soggetti che avevano svolto la PCT e 19 soggetti che non l’avevano svolta.

Anche i farmaci per la PCT non sono stati forniti dagli endocrinologi. I soggetti interessati si sono procurati autonomamente tali farmaci. I ricercatori hanno notato che la maggior parte dei regimi PCT consisteva nell’uso di Tamoxifene Citrato (70% delle volte) e/o Clomifene Citrato (55% delle volte) per 4 settimane dopo il ciclo. Il che, in effetti, rappresenta l’esempio stereotipato di una classica PCT.

I risultati dello studio

Sono sicuro che questo darà fastidio a qualche “relativista ad oltranza”, ma i dati sono questi:

I valori di Testosterone basale (T0) erano praticamente identici e, come prevedibile, sono risultati aumentati a livelli soprafisiologici durante l’ultima settimana del ciclo (T1). Quindi, 3 mesi dopo la fine del ciclo, i valori sono stati di nuovo praticamente normalizzati in entrambi i gruppi (sebbene leggermente, ma non in modo statisticamente significativo, più bassi nel gruppo PCT).

Questa ricerca ha sicuramente delle mancanze e non arriva ad essere una “pietra miliare” ella dimostrazione scientifica in questo specifico contesto. Non si è trattato di uno studio in doppio cieco controllato con placebo. Ma è molto improbabile che un tale studio venga mai eseguito. Questo è un buon lavoro di ricerca in un frangente ben poco analizzato. Quali altre deficienze presenta lo studio HAARLEM? Qualcuno potrebbe blaterare riguardo ad improbabili bias di selezione. Cioè, i soggetti che “sanno” di recuperare più facilmente, potrebbero aver optato per non utilizzare una PCT. Dubito fortemente che ciò porterebbe a differenze significative. Un’altra ragione potrebbe essere che il dosaggio di AAS medio era più alto nel gruppo PCT, che era 1,110 contro 839mg/settimana. Tuttavia, entrambi sono ben al di sopra dei dosaggi richiesti per la massima soppressione della produzione endogena di Testosterone (il dosaggio minimo richiesto come criterio di inclusione nello studio era anche di 200mg a settimana). Inoltre, il gruppo che non ha svolto la PCT in media ha avuto una durata del ciclo più lunga (20 settimane contro 18 settimane).

In linea di principio, forse il gruppo PCT si era ripreso un po’ prima, il che sarebbe stato visibile se avessero misurato i marker specifici 2 mesi dopo aver interrotto l’uso di steroidi anabolizzanti invece che 3 mesi dopo. In effetti i controlli avrebbero dovuto essere più assidui. Comunque sia, fatte le dovute eccezioni, non ci si aspetterebbe comunque molta differenza . Se non altro perché la maggior parte di questi soggetti avrebbe impiegato probabilmente circa un mese prima che iniziasse il recupero dell’Asse HPT. Dopotutto, con alti dosaggi e molecole legate ad esteri che ne conferiscono lunghe emivite ci vorrà semplicemente più tempo prima che la soglia ematica degli AAS scenda sotto la curva del basale.

Sicuramente una buona parte di chi leggerà questo articolo dirà che (la maggior parte di) questi soggetti hanno semplicemente sbagliato la loro PCT. Ma, nonostante molti di voi considerino la “PCT di Scally” il metro di misura per valutare una PCT corretta da ciò che non lo è, purtroppo, non ci sono prove disponibili che abbiano esaminato l’efficacia dei vari tipi di PCT. Naturalmente, esiste una logica di gestione del post ciclo che andrebbe calcolata sul soggetto interessato. Tuttavia, questo studio mostra che quando si osserva un gruppo di persone che eseguono PCT come fatto nella maggior parte della pratica (SERM per circa un mese) semplicemente non si dimostra una reale efficace al fine di un recupero rapido della sintesi endogena di Testosterone. E, come si vede dai dati riportati, c’è stato uno scarso effetto accelerante se il gruppo non PCT si riprende dall’alterazione ormonale comunque in 3 mesi.

Come nota finale, gli autori chiariscono un punto chiave nel ridurre e migliorare i tempi di recupero e cioè il mantenimento della funzione gonadica per via somministrazione di hCG anche durante il ciclo. Infatti i ricercatori hanno scoperto che quando la funzione gonadica era normale al basale, c’era una probabilità del 90% di avere una normale concentrazione di Testosterone totale dopo 3 mesi di recupero e una probabilità del 100% alla fine del follow -up (in media circa 8 mesi dopo l’interruzione del ciclo).

Ma allora perché una PCT non da i risultati sperati se i SERM mostrano risultati così buoni in vari tipi di ipogonadismo?

Sfortunatamente, attualmente non sono disponibili studi di buona qualità nei quali i SERM vengano valutati come trattamento per l’ipogonadismo indotto da AAS. Principalmente il loro uso è destinato, e risultato efficace, nell’ipogonadismo dovuto ad altre cause. Di conseguenza è ovvio che bisognerebbe quindi avere cautela prima di giungere ad affrettate conclusioni, poiché attualmente non è noto quanto bene questi risultati si traducano in coloro che soffrono di ipogonadismo AAS-indotto. La causa sottostante dell’ipogonadismo è molto diversa. In linea di principio, l’ipogonadismo indotto da AAS è uno stato transitorio post-ciclo in cui l’ipotalamo e l’ipofisi non rispondono adeguatamente alla diminuzione delle concentrazioni di androgeni ed estrogeni. Dopo tutto, le concentrazioni post-ciclo di Testosterone ed Estradiolo sono di molto alterate e quindi il feedback negativo che solitamente impone all’ipotalamo e all’ipofisi il rilascio di GnRH e di LH ed FSH è notevolmente diminuito. Quindi, mentre lo stimolo (alterazione di Estradiolo e Testosterone) per produrre LH e FSH è variabilmente presente, le cellule endocrine temporaneamente non riescono a rispondere in modo adeguato a questa condizione. Non è sicuro di come l’uso di SERM possa rendere questo stimolo più marcato e aiutare nel recupero dell’HPGA. A differenza dell’ipogonadismo indotto da AAS, le popolazioni di studio sull’ipogonadismo secondario sono in uno stato stazionario di carenza di Testosterone. Qui, in quel caso, per via delle condizioni di base, avrebbe di certo senso che un soggetto possa spostare lo stato stazionario aumentando lo stimolo con un SERM per aumentare a sua volta il livello di Testosterone, ed è dimostrato. Quindi, tanto per ribadire i concetti primari quando si parla di studi, bisognerebbe essere cauti quando si traducono questi studi alla luce di una situazione ben diversa seppur simile, ossia la situazione ormonale post-ciclo.

Conclusioni e riflessioni critiche

Ricapitolando, lo studio HAARLEM è uno studio prospettico in cui è stata seguita nel tempo un’ampia coorte di utilizzatori di AAS. Diverse misurazioni, inclusi i livelli di Testosterone, sono state eseguite prima, durante e in due punti temporali dopo la cessazione dell’uso di AAS. Confrontando quei soggetti che hanno svolto una PCT con quelli che non l’hanno svolta, sono finalmente emerse alcune buone prove iniziali sulla reale efficacia della PCT. Sfortunatamente, la pratica comunemente applicata sembra essere un po’ inutile, per usare un eufemismo.

Ma quali altre critiche possono essere mosse verso questo studio? Beh, qualcuno potrebbe obbiettare che “Olivier de Hon è uno degli autori. Ed è una autorità dell’antidoping olandese”. Sì, vero, ma in che modo questo invalida i risultati esattamente? basterebbe indicare solo quale parte potrebbe essere stata influenzata da lui. Inoltre, sono sicuro che l’autorità antidoping avrebbe voluto vedere gli utilizzatori di AAS NON recuperare affatto, anche dopo 3 mesi. Ma lo hanno fatto. Sono il primo a mettere in dubbio l’onesta o meglio la lucidità di certi enti, ma sono quasi certo che avrebbero apprezzato risultati diversi da questi.

Si potrebbe anche dire che “Non hanno istruito gli utilizzatori di AAS a fare A, B e C, il che avrebbe portato a risultati migliori”. Sì, infatti è uno studio OSSERVAZIONALE, non uno studio interventistico. Se avessero istruito gli utilizzatori di AAS ad applicare determinate pratiche con i composti che stavano usando, sarebbe stato piuttosto difficile far passare la cosa al comitato etico medico in primo luogo. L’unico modo per superare l’ottenimento di un intervento è se quest’ultimo incoraggia gli utilizzatori a prendere meno AAS, o a non utilizzarli del tutto. L’obiettivo di questo studio era valutare i rischi per la salute legati all’abuso di AAS nella pratica. Una configurazione osservazionale come questa è ESATTAMENTE ciò che si vorrebbe fare in quel caso.

Un altra obbiezione potrebbe riguardare il fatto che tutti i dosaggi di AAS utilizzati non siano stati equiparati su base milligrammo per milligrammo. Ovviamente non ci sono prove che sia stato fatto diversamente. Potresti assegnare arbitrariamente qualcosa come “2mg di Testosterone = 1mg di Trenbolone” o qualsiasi altra molecola, ma sarebbe ben poco valido viste le informazioni che si hanno in materia. Cosa starebbe a significherebbe quel numero? Il Trenbolone è due volte più potente nella stimolazione dell’ipertrofia muscolare? Due volte più potente nel sopprimere l’HPGA? Due volte più potente nel causare l’acne? Da dove basi questi numeri? Medie di dosaggi degli androgeni estremamente imprecise? E in che modo questo avrebbe comunque influenzato i risultati? TUTTI gli utilizzatori hanno riscontrato una soppressione marcata dei loro livelli endogeni di Testosterone durante i loro cicli.

I soggetti potrebbero aver sbagliato la modalità delle loro PCT? Bene, in primo luogo, tornando a quanto detto in precedenza, i ricercatori non potevano dire loro di fare diversamente da quanto essi avevano previsto. E secondo, quale ricerca può dirci cosa comporta una “buon PCT”? Non ne esiste nessuna! E, sebbene la “PCT di Scally” risulti quella con il desing più logico, le prove a suo favore rimangono limitate. È per lo più tutta una ipotesi e supposizioni basate su ricerche estrapolate da popolazioni di studio con diverse cause di ipogonadismo. I soggetti di questo studio hanno semplicemente svolto una PCT come fa la maggior parte degli utilizzatori: assumere SERM per circa un mese.

Forse avrebbero dovuto iniziare la PCT più tardi? Ok, quindi che differenza ci si aspetterebbe? Il gruppo senza PCT aveva comunque gli stessi livelli di Testosterone che avevano al basale 3 mesi dopo l’ultima iniezione. Dovremmo forse aspettare 3 mesi? Sembra funzionare abbastanza bene…

I ricercatori forse hanno sbagliato a non fare una sottoanalisi basata su chi ha usato un tipo di composto e chi ne ha usato un altro? Beh, sarebbe stato alquanto arduo poterlo fare. Il motivo di ciò è che solo nel 13% dei campioni la fiala conteneva esclusivamente l’AAS che era riportato sull’etichetta e nel 47% dei casi la fiala non conteneva nemmeno l’AAS dichiarato sull’etichetta ma ne conteneva un altro (o altri).[2]

Attenzione, non sto dicendo che la PCT sia stata o sia completamente una cattiva idea. Sto semplicemente sottolineando ciò che lo studio prospettico e anni di osservazione ci suggeriscono. Anche nei casi di uso corretto di hCG durante il ciclo, uso dei SERM e hCG post ciclo secondo logica di decadenza dei livelli ematici del/gli AAS usato/i e l’inserimento di un AI quando necessariamente richiesto dagli esami ematici di controllo, la risultante è sempre soggetta a fortissime variabili legate non solo alla lunghezza del ciclo e/o al tipo di molecole usate (vedi anche tipo/i di estere) ma anche dall’età del soggetto e dal numero di cicli svolti in precedenza. Alcuni utilizzatori si attestano a livelli discreti nella metà del range di riferimento, mentre una parte non indifferente soffre per anni di variazioni estrogeno-prolattiniche con livelli di Testosterone totale verso il limite basso e il Testosterone libero sotto il limite minimo.

Non è un caso se molti utilizzatori, specie dai 30 anni in su, optino per una TRT piuttosto di tentare un recupero travagliato.

Gabriel Bellizzi

Riferimenti:

  1. Smit, D. L., et al. “Disruption and recovery of testicular function during and after androgen abuse: the HAARLEM study.” Human Reproduction (2021).
  2. Smit, Diederik L., et al. “Baseline characteristics of the HAARLEM study: 100 male amateur athletes using anabolic androgenic steroids.” Scandinavian journal of medicine & science in sports 30.3 (2020): 531-539.

Disamina scientifica su Boldenone e metabolismo estrogenico.

Introduzione

Molti sono convinti che il Boldenone (conosciuto commercialmente con Equipoise) aromatizzi in Estradiolo ad un tasso pari al 50% di quello del Testosterone sulla base di un informazione estrapolata da “Chemical Muscle Enhancement” del compianto A.L. Rea o da “Anabolics” di William Llewellyn.

Il vantaggio del Boldenone come anabolizzante è una questione che è stata pesantemente dibattuta per anni nel mondo del Bodybuilding.

Quanto è potente il Boldenone nello stimolo dell’ipertrofia muscolare? Se si è particolarmente sensibili agli effetti collaterali derivanti da un aumento degli estrogeni per via dell’aromatizzazione dei substrati soggetti come il Testosterone, può il Boldenone essere una alternativa al Testosterone?

Nel corso degli anni ho raccolto molti dati che, per la maggior parte, mi hanno portano a credere che il Boldenone non possa sostituire il Testosterone ne come base per un ciclo e nemmeno per una “TRT”. Ho visionato anche diversi risultati di esami del sangue i quali dimostravano che effettivamente i livelli di Estradiolo, con il solo uso del Boldenone come unico agente aromatizzabile, erano molto bassi.

Ad esempio, se qualcuno volesse usare 500mg di Testosterone, ma non potrebbe usare un tale dosaggio dal momento che presenta particolare difficoltà nella gestione estrogenica in specie senza l’uso di AI come Exemestane o Anastrozolo, una conclusione a cui molti superficialmente sono giunti è che si potrebbe semplicemente usare il Boldenone al dosaggio sopra citato per ridurre della metà l’attività estrogenica, ma comunque supportare un’adeguata produzione di Estradiolo. Ma quando si approfondisci l’ipotesi e la si testa sul campo, è davvero così che stanno le cose? In realtà no, o, comunque, la media delle variabili di risposta spinge a confermare una maggiore validità nel “mixare” Testosterone e Boldenone coprendo la dose base calcolata in precedenza, e con variazione di percentuale T:B ratio da 1:1 a 2:1.

Vi ricordate l’affermazione secondo cui il Nandrolone ha un tasso di aromatizzazione del 20% rispetto al Testosterone? Ecco, questo è un altro assunto semplicistico e simile a quanto si tratterà in questo articolo, che è stato tramandato per anni nella comunità della ghisa, e che ora sappiamo non essere corretto (ne parlerò probabilmente in un articolo a parte).

Quindi, per il Boldenone come stanno le cose? Iniziamo conoscendo la molecola in questione

Caratteristiche del Boldenone

Il Boldenone [1,4-androstadiene-3-one,17b-ol], commercializzato con il nome di Equipoise, Ganabol, Equigan, Ultragan, e Boldane,  è uno steroide anabolizzante-androgeno spesso legato all’estere Undecylenato. Strutturalmente molto simile al Testosterone, il Boldenone differisce da questo per il doppio legame tra C1 e C2.

Struttura molecolare del Boldenone

Come detto, il Boldenone non è altro che Testosterone con un doppio legame tra C1 e C2, caratteristica che:

1- Riduce ipoteticamente il tasso di aromatizzazione in rapporto al Testosterone;

2- rende la molecola un substrato molto meno affine all’enzima 5-α reduttasi rispetto al Testosterone. Questo aspetto riduce in modo apprezzabile la conversione del Boldenone a Dihydroboldenone, rendendo l’androgenicità assoluta inferiore rispetto a quella del Testosterone (androgeno:anabolico ratio comune/ipotetica del Boldenone è di 50/100).

Nonostante non ci siano dati sperimentali sull’affinità recettoriale del Boldenone, in base alla sua struttura e alla conversione limitata a Dihydroboldenone, si ipotizza che l’affinità recettoriale della molecola sia “Mix”  a livello muscolare come quella del Testosterone. Vi sono altresì diverse ipotesi come quella secondo cui il Boldenone possegga una affinità AR inferiore a quella del Testosterone, speculando che esso possa essere classificato come “Non-AR”.

Il Boldenone condivide con il Testosterone anche una forte affinità per le SHBG. Cosa molto poco importante in un contesto “doped”: è ormai risaputo che dosi sovrafisiologiche di AAS causano una riduzione delle SHBG.

Il Boldenone è privo di qualsiasi tipo di metilazione cosa che lo rende sensibilmente meno efficace per via orale, ma meno di quello che ci si potrebbe aspettare:  il doppio legame in C1-C2 incrementa leggermente la resistenza al passaggio epatico.

E arriviamo dunque al tasso di aromatizzazione ad Estradiolo del Boldenone considerato essere del 50% rispetto al Testosterone.

Il Boldenone è spesso raggruppato nella categoria ristretta dei derivati ​​del Testosterone che possono anche servire come base sostitutiva del Testosterone per via della loro interazione con l’Enzima Aromatasi.

Le basi sostitutive del Testosterone sono AAS soggetti all’Aromatasi e si convertono in una quantità sufficiente di Estrogeni per supportare un’adeguata attivazione del recettore degli Estrogeni.

Ma c’è un errore, il Boldenone è stato inserito in questa categoria erroneamente.

Una produzione adeguata di Estrogeni garantisce una migliore neuroprotezione, cardioprotezione, attività dell’asse GH/IGF-1, produzione di fattori di crescita a valle e una miriade di altre importanti funzioni sia per la salute che per le prestazioni.

Si afferma comunemente, come già detto, che il Boldenone aromatizzi la metà del Testosterone, e il libro di William Llewellyn “Anabolics” è comunemente indicato a supporto di questa affermazione.

Molti ritengono che il Boldenone possa essere utilizzato come base sostitutiva del Testosterone per coloro che sono inclini agli effetti collaterali estrogenici. E, in teoria, utilizzando il Boldenone, si potrebbe ridurre il rischio di sviluppare effetti collaterali correlati ad un livello elevato di estrogeni poiché dovrebbe aromatizzare circa la metà del Testosterone.

Nel corso degli anni si sono sviluppate altre teorie sul meccanismo d’azione del Boldenone. Una delle più recenti è che uno (o più) dei suoi metaboliti agisca come un Inibitore dell’Aromatasi (AI). Ma esiste una teoria completamente diversa, che approfondirò dopo aver elaborato l’ipotesi del/i metabolita/i AI.

L’ipotesi dei “metaboliti AI” del Boldenone

Secondo questa ipotesi, i metaboliti del Boldenone sono in realtà la causa del ridotto impatto dell’Enzima Aromatasi su questa molecola e su altri substrati soggetti come il Testosterone.

E’ reperibile in rete una raccolta della ricerca disponibile sui metaboliti del Boldenone [1].

In questa raccolta si esaminano anche aneddoti che affermano sia la necessità di aumentare, diminuire o non avere affatto bisogno di un IA a seconda del dosaggio di Boldenone utilizzato. Logicamente, più la dose di Boldenone sarà alta più si dovrebbe necessitare di AI al fine di marginare l’aromtizzazione in Estradiolo. Tuttavia, molte persone riportano una diminuzione del bisogno di AI quando usano il Boldenone o, addirittura, arrivano ad affermare di non averne affatto bisogno.

Estratto dal libro “Anabolics” di William Llewellyn, sezione dedicata al Boldenone.

Nel libro di William Llewellyn “Anabolics” viene affermato che “gli studi sull’aromatizzazione suggeriscono che il tasso di conversione [del Boldenone] in Estradiolo è di circa la metà di quello del Testosterone”.

Llewellyn fa riferimento a uno studio in vitro per supportare questa affermazione. Ma il precedentemente citato studio non si riferisce al Boldenone in nessuna delle sue parti.[2]

In un’edizione rivista di “Anabolics” il riferimento è cambiato in uno oscuro studio che valuta il ruolo degli androgeni nella crescita e nello sviluppo del feto, bambino e adolescente.[3] Anche in questo studio non ci si riferisce al Boldenone. Potrebbe tuttavia essere un errore di Llewellyn in quanto un composto con un nome simile, Boldione (considerato un PH del Boldenone), è menzionato nel primo studio (lo studio in vitro) e apparentemente interagisce con l’Aromatasi, tuttavia, ha aggiornato la fonte in una copia più recente del suo libro, presumibilmente basato sul fatto che il nuovo studio rappresentava un’informazione corretta, ma nello studio aggiornato non c’è affatto menzione della molecola in questione.

È stato analizzato uno studio svolto su conigli e indagante l’effetto del Boldenone sugli ormoni riproduttivi.[4]

Lo studio era strutturato su due gruppi sperimentali e uno di controllo.

I due gruppi sperimentali sono stati trattati con Boldenone.

Il gruppo di controllo non ha ricevuto alcun trattamento farmacologico.

Entrambi i gruppi sperimentali hanno avuto una significativa diminuzione del Testosterone circolante con un aumento simultaneo dell’Estradiolo.

Nella discussione finale dello studio, i ricercatori ipotizzano che ciò possa essere dovuto all’aromatizzazione in Estradiolo del Boldenone.

Quindi, questo studio è stato condotto in un contesto monoterapico, il che significa che hanno trattato i conigli con solo Boldenone.
Vediamo una predicibile diminuzione del Testosterone e un aumento dell’Estradiolo.
Logicamente, se non viene somministrato Testosterone ma solo Boldenone, ed i livelli di Estradiolo aumentano sensibilmente rispetto al basale, allora il Boldenone deve aromatizzare in Estradiolo, giusto? Non esattamente…
Se guardiamo a come hanno misurato questi biomarcatori, possiamo vedere che hanno raccolto campioni di sangue ed eseguito un successivo test ormonale.
I livelli sierici di Testosterone ed Estradiolo sono stati determinati utilizzando kit di test immunologico per elettrochemiluminescenza (ECLIA). Parliamo di uno dei peggiori metodi di test ematico.

Andando oltre, nella raccolta di dati precedentemente citata, si approfondisce la questione del metabolita che molti sostengono essere il responsabile degli effetti AI-simili del Boldenone.

Non è possibile trovare pubblicazioni inerenti specifiche su PubChem.[5, 6]

L’uso di Google come motore di ricerca al fine di chiarire la questione non è di molto aiuto, e non mostra nemmeno ricerche rilevanti per 1,4 dienedione in riferimento al Boldenone. Durante la ricerca, è emerso un composto, l’Androsta-1,4-didenedione. Durante la ricerca sul Androsta-1,4-didendione sono emersi alcuni studi, uno che mostrava che poteva causare difetti alla nascita, un altro sugli “steroidi su micropiastre con gel di silice fisso” e l’ultimo su un chetosteroide. Nessun risultato viene visualizzato quando si cerca 1,4 dienedione, è considerato un errore di battitura.

Uno studio ha esaminato i metaboliti escreti dopo la somministrazione di Boldenone nell’uomo [7]. Essi risultano essere i seguenti:

  • 5β‐androst‐1‐en‐17β‐ol‐3‐one
  • 5β‐androst‐1‐ene‐3α,17β‐diol
  • 5β‐androst‐1‐en‐3α‐ol‐17‐one
  • 5β‐androst‐1‐en‐6β‐ol‐3,17‐dione
  • 5β‐androst‐1‐ene‐3,17‐dione
  • 5α‐androst‐1‐ene‐3,17‐dione (aka 1-AD)
  • androsta‐1,4‐diene‐3,17‐dione (aka ADD)
  • androsta‐1,4‐diene‐6β,17β‐diol‐3‐one
  • androsta‐1,4‐dien‐6β‐ol‐3,17‐dione

Come si può vedere, vengono prodotti nove metaboliti, con due metaboliti (1-AD e ADD) simili a quelli precedentemente menzionati.

Lo studio non menziona alcun effetto anti-aromatase.

L’1-AD è un androgeno sintetico e uno steroide anabolizzante. Agisce anche come pro-ormone dell’1-Testosterone [8].

Dall’alto al basso: 1-AD e 1-Testosterone

In uno studio in vitro è stato dimostrato che l’1-AD è un potente inibitore dell’attività dell’aromatasi e dell’espressione dell’mRNA del CYP19.[9]

L’ADD è uno steroide androgeno anabolizzante correlato a Boldenone e Testosterone. L’ADD metabolizza rapidamente a Boldenone [10, 11]. In uno studio in vitro è stato dimostrato che l’ADD inibisce l’aromatasi.[12]

L’ATD non era elencato nello studio sui metaboliti umani condotto sul Boldenone [13]. Proprio come con l’ADD, l’ATD ha dimostrato di essere sia un metabolita del Boldenone che di metabolizzare in Boldenone [14, 15].

In uno studio in vitro è stato dimostrato che l’ATD riduce significativamente la biosintesi degli estrogeni.[16]

Quando si confrontano le strutture di 1-AD, ADD, ATD e i dati disponibili a riguardo, sembra che l’1,4 Dienedione sia solo un tentativo errato di identificare l’ADD.

PubChem non lo ha mostrato come sinonimo in quanto non era indicizzato su PubMed.

È anche fuorviante chiamarlo AI perché è anche un AAS che si ha effetti simili ad un IA, ma subisce esso stesso l’aromatizzazione.

Tutti gli studi a cui si fa riferimento sono condotti in vitro.

Gli studi in vitro e gli studi sugli animali non si traducono quasi sempre in risposte analoghe una volta applicati agli esseri umani, quindi le estrapolazioni non dovrebbero essere prese come un dato di fatto senza necessità di approfondire.

Un fattore di singolare importanza è senza dubbio la variabilità nella risposta genetica tra individuo e individuo. E’ del tutto plausibile che alcuni individui possano metabolizzare il Boldenone in ADD, 1-AD o ATD a un tasso più elevato di altri, o possano avere una elevata risposta a questi metaboliti. La risposta ai farmaci è diversa da individuo a individuo e anche il metabolismo degli steroidi endogeni prodotti naturalmente differisce notevolmente da persona a persona. Alcuni individui semplicemente non rispondono nemmeno a determinati farmaci, il che deve essere preso in considerazione.

La risultante della ricerca non chiarisce se il Boldenone agisca come un AI o se aromatizza in Estradiolo ad un dato tasso.

Ma qual è il problema con il metodo ECLIA?

Semplice, l’ECLIA rileva in modo incrociato altri estrogeni nel sangue.

Anche in monoterapia con il Nandrolone possono emergere letture errate come, per esempio, Testosterone elevato ed Estradiolo nei range quando non lo sono. Di conseguenza, è di estrema importanza riuscire a fare analizzare i campioni raccolti da un laboratorio analisi utilizzante un test sensibile per l’Estradiolo nello specifico.

Durante diversi esperimenti con solo uso di Nandrolone si sono valutati i livelli di Estradiolo con il metodo ECLIA ottenendo un risultato nella norma del range di riferimento (media tra i 35 ed i 40pg/ml).

L’anomalia di lettura emergeva quando il medesimo soggetto trattato svolgeva un prelievo ematico il cui campione veniva analizzato utilizzando un test ad alta sensibilità, e da esso veniva rivelato un livello di Estradiolo nettamente inferiore (media tra i 10 ed i 15pg/ml).

Per quale ragione si è manifestata una discrepanza così evidente tra i due metodi di test? L’ECLIA rileva in modo incrociato altri estrogeni nel campione ematico leggendo l’Estrone come Estradiolo alterando in modo significativo il risultato del test. Ciò significa che possiamo già concludere che i livelli di Estradiolo nello studio sui coniglio trattati con il Boldenone hanno un sostanziale margine di errore.

Nel caso del solo uso di Nandrolone, esso causa un aumento significativo di Estrone che attraverso il test ECLIA risulta rilevato come Estradiolo dando come risultante un falso livello ematico di quest’ultimo. L’Estrone può si convertirsi in Estradiolo, ma ciò non si verifica ad un tasso significativo.

Quindi, sappiamo che i valori rilevati tramite test ECLIA non sono molto accurati quando si valuta l’Estradiolo.

E’ adesso chiaro come non sia una coincidenza il fatto che ogni qual volta un soggetto trattato con Boldenone riscontri referti ematici differenti rispetto al test ECLIA quando il campione viene sottoposto a test specifici. Infatti, tramite test specifici, si possono osservare costantemente dei bassi livelli di Estradiolo anche con alte dosi di Boldenone, sebbene ciò sia soggetto a variabili soggettive.

Aneddoti e analisi del sangue che mostrano bassi livelli di Estradiolo durante la somministrazione di Boldenone

Su YouTube, a volte, molto raramente, ci si può imbattere in personaggi discretamente preparati in materia di farmaci applicati allo Sport, e questo è, ad esempio, il caso di Vigorous Steve.

Steve afferma di rispondere molto bene ai cicli di Testosterone ad alti dosaggi ed è arrivato a livelli di dosi piuttosto alte. Dice che, di norma, quando assume un grammo di Testosterone a settimana, deve assumere 12,5mg/die di Exemestane per evitare la comparsa di effetti collaterali estrogenici.

Quando ha mixato 1g di Testosterone con 1g di Boldenone a settimana, tuttavia, ha notato che non aveva bisogno della stessa quantità di Exemestane giornaliera, poiché l’introduzione del Boldenone aveva effettivamente ridotto il livello estrogenico.

Nonostante l’aggiunta di 1g di un altro farmaco che presumibilmente aromatizza alla metà del tasso con il quale aromatizza il Testosterone, Steve aveva bisogno di una dose inferiore di AI.

Esempi di risultati ematici dei livelli di Estradiolo con test ad alta sensibilità (specifico)

In rete si trova di tutto e di più, e l’affidabilità lascia molto a desiderare. A volte, però, è possibile reperire testimonianze di buona credibilità come questa che vi espongo qui di seguito e che proviene da un utilizzatore sotto trattamento con Boldenone. I risultati delle sue analisi del sangue sono stati elaborati tramite test ad alta sensibilità, ed hanno aiutato a fare maggiore chiarezza su ciò che realmente accade con l’uso di Boldenone.

Questa è la linea temporale del suo ciclo:

  • 18/02/19 – Esplosione iniziale: 400mg di Testosterone Cypionato/200mg di Nandrolone Fenilpropionato (NPP) a settimana (necessari 0,25 mg di Arimidex due volte a settimana per tenere sottocontrollo gli effetti collaterali estrogenici);
  • 31/5/19 – Passaggio alla TRT composta da: 100mg di Testosterone Cypionato/ 900IU hCG (300UI x 3) a settimana;
  • 19/07/19 – Completamento della TRT. Il risultato dell’analisi del sangue con Estradiolo a 75pg/mL.
  • 19/07/19 – Inizia la fase esplosiva con Equipoise. Dopo il prelievo ematico 400 mg di Testosterone Cypionato/300mg di Boldenone a settimana e 20mg di Oxandrolone al giorno;
  • 2/09/19 – Prelievo ematico durante il periodo di somministrazione di 400mg di Testosterone Cypionato/300mg di Boldenone a settimana e 20mg di Oxandrolone al giorno;
  • 4/09/19 – Il risultato dell’analisi del sangue con Estradiolo a 24pg/mL, nonostante stesse utilizzando 400mg di Testosterone Cypionato e 300mg di Boldenone che presumibilmente aromatizza al 50% del tasso con il quale aromatizza il Testosterone. Il suo livello di Estradiolo è diminuito da 75pg/ml a 24pg/ml.

Il soggetto in questione ha assicurato che i campioni ematici sono stati analizzati con test LC/MS-MS ultra sensibile e non l’ECLIA.
Come si può notare, si tratta di un altro individuo che mostra che l’uso del Boldenone ha ridotto significativamente l’Estradiolo durante il ciclo.

Lo Youtuber Symmetry and Fitness ha fatto un ulteriore passo avanti e non solo ha testato i suoi livelli di Estradiolo durante l’uso del Boldenone tramite test di analisi sensibili, ma ha anche testato i suoi livelli di Estrone, ed i risultati sono molto interessanti.

Il suo ciclo comprendeva circa 850mg di Boldenone Undecylenato e 250mg di Testosterone Enantato a settimana.

I risultati mostrano un significativo aumento dei livelli di Estrone, con un risultato di 662pg/mL, con il limite massimo dell’intervallo di riferimento pari a 65pg/mL. Il suo livello di Estradiolo non era rilevabile con meno di 2,5pg/mL.

Normalmente con i livelli sierici di Testosterone derivanti da 250mg/week di Testosterone Enantato portano in media ad avere livelli di Estradiolo pienamente all’interno dell’intervallo di riferimento.

Con la produzione endogena media di Testosterone si raggiungono livelli pari a circa 15-35pg/ml (a seconda di quanto Testosterone sintetizza il soggetto e da altri fattori). I risultati delle analisi del sangue in questione mostrano che l’Estradiolo è persino inferiore a quello di una donna in menopausa.

Dovrebbe essere noto, per lo meno ai miei lettori, che portare i livelli di Estradiolo a quote molto basse (fatte rare eccezioni e per brevissimi periodi di tempo) è qualcosa da evitare per i consequenziali problemi psicofisici.

Comunque, il risultato del test indica che qualcosa nello stack utilizzato dallo youtiuber ha impedito sensibilmente l’aromatizzazione del Testosterone in Estradiolo. Grazie all’accuratezza degli esami svolti, sappiamo che il Testosterone utilizzato dal soggetto in questione è realmente Testosterone (1431 ng/dL), poiché, per l’appunto, i campioni ematici sono stati sottoposti ad un test specifico LC/MS-MS, che è il gold standard per verificare il totale esatto del Testosterone evitando il rilevamento incrociato di altri anabolizzanti.

La quantità di Testosterone rilevata, normalmente, porterebbe ad un livello di Estradiolo medio-alto, non di certo così basso come è risultato. Quindi, probabilmente l’enzima Aromatasi viene inibito. Fortunatamente, con il risultato del suo esame del sangue comprendente l’Estrone, possiamo finalmente risolvere l’enigma su ciò che realmente accade.

Facendo riferimento allo studio sui conigli, sappiamo che per esso hanno utilizzato l’ECLIA per rilevare i livelli di Estradiolo.

Lo studio sui conigli visto in precedenza, ha mostrato un aumento dell’Estradiolo con Boldenone in monoterapia e, guarda caso, tutti gli individui che hanno riportato livelli nella norma di Estradiolo dopo esame ematico svolto durante il ciclo di AAS, i loro campioni non sono stati sottoposti a test ad alta sensibilità (almeno quelli che ho visionato ad oggi, e vi assicuro che sono numerosi).

“Symmetry and Fitness” mostra un livello di Testosterone alto, e nessun livello di Estradiolo alterato dalla falsa lettura del Estrone circolante. Tutti i risultati delle analisi del sangue che mostrano un aumento dell’Estradiolo utilizzano ECLIA.

Quindi, a questo punto, si potrebbe ipotizzare che il Boldenone non aromatizza effettivamente in Estradiolo, né inibisca l’enzima Aromatasi ma, piuttosto, esso potrebbe competere con il Testosterone nell’interazione con l’Aromatasi.

Approfondirò ulteriormente questo aspetto più avanti, ma, per il momento, posso dirvi che, probabilmente, si necessiterà di una co-somministrazione di Estradiolo o di un substrato soggetto all’aromatizzazione in Estradiolo durante l’uso di Boldenone al fine di ottenere effettivamente una quantità fisiologica dell’estrogeno maggiormente bioattivo. Il motivo è che il Boldenone, chiaramente, non aromatizza in una quantità sufficiente ad Estradiolo ma, da come è emerso da esami approfonditi, sembra avere una maggiore conversione in Estrone, un estrogeno con bassa bio-attività. L’Estrone, quindi, non è in grado di sopperire ai bassi livelli di Estradiolo, e sto parlando soprattutto dei benefici connessi a quest’ultimo per la salute psicofisica o la crescita muscolare, e vi sono numerosi studi che dimostrano quanto i livelli di Estrone sproporzionatamente elevati possano essere deleteri per la salute. In alternativa, una dose molto più bassa di Boldenone dovrebbe essere somministrata in rapporto al Testosterone, a meno che non vi sia una competizione o una fase dove i livelli di Estradiolo devono essere maggiormente ridotti.

Abbiamo visto come anche con uno schema di dosaggio quasi identico tra Testosterone e Boldenone (vedi precedente esempio da 300mg di Boldenone e 400mg di Testosterone) i livelli di Estradiolo risultano generalmente bassi.

Quasi nessun “doped” si somministra meno di 300mg/week di Boldenone, e se solo a questi dosaggi può risultare un problema per l’Estradiolo, livelli maggiori richiedono gestioni estremamente più accurate, soprattutto se l’obbiettivo è la massima crescita muscolare.

Effetti potenziali del Boldenone sulla biosintesi estrogenica

Come accennato in precedenza, è molto probabile che l’uso di Estradiolo esogeno, o l’aggiunta di dosaggi maggiori di un substrato soggetto ad aromatizzazione in Estradiolo, sia necessario per mantenere livelli salubri durante un ciclo di Boldenone ad alte dosi.

La via principale attraverso la quale l’Estrone viene biosintetizzato coinvolge l’Androstenedione come intermedio, con quest’ultimo che viene convertito in Estrone dall’enzima Aromatasi. Questa è il punto chiave da ricordare nel contesto di questa profonda anamnesi sul Boldenone.

L’Androstenedione si converte in Estrone attraverso l’azione dell’enzima Aromatasi. Questa reazione si verifica sia nelle gonadi che in alcuni altri tessuti, in particolare il tessuto adiposo, e l’Estrone viene successivamente rilasciato da questi tessuti. Oltre che attraverso l’aromatizzazione dell’Androstenedione, l’Estrone può essere sintetizzato reversibilmente a partire dall’Estradiolo tramite l’azione dell’enzima 17β-idrossisteroide deidrogenasi (17β-HSD) in vari tessuti, compreso il fegato.

Descrizione: le vie metaboliche coinvolte nel metabolismo dell’Estradiolo e di altri estrogeni naturali (ad es. Estrone, Estriolo) nell’uomo. Oltre alle trasformazioni metaboliche mostrate nel diagramma, la coniugazione (ad es. Solfatazione e Glucuronidazione) si verifica nel caso dell’Estradiolo e dei suoi metaboliti che hanno uno o più gruppi idrossilici (–OH) disponibili.

Aneddoticamente, possiamo vedere come la necessità di utilizzo di un AI diminuisce nettamente dal momento che i livelli di Estradiolo vengono marcatamente soppressi, anche con una dose elevata di Testosterone quando si aggiunge del Boldenone a dosaggi del tutto contenuti.

Vediamo anche i risultati degli esami del sangue che mostrano livelli altissimi di Estrone. Alcuni dei metaboliti del Boldenone sono propagandati come AI, ma l’evidenza di ciò si basa sull’estrapolazione da studi su animali, modelli in vitro e sul fatto che vediamo una diminuzione dei livelli di Estradiolo presente nei risultati degli esami del sangue ad alta sensibilità. Tutto questo porta a credere che il Boldenone non agisca, direttamente o indirettamente, come un AI, e anche se i suoi metaboliti lo fanno, il grado in cui svolgono tale azione è chiaramente insignificante, altrimenti non avremmo questo picco enorme di Estrone nel sangue.

Quello che con molta probabilità accade, è che anche il Boldenone è un potente substrato per l’Aromatasi, ma non aromatizza direttamente ad Estradiolo, convertendosi in Estrone o in un altra forma di estrogeno sintetico (non presente in natura ma frutto di un substrato modificato per sintesi di laboratorio). In effetti, molti hanno dato per scontato che il Boldenone si converta in Estradiolo nonostante questo AAS sia sintetico.

Se l’enzima Aromatasi fosse inibito dai metaboliti del Boldenone, non vedremmo picchi dei livelli di Estrone così significativi, né vedremmo picchi di Estradiolo tramite il metodo ECLIA. Quel test incrociato rileva altri estrogeni ed è solo tramite test ad alta sensibilità che possiamo vedere cosa sta effettivamente succedendo sul piano del Estradiolo e dei tassi di aromatizzazione. Il fatto che gli estrogeni vengano rilevati in quei range indica chiaramente che l’enzima Aromatasi agisce senza particolari limitazioni, nonostante non stia operando sul Testosterone dal momento che i livelli di Estradiolo sono decisamente ridotti.

A questo punto ci si può domandare quale sia l’affinità di legame del Boldenone rispetto al Testosterone per l’enzima Aromatasi e quali sono i metaboliti estrogenici derivanti durante il processo di conversione enzimatica.

Considerate che che “Symmetry and Fitness” ha eseguito test ad alta sensibilità per Testosterone ed Estradiolo ma, tuttavia, il metodo usato per rilevare i livelli di Estrone è l’ECLIA. Quindi, l’Estrone potrebbe benissimo essere anche un rilevamento incrociato di un altro metabolita estrogenico sintetico. E ci sono buone probabilità che sia così, poiché il diretto interessato ha riferito di aver fatto dei successivi test di follow-up per valutare i suoi livelli di Estrone tramite LC / MS / MS. E questa volta sono tornati nella norma.

Rapporti tra Testosterone ed Estradiolo e limite di attività dell’Aromatasi

Una cosa che spesso viene trascurato è che esiste un limite nell’attività dell’Aromatasi. Una volta che i dosaggi sovrafisiologici di AAS aumentano, il corpo non risponde con una sintesi di enzima Aromatasi proporzionale causando una conversione massiva e perfettamente proporzionale di Estradiolo (o qualsiasi metabolita che l’AAS somministrato sensibile all’Aromatasi dia come risultato dell’interazione biochimica). Gli studi che hanno misurano la risposta a dosi graduate di Testosterone in uomini giovani e anziani hanno dimostrato che la Estradiolo:Testosterone ratio in realtà diminuisce ulteriormente con dosaggi sovrafisiologici di Testosterone.

  • Con 25mg di Testosterone a settimana, il rapporto totale E2-T in un giovane è di circa l’1,2%;
  • A 50mg si scende a circa lo 0,7%;
  • A 125mg scende a circa lo 0,4%…E così via.

Come si può chiaramente osservare, l’aromatizzazione del Testosterone non avviene in maniera direttamente proporzionale alla dose somministrata, suggerendo che esiste un potenziale di tasso dell’aromatizzazione limitato e che esso può verificarsi. Un’altra possibile aggiunta allo scenario è che l’AAS sintetico somministrato sarà probabilmente in competizione con il Testosterone per quella limitata attività dell’Aromatasi.

È bene che comprendiate come sia fisicamente impossibile in fisiologia (sia di base che alterata e, fino a prova contraria, fatta eccezione per rari stati patologici) un aumento massivo del tasso di aromatizzazione, soprattutto con dosaggi sovrafisiologici. E, quindi, viene difficile pensare al fatto che qualcuno possa aspettarsi che il Testosterone in qualche modo subisca l’azione dell’enzima Aromatasi quando entra in competizione con un altro substrato di pari grado (?) ed a dosaggi maggiori (parlo ovviamente del Boldenone).

Analogamente agli anti-androgeni che competono per il legame con il recettore degli Androgeni con Testosterone e DHT, il Boldenone, molto probabilmente, compete con il Testosterone per l’enzima Aromatasi. Un altro esempio rilevante è ciò che accade dopo aver utilizzato un inibitore della 5α-reduttasi come la Finasteride.

Quando si inibisce la 5α-reduttasi con l’uso di Finasteride o Dutasteride per abbassare i livelli di DHT circolanti, detto nel modo più semplice possibile, il Testosterone raggiungerà concentrazioni più elevate per via dell’azione della Finasteride. Quando la 5α-riduzione del Testosterone viene inibita o fortemente ridotta, si verifica una riduzione del DHT, ma essendoci livelli maggiori di Testosterone, si verrà a creare un livello maggiore di Estradiolo per via della maggiore presenza del substrato soggetto all’azione dell’enzima Aromatasi (vedi, appunto, Testosterone). Questo è il motivo per cui l’uso della Finsteride aumenterà i livelli di Testosterone ed Estradiolo di circa il 15% e la Dutasteride di oltre il 20%.

Quindi, se un enzima ha un limite di espressione e attività, l’introduzione di un altro substrato con affinità di legame e/o dosaggio comparabili (ci sono ovviamente anche altri fattori) nell’equazione riduce ulteriormente la quantità disponibile dell’enzima con cui interagiscono gli “ormoni genitore” (il Testosterone è l’ormone genitore in questo contesto al quale ci stiamo riferendo).

Non sarei sorpreso di constatare che l’uso del Boldenone con il Testosterone possa causare effettivamente un modesto picco nei livelli di Testosterone e DHT al di sopra di quanto constatabile con la medesima dose di Testosterone, allo stesso modo in cui la co-somministrazione di Testosterone e Finasteride aumenta i livelli circolanti di Testosterone ed Estradiolo. Se l’Aromatasi è per la maggior parte legata al Boldenone, ci sarà dio conseguenza più Testosterone circolante, e quindi più testosterone soggetto alla 5α-reduttasi e alla conversione in DHT.

Ora, in teoria si potrebbe probabilmente ancora sfruttare il Boldenone in “Bulk” se la dose di Testosterone fosse significativamente più alta del precedente, ma i risultati delle analisi del sangue suggeriscono che la dose di Testosterone dovrebbe essere MOLTO più alta perché non ci sia una significativa compromissione della conversione di Testosterone in Estradiolo. Anche solo 300mg di Boldenone Undecylenato hanno causato un calo dei livelli di Estradiolo molto al di sotto di quelli che avrebbero dovuto esserci con l’uso di 400mg di Testosterone, compromettendo di conseguenza la salute e la crescita muscolare rispetto a ciò che si sarebbe potuto ottenere con un altro anabolizzante aggiuntivo che non compete con il Testosterone per l’Aromatasi.

Va anche considerato che il Boldenone è considerato dalla maggior parte dei “doped” come un agente anabolizzante relativamente debole, e ad oggi non ho ancora sentito parlare di una persona che sta usando Testosterone alto con Boldenone basso.

Esiste una “regola della broscience” che è stata tramandata fino ad oggi e che afferma che il Boldenone funziona bene solo a dosaggi superiori a 600-700mg7week. Ho anche sentito persone dire che “il Boldenone brilla a 1.5g/week”. Follia nella maggior parte dei casi.

Conclusioni sul Boldenone

A seguito delle mie ricerche, sono quasi certo che il Boldenone interagisca direttamente con l’enzima Aromatasi dando come risultato un metabolita estrogenico che altera il semplice esame ECLIA dando falsi positivi per livelli elevati di Estradiolo. Se possa o meno convertirsi in Estrone non ne sono certo, ma una ipotesi plausibile è che esso non si converta in nulla di bioidentico, ma in un estrogeno sintetico che ha una qualche affinità per i ERα ed ERβ.

Ipotesi della conversione del Boldenone in Estrone

Ora resta da scoprire quale sia questo ipotetico estrogeno sintetico e quanto sia potente in rapporto nell’adempiere alle stesse funzioni fisiologiche dell’Estradiolo. Questa domanda ce la poniamo anche, avendone una risposta, con il Methandrostenolone (Dianabol) ed il Trestolone (MENT), i quali convertono rispettivamente a 17α-Methylestradiolo e 7α-Methylestradiolo. Con il Boldenone, invece, non abbiamo idea di cosa accada realmente in termini di reazione biochimica enzimatica, seppur, aneddoticamente, la sua attività estrogenica sembri limitata, ed il fatto che essenzialmente inibisca marcatamente l’aromatizzazione del Testosterone in Estradiolo lo rende un composto molto più difficile da gestire in modo efficace di quanto si possa essere indotti a pensare da una certa letteratura.

La ricerca suggerisce anche che il Boldenone potrebbe essere uno dei composti più nefrotossici esistenti.[17]

La competizione per l’enzima Aromatasi, la successiva riduzione della cascata a valle che interessa importanti funzioni fisiologiche tra le quali lo stimolo all’ipertrofia muscolare, l’impatto marcato sulla eritropoiesi e la ipotetica tossicità renale fanno di questo AAS un composto poco versatile e, di certo, non facile da gestire/dosare specie in fasi della preparazione dove il fine ipertrofico è di massima importanza.

Sebbene ci siano alcuni contesti che, per via del maggiore controllo estrogenico, possano risultare ottimali per l’inserimento del Boldenone, per la maggior parte delle persone non penso che questo sia un composto di elezione nella strutturazione di un ciclo.

Ed è ovvio, giusto per ribadirlo, che l’uso in monoterapia e/o in contesto TRT risulta una pessima scelta per i motivi sopra esaustivamente riportati.

Ricordatevi, in fine, che la risposta soggettiva nel tasso di aromatizzazione da risultati di molto diversificati tra individuo ed individuo. Per tale motivo, prima di andare in qualche community a gridare “con il Boldenone mi sfondo di d-bol è non aromatizzo!” pensate che senza esami ad alta sensibilità per l’ormone specifico non potete proferire nulla più che vostre ipotesi di scarso valore logico e scientifico! Oltretutto, cosa assai grave, rischiate anche di danneggiare il prossimo!

Gabriel Bellizzi

Riferimenti:

  1. https://www.reddit.com/r/steroids/comments/gb6upf/compounds_boldenone_eq_bold_cyp_bold_ace_etc_does/
  2. Biosynthesis-of-Estrogens-Gual-C-Morato-T-Hayano-M-Gut-M-and-Dorfman-R.-Endocrinology-71-1962-920-25..pdf
  3. Imgur: The magic of the Internet
  4. Effects of boldenone undecylenate on growth performance, maintenance behaviour, reproductive hormones and carcass traits of growing rabbits – PubMed (nih.gov)
  5. PubChem (nih.gov)
  6. PubChem (nih.gov)
  7. Metabolism of boldenone in man: gas chromatographic/mass spectrometric identification of urinary excreted metabolites and determination of excretion rates – PubMed (nih.gov)
  8. An efficient synthesis of 5alpha-androst-1-ene-3,17-dione – PubMed (nih.gov)
  9. Steroidal metabolites transformed by Marchantia polymorpha cultures block breast cancer estrogen biosynthesis – PubMed (nih.gov)
  10. Metabolism of boldione in humans by mass spectrometric techniques: detection of pseudoendogenous metabolites – PubMed (nih.gov)
  11. Detection and characterization of urinary metabolites of boldione by LC-MS/MS. Part I: Phase I metabolites excreted free, as glucuronide and sulfate conjugates, and released after alkaline treatment of the urine – PubMed (nih.gov)
  12. A new hypothesis based on suicide substrate inhibitor studies for the mechanism of action of aromatase – PubMed (nih.gov)
  13. https://pubmed.ncbi.nlm.nih.gov/1591280/
  14. https://pubmed.ncbi.nlm.nih.gov/19089863/
  15. https://www.wada-ama.org/sites/default/files/resources/files/09a19ws_w._schanzer.pdf
  16. https://pubmed.ncbi.nlm.nih.gov/7472286/
  17. Deterioration of glomerular endothelial surface layer and the alteration in the renal function after a growth promoter boldenone injection in rabbits – PubMed (nih.gov)

Pillola blu o pillola rossa? Realtà per aspiranti “doped” … ma non solo…

DISCLAIMER: Il presente articolo è a solo scopo educativo, di intrattenimento e informativo. Non rappresenta in alcun modo una forma di incitamento all’uso/abuso di sostanze dopanti. L’autore ed il sito, per tanto, è esentato da qualsiasi responsabilità dipendente dalla libera scelta individuale.

Introduzione ad un dilemma…

Chiunque frequenti l’ambiente del Bodybuilding e del Fitness avrà letto o sentito almeno una volta nella vita espressioni del genere “se mi dopassi sarei anche io così [indicando Flex Wheeler]” o “ho provato di tutto e senza farmaci non riuscirò ad ottenere risultati”. Andando poi ad approfondire la storia di ognuno di questi soggetti si scopre in percentuale quasi assoluta che si tratta di individui nella norma (o al di sotto) frustrati e/o con personalità deboli, speranzosi omini che attendono placidamente che accada una svolta miracolosa nella loro banale e piatta esistenza e, cosa molto importante, con il minimo dello sforzo (meglio se nessuno).

Nella mia esperienza come ricercatore e operatore nel campo della cultura fisica in qualità di Preparatore Atletico, ho assistito a innumerevoli casi in cui un soggetto aspirava al miglioramento della propria composizione corporea trascurando, consciamente o inconsciamente, le basi fondamentali rappresentate da Nutrizione e Allenamento baipassandole in vista della possibile prescrizione di una pillola miracolosa capace di renderlo/a possessore della forma fisica ambita.

Tralasciando l’ovvio ragionamento che spinge ogni essere umano dotato di un minimo d’intelletto verso la comprensione che la genetica è il blocco d’argilla sul quale si va ad operare, ma le sue qualità e difetti sono presenti in modo eterogeneo nella popolazione mondiale, e ciò non è modificabile nemmeno con la farmacologia più oculata, quando ci si trova davanti al bivio tra “pillola rossa” (PEDs) e “pillola blu” (drug free) bisogna essere pienamente consapevoli non solo del fattore illegalità ma del fattore conoscitivo. Purtroppo, la politica del terrore ha operato in modo fallimentare nel goffo intento di allontanare dalla scelta “rossa”, e ciò si è tradotto in un numero sensibile di soggetti abusatori con tutte le conseguenze cliniche derivanti.

Se un individuo non ha raggiunto un livello di maturità sportiva tale da conferirgli una gestione corretta della nutrizione e della periodizzazione allenante (gestione delle variabili volume, intensità, densità ecc…), è molto meglio per lui/lei rivedere i suoi programmi e scegliere ancora la “pillola blu”. Capita, a volte, di incontrare persone decise ad intraprendere la via del “lato oscuro” che, dopo una approfondita chiacchierata sulla gestione dei suddetti fattori, rivede le proprie posizioni.

Per tutti coloro i quali sono immersi nel dilemma della scelta, vi espongo alcuni punti per rendere l’eventuale decisione meno rischiosa anche se pur sempre illegale nel “bel paese”…

“Pillola blu o pillola rossa?” I punti da tenere in considerazione per una scelta consapevole:

#1 Raggiungere una adeguata maturità sportiva

Per “maturità sportiva”, in particolare riferimento al BodyBuilding, si intende la capacità del atleta di sapersi alimentare e allenare correttamente con piena gestione delle proprie potenzialità fisiologiche/genetiche. Questa è la base, se viene a mancare ciò non solo la vostra esperienza finirà per deludervi e rendervi ancora di più dei frustrati, ma potrebbe rovinosamente portarvi ad un abuso cronico a senso inesorabilmente negativo…

#2 I PEDs non faranno miracoli

Una cosa da tenere bene a mente, e questo non dovrebbe interessare solo gli aspiranti “doped”, è che l’uso di PEDs non renderà diversi da ciò che rientra nelle potenzialità espressive del proprio patrimonio genetico. Certamente le caratteristiche genetiche verranno “iperespresse”, nel bene e nel male, dall’uso di PEDs ma non vi sarà nessun miracolo! Migliorerete ma non sarete ne più ne meno di ciò che potete essere!

Un esempio per capire come la base genetica faccia la differenza anche con protocolli che, ad oggi, spesso non raggiungono nemmeno i livelli del “bridge” più soft..

#3 Ridurre la percentuale di grasso corporeo

Il tessuto adiposo rappresenta uno dei siti dove il Testosterone, ed altri AAS soggetti all’aromatizzazione, viene convertito in Estradiolo. Soggetti con percentuali di grasso corporeo elevate vedrebbero una alterazione marcata della Testosterone:Estradiolo ratio a favore della componente estrogenica, con conseguenze quali alterazione del comportamento sessuale (impotenza, difficoltà nel raggiungere e/o mantenere l’erezione), ritenzione idrica, accumulo di grasso con modello femminile e ginecomastia. E no, l’uso di DHT derivati o di SARM non steroidei senza una base di Testosterone non risolverebbe il problema o, per lo meno, porterebbe ad altre conseguenze negative, che pur non comprendendo, per esempio, ritenzione idrica e ginecomastia, interesserebbero l’attività sessuale e la condizione psichica del soggetto trattato. [1]

Schema esemplificato del processo di aromatizzazione degli androgeni aumentati in un soggetto con percentuale di grasso corporeo alta.

Allo stesso tempo, i rischi cardiovascolari della somministrazione di AAS- come il possibile aumento esponenziale del Ematocrito, l’aumento del LDL e Trigliceridi a discapito di una riduzione del HDL, e l’aumento della pressione sanguigna – sarebbero già presenti in certa misura quando la body fat è già alta e sarebbero quindi soggetti ad un repentino aggravamento.

Se la percentuale di grasso è relativamente alta, si dovrebbe prima di tutto considerare di migliorare la composizione corporea con una adeguata routine alimentare e allenante (senza farmaci) prima di iniziare solo a pensare all’uso di AAS. Sicuramente ciò renderà la scelta più efficace e meno rischiosa.

Nel caso fosse necessario sottolinearlo, no, non è saggio nemmeno utilizzare agenti PEDs a fini lipolitici e/o antiadipogenici e/o termogenici (compresi gli Ormoni Tiroidei). A meno che non siate affetti da ipotiroidismo, e in questo caso la terapia vi dovrebbe essere stilata dal vostro medico, per ridurre in modo sensibile la body fat non sono necessari i farmaci!

#4 Controllare se si ha una storia familiare di trombosi (o qualsiasi altra malattia cardiovascolare)

Molte malattie cardiovascolari hanno una componente di base genetica. Uno stile di vita sano può ridurne sensibilmente la loro insorgenza, ma l’uso di AAS può causare l’attivazione di specifici geni implicati nella comparsa di malattie cardio-circolatorie. Caratteristico dell’interazione tra AAS e geni specifici è un caso studio ben documentato che ricercatori americani hanno pubblicato sul “Blood Coagulation & Fibrinolysis”.[2]

Trombosi venosa

Oltre all’attivazione genica diretta dagli AAS, e nociva per il sistema cardio-circolatorio, vi sono altre condizioni negative innescate dall’uso/abuso di Steroidi Anabolizzanti, e di altri PEDs, come, per esempio, l’aumento del tasso di coagulazione, l’incremento eccessivo dell’Ematocrito con aumento pressorio, rigidità dell’endotelio vascolare con perdita di efficienza strutturale e aumento della pressione ematica con incremento delle possibilità di danno strutturale dei componenti del sistema interessato.

#5 Inserire delle sedute di allenamento cardio prima, durante e dopo l’uso di PEDs

Un moderato allenamento cardiovascolare è sicuramente una delle migliori strategie preventive contro la comparsa di malattie cardio-circolatorie. Tale tipologia di allenamento può portare un miglioramento e/o riduzione delle alterazioni lipidiche ematiche del praticante, fornendo un, seppur minimo, tampone all’azione negativa degli AAS e SARM non steroidei sui livelli di LDL (aumento), Trigliceridi (aumento) e HDL (diminuzione). Secondo quanto riportato da una interessante review del 2013, l’abbinamento di sedute cardio e in sala pesi possono avere una azione additiva benefica sui livelli di LDL, Trigliceridi e HDL.[3]

Risulta interessante anche quanto emerso da alcuni studi su animali a seguito dei quali si è osservato un significativo grado di protezione dato dall’allenamento cardio negli esemplari trattati con AAS.[4]

#6 Assicurarsi di rimanere ben idratati

Oltre ad agevolare il mantenimento di un Ematocrito migliore, una buona idratazione risulta positiva sulla pressione di lavoro renale nel filtraggio del sangue. Diversi AAS come il Trenbolone e i metilati in C-17 presentano una particolare resistenza metabolica che, oltre a causare un aumentato stress epatico, può portare ad una sofferenza renale sfociabile nel patologico. Si è osservato come una combinazione di AAS, dieta iperproteica e supplementazione di Creatina possa aumentare l’incidenza di problemi renali.[5] In un soggetto in fisiologia, la sola dieta ad altro contenuto proteico e la supplementazione di Creatina non hanno mostrato nessun grado di pericolosità, soprattutto sul breve/medio termine.

#7 Non usare “droghe ricreative”

A livello globale, il numero di decessi tra gli abusatori di AAS è in aumento. Alcuni, troppo superficialmente, dicono che questo sia dovuto al fatto che sempre più uomini e donne usano AAS, ma questa è solo una spiegazione dozzinale e limitata. Il sospetto ricade soprattutto sulle modalità di approccio dei consumatori di AAS: i dosaggi sono drammaticamente aumentati e un numero crescente di individui combina PEDs con “droghe ricreative”. Ed è su questi due ultimi punti che risiede la spiegazione principale dell’aumento statistico prima menzionato. Soprattutto la combinazione di PEDs e le così dette “droghe ricreative” risulta essere probabilmente un fattore significativo, come evidenziato alcuni anni fa da ricercatori australiani. Nel loro studio sono state analizzate tutte le morti documentate tra i consumatori di AAS a Sydney tra il 1997 e il 2012, scoprendo che le droghe ricreative come la cocaina avevano avuto un ruolo nella schiacciante molteplicità dei casi. Dagli studi sugli animali ora sappiamo della possibilità che la co-assunzione di un AAS come il Nandrolone con la cocaina vede moltiplicati gli effetti cardiotossici rispetto ai singoli composti.[6] E secondo studi in vitro la combinazione di Testosterone e cocaina aumenterebbe la possibilità di formazione di coaguli nel flusso ematico. [7]

#8 Corretta modalità di iniezione e herpes labiale

Gli utilizzatori di AAS a volte sviluppano ascessi, ma non sempre dovuti alla bassa qualità dei prodotti utilizzati.

Alcuni medici ritengono che gli utilizzatori di AAS dovrebbero effettivamente ricevere una formazione sulle tecniche di iniezione corrette, onde evitare embolie oleose o ascessi per cattiva gestione igienica della procedura. [8]

Molti utilizzatori ancora non sanno che disturbi come l’herpes labiale rendono le iniezioni ancora più rischiose. Perchè? Il virus che causa l’herpes labiale, come altri patogeni, riduce l’efficienza del sistema immunitario, fornendo così terreno fertile per infezioni batteriche i cui microorganismi scatenanti vengono inoculati nel corpo del soggetto attraverso l’iniezione in modo diretto o indiretto.

#9 Non fare affidamento sugli integratori

Secondo un buon numero di studi svolti su animali, alcuni integratori proteggono dagli effetti collaterali degli AAS. Secondo alcune ricerche, la Taurina, la Vitamina C ed E proteggono i testicoli durante un ciclo e la vitamina C e il cacao proteggono la prostata.

L’utilità dei risultati provenienti da questi studi è limitata per tre motivi:

A. gli animali da laboratorio non sono esseri umani, e

B. le dosi utilizzate e rapportate ad un essere umano sono quasi sempre molto inferiori rispetto a quelle utilizzate dai “doped”, e

C. la ricerca in campo psicologico mostra che l’uso di integratori stimola comportamenti rischiosi e malsani. I supplementi fanno pensare agli utilizzatori di essere invulnerabili e di non dover comportarsi in modo sano ed attento.[9]

Gli integratori possono aiutare a creare una mentalità che non si dovrebbe avere da utilizzatore consapevole di AAS.

Ovviamente, alcuni supplementi “protettivi” utilizzati dai soggetti meglio informati hanno un potenziale di “tamponare” in modo discreto alcune alterazioni legate all’uso di AAS e SARM come, ma non limitato a, Riso Rosso fermantato (controllo lipidico) [10], Silimarina (epatoprotezione), NAC (epatoprotezione) [11], Niacina (controllo lipidico) ecc…

#10 Ridurre al minimo (se non eliminare) il consumo di alcolici

Potrebbe sembrare un indicazione superflua ma non lo è.

L’abuso di alcol è indubbiamente uno dei problemi sociali più diffusi. Uno dei problemi correlati all’abuso di alcol e l’epatopatia alcolica. Questo stato patologico è derivante da un processo infiammatorio progressivo ai danni del fegato legato al consumo eccessivo di alcolici. È una malattia a più stadi. La steatosi provoca un ingrossamento del fegato causato da un accumulo di trigliceridi, spesso senza sintomi per molto tempo. I rischi correlati sono la steatosi (fegato grasso), l’epatite alcolica e la cirrosi epatica. Il rapporto con l’alcolismo è complesso. Non tutti i bevitori, infatti, hanno danni al fegato, anche se sono altamente probabili. La causa è da rinvenire in una trasformazione dell’alcol (etanolo) in sostanze tossiche che danneggiano il fegato in maniera irreversibile e cronica, con un rischio elevato di insufficienza epatica e di cancro, fino alla necessità di un trapianto di fegato.

In acuto, invece, l’alcol può essere una causa di alterazione delle transaminasi ma non si può sapere se e con quale modalità si potrebbero innalzare: dipende molto dalla risposta individuale dell’organismo. In caso di stress preesistente, di causa iatrogena e/o alimentare, si può presentare una alterazione significativa. [12]

Il primo caso è una consequenziale possibile se eventi stressori concomitanti si presentano in cronico. Ed è semplice giungere alla conclusione che l’uso di AAS, specie se metilati, possa comportare un aumentato stress epatico che potrebbe degenerare in peliosi epatica, cirrosi ecc…

Che siate “doped” o “natural”, per ragioni legate e non, dovreste evitare di consumare più di 25g per gli uomini, o 12,5g per le donne, di Etanolo al giorno.

#11 Sottoporsi a regolari controlli medici pre, intra e post utilizzo

Il monitoraggio della salute dovrebbe essere la base fondante del comportamento del utilizzatore consapevole e minimamente attento ai potenziali rischi nei quali potrebbe imbattersi.

Gli esami di controllo sono i seguenti:

  • Esami ematici e delle urine (comprendenti il quadro ormonale secondo necessità);
  • Elettrocardiogramma ogni 6 mesi circa;
  • Elettrocardiogramma sotto sforzo (prima di iniziare);
  • Ecocardiogramma ogni 6 mesi circa;
  • Coronarografia ogni 6 mesi circa;
  • Monitoraggio della pressione ematica;
  • TAC addome completa ogni 6 mesi circa.

Ovviamente, ogni accertamento , al di la degli esami ematici, deve essere gestito in base alle esigenze soggettive, caratteristiche e tipo di PEDs utilizzati.

#12 Essere seguiti da personale qualificato

Fin troppa gente è stata salutisticamente deturpata da gorilla di spogliatoio a mala pena consapevoli dell’esistenza dei macronutrienti e che, nonostante ciò, si sono improvvisati farmacisti. Donne divenuti uomini e uomini divenuti simili a cagne in calore per via di orrende ginecomastie.
Evitate il fai da te e l’affidarsi a semianalfabeti … la somaticità sopra la norma è cosa diversa dall’intelligenza e alla competenza in biologia, biochimica e farmacologia… senza offesa per tutti quelli che “io mi facevo e ho vinto! Senzia scienzia!” …

#13 Pensare seriamente al post ciclo prima del ciclo

Molti aspiranti “doped” non considerano il fattore post ciclo. La maggior parte di loro è convinta che la PCT sarà una facile soluzione alla sottoregolazione dell’Asse HPT, ma in realtà non è proprio così. Esistono diversi casi studio che mostrano come gli ex utilizzatori abbiano spesso livelli di Testosterone inferiori rispetto al pre-utilizzo anche a distanza di anni dal cessato uso di AAS. Sembra che i fattori che aumentano le possibilità e il grado di tale effetto sul lungo termine siano:

  • Tempo di somministrazione;
  • Età
  • Molecole utilizzate (con maggiore impatto negativo dato dai19-norsteroidi come il Nandrolone per via della lunga permanenza dei metaboliti nel sistema).

Tutto ciò è indipendente dalla qualità della PCT, anche se essa può avere dei riscontri positivi specie nel primo periodo di stacco dagli AAS. Le alterazioni ormonali legate ad una alterazione dell’Asse HPT comprendono depressione, ansia, bassa libido, difficoltà nel raggiungere e mantenere l’erezione, stanchezza cronica ecc…

Per questa ragione molti scelgono di entrare in TRT (Terapia Sostitutiva del Testosterone) dopo il primo ciclo.

Quale conclusione?…

Se mai non dovesse bastare il disclaimer, questo articolo non rappresenta in alcun modo un consiglio e, ne tanto meno, un incitamento all’uso di sostanze dopanti! E’ semplicemente a fine divulgativo con l’obbiettivo di far comprendere a più persone possibili che la scelta di intraprendere coscientemente certe pratiche (illegali) necessita di una sufficiente (e veritiera) conoscenza del argomento.

Quindi? Leggete e comprendete correttamente ciò che ho riportato in sintesi fruibile ad un largo pubblico… Pensate prima di tutto ad alimentarvi e allenarvi in modo ottimale!

La conoscenza della Verità rende liberi dalla cattiva informazione, dagli strumenti commerciali e dal relativismo… Negarla è semplice e pericolosa manifestazione di profonda ignoranza… di VERO NEGAZIONISMO!

Se avete una buona conoscenza della lingua inglese e volete approfondire l’argomento PEDs e Sport, potete leggere il libro ANABOLICS 11th Edition di William Llewellyn

Gabriel Bellizzi

Riferimenti:

1- Androgens and Adipose Tissue in Males: A Complex and Reciprocal Interplay (hindawi.com)

2- https://www.ncbi.nlm.nih.gov/pubmed/26588446

3- Differential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile: Review, Synthesis and Recommendations (nih.gov)

4https://www.ingentaconnect.com/content/bsc/ijep/2008/00000089/00000005/art00007;jsessionid=31871vv9fkia1.alice

5- https://ckj.oxfordjournals.org/content/early/2015/05/26/ckj.sfv032.abstract

6- Eur J Pharmacol. 2000 Jun 16; 398 (2): 263-72.

7- Thromb Res. 15 febbraio 2003; 109 (4): 195-201.

8- Int J Sports Med. 1999 Nov; 20 (8): 563-6.

9- https://doi.org/10.1177/0956797611416253

10- [‘Red yeast rice’ as a cholesterol-lowering substance?Caution is warranted] – PubMed (nih.gov)

11- The effect of N-acetyl-l-cysteine (NAC) on liver toxicity and clinical outcome after hematopoietic stem cell transplantation (nih.gov)

12- Alcoholic Liver Disease: Pathogenesis and Current Management (nih.gov)

Concentrazioni ematiche di INSL3 e danno testicolare a lungo termine post uso di AAS.

Introduzione

Anni dopo l’interruzione dell’uso di AAS da parte di soggetti di sesso maschile questi ultimi potrebbero riscontrare ancora una condizione di ipo-funzionamento testicolare. La concentrazione ematica del fattor isulino simile 3 (INSL3), un peptide del quale si sa ancora poco, rende chiaro quanto possa durare l’impatto endocrinologico dato dall’uso di AAS. Ciò risulta particolarmente evidente dai risultati di uno studio danese, al quale hanno partecipato 132 bodybuilder.[1]

Fattore Insulino Simile-3 (INSL3)

Dettagli dello studio

I ricercatori, un gruppo di endocrinologi dell’Università di Copenaghen, hanno osservato 132 uomini di età compresa tra 18 e 50 anni che si allenavano con i pesi. Questi uomini sono stati divisi in 3 gruppi formati all’incirca dallo stesso numero di individui:

  • Un gruppo non aveva mai usato AAS;
  • un secondo gruppo era sotto ciclo di AAS durante lo studio;
  • infine, il terzo gruppo aveva usato AAS in passato.

Il partecipante medio allo studio in quest’ultimo gruppo aveva smesso di usare AAS 32 mesi prima. I ricercatori hanno misurato la concentrazione di INSL3 nel sangue dei soggetti partecipanti allo studio. Quell’ormone, che di per sé ha anche proprietà anabolizzanti, è prodotto dai testicoli. Gli endocrinologi sospettano che i testicoli siano più sani in quanto producono più INSL3 e pensano persino che questo peptide sia un marker di riferimento maggiormente importante per la valutazione della vitalità dei testicoli rispetto al Testosterone.

Risultati dello studio

Dei tre gruppi sotto osservazione, i soggetti che utilizzavano AAS nel periodo dello studio avevano la più bassa concentrazione ematica di INSL3. Tuttavia, i soggetti che avevano usato AAS in passato avevano anch’essi meno INSL3 sierico rispetto a coloro che non avevano mai utilizzato AAS:

  • I non utilizzatori avevano una media di 0,59mcg di INSL3 per litro;
  • gli ex utenti 0,39mcg per litro.

Più a lungo gli ex utilizzatori erano stati sotto AAS in passato, minore era il INSL3 rilevato attraverso esame ematico.

I dati riportati nella figura sopra sono di notevole interesse. Si guardi all’associazione tra il passare del tempo dopo l’ultima somministrazione di AAS da una parte e la concentrazione sierica di INSL3, dall’altro. Bene, si nota una consequenziale en significativa risposta…

Contrariamente, è ovvio che se non ci fosse stato alcun legame significativo il INSL3 non avrebbe alcuna valenza come marker per la valutazione dello stato di salute dei testicoli.

Conclusioni

Il principale ricercatore dello studio, Jon Jarlov Rasmussen, in un comunicato stampa ha affermato che è ancora dibattuto se l’uso off-label di AAS provochi una carenza di Testosterone sul lungo termine. I loro risultati suggeriscono, però, la presenza di una capacità gonadica compromessa sul lungo termine nei precedenti utilizzatori di AAS. I risultati sollevano la questione se alcuni precedenti utilizzatori di AAS debbano ricevere una terapia di stimolazione medica per aumentare la capacità funzionale delle cellule di Leydig nei testicoli.[2]

Rasmussen ipotizza come base di trattamento inibitori dell’Aromatasi e SERM.

Gabriel Bellizzi

Riferimenti:

  1. https://dx.doi.org/10.1210/clinem/dgab129
  2. https://www.sciencedaily.com/releases/2021/03/210309091308.htm

Grado di efficacia degli Inibitori del Aromatasi negli individui di sesso maschile

Introduzione all’argomento:

Come ben sappiamo, gli Inibitori dell’Aromatasi (AI) sono farmaci che possono abbassare il livello degli estrogeni nel flusso ematico riducendone di conseguenza l’attività tissutale-metabolica. Ovviamente, la loro azione inibitoria è esplicata attraverso l’inattivazione di uno specifico enzima. Si tratta infatti dell’Enzima Aromatasi. Detto in modo semplicistico e riduttivo, l’Enzima Aromatasi converte gli Androgeni in Estrogeni. Ad esempio, converte il Testosterone in Estradiolo.

Ci sono attualmente in circolazione tre AI divenuti estremamente popolari in ambito sportivo, e soprattutto nel BodyBuilding. Questi sono: Exemestane (Aromasin), Anastrozolo (Arimidex) e Letrozolo (Femera). Sono comunemente usati nel trattamento del cancro al seno. Sono state quindi svolte molte ricerche sulle donne. Nelle donne, gli AI hanno mostrato un grado di soppressione estrogenica significativamente marcato. Ad esempio, l’Exemestane sopprime i livelli di Estradiolo del 92% nei pazienti con carcinoma mammario in postmenopausa.[1] Allo stesso modo, il Letrozolo e l’Anastrozolo riducono i livelli di Estradiolo di quasi il 90%, anche in questo caso nei pazienti con carcinoma mammario in postmenopausa.[2]

Per questo motivo, nel presente articolo non mi accingerò ad esporre una semplice disamina degli effetti generali o specifici degli inibitori del Aromatasi (cosa già fatta, e nemmeno molto semplicisticamente, qualche anno fa). E’ mia intenzione, invece, trattare con il supporto della letteratura scientifica ad oggi disponibile il reale impatto che questi farmaci hanno sugli individui di sesso maschile, sia in fisiologia che durante l’uso di AAS esogeni soggetti all’Enzima Aromatasi.

Effetto degli AI negli individui di sesso maschile in fisiologia:

Pochi studi hanno osservato l’efficacia degli Inibitori dell’Aromatasi per ridurre i livelli di estrogeni negli uomini. I loro risultati differiscono sensibilmente da quelli riscontrati negli studi sulle donne.

Uno studio condotto su giovani uomini ha rilevato che 25mg di Exemestane sopprimevano i livelli di Estradiolo del 62%, 12 ore dopo l’assunzione.[3] Dopo una somministrazione regolare protratta per dieci giorni, è stata riscontrata una soppressione di solo il 38% nelle 24 ore seguenti l’ultima dose somministrata. In particolare, raddoppiare il dosaggio a 50mg/die non ha portato a una maggiore diminuzione dei livelli di Estradiolo.

Risultati simili si osservano in giovani uomini trattati con Anastrozolo per 10 giorni.[4] La somministrazione giornaliera di Anastrozolo a 0,5 e 1 mg porta ad una diminuzione dei livelli di Estradiolo di circa il 50%. Sebbene di dubbia rilevanza, gli autori non hanno menzionato quante ore dopo l’ultima dose sono state effettuate le misurazioni.

Infine, il Letrozolo ha mostrato la stessa efficacia dell’Exemestane e dell’Anastrozolo. Dopo 28 giorni di trattamento con Letrozolo alla dose di 2,5mg/die, i livelli di Estradiolo hanno subito una riduzione del 46% negli uomini giovani e del 62% negli uomini anziani.[5] Non è chiaro se la differenza tra giovani uomini e uomini anziani sia una differenza reale. Gli autori non hanno eseguito alcun test statistico per valutare matematicamente ciò. In linea con questi risultati, un altro studio ha rilevato che i livelli di Estradiolo erano stati ridotti del 56% negli uomini trattati con 2,5mg di Letrozolo al giorno per 4 settimane.[6]

In sintesi, si potrebbe affermare che i tre popolari AI sono dotati di pari efficaci nel diminuire gli estrogeni negli individui di sesso maschile in fisiologia.

Effetto degli AI nei soggetti di sesso maschile sottoposti a somministrazioni sovrafisiologiche di AAS:

Gli studi di cui sopra sono stati condotti su uomini in fisiologia con i loro livelli endogeni di Testosterone nel range di normalità. Ma la situazione sembra essere diversa quando il Testosterone endogeno viene sostituito con il Testosterone esogeno. Finkelstein et al. ha esaminato gli effetti di quantità crescenti di Testosterone con e senza Inibitori dell’Aromatasi su diversi fattori.[7] Un totale di 198 uomini sani sono stati assegnati in modo casuale a ricevere un placebo, 1,25g, 2,5g, 5g o 10g/die di Testosterone in gel per 16 settimane, e altri 202 hanno ricevuto l’Anastrozolo in combinazione con la dose di Testosterone. La produzione endogena di Testosterone era stata soppressa da iniezioni di Goserelina Acetato.

Meccanismo d’azione schematizzato della Goserelina Acetato

L’immagine seguente mostra l’effetto sui livelli di Testosterone ed Estradiolo in riferimento alle diverse somministrazioni. Si noti che le barre blu si riferiscono agli uomini che ricevevano solo Testosterone mentre le barre rosse quelli che lo ricevevano in combinazione con Anastrozolo.

Tratto da Finkelstein et al. [7]

Come si può vedere, i livelli di Estradiolo sono maggiormente diminuiti rispetto ai numeri discussi in precedenza. Ciò suggerisce che la soppressione dell’Estradiolo da parte degli Inibitori dell’Aromatasi è più marcata negli uomini trattati con Testosterone esogeno in modo “dose dipendente”, e non solamente attribuibile ad una ratio derivante da livelli sovrafisiologici di AAS soggetti all’aromatizzazione.

Qual’è il nesso causale che determina la differenza di risposta tra soggetti in fisiologia e soggetti trattati con Testosterone esogeno?

Sfortunatamente, non esiste una ricerca diretta che risponda in modo chiaro e inequivocabile a questa domanda. Ma se si dovesse ipotizzare, per i dati emersi, sembrerebbe che, banalmente, l’efficacia degli AI negli uomini sia direttamente proporzionata al livello di AAS circolanti soggetti all’Aromatasi il quale causerebbe un incremento dell’espressione enzimatica a livello testicolare e adiposo. Una parte sostanziale dell’Estradiolo è prodotta dall’attività dell’Aromatasi nei testicoli. Nei testicoli, le concentrazioni di Testosterone arrivano a livelli circa 100 volte superiori a quelli presenti nel circolo ematico. Poiché gli AI devono inibire in modo competitivo l’Aromatasi, i dosaggi potrebbero dover essere molto più alti per portare a una significativa inibizione enzimatica nei testicoli. Ma, ovviamente, questa è un’ipotesi al momento non scientificamente dimostrata, sebbene rimanga una delle più plausibile.

Riferimenti:

1- J. Geisler, N. King, G. Anker, G. Ornati, E. Di Salle, P. Lønning, and M. Dowsett. In vivo inhibition of aromatization by exemestane, a novel irreversible aromatase inhibitor, in postmenopausal breast cancer patients. Clinical Cancer Research, 4(9):2089–2093, 1998.
2- J. Geisler, B. Haynes, G. Anker, M. Dowsett, and P. Lonning. Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. Journal of Clinical Oncology, 20(3):751–757, 2002.
3- N. Mauras, J. Lima, D. Patel, A. Rini, E. di Salle, A. Kwok, and B. Lippe. Pharmacokinetics and dose finding of a potent aromatase inhibitor, aromasin (exemestane), in young males. The Journal of Clinical Endocrinology & Metabolism, 88(12):5951–5956, 2003.
4- N. Mauras, K. O. O’Brien, K. O. Klein, and V. Hayes. Estrogen suppression in males: metabolic effects. The Journal of Clinical Endocrinology & Metabolism, 85(7):2370–2377, 2000.
5- G. G. T’sjoen, V. A. Giagulli, H. Delva, P. Crabbe, D. De Bacquer, and J.-M. Kaufman. Comparative assessment in young and elderly men of the gonadotropin response to aromatase inhibition. The Journal of Clinical Endocrinology & Metabolism, 90(10):5717–5722, 2005.
6- G. Raven, F. H. de Jong, J.-M. Kaufman, and W. de Ronde. In men, peripheral estradiol levels directly reflect the action of estrogens at the hypothalamo-pituitary level to inhibit gonadotropin secretion. The Journal of Clinical Endocrinology & Metabolism, 91(9):3324–3328, 2006.
7- J. S. Finkelstein, H. Lee, S.-A. M. Burnett-Bowie, J. C. Pallais, E. W. Yu, L. F. Borges, B. F. Jones, C. V. Barry, K. E. Wulczyn, B. J. Thomas, et al. Gonadal steroids and body composition, strength, and sexual function in men. New England Journal of Medicine, 369(11):1011–1022, 2013.

Antiandrogeni e PCT (Post Cycle Therapy)

Introduzione

bbchat

Chi si interessa in modo approfondito di supplementazione farmacologica nello sport, penserà di avere una conoscenza discretamente completa su una delle pratiche più conosciute nell’ambiente, vale a dire la PCT (Post Cycle Therapy). Questo tentativo di recupero della propria funzionalità dell’Asse HPT ha subito perfezionamenti nel corso degli ultimi decenni. Si è passati da una illogica accozzaglia di farmaci tra i quali spiccavano il Mesterolone e l’Oxandrolone insieme ai classici SERM e hCG, ad una logica sequenza di composti strutturata sugli andamenti della curva ematica delle molecole utilizzate durante il ciclo e all’azione sinergica e ordinata di hCG seguito da Tamoxifene Citrato e Clomifene Citrato, con la recente aggiunta di Inibitori dell’Aromatasi (AI). Vedi PCT Scally

Da qualche tempo, però, circola la voce secondo la quale il piano di recupero ormonale dell’HPTA può essere migliorato con l’inserimento di un altra classe di farmaci. Questa classe di farmaci è quella degli Antiandrogeni.

Prima di svelarvi il nesso che ha spinto qualche mente speculatrice a partorire tale idea, è corretto darvi una base di cultura generale sugli Antiandrogeni per concludere con la spiegazione del perchè un loro possibile inserimento in una PCT possa essere favorevole…forse…

Una panoramica sugli Antiandrogeni 

Gli Antiandrogeni, noti anche come antagonisti degli androgeni o bloccanti del Testosterone, sono una classe di farmaci che impediscono agli androgeni come il Testosterone e il Dihydrotestosterone (DHT) di mediare i loro effetti biologici nel corpo. Agiscono bloccando il Recettore degli Androgeni (AR) e/o inibendo o sopprimendo la produzione di androgeni.[1][2] Possono essere pensati come gli opposti funzionali degli agonisti AR, come ad esempio gli Steroidi Anabolizzanti Androgeni (AAS) e i Modulatori Selettivi del Recettore degli Androgeni (SARM). Gli antiandrogeni sono uno dei tre tipi di antagonisti degli ormoni sessuali, gli altri sono antiestrogeni e antiprogestinici.[3]

Gli Antiandrogeni sono usati per trattare una serie di condizioni androgeno-dipendenti. [4] Nei maschi, gli Antiandrogeni sono usati nel trattamento del cancro alla prostata, ipertrofia prostatica, perdita di capelli, desiderio sessuale eccessivamente elevato, impulsi sessuali insoliti e problematici e pubertà precoce.[4][5] Nelle donne, gli antiandrogeni sono usati per trattare l’acne, la seborrea, l’eccessiva crescita dei peli, la perdita dei capelli  e gli alti livelli di androgeni, come quelli che si verificano nella sindrome dell’ovaio policistico (PCOS).[4] Gli antiandrogeni sono anche usati come componente della terapia ormonale femminizzante per i transgender e come bloccanti della pubertà nelle ragazze transgender.[4]

cip
Ciproterone Acetato 

Le Antigonadotropine come gli Estrogeni e i progestinici furono entrambe introdotte per la prima volta negli anni ’30. [6] Gli effetti benefici della deprivazione di androgeni attraverso la castrazione chirurgica o la terapia con estrogeni ad alte dosi sul cancro alla prostata furono scoperti nel 1941. [7][8] antagonisti del AR furono scoperti per la prima volta nei primi anni ’60.[9] Il Ciproterone Acetato è un antiandrogeno steroideo scoperto nel 1961 e introdotto nel 1973 ed è spesso descritto come il primo antiandrogeno commercializzato. [10] [11] Tuttavia, lo Spironolattone fu introdotto nel 1959, [12] [13], sebbene i suoi effetti antiandrogeni non fossero stati riconosciuti o sfruttati fin da subito e fossero originariamente considerati un’azione indesiderata fuori bersaglio del farmaco.[14] Oltre allo Spironolattone, il Clormadinone Acetato e il Megestrolo Acetato sono antiandrogeni steroidei che sono più deboli del Ciproterone Acetato ma sono stati introdotti precedentemente, negli anni ’60. [15] [16] [17] Altri primi antiandrogeni steroidei che sono stati sviluppati in questo periodo ma che non sono mai stati commercializzati includono il Benorterone (SKF-7690; 17α-metil-B-Nortestosterone), BOMT (Ro 7-2340), il Ciproterone (SH-80881) e il Trimetiltrienolone (R- 2956).[18][19]

flut
Flutamide 

La Flutamide è un antiandrogena non steroideo descritto per la prima volta nel 1967. [20] Fu introdotto sul mercato nel 1983 ed è stato il primo antiandrogeno non steroideo commercializzato. [21] [22] Un altro antiandrogeno precoce non steroideo, [23] DIMP (Ro 7-8117), che è strutturalmente correlato alla Talidomide [24] ed è un antiandrogeno relativamente debole, [25] [26] fu descritto per la prima volta nel 1973 e non fu mai commercializzato. [27] La Flutamide è stata seguita dalla Nilutamide nel 1989 e dalla Bicalutamide nel 1995. [28] Oltre a questi tre farmaci, che sono stati considerati antiandrogeni non steroidei di prima generazione, gli antiandrogeni non steroidei di seconda generazione Enzalutamide e Apalutamide sono stati introdotti rispettivamente nel 2012 e nel 2018. [29] [30] [31] Differiscono dai precedenti antiandrogeni non steroidei, in particolar modo per il fatto che sono molto più efficaci.[30]

200px-Aminoglutethimide.svg
Aminoglutetimide

Gli inibitori della sintesi androgena Aminoglutetimide e Ketoconazolo furono commercializzati per la prima volta rispettivamente nel 1960 e nel 1977 [32] [33] e il più recente farmaco Abiraterone Acetato è stato introdotto nel sul mercato nel 2011. [34] I modulatori del GnRH furono introdotti per la prima volta negli anni ’80. [35] Gli inibitori della 5α-reduttasi Finasteride e Dutasteride sono stati introdotti sul mercato rispettivamente nel 1992 e nel 2002.[36] [37] L’Elagolix, il primo modulatore GnRH attivo per via orale ad essere commercializzato, è stato introdotto sul mercato nel 2018. [38]

ace
Abiraterone Acetato

Quindi, gli antiandrogeni possono essere suddivisi in diversi tipi in base alla struttura chimica, inclusi antiandrogeni steroidei, antiandrogeni non steroidei e peptidi. Gli antiandrogeni steroidei comprendono composti come il Ciproterone Acetato, lo Spironolattone, l’Estradiolo, l’Abiraterone Acetato e la Finasteride; antiandrogeni non steroidei includono composti come il Bicalutamide, l’Elagolix, il Dietilstilbestrolo, l’Aminoglutetimide e Ketoconazolo; e i peptidi includono analoghi del GnRH come Leuprorelina e il Cetrorelix.

Gli Antiandrogeni si dividono in cinque gruppi principali: [39]

  • Antagonisti del recettore degli androgeni: farmaci che si legano direttamente al AR bloccando il legame con l’ormone bersaglio.[40][41] Questi farmaci comprendono gli antiandrogeni steroidei Ciproterone Acetato, Megestrolo Acetato, Clormadinone Acetato, Spironolattone, Oxendolone e Osaterone Acetato (veterinario) e gli antiandrogeni non steroidei Flutamide, Bicalutamide, Nilutamide, Topilutamide, Enzalutamide e Apalutamide. [41][40] ] [42] A parte il Ciproterone Acetato e il Clormadinone Acetato, alcuni altri progestinici usati nei contraccettivi orali e / o nella TOS in menopausa tra cui Dienogest, Drospirenone, Medrogestone, Nomegestrolo Acetato, Promegestone e Trimegestone hanno anche vari gradi di attività AR-antagonista. [43] [44] [45]
  • Inibitori della sintesi degli Androgeni: farmaci che inibiscono direttamente la biosintesi enzimatica di androgeni come Testosterone e/o DHT. [46] [47] Gli esempi includono gli inibitori del CYP17A1 Ketoconazolo, Abiraterone Acetato e Seviteronel, [46] l’inibitore del CYP11A1 (P450scc) Aminoglutetimidico , [46] e gli inibitori della 5α-reduttasi Finasteride, Dutasteride, Epristeride, Alfatradiolo e il blando Saw Palmetto (Palmetto Seghettato).[88] Numerosi altri antiandrogeni, tra cui Ciproterone Acetato, Spironolattone, Medrogestone, Flutamide, Nilutamide e Bifluranolo, sono anche noti per inibire debolmente la sintesi degli Androgeni.
  • Antigonadotropici: farmaci che sopprimono il rilascio di gonadotropine indotto dall’ormone di rilascio delle gonadotropine (GnRH) e conseguente attivazione della produzione di androgeni gonadici. [2] [48] Gli esempi includono modulatori del GnRH come Leuprorelina (un agonista del GnRH) e Cetrorelix (un antagonista del GnRH), [90] progestinici come Allilestrenolo, Clormadinone Acetato, Ciproterone Acetato, Gestonorone Caproato, Idrossiprogesterone Caproato, Medroxyprogesterone Acetato, Megestrol Acetato, Osaterone Acetato (veterinario), e Oxendolone, [49] [50] ed estrogeni come Estradiolo, esteri dell’Estradiolo, Etinilestradiolo, Estrogeni coniugati e Dietilstilbestrolo. [2] [49] 
  • Miscellanei: farmaci che si oppongono agli effetti degli androgeni con mezzi diversi da quelli sopra indicati. Esempi includono Estrogeni, in particolare sintetici orali (ad esempio Etinilestradiolo, Dietilstilbestrolo), che stimolano la produzione di globulina legante gli ormoni sessuali (SHBG) nel fegato e quindi diminuiscono i livelli liberi e quindi bioattivi di Testosterone e DHT; anticorticotropine come i glucocorticoidi, che sopprimono la produzione indotta dall’ormone adrenocorticotropo (ACTH) di androgeni surrenali; e immunogeni e vaccini contro l’Androstenedione come l’albumina Ovandrotone e l’albumina Androstenedione, che riducono i livelli di androgeni attraverso la generazione di anticorpi contro il precursore androgeno  androstenedione (usato solo in medicina veterinaria).

Come si è potuto vedere, alcuni antiandrogeni combinano molti dei meccanismi di cui sopra. [39] [51] Un esempio è l’antiandrogeno steroideo Ciproterone Acetato, che è un potente antagonista AR, un potente progestinico e quindi antigonadotropico, un glucocorticoide debole e quindi anticorticotropo e un inibitore debole della sintesi degli androgeni. [39] [51] [52] [53]

aasternonster

Per ovvie ragioni di sintesi, la lista  sopra include antagonisti AR, inibitori della sintesi degli androgeni e progestinici commercializzati per l’uso o ampiamente usati come antiandrogeni, ma non include specificatamente agonisti del GnRH, antagonisti del GnRH, inibitori della 5α-reduttasi o Estrogeni.

La classe degli Antagonisti del Recettore degli Androgeni è di nostro particolare interesse… 

aranti

Gli antagonisti del AR agiscono legandosi direttamente e sostituendo in modo competitivo gli androgeni come il Testosterone e il DHT dal AR, impedendo così loro di attivare il recettore e mediare i loro effetti biologici. [40] [41] Gli antagonisti del AR, come abbiamo già visto,  sono classificati in due tipi, in base alla struttura chimica: steroidei e non steroidei. [54] [42] [40] [41] [55] Gli antagonisti di AR steroide sono strutturalmente correlati agli ormoni steroidei come Testosterone e Progesterone, mentre gli antagonisti del AR non steroidei non sono steroidi e sono strutturalmente distinti. Gli antagonisti del AR steroidei tendono ad avere azioni ormonali fuori bersaglio a causa della loro somiglianza strutturale con altri ormoni steroidei. [55] Al contrario, gli antagonisti del AR non steroidei sono selettivi per l’AR e non hanno attività ormonale fuori bersaglio. [55] Per questo motivo, a volte sono descritti come antiandrogeni “puri”. [55]

spiro
Spironolattone 

Sebbene siano descritti come antiandrogeni e in effetti mostrano solo tali effetti in generale, la maggior parte o tutti gli antagonisti AR steroidei non sono in realtà antagonisti inattivi del AR ma piuttosto sono agonisti parziali deboli e sono in grado di attivare il recettore in assenza di agonisti AR più potenti come Testosterone e DHT. [40] [47] [55] [56] Ciò può avere implicazioni cliniche nel contesto specifico del trattamento del cancro alla prostata. [40] [55] Ad esempio, gli antagonisti del AR steroidei sono in grado di aumentare il peso della prostata e accelerare la crescita delle cellule tumorali della prostata in assenza di più potenti agonisti dell’AR, [40] [55] e lo Spironolattone ha dimostrato di accelerare la progressione del cancro alla prostata nei casi clinici [57] [58] Inoltre, mentre il Ciproterone Acetato produce genitali ambigui attraverso la femminilizzazione nei feti maschi quando somministrato ad animali in gravidanza, [59] è stato osservato  che causa  la mascolinizzazione dei genitali dei feti femminili di animali in gravidanza. [40] A differenza degli antagonisti AR steroidei, gli antagonisti AR non steroidei sono antagonisti inattivi del AR e, quindi,  non attivano il recettore. [60] [47] [61] [55] Questo potrebbe essere il motivo per cui hanno una maggiore efficacia rispetto agli antagonisti del AR  steroidei nel trattamento del cancro alla prostata ed è un motivo importante per cui li hanno ampiamente sostituiti per questa indicazione in medicina. [60] [47] [61] [55]

bica
Bicalutamide

Gli antiandrogeni non steroidei hanno un’affinità relativamente bassa per il AR rispetto ai ligandi AR steroidei. [47] [61] [62] Ad esempio, la Bicalutamide ha circa il 2% dell’affinità di DHT per  il AR e circa il 20% dell’affinità del CPA per il AR. [62] Nonostante la loro bassa affinità con il AR, tuttavia, la mancanza di un’attività agonista parziale debole degli NSAA sembra migliorare la loro potenza rispetto agli antiandrogeni steroidei. [62] [63] Ad esempio, sebbene la Flutamide abbia un’affinità circa 10 volte inferiore per il AR rispetto al CPA, mostra una potenza pari o leggermente maggiore al CPA come antiandrogeno nei biotest. [62] [63] Inoltre, le concentrazioni terapeutiche circolanti di antiandrogeni non steroidei sono molto elevate, nell’ordine di migliaia di volte superiori a quelle di Testosterone e DHT, e ciò consente loro di competere efficacemente e bloccare la segnalazione del AR. [64]

Gli antagonisti del AR non possono legarsi o bloccare i recettori degli androgeni di membrana (mARs), che sono distinti dal AR nucleare classico. [65] [66] [67] Tuttavia, le mARs non sembrano essere coinvolte nella mascolinizzazione. Ciò è evidenziato dal fenotipo perfettamente femminile di donne con sindrome da insensibilità agli androgeni completa. [68] [69] Queste donne hanno un cariotipo 46, XY (cioè geneticamente “maschio”) e alti livelli di androgeni ma possiedono un AR difettoso e per questo motivo non mascolinizzano mai. [68] [69] Sono descritti come altamente femminili, sia fisicamente che mentalmente e comportamentalmente. [70] [71] [72]

Perchè questo interesse per gli Antagonisti del Recettore degli Androgeni?

hpta_spermatogenesis_2
Asse Ipotalamo-Ipofisi-Testicoli 

Piccolo ripasso sul controllo omeostatico ormonale riferito all’Asse HPT.

Con Asse Ipotalamo-Ipofisi-Testicoli (HPTA)  ci si riferisce alla connessione tra ipotalamo, ghiandola pituitaria e testicoli come se queste singole ghiandole endocrine fossero una singola entità. Poiché queste ghiandole spesso agiscono in concerto, i fisiologi e gli endocrinologi ritengono conveniente e descrittivo parlare di esse come di un unico sistema.

L’asse HPTA svolge una parte critica nello sviluppo e nella regolazione di un certo numero di sistemi del corpo, come i sistemi riproduttivi e immunitari. Le fluttuazioni di questo asse causano variazioni negli ormoni prodotti da ciascuna ghiandola e hanno diversi effetti locali e sistemici nel corpo.

In breve, l’asse HPTA rappresenta un sistema di stimolazione/inibizione degli ormoni prodotti dalle rispettiva strutture:

  1. Ipotalamo: GnRH (ormone di rilascio delle gonadotropine; in inglese Gonadotropin-releasing hormone).
  2. Ipofisi (o ghiandola Pituitaria):  dalle cellule beta e gamma rispettivamente l’ormone follicolo-stimolante (FSH) e l’ormone luteinizzante (LH).
  3. Testicoli: Testosterone, Androstenedione, DHEAS, Inibina.  

Come ben sappiamo, diversi AAS sono derivati sintetici del Testosterone, il principale androgeno nei maschi. Il Testosterone sopprime marcatamente l’HPTA, mentre altri derivati lo fanno in misura maggiore o minore. 

I fattori che contribuiscono alla soppressione dell’HPTA sono:

  1. L’origine del AAS
  2. Il tasso di conversione del  AAS ad estrogeno, attraverso l’Enzima Aromatasi in alcuni tessuti (adiposo, mammario)
  3. Dose e tempo d’uso/abuso del AAS
  4. Attività androgena del AAS

Bingo! Ci siete arrivati adesso? In ogni caso andiamo avanti…

Conosciamo tutti il feedback negativo indotto dagli estrogeni a livello ipotalamico.

e2
Estradiolo

Gli estrogeni (principalmente E2-beta Estradiolo) causano un feedback negativo sull’ipotalamo per la produzione di GnRH, che a sua volta stimola LH che stimola la sintesi di Testosterone nelle cellule Leydig nei testicoli. Pertanto, gli AAS fortemente soggetti all’aromatizzazione o che posseggono una attività estrogenica intrinseca (Oxymetholone, Methyltestosterone, Testosterone, Methandienone ecc…) influenzano marcatamente la funzione dell’HPTA.

Ed ecco perchè l’uso di SERM causa un incremento del GnRH, e consequenzialmente del LH e FSH, bloccando il legame recettoriale estrogenico ipotalamico inducendo un feedback positivo.

Gli AAS con alta affinità con il AR  si legano fortemente ad esso.  Gli AAS attraversano la barriera ematoencefalica e si legano ai recettori sull’ipotalamo.  Ciò comporterà una marcata soppressione dell’HPTA. L’attività androgena si traduce nelle caratteristiche sessuali secondarie (crescita dei peli e della barba, allargamento delle spalle e il rafforzarsi dei muscoli, l’ingrandimento del pene, dei testicoli e della prostata.)

E qui entrano in gioco gli Antagonisti del Recettore Androgeno che, agendo similmente ai SERM, causano un incremento della secrezione di LH. Tale incremento è stato osservato in diversi studi tra i quali uno  svolto su animali nel 1989, nel quale si era utilizzata la Flutamide.[73] L’effetto indotto è quindi progonadotropico.[74]

Ed è da ciò che è nata l’idea di inserire piccole quantità per un breve lasso di tempo di Antiandrogeni (nello specifico Antagonisti del Recettore degli Androgeni non steroidei) nel protocollo PCT al fine di potenziarne gli affetti.

sides

Nota: Gli effetti collaterali degli antiandrogeni variano a seconda del tipo di antiandrogeno – ovvero se si tratta di un antagonista AR selettivo o un inibitore della biosintesi androgena – nonché dalla presenza di attività fuori bersaglio terapico dell’antiandrogeno in questione. [74][75] Ad esempio, mentre gli antiandrogeni antigonadotropici come i modulatori del GnRH e il Ciproterone Acetato sono associati a disfunzione sessuale pronunciata e osteoporosi negli uomini, gli antagonisti selettivi del AR come la Bicalutamide non sono associati all’osteoporosi e sono stati correlati  solo a una disfunzione sessuale minima. [74] [76] [77] Queste differenze sono ritenute una conseguenza del fatto che le antigonadotropine sopprimono i livelli di androgeni e, per estensione, dei livelli dei metaboliti bioattivi degli androgeni come estrogeni e neurosteroidi, mentre gli antagonisti selettivi del AR neutralizzano  gli effetti degli androgeni ma lasciano intatti i livelli degli stessi (e di fatto i loro metaboliti) potendo persino aumentarli a causa dei loro effetti progonadotropici.[74] Come altro esempio, gli antiandrogeni steroidei Ciproterone Acetato e Spironolattone possiedono azioni off-target tra cui attività progestinica, antimineralocorticoide e / o glucocorticoide in aggiunta alla loro attività antiandrogena, e queste attività off-target possono provocare ulteriori effetti collaterali.[75]

Nei maschi, i principali effetti collaterali degli antiandrogeni sono la demasculinizzazione e la femminilizzazione.[78] Questi effetti collaterali includono dolore al seno / lipomastia e ginecomastia (sviluppo del seno / ingrossamento), riduzione della crescita / densità dei peli corporei, riduzione della massa e della forza muscolare, cambiamenti femminili nella massa e nella distribuzione del grasso e riduzione della lunghezza del pene e delle dimensioni dei testicoli. [78] I tassi di ginecomastia negli uomini con monoterapia antagonista selettiva del AR sono stati stimati tra il 30 e l’85%. [79] Inoltre, gli antiandrogeni possono causare infertilità, osteoporosi, vampate di calore, disfunzione sessuale (inclusa perdita di libido e disfunzione erettile), depressione, affaticamento, anemia e riduzione del volume spermatico / eiaculato nei maschi.[78] Al contrario, gli effetti collaterali degli antagonisti selettivi del AR nelle donne sono minimi. [80] [81] Tuttavia, gli antiandrogeni antigonadotropici come il Ciproterone Acetato possono produrre ipoestrogenismo, amenorrea e osteoporosi nelle donne in premenopausa, tra gli altri effetti collaterali. [82] [83] [84]

Numerosi antiandrogeni sono stati associati a epatotossicità. [85] Questi includono, in varia misura, Ciproterone Acetato, Flutamide, Nilutamide, Bicalutamide, Aminoglutetimide e Ketoconazolo. [85] Al contrario, Spironolattone, Enzalutamide, [86] e altri antiandrogeni non sono associati a epatotossicità. Tuttavia, sebbene non presentino un rischio di epatotossicità, lo Spironolattone ha un rischio di causare iperkaliemia e l’Enzalutamide ha un rischio di causare convulsioni.

Conclusioni 

flex-comics-march-2017-header2-960x540
E’ ovvio che si sta parlando di pura teoria, lungi dall’essere dimostrata come terapeuticamente valida. Ma, per amor di conoscenza, ho ritenuto utile trattare l’argomento in modo tale che meno persone si facessero strane e confuse idee  a riguardo, magari dopo essersi imbattuti  nel “bongo” da spogliatoio che, con atteggiamento del primate dominante, dispensa consigli applicativi di un qualcosa per lui difficilmente comprensibile.

 

Gabriel Bellizzi

Riferimenti:

  1. Mowszowicz I (1989). “Antiandrogens. Mechanisms and paradoxical effects”. Ann. Endocrinol. Paris. 50 (3): 50(3):189–99.
  2. Brueggemeier, Robert W. (2006). “Sex Hormones (Male): Analogs and Antagonists”. Encyclopedia of Molecular Cell Biology and Molecular Medicine
  3. Judi Lindsley Nath (2006). Using Medical Terminology: A Practical Approach. Lippincott Williams & Wilkins. pp. 977–. 
  4. Student S, Hejmo T, Poterała-Hejmo A, Leśniak A, Bułdak R (January 2020). “Anti-androgen hormonal therapy for cancer and other diseases”. Eur. J. Pharmacol866: 172783. 
  5. Gillatt D (2006). “Antiandrogen treatments in locally advanced prostate cancer: are they all the same?”. J Cancer Res Clin Oncol1: S17-26.
  6. Marc A. Fritz; Leon Speroff (28 March 2012). Clinical Gynecologic Endocrinology and Infertility. Lippincott Williams & Wilkins. pp. 750–751, 963.
  7. William Figg; Cindy H. Chau; Eric J. Small (14 September 2010). Drug Management of Prostate Cancer. Springer Science & Business Media. pp. 71–72, 75, 91–96.
  8. Kavoussi P, Costabile RA, Salonia A (17 October 2012). Clinical Urologic Endocrinology: Principles for Men’s Health. Springer Science & Business Media. pp. 7–.
  9. Georg F. Weber (22 July 2015). Molecular Therapies of Cancer. Springer. pp. 314, 316.
  10.  Advances in Drug Research. Academic Press. 12 August 1997. pp. 34–.
  11. Albert J. Stunkard; Andrew Baum (1989). Eating, Sleeping, and Sex. Psychology Press. pp. 209–.
  12. Bodh I. Jugdutt (19 February 2014). Aging and Heart Failure: Mechanisms and Management. Springer Science & Business Media. pp. 175–. ISBN 978-1-4939-0268-2.
  13. Camille Georges Wermuth (2 May 2011). The Practice of Murl=https://books.google.com/books?id=Qmt1_DQkCpEC&pg=PA34. Academic Press. pp. 34–. 
  14. Ricardo Azziz (8 November 2007). Androgen Excess Disorders in Women. Springer Science & Business Media. pp. 382–. 
  15. Benno Clemens Runnebaum; Thomas Rabe; Ludwig Kiesel (6 December 2012). Female Contraception: Update and Trends. Springer Science & Business Media. pp. 136–. 
  16. C.E. Orfanos; W. Montagna; G. Stüttgen (6 December 2012). Hair Research: Status and Future Aspects; Proceedings of the First International Congress on Hair Research, Hamburg, March 13th–16, 1979. Springer Science & Business Media. pp. 587–.
  17. Lara Marks (2010). Sexual Chemistry: A History of the Contraceptive Pill. Yale University Press. pp. 76–78. ISBN 978-0-300-16791-7.
  18.  J. Horsky; J. Presl (6 December 2012). Ovarian Function and its Disorders: Diagnosis and Therapy. Springer Science & Business Media. pp. 112–. ISBN 978-94-009-8195-9.
  19. Vitamins and Hormones. Academic Press. 18 May 1976. pp. 682–. ISBN 978-0-08-086630-7.
  20. Smith HJ, Williams H (10 October 2005). Smith and Williams’ Introduction to the Principles of Drug Design and Action, Fourth Edition. CRC Press. pp. 489–.
  21. David E. Neal (6 December 2012). Tumours in Urology. Springer Science & Business Media. pp. 233–. 
  22. Eckhard Ottow; Hilmar Weinmann (8 September 2008). Nuclear Receptors as Drug Targets. John Wiley & Sons. pp. 255–. 
  23. Radhey Lal Singhal; John A. Thomas (1 January 1976). Cellular Mechanisms Modulating Gonadal Action. University Park Press. p. 239. 
  24. Liu, Bo; Su, Lei; Geng, Jingkun; Liu, Junjie; Zhao, Guisen (2010). “Developments in Nonsteroidal Antiandrogens Targeting the Androgen Receptor”. ChemMedChem5 (10): 1651–1661. 
  25. Heyns, W.; G., Verhoeven; De Moor, P. (1976). “Androgen binding in rat uterus cytosol. Study of the specificity”. Journal of Steroid Biochemistry7 (5): 335–343.
  26. Annual Reports in Medicinal Chemistry. Academic Press. 16 September 1986. pp. 182–. 
  27. Boris, A.; Scott, J. W.; DeMartino, L.; Cox, D. C. (1973). “Endocrine Profile of a Nonsteroidal Antiandrogen N-(3,5-Dimethyl-4-Isoxazolylmethyl)Phthalimide (Dimp)”. European Journal of Endocrinology72 (3): 604–614. 
  28. Jean-Pierre Bégué; Daniele Bonnet-Delpon (2 June 2008). Bioorganic and Medicinal Chemistry of Fluorine. John Wiley & Sons. pp. 327–. 
  29. Menon MP, Higano CS (2013). “Enzalutamide, a second generation androgen receptor antagonist: development and clinical applications in prostate cancer”. Curr Oncol Rep15 (2): 69–75. 
  30.  Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon A, Wasielewska T, Welsbie D, Chen CD, Higano CS, Beer TM, Hung DT, Scher HI, Jung ME, Sawyers CL (2009). “Development of a second-generation antiandrogen for treatment of advanced prostate cancer”Science324 (5928): 787–90. 
  31. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596768.htm
  32. Walter Sneader (23 June 2005). Drug Discovery: A History. John Wiley & Sons. pp. 367–. 
  33. David E. Golan (2008). Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy. Lippincott Williams & Wilkins. pp. 624–. 
  34. Prostate Cancer. Demos Medical Publishing. 20 December 2011. pp. 518–. 
  35. Winsor Bowsher; Adam Carter (15 April 2008). Challenges in Prostate Cancer. John Wiley & Sons. pp. 138–.
  36. Gautam Allahbadia; Rina Agrawal; Rubina Merchant (2007). Polycystic Ovary Syndrome. Anshan. pp. 184–. 
  37. Frontiers in Medicinal Chemistry. Bentham Science Publishers. 2010. pp. 329–. 
  38. https://adisinsight.springer.com/drugs/800020238
  39. Kolvenbag, Geert J. C. M.; Furr, Barrington J. A. (2009). “Nonsteroidal Antiandrogens”. In V. Craig Jordan; Barrington J. A. Furr (eds.). Hormone Therapy in Breast and Prostate Cancer. Humana Press. pp. 347–368.
  40. Singh SM, Gauthier S, Labrie F (2000). “Androgen receptor antagonists (antiandrogens): structure-activity relationships”. Curr. Med. Chem7 (2): 211–47. 
  41. Shen, Howard C.; Taplin, Mary-Ellen; Balk, Steven P. (2010). “Androgen Receptor Antagonists”. Drug Management of Prostate Cancer: 71–81. 
  42. Kolvenbag, Geert J. C. M.; Furr, Barrington J. A. (2009). “Nonsteroidal Antiandrogens”. In V. Craig Jordan; Barrington J. A. Furr (eds.). Hormone Therapy in Breast and Prostate Cancer. Humana Press. pp. 347–368.
  43. Šauer, Pavel; Bořík, Adam; Golovko, Oksana; Grabic, Roman; Vojs Staňová, Andrea; Valentová, Olga; Stará, Alžběta; Šandová, Marie; Kocour Kroupová, Hana (2018). “Do progestins contribute to (anti-)androgenic activities in aquatic environments?”. Environmental Pollution242 (Pt A): 417–425. 
  44. Raudrant D, Rabe T (2003). “Progestogens with antiandrogenic properties”. Drugs63 (5): 463–92. 
  45. Schneider HP (2003). “Androgens and antiandrogens”. Ann. N. Y. Acad. Sci997: 292–306. 
  46. Jerome F. Strauss, III; Robert L. Barbieri (13 September 2013). Yen and Jaffe’s Reproductive Endocrinology. Elsevier Health Sciences. pp. 90–. 
  47. William Figg; Cindy H. Chau; Eric J. Small (14 September 2010). Drug Management of Prostate Cancer. Springer Science & Business Media. pp. 71–72, 75, 91–96.
  48. Peter B. Farmer; John M. Walker (6 December 2012). The Molecular Basis of Cancer. Springer Science & Business Media. pp. 232–.
  49. de Lignières B, Silberstein S (April 2000). “Pharmacodynamics of oestrogens and progestogens”. Cephalalgia: An International Journal of Headache20 (3): 200–7. 
  50. ^ William Ledger; William D. Schlaff; Thierry G. Vancaillie (11 December 2014). Chronic Pelvic Pain. Cambridge University Press. pp. 55–. 
  51. Louise Hanna; Tom Crosby; Fergus Macbeth (19 November 2015). Practical Clinical Oncology. Cambridge University Press. pp. 37–. 
  52. Georg F. Weber (22 July 2015). Molecular Therapies of Cancer. Springer. pp. 314, 316. 
  53. Mahler C, Verhelst J, Denis L (May 1998). “Clinical pharmacokinetics of the antiandrogens and their efficacy in prostate cancer”. Clin Pharmacokinet34 (5): 405–17. 
  54. Schröder, Fritz H.; Radlmaier, Albert (2009). “Steroidal Antiandrogens”. In V. Craig Jordan; Barrington J. A. Furr (eds.). Hormone Therapy in Breast and Prostate Cancer. Humana Press. pp. 325–346.
  55. Poyet P, Labrie F (October 1985). “Comparison of the antiandrogenic/androgenic activities of flutamide, cyproterone acetate and megestrol acetate”. Molecular and Cellular Endocrinology42 (3): 283–8. 
  56. Luthy IA, Begin DJ, Labrie F (1988). “Androgenic activity of synthetic progestins and spironolactone in androgen-sensitive mouse mammary carcinoma (Shionogi) cells in culture”. Journal of Steroid Biochemistry31 (5): 845–52.
  57. Sundar S, Dickinson PD (2012). “Spironolactone, a possible selective androgen receptor modulator, should be used with caution in patients with metastatic carcinoma of the prostate”BMJ Case Rep2012: bcr1120115238. 
  58. Flynn T, Guancial EA, Kilari M, Kilari D (2016). “Case Report: Spironolactone Withdrawal Associated With a Dramatic Response in a Patient With Metastatic Castrate-Resistant Prostate Cancer”. Clin Genitourin Cancer15 (1): e95–e97. 
  59. James VH, Pasqualini JR (22 October 2013). Hormonal Steroids: Proceedings of the Sixth International Congress on Hormonal Steroids. Elsevier Science. pp. 391–. 
  60. Caubet JF, Tosteson TD, Dong EW, Naylon EM, Whiting GW, Ernstoff MS, Ross SD (1997). “Maximum androgen blockade in advanced prostate cancer: a meta-analysis of published randomized controlled trials using nonsteroidal antiandrogens”. Urology49 (1): 71–8. Because steroidal antiandrogens such as cyproterone acetate have intrinsic androgenic activity and lower antiandrogenic activity than the NSAAs such as flutamide and nilutamide,39–43 it is not surprising that the two classes of antiandrogens may have different efficacies.
  61. Singh SM, Gauthier S, Labrie F (February 2000). “Androgen receptor antagonists (antiandrogens): structure-activity relationships”. Current Medicinal Chemistry7 (2): 211–47. 
  62.  Ayub M, Levell MJ (August 1989). “The effect of ketoconazole related imidazole drugs and antiandrogens on [3H] R 1881 binding to the prostatic androgen receptor and [3H]5 alpha-dihydrotestosterone and [3H]cortisol binding to plasma proteins”. J. Steroid Biochem33 (2): 251–5. 
  63.  Yamasaki K, Sawaki M, Noda S, Muroi T, Takakura S, Mitoma H, Sakamoto S, Nakai M, Yakabe Y (2004). “Comparison of the Hershberger assay and androgen receptor binding assay of twelve chemicals”. Toxicology195 (2–3): 177–86. 
  64. William B. Pratt (1994). The Anticancer Drugs. Oxford University Press. pp. 220–.  In patients receiving flutamide at the usual dosage of 250 mg every 8 hours, the minimal plasma concentration of hydroxyflutamide is about 5 uM, which is 5,000 times the plasma concentration of testosterone (1 nM) in patients treated with an LHRH agonist.127 As hydroxyflutamide is only one percent as potent as testosterone in competing for binding to the androgen receptor,126 a plasma level of 5 uM hydroxyflutamide is required to ensure effective competition.127 […] Both cyproterone acetate and flutamide have been demonstrated to be effective therapy (roughly equivalent to an estrogen) when used alone in the treatment of carcinoma of the prostate.123
  65. Bennett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC (2010). “Molecular cell biology of androgen receptor signalling”. Int. J. Biochem. Cell Biol42 (6): 813–27. 
  66. Wang C, Liu Y, Cao JM (2014). “G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids”Int J Mol Sci15 (9): 15412–25. 
  67. Lang F, Alevizopoulos K, Stournaras C (2013). “Targeting membrane androgen receptors in tumors”. Expert Opin. Ther. Targets17 (8): 951–63. 
  68. Ora Hirsch Pescovitz; Erica A. Eugster (2004). Pediatric Endocrinology: Mechanisms, Manifestations, and Management. Lippincott Williams & Wilkins. pp. 248–. 
  69.  Giuseppe Buonocore; Rodolfo Bracci; Michael Weindling (28 January 2012). Neonatology: A Practical Approach to Neonatal Diseases. Springer Science & Business Media. pp. 1012–. 
  70. ^ Rebecca M. Jordan-Young (7 January 2011). Brain Storm. Harvard University Press. pp. 82–. 
  71. ^ Judith E. Owen Blakemore; Sheri A. Berenbaum; Lynn S. Liben (13 May 2013). Gender Development. Psychology Press. pp. 115–. 
  72. ^ Mario Maggi (30 January 2012). Hormonal Therapy for Male Sexual Dysfunction. John Wiley & Sons. pp. 6–.
  73. https://pubmed.ncbi.nlm.nih.gov/2674764/
  74. Iversen P, Melezinek I, Schmidt A (2001). “Nonsteroidal antiandrogens: a therapeutic option for patients with advanced prostate cancer who wish to retain sexual interest and function”. BJU Int87 (1): 47–56.
  75. John A. Thomas (12 March 1997). Endocrine Toxicology, Second Edition. CRC Press. pp. 152–. 
  76. Anderson J (2003). “The role of antiandrogen monotherapy in the treatment of prostate cancer”. BJU Int91 (5): 455–61. 
  77. Terrence Priestman (26 May 2012). Cancer Chemotherapy in Clinical Practice. Springer Science & Business Media. pp. 97–. 
  78. Higano CS (2003). “Side effects of androgen deprivation therapy: monitoring and minimizing toxicity”. Urology61 (2 Suppl 1): 32–8. 
  79. Di Lorenzo G, Autorino R, Perdonà S, De Placido S (December 2005). “Management of gynaecomastia in patients with prostate cancer: a systematic review”. Lancet Oncol6 (12): 972–9. 
  80. Erem C (2013). “Update on idiopathic hirsutism: diagnosis and treatment”. Acta Clin Belg68 (4): 268–74.
  81. Jerry Shapiro (12 November 2012). Hair Disorders: Current Concepts in Pathophysiology, Diagnosis and Management, An Issue of Dermatologic Clinics. Elsevier Health Sciences. pp. 187–.
  82. Kenneth L. Becker (2001). Principles and Practice of Endocrinology and Metabolism. Lippincott Williams & Wilkins.
  83. W. Futterweit (6 December 2012). Polycystic Ovarian Disease. Springer Science & Business Media. pp. 282–. 
  84. Katsambas AD, Dessinioti C (2010). “Hormonal therapy for acne: why not as first line therapy? facts and controversies”. Clin. Dermatol28 (1): 17–23.
  85. Thole Z, Manso G, Salgueiro E, Revuelta P, Hidalgo A (2004). “Hepatotoxicity induced by antiandrogens: a review of the literature”. Urol. Int73 (4): 289–95. 
  86. Keating GM (March 2015). “Enzalutamide: a review of its use in chemotherapy-naïve metastatic castration-resistant prostate cancer”. Drugs & Aging32 (3): 243–9. 

Dihydrotestosterone (DHT) – ipotesi e realtà di un metabolita del Testosterone –

Introduzione: 

dhtfin

Nel comune pensare dell’uomo (e dell’atleta) medio, il Dihydrotestosterone (DHT) è, al pari degli Estrogeni, visto come un ormone tendenzialmente negativo, da ridurre il più possibile. Ovviamente questa visione è a dir poco ristretta dal momento che valuta l’attività del suddetto metabolita del Testosterone solamente in quelle circostanze dove un suo consistente livello può causare, specie nei soggetti predisposti o in determinate circostanze multifattoriali, acne, perdita accelerata dei capelli e ipertrofia prostatica (ovviamente parliamo di soggetti di sesso maschile). Inoltre, il DHT è considerato un metabolita pressoché  insignificante nel miglioramento delle prestazioni, soprattutto per quanto concerne l’ipertrofia muscolare. Ma è veramente così limitato il suo impatto per un atleta? ..

Per rispondere a questo quesito nel presente articolo, in modo simile a quanto già feci nell’articolo dedicato agli Estrogeni, esporrò una panoramica dettagliata di tutto ciò che concerne il Dihydrotestosterone e le sue caratteristiche anche alla luce di recenti ed interessanti studi.

Cos’è il DHT? 

molecdht

Il Dihydrotestosterone (DHT, 5α-dihydrotestosterone, 5α-DHT, Androstanolone o Stanolone) è uno steroide con caratteristiche fortemente androgene, principalmente ottenuto dalla 5α-riduzione del Testosterone. Infatti, l’enzima 5α-reduttasi catalizza la formazione di DHT dal Testosterone in alcuni tessuti tra cui la ghiandola prostatica, le vescicole seminali, le epididimidi, la pelle, i follicoli piliferi, il fegato e il cervello. Questo enzima media la riduzione del doppio legame C4-5 del Testosterone. Rispetto al Testosterone, il DHT è considerevolmente più potente come agonista del recettore degli androgeni (AR), seppure limitato da percorsi enzimatici.
Oltre al suo ruolo di ormone naturale, il DHT è stato usato come farmaco, ad esempio nel trattamento di bassi livelli di Androgeni negli uomini (vedi Androstanolone).

Il DHT nella Storia

330px-A._Butenandt_1921
Adolf Friedrich Johann Butenandt (24 marzo 1903-18 gennaio 1995) fu un biochimico tedesco.  Nel 1939 gli fu assegnato il premio Nobel per la chimica per il suo “lavoro sugli ormoni sessuali”. Inizialmente respinse il premio a causa della politica nazional-socialista, accettandolo solo nel 1949 dopo la seconda guerra mondiale. 

Il DHT fu sintetizzato per la prima volta da Adolf Butenandt e dai suoi colleghi nel 1935. [1][2] Venne ottenuto mediante idrogenazione del Testosterone [3], che era stato scoperto all’inizio di quell’anno.[4] Il DHT è stato introdotto per uso medico come AAS nel 1953 ed è stato inizialmente notato per essere più potente del Testosterone ma con maggiore androgenicità.[5][6][7] Ma il suo potenziale androgeno non fu chiaro fino al 1956, quando venne dimostrato che veniva sintetizzato dal Testosterone negli omogenati di fegato di ratto.[2][8] Inoltre, l’importanza biologica del DHT non è stata realizzata fino agli inizi degli anni ’60, quando si è scoperto che era prodotto dalla 5α-riduzione del Testosterone circolante nei tessuti bersaglio come la ghiandola prostatica e le vescicole seminali risultando più potente del Testosterone in test biologici.[9][10][11][12] Le funzioni biologiche del DHT nell’uomo sono state definite in modo molto più chiaro alla scoperta e alla caratterizzazione del deficit di 5α-reduttasi di tipo II nel 1974.[13] Il DHT è stato l’ultimo importante ormone sessuale, gli altri sono Testosterone, Estradiolo e Progesterone, ad essere  scoperto, ed è unico in quanto risulta essere il solo ormone sessuale principale che agisce fondamentalmente come ormone intracrino e paracrino piuttosto che come ormone endocrino.[12]

Biosintesi e distribuzione 

Il DHT, noto anche come 5α-androstan-17β-ol-3-one, è uno steroide androstano presente in natura con un gruppo chetonico nella posizione C3 e un gruppo idrossile nella posizione C17β. È il derivato del Testosterone in cui il doppio legame tra le posizioni C4 e C5 è stato ridotto o idrogenato.

Testosterone-to-DHT-1
Differenze strutturali tra Testosterone e DHT 

Il DHT è sintetizzato irreversibilmente dal Testosterone dall’enzima 5α-reduttasi. [14] [15] Ciò si verifica in vari tessuti tra cui i genitali (pene, scroto, clitoride, grandi labbra), [16] prostata, pelle, follicoli piliferi, fegato e cervello. [14] Circa il 5-7% del Testosterone subisce una 5α-riduzione in DHT [17] [18], e circa 200-300μg di DHT vengono  sintetizzati  giornalmente nel corpo. La maggior parte del DHT è prodotta nei tessuti periferici come la pelle e il fegato, mentre la maggior parte del DHT circolante proviene specificamente dal fegato. I testicoli e la ghiandola prostatica contribuiscono relativamente poco alle concentrazioni di DHT nel circolo ematico.[14]

64-5-1ghiandolesebacee
Ghiandola sebacea 

Esistono due isoforme principali di 5α-reduttasi, la SRD5A1 (tipo I) e la SRD5A2 (tipo II), quest’ultimo isoenzima ha una maggiore importanza biologica.[14] Esiste anche una terza forma di 5α-reduttasi: SRD5A3. [19] L’SRD5A2 è maggiormente espressa nei genitali, nella ghiandola prostatica, nelle epididimidi, nelle vescicole seminali, nella pelle genitale, nei follicoli piliferi del viso, del torace [20][21] e nel fegato, mentre si osserva un’espressione più bassa in alcune aree del cervello, pelle non genitale / follicoli piliferi, testicoli e reni. L’SRD5A1 è maggiormente espressa nei follicoli non genitali della pelle / dei capelli, nel fegato e in alcune aree del cervello, mentre sono presenti livelli più bassi nella prostata, nelle epididimidi, nelle vescicole seminali, nella pelle genitale, nei testicoli, nelle ghiandole surrenali e nei reni.[14] Nella pelle, la 5α-reduttasi è espressa in ghiandole sebacee, ghiandole sudoripare, cellule epidermiche e follicoli piliferi.[20][21] Entrambi gli isoenzimi sono espressi nei follicoli piliferi del cuoio capelluto [22], sebbene l’SRD5A2 predomina in queste cellule.[21] Il sottotipo SRD5A2 è l’isoforma quasi esclusivamente espressa nella ghiandola prostatica.[23][24]

shbg1
Globuline leganti gli ormoni sessuali (SHBG) 

Il legame del DHT con le proteine plasmatiche è superiore al 99%. Negli uomini, circa lo 0,88% del DHT non è legato e quindi libero, mentre nelle donne in premenopausa, circa lo 0,47-0,48% non è legato. Negli uomini, il DHT è legato per il 49,7% alla globulina legante gli ormoni sessuali (SHBG), il 39,2% per l’albumina e lo 0,22% per la globulina legante i corticosteroidi (CBG), mentre nelle donne in premenopausa il DHT è legato per il 78,1-78,4% alle SHBG, 21,0-21,3% all’albumina e lo 0,12% al CBG. Nella tarda gravidanza, solo lo 0,07% del DHT non è legato nelle donne; Il 97,8% è legato alle SHBG mentre il 2,15% è legato all’albumina e lo 0,04% è legato al CBG. [25][26] Il DHT ha un’affinità maggiore per le SHBG rispetto al Testosterone, all’Estradiolo o qualsiasi altro ormone steroideo.[27][26]

Funzioni e attività biologiche del DHT

Il DHT è biologicamente importante per la differenziazione sessuale dei genitali maschili durante l’embriogenesi, la maturazione del pene e dello scroto durante la pubertà, la crescita dei peli nel viso, nel corpo e dei peli pubici e lo sviluppo e il mantenimento della ghiandola prostatica e delle vescicole seminali. Come già accennato, è principalmente sintetizzato per via della 5α-riduzione del  Testosterone in alcuni tessuti ed è il principale androgeno nei genitali, nella ghiandola prostatica, nelle vescicole seminali, nella pelle e nei follicoli piliferi. [28]

3hsd
3α-Hydroxysteroide dehydrogenasi (3α-HSD) 

Il DHT esplica una segnalazione principalmente in maniera intracrina e paracrina nei tessuti in cui viene sintetizzato, svolgendo un ruolo secondario, sebbene non trascurabile, come ormone endocrino circolante.[29][30][31] I livelli circolanti di DHT sono 1/10 e 1/20 di quelli del Testosterone in termini di concentrazioni totali e libere, rispettivamente [32], mentre i livelli locali di DHT possono essere fino a 10 volte quelli del Testosterone nei tessuti con alta espressione del 5α-reduttasi come la prostata.[33] Inoltre, a differenza del Testosterone, il DHT viene inattivato dalla 3α-idrossisteroide deidrogenasi (3α-HSD) nell’androgeno 3α-androstanediolo molto debole in vari tessuti come quello muscolare, adiposo e epatico, tra gli altri [31][34][35], e in relazione a questo, è generalmente stato riportato che il DHT è un agente anabolico molto scarso quando somministrato esogenamente come farmaco. [36] Ma su questo ci torneremo più avanti.

high level of DHT makes the hair strands to fall out faster LEWIGS
Progressione della alopecia androgenetica 

Oltre alle funzioni biologiche di base, il DHT svolge anche un importante ruolo causale in una serie di condizioni dipendenti dagli androgeni, tra cui le condizioni inerenti alla crescita della peluria come l’irsutismo (eccessiva crescita dei peli sul viso / corpo) e anche la perdita di capelli (alopecia androgenetica o calvizie) e malattie della prostata come l’iperplasia prostatica benigna (IPB) e il carcinoma prostatico.[28] Gli inibitori della 5α-reduttasi, che impediscono la sintesi di DHT, sono efficaci nella prevenzione e nel trattamento di queste condizioni, sebbene siano accompagnati da pesanti effetti collaterali.[37][38][39][40] Inoltre, il DHT può svolgere una funzione nel reclutamento e nella funzione del trasportatore di aminoacidi nel muscolo scheletrico.[41] Ed anche su questo punto torneremo tra poco.

erbeta
Recettore Estrogeno beta (ERβ)

È stato scoperto che i metaboliti del DHT agiscono come neurosteroidi con la propria attività biologica indipendente dall’AR.[42] Il 3α-Androstanediol è un potente modulatore allosterico positivo del recettore GABAA, mentre il 3β-androstanediol è un potente e selettivo agonista del sottotipo ERβ del Recettore degli Estrogeni (ER).[42] Questi metaboliti possono svolgere un ruolo importante negli effetti centrali del DHT e per estensione del Testosterone, inclusi i loro effetti antidepressivi, ansiolitici, gratificanti / edonici, antistress e pro-cognitivi.[42][43] Ed è soprattutto grazie all’azione neurosteroidea dei metaboliti del DHT a conferire a questa molecola i suoi benefici sull’aumento della forza muscolare e del focus mentale, entrambe caratteristiche ricercate negli sport di potenza e propedeutiche ad un migliore stimolo ipertrofico indotto dall’allenamento contro-resistenza.

Il DHT è un potente agonista dell’AR ed è in effetti il ​​ligando endogeno più potente conosciuto per questo recettore. Ha un’affinità (Kd) compresa tra 0,25 e 0,5 nM per la RA umana, che è circa 2-3 volte superiore a quella del Testosterone (Kd = 0,4 a 1,0 nM) [44] e 15-30 volte superiore a quella degli androgeni surrenali.[45] Inoltre, il tasso di dissociazione del DHT dall’AR è 5 volte più lento di quello del Testosterone.[46 L’EC50 del DHT per l’attivazione dell’AR è 0,13 nM, che è circa 5 volte più forte di quello del Testosterone (EC50 = 0,66 nM).[47] Nei biotest, il DHT è risultato essere da 2,5 a 10 volte più potente del Testosterone.[44]
L’emivita di eliminazione del DHT nel corpo (53 minuti) è più lunga di quella del Testosterone (34 minuti), e ciò potrebbe spiegare alcune delle differenze nella loro potenza.[48] Uno studio sul trattamento transdermico con DHT e Testosterone ha riportato emivite terminali rispettivamente di 2,83 ore e 1,29 ore.[49]
A differenza di altri androgeni come il Testosterone, il DHT non può essere convertito dall’enzima aromatasi in estrogeno come l’Estradiolo. Pertanto, viene spesso utilizzato in contesti di ricerca per distinguere tra gli effetti del testosterone causati dal legame con l’AR e quelli causati dalla conversione del Testosterone in Estradiolo e il successivo legame e attivazione del ER.[50] Sebbene il DHT non possa essere aromatizzato, viene comunque trasformato in metaboliti con significativa affinità e attività ER. Questi sono 3α-androstanediolo e 3β-androstanediolo, che sono agonisti predominanti dell’ERβ.[51] Determinano l’effetto anti-estrogenico attribuito al DHT.

I livelli sierici di DHT sono circa il 10% di quelli del Testosterone, ma i livelli nella ghiandola prostatica sono da 5 a 10 volte superiori a quelli del Testosterone a causa di una conversione di oltre il 90% di quest’ultimo in DHT da parte della 5α-reduttasi espressa localmente.[33] Per questo motivo, e oltre al fatto che il DHT è molto più potente come agonista dell’AR rispetto al Testosterone [44], il DHT è considerato il principale androgeno della ghiandola prostatica.[33]

3beta
3α-androstanediol 

Il DHT è inattivato nel fegato e nei tessuti extraepatici come la pelle in 3α-androstanediol dall’enzima 3α-idrossistoidea deidrogenasi, e in 3β-androstanediol dall’enzimi 3β-idrossisteroidide deidrogenasi.[34][52]Questi metaboliti vengono a loro volta convertiti, rispettivamente, in Androsterone ed Epiandrosterone, quindi coniugati (tramite glucuronidazione e/o solfatazione), rilasciati in circolazione ed escreti nelle urine.[34]
Come già detto, a differenza del Testosterone, il DHT non può essere aromatizzato in estrogeno come l’Estradiolo e, per questo motivo, non ha propensione ad esercitare effetti estrogenici.[53] Quindi, il DHT viene escreto nelle urine sotto forma di metaboliti, come i coniugati di 3α-androstanediol e Androsterone.[54][34]

Uso del DHT in medicina

download-21-1280x720

Il DHT è disponibile in formulazioni farmaceutiche per uso medico come  steroide anabolizzante androgeno (AAS) con finalità prettamente androgene.[55] È usato come ancillare principalmente nel trattamento dell’ipogonadismo maschile.[56] Quando usato come farmaco, il DHT viene chiamato Androstanolone (INN) o Stanolone (BAN) [55] [57] [58], e viene venduto sotto nomi commerciali differenti come Andractim. [55] [57] [58] [56] [59] La disponibilità di DHT farmaceutica è limitata; non è disponibile negli Stati Uniti o in Canada, [60] [61] ma è disponibile in alcuni paesi europei. [58] [56] Le formulazioni disponibili di DHT includono compresse orali o sublinguali, gel topici e, come esteri in olio, iniettabili come Androstanolone propionato e Androstanolone Valerato.[55] [56] [59]

L’Androstanolone è disponibile in formulazioni farmaceutiche per uso medico come androgeno.[4] È usato principalmente come forma ancillare nella terapia sostitutiva degli androgeni nel trattamento dell’ipogonadismo maschile ed è specificamente approvato per questa indicazione in alcuni paesi.[62] [13] [63] [64] [65] [66] [67] Non è più raccomandato come solo farmaco nelle terapie sostitutive degli androgeni a causa delle differenze biologiche con il Testosterone come la mancanza di effetti Estrogenici e effetti androgeni parziali.[68] L’Androstanolone topico è utile nel trattamento della ginecomastia.[69] Allo stesso modo, l’Androstanolone Enantato tramite iniezione intramuscolare è risultato efficace nel trattamento della ginecomastia puberale persistente.[70] Il farmaco è stato anche usato come gel topico per il trattamento del pene piccolo nei ragazzi pre e peripubertali con sindrome da insensibilità agli androgeni lieve o parziale.[71] [72] [73]

dps
Drostanolone Propionato

L’Androstanolone è risultato efficace nel trattamento del carcinoma mammario in fase avanzata nelle donne negli anni ’50, sebbene fosse utilizzato in dosi molto elevate e causasse una grave virilizzazione.[74] [75] [76] È stato usato in sospensione acquosa microcristallina mediante iniezione intramuscolare.[77] [78] [79] Poco dopo, il Drostanolone Propionato (2α-Methylandrostanolone Propionato) fu sviluppato per questo uso al fine di sostituire l’Androstanolone a causa della sua superiore farmacodinamica e fu introdotto per questa indicazione negli Stati Uniti e in Europa nei primi anni ’60.[80] [81] [82] [83]
L’Androstanolone è stato usato alla dose di 25mg per via sublinguale da due a tre volte al giorno nella terapia sostitutiva con androgeni per gli uomini.[84] Questo è anche il dosaggio di Androstanolone comunemente utilizzato nel trattamento di individui si sesso maschile.[84]

 

La questione DHT e ipertrofia muscolare

sarcopenia

La sarcopenia, caratterizzata da una perdita di massa muscolare, ossea, forza e resistenza, si verifica con l’invecchiamento e disturbi medici cronici come l’infezione da virus dell’immunodeficienza umana (HIV) e la terapia a lungo termine con glucocorticoidi sistemici (Gcc). D’altra parte, la somministrazione di Testosterone negli uomini più anziani e negli uomini con infezione da HIV con perdita di peso che hanno basse concentrazioni di Testosterone (Bhasin et al. 2001), nonché gli uomini che richiedono un trattamento sistemico a lungo termine di Gcc (Truhan e Ahmed 1989) aumentano il grasso corporeo- massa magra e forza muscolare.

ar1
Recettore degli Androgeni

Il muscolo scheletrico è uno dei tessuti bersaglio per l’azione anabolica degli androgeni. Recettori degli Androgeni (AR), localizzati nelle cellule muscolari e adipose, cellule nervose e pluripotenti mesenchimali che risiedono nel tessuto muscolare, probabilmente mediano gli effetti degli androgeni aumentando la massa muscolare, la sintesi proteica, il contenuto ribosomiale, le aree mitocondriali, il numero mioonucleare, il numero di cellule satellite e la miogenesi delle cellule mesenchimali pluripotenti riducendo la degradazione delle proteine ​​e l’adipogenesi delle cellule mesenchimali pluripotenti (Herbst & Bhasin 2004). Sul ligando che si lega all’AR intracellulare, il complesso androgeno-AR viene traslocato nel nucleo e si lega a sequenze specifiche di DNA, elementi di risposta agli androgeni, con conseguente trascrizione di geni specifici (Michel & Baulieu 1980, Simental et al. 1991). Gli androgeni hanno anche azioni rapide non genomiche nel muscolo (Estrada et al. 2000, 2003), tra cui il recettore di membrana accoppiato alla proteina G, il recettore dell’inositolo 1,4,5-trisfosfato (IP3), lo ione calcio (Ca2 +) e la cascata della fosforilazione della proteina chinasi mitogeno-attivata (MAPK) / proteina chinasi regolata da segnali extracellulari (ERK). Oltre al suo ruolo nella contrazione muscolare, si ritiene che Ca2+ intracellulare regola l’espressione genica nel muscolo scheletrico (Estrada et al. 2001, Araya et al. 2003). Pertanto, le azioni genomiche e non genomiche degli androgeni sono responsabili della trascrizione dei geni sensibili agli androgeni (ARG).

Tuttavia, i meccanismi molecolari dell’effetto anabolico degli androgeni nel muscolo scheletrico sono mal compresi. Con l’avvento dell’analisi seriale dell’espressione genica (SAGE) (Velculescu et al. 1995), sono sorte nuove possibilità per l’analisi del trascrittoma su larga scala. Usando questo metodo, si sono precedentemente studiati i meccanismi molecolari responsabili dell’atrofia muscolare causata dall’immobilizzazione nei ratti (St-Amand et al. 2001), nonché il profilo di espressione genica degli uomini allenati per la resistenza (Yoshioka et al. 2003). In un interessante studio del 2006  [85], si sono studiati gli effetti della castrazione (GDX) e del DHT sull’espressione genica globale nel muscolo scheletrico dei topi maschi usando la strategia SAGE. Le trascrizioni modulate DHT sono coinvolte nel rilascio di Ca2 +, nella segnalazione cellulare, nella proliferazione cellulare, nella sintesi di mRNA e proteine ​​e nel metabolismo energetico. Questi risultati costituiscono un primo passo verso una comprensione precisa dei meccanismi molecolari coinvolti negli effetti fisiologici degli androgeni nel muscolo scheletrico.

topolino
Topo C57BL6

Nello studio, è stato asportato il muscolo gastrocnemio destro dai topi C57BL6 di età compresa tra 12 e 14 settimane. Gli animali sono stati tenuti con luci accese da 0715 a 1915h, e hanno avuto accesso all’acqua ad libitum. Nessun trattamento è stato eseguito su 26 topi intatti. Il GDX è stato eseguito 7 giorni prima della raccolta di organi in ciascuno dei 14 topi dai gruppi GDX e DHT. I topi del gruppo GDX hanno ricevuto un i.p. della soluzione del veicolo (0,4% (p / v) Methocel A15 LV Premium / 5% etanolo; Dow Chemicals Co, Laval, Quebec, Canada) 24 ore prima della morte, mentre una dose fisiologica di DHT (0,1 mg / topo) è stato iniettato 1, 3, 6 e 24 ore prima della loro uccisione (gruppi DHT 1 h, DHT 3 h, DHT 6 he DHT 24 h). Il muscolo gastrocnemio destro è stato campionato da ciascun topo e messo insieme per l’analisi dello stesso gruppo per eliminare le variazioni inter-individuali ed estrarre quantità sufficienti di mRNA. I tessuti sono stati conservati a -80 ° C fino all’estrazione dell’RNA.

640px-Spermine.svg
Poliammina Spermina 

Gli ormoni anabolizzanti stimolano la crescita muscolare principalmente aumentando la sintesi proteica (Rooyackers & Nair 1997). In questo studio, la condizione GDX ha represso l’espressione del membro della famiglia delle proteine ​​da shock termico 7 (Hspb7), mentre l’iniezione  di DHT ha regolato verso l’alto cinque geni che codificano proteine ​​ribosomiali e chaperoni (Mrpl51, Rpl34, Rps20, Cct8 e Cabc1) entro 3 ore e modulando altre tre trascrizioni (Fxr2h, Rps24 e Rps27) a 24 h. Oltre alla sintesi proteica, Rpl34 e Rps20 sono implicati nella biosintesi delle poliammine (Panagiotidis et al. 1995). La proteina Cct8 la cui espressione è fortemente dipendente dalla crescita cellulare (Yokota et al. 1999) piega le proteine ​​appena sintetizzate, compresi i componenti cellulari necessari per la crescita cellulare (Thulasiraman et al. 1999), oltre a comportarsi come proteina associata ai microtubuli (Roobol et al. 1999). Mrpl51 è codificato dal DNA mitocondriale e Cabc1 codifica una proteina mitocondriale essenziale per la corretta conformazione e funzionamento dei complessi proteici nella catena respiratoria (Iiizumi et al. 2002). In effetti, le espressioni di 18 trascrizioni relative alla produzione di OxPhos e ATP sono state sovra-regolate dal DHT in questo studio. Questi dati suggeriscono che il DHT aumenta la sintesi proteica e la stabilizzazione in parallelo con la crescita cellulare entro 3 ore nei topi in vivo.

Le trascrizioni modulate 24h dopo il trattamento con DHT nel presente studio suggeriscono quanto segue:

  1. l’aumento del trasporto di mRNA tra citoplasma e nucleolo da parte delle proteine ​​fragili correlate all’X (FMRP) (Tamanini et al. 1999);
  2. la soppressione della degradazione dell’mRNA da parte della proteina ribosomiale S27 (Revenkova et al. 1999);
  3. la diminuzione della sintesi proteica poiché la proteina ribosomiale S24 è strettamente coinvolta sia nei processi di iniziazione che di allungamento durante la sintesi proteica (Bommer et al. 1988).

Il fatto che il tasso di sintesi proteica diminuisca drasticamente durante la mitosi nelle cellule di mammifero potrebbe spiegare i dati.
La degradazione delle proteine ​​da parte del proteasoma 26S è essenziale per la progressione del ciclo cellulare, il metabolismo delle poliammine e la presentazione della catena pesante di classe I del maggiore complesso di istocompatibilità (MHC) sulla superficie cellulare. Il DHT ha indotto Psmc3 e Psmc5 le cui proteine ​​sono i componenti integrali della subunità normativa 19S del proteasoma 26S, che potrebbe riflettere l’induzione della proliferazione cellulare e la modulazione dell’immunità da DHT.

La regolazione trascrizionale è un punto di controllo essenziale per diverse funzioni cellulari come la proliferazione cellulare, la differenziazione, la trasformazione e l’apoptosi. Il DHT ha sovra-regolato cinque fattori trascrizionali (Ogt, Pttg1, Psmc3, Psmc5 e Smyd2) entro 3 ore dopo il trattamento e il Fxr2h a 24h. L’attivazione della cascata MAPK provoca la traslocazione della proteina citoplasmatica Pttg1 nel nucleo (Pei 2000) dove la proteina Pttg1 transattiva i geni bersaglio che promuovono la proliferazione cellulare (Pei 2001). Le proteine ​​di Psmc3 e Psmc5 suggeriscono ruoli nella transattivazione del recettore dell’ormone tiroideo (Ishizuka et al. 2001). La condizione GDX ha anche ridotto il livello di espressione del Ttr, il cui prodotto è una proteina plasmatica omotetramericana che trasporta tiroxina e retinolo. Sebbene gli ormoni tiroidei siano essenziali durante la crescita, sia un eccesso che una carenza causano un degrado muscolare da meccanismi sconosciuti (Rooyackers & Nair 1997). La proteina Fxr2h mostra una forte attivazione della trascrizione (Hillman & Gecz 2001). La glicosilazione delle proteine ​​nucleari e citoplasmatiche è una modifica post-traduzionale diffusa e reversibile nelle cellule eucariotiche. La glicosilazione intracellulare dei residui di serina e treonina è catalizzata dalla proteina di Ogt, che regola un numero di funzioni cellulari tra cui l’attivazione trascrizionale (geni bersaglio p53) / repressione (RNA polimerasi II) e l’attivazione traslazionale (Wells et al. 2003). La presenza nel gene Smyd2 di domini SET e MYND sarebbe in accordo con gli effetti rispettivamente sulla deacetilazione e metilazione dell’istone (Sims et al. 2002). Pertanto, i risultati suggeriscono che almeno alcune delle azioni del DHT si verificano attraverso l’attivazione o la repressione dei regolatori trascrizionali.

MAPK-signaling-pathway-picture
Via di segnalazione MAPK

Nel muscolo scheletrico, il Ca2+ svolge un ruolo chiave nella contrazione e nel rilassamento. Il presente studio ha dimostrato che il trattamento con DHT ha aumentato l’espressione della Pvalb, una proteina di legame Ca2+ ad alta affinità che agisce come fattore di rilassamento muscolare dopo la contrazione, e Trdn che forma un complesso quaternario con il recettore della ryanodina, junctina e calsequestrina nel lume del reticolo sarcoplasmatico ( SR) per il buffering passivo di Ca2+ luminale SR, nonché un rilascio Ca2+ attivo dal processo SR durante l’accoppiamento eccitazione-contrazione. Topi transgenici che sovraesprimono Trdn1 nel cuore mostrano ipertrofia cardiaca con rilassamento alterato e contrattilità attenuata (Kirchhefer et al. 2001). Pertanto, l’induzione di entrambi i fattori di rilassamento muscolare e di contrazione potrebbe contribuire a una generazione di energia generalmente osservata negli atleti che assumono steroidi anabolizzanti.

Phospholipases2
Fosfolipasi C

La depolarizzazione delle cellule muscolari provoca anche un rilascio transitorio lento di Ca2 +, che è mediato dalla fosfolipasi C (PLC) e IP3 tramite i recettori IP3 (Estrada et al. 2001, Powell et al. 2001) e porta alla fosforilazione di ERK1 / 2 (Powell et al. 2001). Negli osteoblasti, il DHT attiva la proteina Gβ4 accoppiata al PLC-β2 che aumenta la formazione di IP3 e diacilglicerolo (DAG) e innesca il rilascio di Ca2 + intracellulare dal reticolo endoplasmatico (Zagar et al. 2004). Gli aumenti dei livelli di DAG e Ca2 + regolano l’attività della proteina chinasi C (PKC) che stimola ERK1 / 2 attraverso l’attivazione di MAPK chinasi 1/2 (Zagar et al. 2004). I risultati hanno mostrato le induzioni di Camk2g, Dusp1 e Hint1 entro 3 ore dall’iniezione di DHT. Ca2 + multifunzionale / proteinodinasi dipendente dalla calmodulina (CaMKII) media le risposte cellulari alla Ca2 + intracellulare ed è implicato nel controllo di funzioni essenziali quali trasmissione sinaptica, canali ionici, trascrizione genica e progressione del ciclo cellulare (Santella 1998, Anderson 2005). Le cellule proliferanti (Tombes & Krystal 1997) e il cuore ipertrofico con maggiore contrattilità (Colomer et al. 2003) esprimono l’isoforma CaMKIIγ codificata da Camk2g. Dusp1 (chiamato anche CL100 o MAPK fosfatasi 1) è stato originariamente identificato come un gene precoce immediato indotto da mitogeni (Charles et al. 1992, Keyse & Emslie 1992), e il suo livello di trascrizione riflette l’attivazione di ERK1 / 2 (Camps et al. 2000).

Protein_HINT1_PDB_1av5
Proteina Hint1

La Hint1, una proteina che interagisce con la PKC che originariamente si pensava inibisse quest’ultima, può svolgere un ruolo di soppressore del tumore (Su et al. 2003). Abbiamo osservato la sovra-regolazione di Mpp6, Oaz, Psmc3 e Psmc5 entro 3 ore dal trattamento con DHT. La funzione di Mpp6, un membro della sottofamiglia guanilato chinasi (MAGUK) associata alla membrana p55, non è ancora nota. Tuttavia, il MAGUK interagisce con i recettori del glutammato e vari canali ionici (Godreau et al. 2004). Le poliammine (spermine, spermidina e putrescina) interagiscono anche con alcuni canali ionici e controllano i livelli intracellulari di Ca2 + (Williams 1997). La biosintesi della poliammina nelle cellule di mammifero inizia con una produzione di putrescina da parte dell’ornitina decarbossilasi (ODC). Quando i livelli di poliammina intracellulare aumentano, l’antizima ODC, codificato da Oaz, si lega all’OCD e facilita il suo rapido degrado da parte del proteosoma 26S (Thomas & Thomas 2003). Pertanto, le induzioni di Oaz così come Psmc3 e Psmc5, che sono componenti integranti del proteasoma 26S, possono riflettere il livello aumentato di poliammine intracellulari. Inoltre, le modulazioni di queste trascrizioni e di Mpp6 entro 3 ore, lo stesso decorso di Camk2g, suggeriscono la loro partecipazione al controllo di Ca2 + intracellulare. Inoltre, il percorso Ras / MAPK controlla la trascrizione di Cct8 (Yamazaki et al. 2003) che è stata indotta a 1 ora dopo il trattamento con DHT nel presente studio. Nel loro insieme, il secondo messaggero, ovvero Ca2 + intracellulare, e le sue cascate a valle tra cui PKC e MAPK, che sono essenziali per la regolazione della crescita cellulare, sembrano essere modulati dal DHT.

 

Le cellule satellite / mioblasti all’interno del tessuto muscolo-scheletrico proliferano in seguito all’esposizione a fattori di crescita e a seguito di lesioni muscolari, ma smettono di dividersi quando si fondono con fibre muscolari preesistenti. La fusione è generalmente accoppiata con l’inizio della proliferazione cellulare. Nel presente studio, la trascrizioni sovra-regolate da parte del DHT e correlate all’entrata in fase S (Pttg1) (Nasmyth et al. 2000), assemblaggio di microtubuli (Cct8) (Roobol et al. 1999), formazione del fuso bipolare (Tctex1) (Vaisberg et al 1993), uguale segregazione cromosomica (Pttg1) (Nasmyth et al. 2000), accatastamento di Golgi cisternae (Gorasp2) (Shorter et al. 1999) e disintossicazione dei metaboliti reattivi prodotti durante la proliferazione cellulare (Akr1a4) (Barski et al. 2004 ), suggeriscono un’induzione della proliferazione cellulare da parte del DHT. D’altra parte, il DHT ha sotto-regola un fattore cistostatico, Lgals1, che mantiene G0 e controlla la traversata G2 (Wells & Mallucci 1991). Il fuso mitotico richiede il montaggio / smontaggio di icrotubuli e l’azione di complessi motori come il dynein (Vaisberg et al. 1993). La proteina Tctex1 è una catena leggera del complesso motorio dynein (Tai et al. 1998). Il Cct8 aumenta durante la transizione G1 / S attraverso la prima fase S (Yokota et al. 1999). Pttg1, protezione umana, si accumula all’inizio della fase S con picchi nelle fasi G2 – M, e previene l’attivazione prematura delle separine durante la mitosi (Nasmyth et al. 2000).

miogenesi-adulta-1

Il DHT sovra-regola  Psmc3, Dusp1, Gadd45g e Pttg1 nelle presenti condizioni. La sovraespressione di Psmc3 aumenta le proteine ​​p53 e p21 (Pollice et al. 2004). In risposta al danno al DNA e ad altri stress, il soppressore del tumore p53 induce l’arresto del ciclo cellulare o l’apoptosi a seconda dei contesti cellulari specifici (Yu & Zhang 2005). In risposta al danno al DNA, p53 promuove la riparazione del DNA influenzando il percorso di riparazione dell’escissione del DNA e arrestando le cellule in G1 attraverso l’induzione di p21 che contribuiscono a fornire più tempo per la riparazione (Smith & Seo 2002), mentre anche l’arresto G1 mediato da p53 si verifica per induzione di Dusp1 in assenza di danni al DNA (Li et al. 2003). Le proteine ​​codificate da Gadd45g interagiscono con p21 e sopprimono la crescita cellulare senza alcuna evidenza di apoptosi (Nakayama et al. 1999). L’arresto della crescita mediato dagli inibitori del ciclo cellulare p21 e Gadd45 inibisce la risposta apoptotica indotta da bersagli apoptotici di p53 (Yu & Zhang 2005). Inoltre, la protezione codificata da Pttg1 inibisce la capacità di p53 di indurre la morte cellulare (Bernal et al. 2002). Nel loro insieme, il DHT potrebbe promuovere l’arresto di G1 senza indurre l’apoptosi, almeno secondo ciò che è emerso dal presente studio.

SAM_decarboxylase
S-adenosilmetionina decarbossilasi (SAMDC)

Il presente studio riporta l’induzione di Amd1 che codifica per la S-adenosilmetionina decarbossilasi (SAMDC), Oaz, Rps20 e Rpl34, nonché Psmc3 e Psmc5 dopo l’iniezione di DHT. D’altra parte, il DHT sotto-regolato Sbp il cui prodotto è correlato all’accumulo di spermatozoi (Moruzzi et al. 1982). I composti policristici sintetizzati dagli enzimi che limitano la velocità, ODC e SAMDC, sono cruciali per la crescita e la proliferazione delle cellule di mammifero. L’antizima ODC codificato da Oaz, così come le proteine ​​ribosomiali L34 e S20, inibiscono le decarbossilasi di arginina e ODC (Panagiotidis et al. 1995). ODC e SAMDC sono degradati dal proteasoma 26S (Yerlikaya e Stanley 2004) che è codificato da Psmc3 e Psmc5. L’antizima ODC inibisce anche l’assorbimento della poliammina e stimola l’escrezione (Sakata et al. 2000). Inoltre, l’assorbimento della poliammina è inibito dal PKC ed è stimolato dalla sua inibizione (Dot et al. 2000). Per coincidenza, Hint1, che inibisce la PKC, aveva un modello di modulazione simile a quello di Oaz con il trattamento a base di DHT. Nel loro insieme, le modulazioni di Pttg1, Cct8, Tctex1, Gorasp2, Akr1a4, Lgals1, Amd1, Oaz, Rpl34, Rps20, Psmc3, Psmc5 e Sbp mediante dal DHT nel presente studio potrebbero riflettere la proliferazione di cellule satelliti / mioblasti nel muscolo scheletrico .

Inoltre, la proteina Pttg1 induce angiogenesi sia in vitro che in vivo (Ishikawa et al. 2001). Nel presente studio, il DHT ha sovra-regolato Pttg1 e Asb5, che è una nuova proteina implicata nell’inizio dell’arteriogenesi (Boengler et al. 2003). La vascolarizzazione è un importante fattore determinante dell’approvvigionamento energetico e della rimozione dei rifiuti durante la contrazione muscolare e la sua stimolazione da parte del DHT in questo studio è quindi in accordo con altri dati presentati.

lp1
Lpin1

Nel metabolismo lipidico, la condizione GDX ha spento la Apina2 e il DHT a sovra-regolato la Lpin1. L’apolipoproteina A-II codificata da Apoa2, la seconda proteina più abbondante delle particelle di lipoproteine ad alta densità (HDL), esercita un marcato effetto sul legame HDL e sull’assorbimento selettivo dei lipidi da parte dei recettori scavenger di classe B. Nel topo, l’espressione migliorata di Lpin1 nel muscolo scheletrico promuove l’obesità diminuendo il dispendio energetico dell’intero corpo e l’utilizzo dei grassi, nonché inducendo resistenza all’insulina (Phan & Reue 2005). Contrariamente a quanto accade nel muscolo, la sovraespressione di Lpin1 nel tessuto adiposo provoca obesità senza insulino-resistenza (Phan & Reue 2005). Ho precedentemente riportato che il livello di espressione di Lpin1 nel tessuto adiposo rimane inalterato con il trattamento a base di DHT (Bolduc et al. 2004). L’induzione di Lpin1 solo nel muscolo potrebbe suggerire che il carboidrato fosse usato per aumentare la produzione di OxPhos e ATP. Ulteriori studi sono necessari per chiarire questo intrigante meccanismo.

Le prime risposte all’iniezione di DHT (DHT 1, 3 e 6 h) sono l’induzione sia dei fattori di rilassamento muscolare (Pvalb) che di contrazione (Trdn) che modulano i livelli intracellulari di Ca2+ . Il DHT ha anche indotto le trascrizioni relative alla segnalazione cellulare come Ca2 + (Camk2g), PKC (Hint1) e percorsi MAPK (Dusp1) nonché la biosintesi della poliammina (Amd1, Oaz, Psmc3, Rps20 e Rpl34), proliferazione cellulare (Akr1a4, Cct8 Pttg1 e Tctex1), arresto del ciclo cellulare (Gadd45g), p53 (Cabc1, Dusp1 e Pttg1) e angiogenesi (Asb5 e Pttg1). L’induzione di mRNA correlati alla trascrizione (Ogt, Psmc3 e Psmc5), sintesi proteica (Mrpl51, Ogt, Rps20 e Rpl34), modifica (Cabc1, Cct8 e Ogt) e degradazione (Psmc3 e Psmc5), fosforilazione ossidativa (Cyc1, MtCo1, in questi punti sono stati osservati anche MtCo2, Cyp27a1, Ndufa5 e Ndufb2), produzione di ATP (Atp5j2 e EST Atpaf1), metabolismo lipidico (Lpin1) e immunità (Cd59a e Ga17). Tuttavia, l’induzione di trascrizioni relative alla segnalazione di Ca2+, MAPK, arresto del ciclo cellulare, p53, sintesi proteica e angiogenesi non è più significativa dopo 24 ore dall’iniezione di DHT mentre le trascrizioni relative alla progressione del ciclo cellulare sono ancora sovraregolate. Inoltre, le trascrizioni relative alla sintesi proteica (Rps24 e Rps27) erano sotto-regolate. Questi risultati indicano che l’iniezione di DHT induce la generazione di energia, la sintesi proteica, la funzione mitocondriale e la proliferazione di cellule satellite / mioblasti a livello trascrizionale in vivo, supportando precedenti risultati di un’azione anabolica del composto in questione.

dhtpatwewy
Panoramica degli ARG nel muscolo scheletrico. Le trascrizioni sovra e sotto regolate dal trattamento con DHT sono mostrate rispettivamente in rosa e in blu. Le trascrizioni che mostrano solo una risposta precoce (DHT 1 ora, 3 ore e 6 ore) o tardiva (DHT 24 ore) sono indicate rispettivamente come (E) o (L). Le linee continue e tratteggiate rappresentano rispettivamente attivazione / induzione e inibizione. Akr1a4, aldo-keto reductasi famiglia 1 membro A4; Amd1, S-adenosilmetionina decarbossilasi 1; Asb5, ripetizione di ankyrin e proteina 5 contenente scatola SOCs; Atp5j2, ATP sintasi subunità mitocondriale F0 complessa f isoforma 2; Atp6, ATP sintasi 6; Atpaf1, fattore di assemblaggio complesso mitocondriale F1 sintasi ATP 1; B2m, microglobulina β-2; Cabc1, attività di accompagnatore ABC1 del complesso bc1 simile; Camk2g, protein chinasi IIγ calcio / calmodulina-dipendente; Cct8, subunità chaperonin 8; Cd59a, antigene CD59a; Col1a2, procollagene tipo I α2; Cyc1, citocromo c-1; Cyp27a1, citocromo P450 famiglia 27 sottofamiglia un polipeptide 1; DAG, diacilglicerolo; Dusp1, fosfatasi 1 a doppia specificità; EST, tag di sequenza espressi; Fxr2h, fragile 2 ritardo mentale X gene 2; Ga17, proteina cellulare dendritica GA17; Gadd45g, arresto della crescita e DNA inducibile 45γ; Gorasp2, Golgi riassemblando la proteina 2; Suggerimento 1, proteina 1 di legame alla triade di nucleotidi di istidina; IP3, inositolo 1,4,5-trisfosfato; Lgals1, lectina legante il galattosio solubile 1; Lpin1, lipina 1; MAPK, protein chinasi attivata dal mitogeno; Mrpl51, proteina ribosomiale L51; MtCo1, citocromo c ossidasi 1; MtCo2, citocromo c ossidasi 2; MtCo3, citocromo c ossidasi 3; MtNd2, NADH deidrogenasi 2; MtNd3, NADH deidrogenasi 3; MtNd4, NADH deidrogenasi 4; Ndufa5, NADH deidrogenasi 1α sottocomplex 5; Ndufb2, NADH deidrogenasi 1β sottocomplex 2; Ndufb9, NADH deidrogenasi 1β sottocomplex 9; Oaz, ornitina decarbossilasi antizima; Ogt, N-acetilglucosamina transferasi legata all’O; PKC, proteina chinasi C; PLC, fosfolipasi C; Psmc, subunità ATPase 26S proteasoma; Pvalb, parvalbumina; Rp, proteina ribosomiale; Pttg1, trasformazione del tumore pituitario 1; Sbp, proteina legante lo sperminozoo; Tctex1, testicolo complesso t espresso 1; TPO1, trasportatore di poliammina; Trdn, triadin.

Un altro studio interessante del 2011 e pubblicato sul “The Journal of Physiology” [86] ci offre ulteriori indizzi sul potenziale del DHT nell’ipertrofia muscolare.

Il gruppo di ricerca che ha svolto questo studio ne aveva in precedenza condotto un altro attraverso il quale avevano dimostrato che il Dihydrotestosterone (DHT), ma non il Testosterone, aumenta la produzione di forza nei muscoli a contrazione rapida e la diminuisce in quelli a contrazione lenta. Questi risultati hanno loro suggerito che il DHT poteva essere un androgeno con capacità ben superiori a quelle comunemente attribuiteli. Nel presente studio, i ricercatori hanno esaminato gli effetti di questi ormoni sul trasporto degli aminoacidi nei fasci muscolari dell’apparato muscolo-scheletrico a rapida contrazione del topo. I risultati mostrano che il DHT aumenta la sintesi proteica e l’aumento delle proteine che trasportano aminoacidi essenziali in fasci muscolari a contrazione rapida. Questo non  è stato osservato con il Testosterone.

Slide 1

E’ stato osservato che il DHT esercita azioni acute/non genomiche nel muscolo-scheletrico di mammiferi adulti le cui funzioni fisiologiche sono state capite di recente, pertanto l’obiettivo primario di questo studio era di osservare gli effetti acuti / non genomici del DHT sul uptacke di aminoacidi e sugli eventi di trasduzione del segnale cellulare alla base di queste azioni in fasci muscolari scheletrici a contrazione rapida e lenta di topo. Gli aminoacidi marcati con 14C sono stati usati per studiare gli effetti del DHT e del Testosterone (T) sull’assorbimento degli aminoacidi e sono stati usati interventi farmacologici per determinare gli eventi di trasduzione del segnale cellulare che mediano queste azioni. Mentre il T non ha avuto alcun effetto sull’assorbimento di isoleucina (Ile) e acido α-metilamminoisobutirrico (MeAIB) in entrambi i tipi di fibre, il DHT ha aumentato il loro assorbimento nei fasci di fibre a contrazione rapida. Questo effetto è stato invertito dagli inibitori della traslazione proteica, del recettore del prodotto per la crescita epidemica (EGFR), del sistema A, del sistema L, del mTOR e del MEK. Tuttavia, è stato relativamente correlato agli inibitori della trascrizione, dei recettori degli androgeni e dell’IP3K / Akt. In aggiunta, il trattamento con DHT ha aumentato l’espressione della LAT2 e l’insufflazione fosforilata del GRFR, mentre il miscuglio rapido-twitch si mescola e in entrambi i tipi di ERK1 / 2, RSK1 / 2 e ATF2. Inoltre, ha diminuito la fosforilazione di eEF2 e ha aumentato l’incorporazione di proteine di ferro in entrambi i tipi di fibre. La maggior parte di questi effetti è stata superata dagli inibitori di EGFR e MEK. Da questi risultati si ipotizza che un’altra funzione fisiologica delle azioni acute/non genomiche del DHT nelle fibre muscolari isolate dei mammiferi è quella di stimolare l’assorbimento di aminoacidi. Questo effetto è mediato dall’EGFR e comporta l’attivazione della via MAPK e un aumento dell’espressione LAT2.

imgsrv
IGF-1

Un risultato chiave nel presente studio è stato l’osservazione che il trattamento di piccoli fasci di fibre muscolari scheletriche isolati dall’EDL e dal soleo di topi femmine adulti con concentrazioni fisiologiche (630pgml − 1) di DHT, per 1 ora, significativamente (P = 0,001) ha aumentato l’assorbimento di Ile e MeAiB nei fasci di fibre isolati dall’EDL ma non in quelli isolati dal soleo. Sebbene la somministrazione acuta di ormoni come l’insulina (Biolo et al. 1995), il fattore di crescita insulino-simile 1 (IGF-1) (Fryburg et al. 1995) e l’ormone della crescita (Fryburg et al. 1995) hanno dimostrato di aumentare la sintesi proteica e per promuovere l’assorbimento di aminoacidi nel muscolo scheletrico umano, è la prima volta che è stato dimostrato un aumento dell’assorbimento di aminoacidi in risposta alla somministrazione acuta di uno steroide anabolizzante-androgeno nel muscolo scheletrico dei mammiferi adulti. Solo altri due studi hanno precedentemente osservato gli effetti dell’assorbimento di aminoacidi. Entrambi gli studi hanno utilizzato soggetti umani e non sono stati in grado di dimostrare alcun cambiamento nell’assorbimento degli aminoacidi in gruppi muscolari interi (Bhasin et al. 1997; Ferrando et al. 1998). Sebbene nel presente studio siano state utilizzate piccole fibre muscolari e il T sia stata applicato direttamente ai fasci di fibre, è importante notare che questo ormone non ha avuto alcun effetto sull’assorbimento degli aminoacidi in entrambi i tipi di fibre. Al contrario, il trattamento dei fasci di fibre con DHT ha comportato un marcato aumento dell’assorbimento di Ile e MeAIB solo nei fasci di fibre a contrazione rapida (Fig. 1). In precedenza, abbiamo anche dimostrato che il T non ha effetti acuti sulla produzione di forza in fasci muscolari di topo isolati intatti, mentre il DHT ha aumentato la produzione di forza nei fasci di fibre a contrazione rapida, ma l’ha diminuita in quelli a contrazione lenta (Hamdi & Mutungi, 2010). Nel loro insieme, questi risultati suggeriscono che il T potrebbe non avere effetti acuti / non genomici nelle fasce muscolari scheletriche dei mammiferi adulti.

Come già detto, nella maggior parte dei tessuti il T viene convertito in DHT dall’enzima 5 α-reduttasi. Pertanto, è probabile che tutti gli effetti acuti del T osservati in precedenza nei miociti in coltura (Estrada et al. 2003) potrebbero essere stati esercitati dal DHT. In effetti, è stato precedentemente suggerito che gli effetti anabolici del T nei muscoli scheletrici umani possano essere indiretti o secondari al rilascio di un altro ormone come IGF-1 (Ferrando et al. 1998). Con la presente si precisa che oltre all’IGF-1, gli effetti del T nel muscolo scheletrico dei mammiferi possono anche essere esercitati attraverso il rilascio di DHT. I ricercatori suggeriscono anche che il DHT è il principale steroide anabolizzante-androgeno nei muscoli scheletrici dei mammiferi adulti.

Nonostante la maggior parte degli studi è stata effettuata su fasci muscolari di topi femmina,  in precedenza era già stato dimostrato che il DHT ha effetti simili sulla produzione di forza nei fasci muscolari scheletrici di topi maschi e femmine (Hamdi & Mutungi, 2010).

I risultati riportati in questo studio  (vedi figura seguente) mostrano che sebbene il DHT aumenti l’attività del SNAT2, ciò non influisce sulla sua espressione. Al contrario, aumenta l’attività e l’espressione del LAT2 (vedi Fig. 3). Inoltre, il trattamemto del fascio di fibre muscolari con il classico sistema di inibitori A e L-typeaminoacid ha portato a una marcata riduzione dell’assorbimento basale di L- [U-14C] Ile in entrambi i tipi di fibre e ha completamente soppresso l’aumento indotto da DHT nell’assorbimento di Ile.

dhtst
Gli effetti del DHT sull’assorbimento di aminoacidi nei fasci di fibre muscolari di topo sono parzialmente mediati attraverso un trasportatore di aminoacidi del sistema A e sono mediati attraverso LAT2.

Effetti simili sono stati osservati anche quando i fasci di fibre sono stati trattati con la soluzione di Ringer contenente anticorpi contro il LAT2, suggerendo che gli effetti del DHT sull’Ile sono mediati attraverso questo trasportatore. Da queste osservazioni si ipotizza che i due trasportatori (LAT2, SNAT2) siano in qualche modo collegati. Pertanto, modulando l’espressione e l’attività di LAT2, anche il DHT sembra regolare indirettamente l’attività di SNAT2.

fdce
Recettore del Fattore di Crescita dell’Epidermide (EGFR) 

In precedenza, era stato dimostrato che le azioni acute/ non genomiche del DHT sulla produzione di forza nei fasci muscolo-scheletrici di topi adulti sono mediate attraverso il Recettore del Fattore di Crescita dell’Epidermide (EGFR) e comportano l’attivazione di ERK1 / 2 (Hamdi & Mutungi, 2010). È interessante notare che i risultati qui riportati suggeriscono che le azioni acute/non genomiche del DHT sull’assorbimento di aminoacidi nelle fibre muscolari dei mammiferi adulti sono mediate attraverso lo stesso recettore e lo stesso percorso. Inoltre, il pretrattamento dei fasci di fibre con Ciproterone o Flutamide in modo significativo (P <0,05) ha attenuato gli effetti del DHT sull’assorbimento dell’Ile senza sopprimerlo completamente. In precedenza, è stato suggerito che il Testosterone può attivare la via MAPK tramite un recettore degli androgeni accoppiato con proteina G (Estrada et al. 2003). Tuttavia, se questo meccanismo, comunemente indicato come transattivazione, è quello che media gli effetti acuti/non genomici del DHT nelle fibre muscolari dei mammiferi adulti è incerto e sono necessarie ulteriori ricerche per chiarirlo.

translocation of ERK1-2
Sistema regolatorio di segnalazione ERK1/2.

Dopo l’attivazione, ERK1 / 2 può rimanere nel citosol o traslare nel nucleo dove svolge un ruolo critico nella regolazione dell’espressione genica e della replicazione del DNA (Brunet et al. 1999). Nel nucleo, ERK1 / 2 fosforila una serie di target, inclusi molti fattori di trascrizione e una famiglia di chinasi correlate a RSK, le chinasi proteiche attivate dallo stress e dal mitogeno (MSK) (Deaketal.1998). Anche se nel presente studio è stato esaminato un gran numero di target a valle di ERK1 / 2, il trattamento con DHT ha aumentato soltanto  la fosforilazione di RSK1 / 2 e ATF2 . Inoltre, il DHT non ha avuto alcun effetto sulla fosforilazione degli altri modulatori MAPK. Per i ricercatori, questi risultati suggeriscono che le azioni acute / non genomiche del DHT nei muscoli scheletrici dei mammiferi adulti sono esercitate principalmente attraverso l’EGFR e comportano l’attivazione della modulazione ERK1 / 2 del percorso MAPK. L’ipotesi è che il DHT, direttamente o indirettamente, attivi l’EGFR che a sua volta attiva la via MAPK che porta ad un aumento del trasporto di aminoacidi nelle fibre aumentando anche la sintesi proteica in esse. Inoltre, il DHT sembra avere un attività principale sulle fibre a contrazione rapida.

Negli animali adulti, un aumento della massa muscolo scheletrica (ipertrofia) si verifica principalmente a causa di un aumento delle dimensioni piuttosto che del numero di fibre muscolari ed è generalmente ritenuto che sia regolata dal percorso Akt / mTOR (Glass, 2003). Il percorso Akt / mTOR è attivato da molti stimoli tra cui fattori di crescita, altri ormoni e sostanze nutritive. Inoltre, la sua attivazione culmina nel blocco del apoptosi, induzione della sintesi proteica, trascrizione genica e proliferazione cellulare (Dann etal.2007). Pertanto, è stato stimato che il DHT e il T potessero attivare questo percorso. L’assorbimento di amminoacidi indotto dal DHT nelle fibre a contrazione rapida senza la sua completa soppressione, suggerisce che le azioni acute / non genomiche del DHT non sono mediate attraverso Akt. Invece, i risultati che vengono presentati nel presente studio suggeriscono che il DHT aumenta la sintesi proteica regolando la traduzione dell’mRNA già presente nelle cellule. In effetti, il trattamento dei fasci di fibre muscolari con DHT ha portato a una marcata riduzione della fosforilazione di eEF2 e ad un moderato aumento (∼50%) della sintesi proteica nei fasci di fibre a contrazione rapida.

proteins

È anche degno di nota il fatto che il pretrattamento dei fasci di fibre con l’inibitore specifico del mTOR non solo ha ridotto l’assorbimento basale di Ile, ma ha anche soppresso completamente l’aumento indotto dal DHT dell’assorbimento di Ile nei gruppi di fibre a contrazione rapida. Per i ricercatori questi risultati suggeriscono che alcuni degli effetti acuti / non genomici del DHT sono probabilmente mediati attraverso mTOR. In effetti, numerosi studi hanno suggerito che mTOR è il legame tra la disponibilità di aminoacidi e una maggiore sintesi proteica (Beugnet et al. 2003; Avruch et al. 2009). Tuttavia, la rapamicina può anche indurre l’autofagia (Ravikumar et al. 2004). Pertanto, un’altra possibilità è che i suoi effetti siano dovuti all’accumulo di aminoacidi nelle fibre muscolari.

signaldht
Via di segnalazione cellulare che media gli effetti del DHT sul trasporto di aminoacidi nelle fibre muscolo-scheletriche dei mammiferi. Un diagramma schematico che mostra la via di segnalazione cellulare ipotizzata che media gli effetti acuti del DHT sull’amminoacido nei fasci muscolari dei mammiferi. L’ipotesi è che il DHT, attraverso un meccanismo sconosciuto, attiva l’EGFR e questo porta all’attivazione di RSK1 / 2 da parte di ERK1 / 2. L’RSK1 / 2 attivato aumenta quindi l’attività e l’espressione di LAT2 (cerchio blu con una croce), che a sua volta aumenta il trasporto di Ile nei fasci muscolari. Inoltre, RSK1 / 2 migliora la traduzione dell’mRNA in proteine. Si noti che il trasporto di Ile è accoppiato a quello di piccoli aminoacidi neutri come la glutammina (Gln) che vengono trasportati nella cellula dai trasportatori di aminoacidi del sistema A come SNAT2 (cerchio rosso con una croce). Pertanto, un aumento dell’attività di LAT2 aumenta indirettamente l’attività di SNAT2. Gli eventuali effetti di tutti questi processi sono di aumentare la sintesi proteica e quindi la massa muscolare, specialmente nelle fibre muscolari a contrazione rapida.

In conclusione, ci sono state prove che dimostrano che un’altra funzione fisiologica delle azioni acute / non genomiche del DHT nelle fibre muscolari dei mammiferi adulti è quella di aumentare l’assorbimento di aminoacidi essenziali. Sebbene non si possa escludere completamente il coinvolgimento del recettore degli androgeni, i principali risultati suggeriscono che l’aumento dell’assorbimento di aminoacidi e la sintesi proteica sono mediati attraverso l’EGFR e comportano l’attivazione del modulo ERK1 / 2 del pathway MAPK che a sua volta attiva RSK1 / 2 portando ad un aumento dell’espressione del trasportatore di aminoacidi di tipo L LAT2.

Piccola parentesi sul Mesterolone

Arrivati a questo punto, prima di trattare le conclusioni sul DHT, vorrei riportarvi due interessanti studi nei quali si è osservata l’azione di una forma di DHT metilata in C-1, il noto Mesterolone, sulla massa muscolare.

CSMESTER

Senza dilungarsi troppo in preamboli, come ben sappiamo, il Mesterolone (nome commerciale Proviron) [1 alpha-methyl-17 beta- hydroxy-5 alpha-androstan-3-one] è un AAS derivato dal Dihydrotestosterone (DHT). A differenza del DHT il Mesterolone presenta l’aggiunta di un gruppo metilico in C1 (similmente al Metenolone) cosa che ne aumenta discretamente la biodisponibilità orale, senza però apportare eccessivo stress epatico. Questa alterazione però non aumenta la stabilità del C3 chetogruppo, essenziale per l’attività anabolizzante a livello muscolare mediata dal legame recettoriale, come il suo precursore.

Ora, sappiamo anche che ci sono frequenti segnalazioni di abuso di Mesterolone negli sport umani ed equini per il  miglioramento della prestazione. Tuttavia, sono disponibili informazioni limitate su come questo farmaco esercita i suoi effetti sul muscolo scheletrico.

Le cellule satellite (SC) sono cellule staminali miogeniche mononucleari che contribuiscono alla crescita e alla riparazione dei muscoli postnatali. Poiché l’attivazione delle SC e la successiva differenziazione nei nuovi myonuclei sono un evento importante durante l’ipertrofia muscolare. In uno studio pubblicato nel maggio del 2012 [87], si è osservata l’influenza del Mesterolone sulla distribuzione delle SC all’interno del muscolo pettorale dei polli (Gallus gallus ). Nello specifico, questo studio ha testato le ipotesi secondo cui che il Mesterolone induca l’ipertrofia del muscolo scheletrico aviario e che aumenti anche  il ​​numero di SC nel muscolo scheletrico aviario. Sono state utilizzate solide tecniche immunocitochimiche e analisi morfometriche per calcolare il numero di SC e myonuclei. Inoltre, sono stati misurati i livelli di concentrazione di DNA e proteine ​​Pax7 per confermare i risultati immunocitochimici. Il Mesterolone ha aumentato significativamente la massa pettorale e le dimensioni delle fibre. Tutti gli indici delle SC e il numero di myonuclei sono aumentati significativamente con la somministrazione di Mesterolone. Inoltre, negli uccelli trattati con Mesterolone sono state riscontrate una maggiore concentrazione di DNA ed espressione della proteina Pax7. Questo studio indica che il Mesterolone può indurre ipertrofia del muscolo scheletrico aviario e che questo è correlato con un aumento del numero di SC.  I ricercatori suggeriscono che le SC siano intermediari cellulari chiave per l’ipertrofia muscolare indotta da Mesterolone. L’ipotesi, che necessità di ulteriori ricerche, è che tale effetto possa riscontrarsi anche in altre specie compreso l’uomo.

cellulesat
Identificazione immunofluorescente di SC nelle sezioni trasversali dei muscoli pettorali ottenuti da polli di controllo e trattati con Mesterolone. (A) e (C) rappresentano una sezione ottenuta dal muscolo pettorale di un esemplare di controllo. (B) e (D) rappresentano una sezione ottenuta dal muscolo pettorale di un esemplare trattato con Mesterolone. (A) e (B) mostrano tutti i nuclei in blu (colorazione DAPI) e le lamine basali delle fibre muscolari in rosso (colorazione anti-laminina). (C) e (D) mostrano SC in verde (etichettatura anti-Pax7) e le lamine basali in rosso. Barre di scala = 50 μm.

image5

In un altro studio pubblicato nel 2010 [88], la microscopia ottica ed elettronica e la morfometria quantitativa sono state utilizzate per determinare gli effetti dell’esercizio e del Mesterolone sul muscolo soleo dei topi. Sia l’esercizio fisico che il Mesterolone hanno causato una significativa ipertrofia delle fibre muscolari extrafusali. L’ipertrofia delle fibre di tipo I era maggiore di quella delle fibre di tipo II. Non c’era iperplasia. I mitocondri erano più numerosi e più grandi rispetto a quanto osservato nei muscoli degli animali sedentari. La capillarità è aumentata e sono comparse piccole fibre muscolari nucleate centralmente, di solito in piccoli gruppi e molto spesso nei muscoli degli animali esposti al Mesterolone. Una piccola percentuale di cellule satelliti mostrava segni di attivazione ma nei muscoli degli animali trattati con Mesterolone c’era una massa muscolare maggiore dopo l’esercizio. I muscoli di animali che erano stati entrambi fatti esercitati e trattati con Mesterolone presentavano i maggiori cambiamenti: la massa muscolare e l’ipertrofia delle fibre muscolari erano maggiori rispetto a tutti gli altri gruppi di animali, la capillarità era maggiore e> il 30% di tutte le cellule satellitari riconosciute mostrava segni di attivazione. Gruppi di piccole fibre muscolari nucleate centralmente sono state comunemente osservate in questi muscoli. Sembravano essere il risultato di lacerazioni rigenerate in fibre muscolari esistenti. Sia con l’esercizio fisico sia con il Mesterolone, da solo o in combinazione, si è verificato un aumento della percentuale di fibre muscolari di tipo I e una diminuzione della proporzione di tipo II.

Entrambi gli studi esposti, sebbene non siano di grande impatto, fanno sicuramente nascere il dubbio in coloro i quali hanno sempre valutato le possibili azioni di una molecola in modo ristretto, sia per mancanza di una conoscenza sufficienza in materia sia per limitatezza nel formulare ipotesi estrapolate dall’osservazione.

Ora, non sto sicuramente dicendo che un culturista trattato con solo Mesterolone possa ambire a grandi cambiamenti nella composizione corporea. Sto semplicemente ipotizzando, che le nozioni in merito alle attività degli AAS sono datate e parziali, anche perchè si basano per lo più, tanto quanto gli studi esposti, sulla capacità di legame degli AAS testati osservata nella prostata e nel levator ani dei topi. Inoltre, il Mesterolone ha visto una riscoperta come farmaco ancillare nella TRT o come anti-depressivo funzionale in alcune tipologie di depressione.

In fondo, il peggior difetto del Mesterolone è dipeso dalla sua consuetudinaria via di somministrazione…

Nota: la biodisponibilità orale del Mesterolone è stata stimata al 3%. 

Tiriamo le somme…con possibili critiche…  

Già sento i soliti limitati in intelletto e pazienza, sempre pronti a parlare senza cognizione di causa, urlare al “esiste lo studio X che afferma che l’aggiunta di Dutasteride con dosi sovrafisiologiche di Testosterone non cambia il risultato!” … Lo conosco anche io capre!… A proposito, vediamo di cosa si tratta…

1200px-Testosterone_enanthate.svg
Testosterone Enantato 

Il principale studio è quello pubblicato su JAMA nel 2012.[89] Si tratta di uno studio in doppio cieco, randomizzato, controllato con placebo. Lo studio è stato diretto dal dott. Bhasin e colleghi, i quali hanno reclutato 139 uomini sani, di età compresa tra 18 e 50 anni, con livelli normali di Testosterone.
Ai pazienti è stata assegnata  1 su 4 dosi di Testosterone Enantato (50, 125, 300 o 600 mg / settimana) più 2,5mg/die di Dutasteride o sono stati assegnati a 1 su 4 gruppi a cui è stato somministrato 1 di 4 dosi di Testosterone Enantato (50, 125, 300 o 600 mg / settimana) più placebo per 20 settimane.

Dutasteride.svg
Dutasteride 

Il cambiamento nella massa magra rispetto al basale, misurata dall’assorbtiometria a raggi X a doppia energia, è stato il risultato primario. I ricercatori hanno anche misurato i livelli di Testosterone, la forza muscolare, la funzione sessuale, la produzione di sebo e l’acne.

La forza nel Leg Press e del petto sono state misurate con il metodo 1 ripetizione massimale con l’uso di macchine Keizer.

La funzione sessuale è stata valutata con l’indice internazionale della funzione erettile e il questionario sulla salute sessuale maschile per una valutazione più completa del desiderio sessuale.

Il volume della prostata è stato misurato con la risonanza magnetica 1.5-Tesla.
La produzione di sebo è stata misurata con l’uso di nastri di sebo. La scala Palatzi è stata utilizzata per valutare l’acne.

139 uomini furono assegnati in modo casuale; 102 (54 nei gruppi placebo e 48 nei gruppi dutasteride) hanno completato l’intervento di 20 settimane.

Gli uomini assegnati alla Dutasteride erano simili al basale degli uomini assegnati al placebo. Inoltre, i livelli di Testosterone totale e libero non differivano tra i due gruppi.

L’aumento della  massa magra ottenuta dai gruppi Dutasteride+Testosterone era di 0,6 kg (IC 95%, da -0,1 a 1,2 kg) quando ricevevano 50 mg/settimana di Testosterone Enantato, 2,6 kg (IC 95%, 0,9 – 4,3 kg) per 125mg/settimana, 5,8 kg (IC 95%, 4,8 – 6,9 kg) per 300mg/settimana e 7,1kg (IC 95%, 6,0 – 8,2 kg) per 600 mg/settimana.

La massa magra ottenuta dai gruppi placebo+Testosterone era di 0,8 kg (IC 95%, da -0,1 a 1,7 kg) quando ricevevano 50mg/settimana di Testosterone Enantato, 3,5 kg (IC 95%, 2,1-4,8 kg) per 125 mg/settimana, 5,7 kg (IC 95%, 4,8 – 6,5 kg) per 300mg/settimana e 8,1 kg (IC 95%, 6,7 – 9,5 kg) per 600mg/settimana.

Le differenze dose-dipendente tra i gruppi Dutasteride e placebo per la massa magra non erano significative (P = .18).
I cambiamenti nella massa grassa, nella forza muscolare, nella funzione sessuale, nel volume della prostata, nella produzione di sebo e nei livelli di ematocrito e lipidi non differivano tra i gruppi.
La frequenza complessiva di eventi avversi, inclusa la frequenza di disfunzione sessuale, acne, vampate di calore e dolorabilità mammaria era simile nei gruppi placebo e dutasteride.

nihms745847f2
Misure in riferimento alla composizione corporea e alla forza muscolare raccolte nello studio trattato.
Nei grafici a sinistra, i marker indicati hanno un margine di errore con intervalli di confidenza al 95%. Nei grafici a destra (variazione dei livelli di Testosterone), le scale dell’asse orizzontale sono state spostate (offset) di 1000ng/dL e quindi è stata applicata una trasformazione della radice quadrata. Il livellamento semiparametrico è stato ottenuto utilizzando modelli di additivi generalizzati. Le aree ombreggiate indicano intervalli di confidenza al 95%.

Bene…possiamo cestinare tutto quanto ipotizzato in precedenza? Visto anche il tipo di studio esposto? Non esattamente …

Ora, da notare la tipologia di soggetti arruolati e il loro grado di “maturità sportiva”, più specificatamente negli allenamenti contro resistenza. Essa non è chiaramente specificata e la misurazione dell’espressione della forza in soggetti poco o per nulla allenati non è un grande parametro sebbene lo scopo dello studio fosse quello di constatare l’impatto nella forza e ipertrofia dato da un protocollo a dosaggio differenziato di Testosterone Enantato con o senza un inibitore della 5α-reduttasi (Dutasteride).

Secondo punto da notare, la mancanza di misurazione specifica della massa muscolare. Infatti, la composizione corporea dei partecipanti è stata valutata per i parametri di massa grassa e massa magra. Come risaputo, quando si parla di massa magra si prende anche in considerazione l’acqua. Sebbene la differenza sia bassa, probabilmente essa è da ricollegare anche al fatto che le dosi di Testosterone utilizzate erano differenti e con limite a 600mg di Testosterone Enantato a settimana (pari a 432mg di Testosterone), e che tale dosaggio non sempre crea iperestrogenemia marcata (considerando anche un lasso di tempo contenuto) tale da causare accumuli sensibili di acqua extracellulare. Considerando poi che uno degli effetti collaterali collegati all’uso di inibitore della 5α-reduttasi sia proprio un aumento degli estrogeni circolanti (per aumento del substrato di sintesi) con ripercussioni a carico di (e non solo limitate a) ritenzione idrica, accumulo di grasso con modello ginoide e ginecomastia, i dubbi sulle metodiche di analisi dei partecipanti allo studio diventano senz’altro dubbie.

Da notare che il Dutasteride è stato osservato ridurre il DHT sierico del >90% e quello intraprostatico del 94% alla dose di 0.5mg/die.[90] Nello studio presentato, i partecipanti assegnati ai gruppi Dutasteride e Dutasteride+Testosterone erano trattati con una dose di Dutasteride pari a 2,5mg/die.

I ricercatori volevano condurre uno studio meticolosamente progettato ed eseguito per rispondere a una domanda vecchia di quasi 5 decenni: il Testosterone, il DHT o entrambi a  livelli fisiologici e soprafisiologici sono importanti per il guadagno della massa magra? Purtroppo sembra che non siano stati sufficientemente meticolosi…

Non è di certo mia intenzione far valere di più uno studio svolto in vitro o su animali rispetto ad uno svolto su esseri umani. E’ invece mia intenzione far riflettere il lettore sul design di uno studio, ed in base al livello di questo poter valutare quanto in esso riportato.

Un altra critica riduttiva che potrebbe essere mossa contro le nuove ipotesi di attività del DHT potrebbe essere riferita all’enzima 3α-Hydroxysteroide dehydrogenasi (3α-HSD). Si dimentica però che tale enzima è un “limitatore” dell’attività del DHT a livello di tessuti come quello muscolare e adiposo. Infatti, la sua azione non esclude assolutamente la potenziale attività in acuto e non genomica del DHT nei tessuti dove l’enzima 3α-HSD viene espresso. E’ possibile che la cooperatività del DHT con il Testosterone sia di tipo sequenziale: attività prettamente recettoriale e in cronico (sebbene sotto regolazione organica) data dal Testosterone preceduta e seguita da una attività acuta e non genomica data dal DHT.

Inoltre, ed è una cosa molto importante da tenere in considerazione, la ricerca è tutt’ora in essere. Esistono ipotesi diverse con il loro bagaglio di ricerca. Ciò che il lettore preparato può fare è semplicemente soppesare le informazioni raccolte al fine di farsi un idea il più concreta possibile della questione.

Sebbene la ricerca scientifica abbia fatto enormi passi avanti nell’ultimo secolo, siamo ancora lungi dal conoscere tutto… anche quando si parla di ormoni e la loro attività diretta e indiretta…

Nota conclusiva: è ovvio che non si mette in dubbio l’utilità del controllo terapeutico del DHT in condizioni patologiche (vedi iperplasia prostatica maligna) o preventive in particolari soggetti. Negli individui in fisiologia e senza particolari predisposizioni, l’uso di inibitori della 5α-reduttasi potrebbe risultare una scelta controproducente sotto molteplici aspetti. 

Gabriel Bellizzi

Riferimenti:

  1. Schnitzer R (1 January 1967). Experimental Chemotherapy. Elsevier Science. pp. 156–. ISBN 978-0-323-14611-1.
  2. Krüskemper H (22 October 2013). Anabolic Steroids. Elsevier. pp. 12–. ISBN 978-1-4832-6504-9.
  3. Taylor WN (16 January 2002). Anabolic Steroids and the Athlete, 2d ed. McFarland. pp. 178–. ISBN 978-0-7864-1128-3.
  4. William Andrew Publishing (2007). Pharmaceutical Manufacturing Encyclopedia. William Andrew Pub. ISBN 978-0-8155-1526-5.
  5. Newsweek. Newsweek. 1953.
  6. New and Nonofficial Drugs. Lippincott. 1958.
  7. Rubin BL, Dorfman RI (1956). “In vitro conversion of testosterone to 17beta-hydroxyandrostan-3-one”. Proc. Soc. Exp. Biol. Med. 91 (4): 585–6. doi:10.3181/00379727-91-22337. PMID 13323010.
  8. Agmo A (18 April 2011). Functional and Dysfunctional Sexual Behavior: A Synthesis of Neuroscience and Comparative Psychology. Academic Press. pp. 196–. ISBN 978-0-08-054938-5.
  9. Oreopoulos DG, Michelis M, Herschorn S (6 December 2012). Nephrology and Urology in the Aged Patient. Springer Science & Business Media. pp. 495–. ISBN 978-94-011-1822-4.
  10. Webster GF, Rawlings AV (17 May 2007). Acne and Its Therapy. CRC Press. pp. 168–. ISBN 978-1-4200-1841-7.
  11. Smith LB, Mitchell RT, McEwan IJ (1 October 2013). Testosterone: From Basic Research to Clinical Applications. Springer Science & Business Media. pp. 5–. ISBN 978-1-4614-8978-8.
  12. Anawalt BD (2017). “Is Dihydrotestosterone a Classic Hormone?”. Endocr. Rev. 38 (3): 170–172. doi:10.1210/er.2017-00091. PMID 28582536.
  13. Azzouni F, Mohler J (2012). “Role of 5α-reductase inhibitors in benign prostatic diseases”. Prostate Cancer Prostatic Dis. 15 (3): 222–30.
  14. Melmed S (2016). Williams Textbook of Endocrinology. Elsevier Health Sciences. pp. 621, 711.
  15. Blume-Peytavi U, Whiting DA, Trüeb RM (26 June 2008). Hair Growth and Disorders. Springer Science & Business Media. pp. 161–162.
  16. Rhoades RA, Bell DR (18 January 2012). Medical Phisiology: Principles for Clinical Medicine. Lippincott Williams & Wilkins. pp. 690–.
  17. Rakel D (12 April 2012). Integrative Medicine E-Book. Elsevier Health Sciences. pp. 321–.
  18. Morrison MF (4 May 2000). Hormones, Gender and the Aging Brain: The Endocrine Basis of Geriatric Psychiatry. Cambridge University Press. pp. 17–.
  19. Azzouni F, Godoy A, Li Y, Mohler J (2012). “The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases”. Advances in Urology. 2012: 1–18.
  20. Zouboulis CC, Chen WC, Thornton MJ, Qin K, Rosenfield R (2007). “Sexual hormones in human skin”. Horm. Metab. Res. 39 (2): 85–95.
  21. Bolognia JL, Jorizzo JL, Schaffer JV (8 June 2012). Dermatology E-Book. Elsevier Health Sciences. pp. 1094–. ISBN 978-0-7020-5182-1.
  22. Murphy MJ (24 March 2011). Molecular Diagnostics in Dermatology and Dermatopathology. Springer Science & Business Media. pp. 373–.
  23. eam SJ, Scott LJ (2008). “Dutasteride: a review of its use in the management of prostate disorders”. Drugs. 68 (4): 463–85.
  24. Heesakkers J, Chapple C, Ridder DD, Farag F (24 February 2016). Practical Functional Urology. Springer. pp. 280–.
  25. Nieschlag E, Behre HM, Nieschlag S (26 July 2012). Testosterone: Action, Deficiency, Substitution. Cambridge University Press. pp. 61–.
  26. Dunn JF, Nisula BC, Rodbard D (July 1981). “Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma”. J. Clin. Endocrinol. Metab. 53 (1): 58–68.
  27. Williams DA, Foye WO, Lemke TL (2002). Foye’s Principles of Medicinal Chemistry. Lippincott Williams & Wilkins. pp. 707–.
  28. Coutts, S. B.; Kicman, A. T.; Hurst, D. T.; Cowan, D. A. (1997-11-01). “Intramuscular administration of 5α-dihydrotestosterone heptanoate: changes in urinary hormone profile”. Clinical Chemistry. 43 (11): 2091–2098.
  29. Marks LS (2004). “5α-reductase: history and clinical importance”. Rev Urol. 6 Suppl 9: S11–21.
  30. Horton R (1992). “Dihydrotestosterone is a peripheral paracrine hormone”. J. Androl. 13 (1): 23–7. doi:10.1002/j.1939-4640.1992.tb01621.x (inactive 2020-03-09).
  31. Wilson JD (1996). “Role of dihydrotestosterone in androgen action”. Prostate Suppl. 6: 88–92.
  32. Swerdloff RS, Dudley RE, Page ST, Wang C, Salameh WA (2017). “Dihydrotestosterone: Biochemistry, Physiology, and Clinical Implications of Elevated Blood Levels”. Endocr. Rev. 38 (3): 220–254.
  33. Bhasin S (13 February 1996). Pharmacology, Biology, and Clinical Applications of Androgens: Current Status and Future Prospects. John Wiley & Sons. pp. 72–.
  34. Hay ID, Wass JA (26 January 2009). Clinical Endocrine Oncology. John Wiley & Sons. pp. 37–.
  35. Melmed S (2016). Williams Textbook of Endocrinology. Elsevier Health Sciences. pp. 621, 711.
  36. Jin Y, Penning TM (2001). “Steroid 5alpha-reductases and 3alpha-hydroxysteroid dehydrogenases: key enzymes in androgen metabolism”. Best Pract. Res. Clin. Endocrinol. Metab. 15 (1): 79–94.
  37. Llewellyn W (2009). Anabolics. Molecular Nutrition Llc. pp. 19, 163.
  38. Blume-Peytavi U, Whiting DA, Trüeb RM (26 June 2008). Hair Growth and Disorders. Springer Science & Business Media. pp. 161–162.
  39. Azzouni F, Mohler J (2012). “Role of 5α-reductase inhibitors in benign prostatic diseases”. Prostate Cancer Prostatic Dis. 15 (3): 222–30.
  40. Azzouni F, Mohler J (2012). “Role of 5α-reductase inhibitors in prostate cancer prevention and treatment”. Urology. 79 (6): 1197–205.
  41. Lotti F, Maggi M (28 April 2015). “Hormonal Treatment for Skin Androgen-Related Disorders”. In Katsambas A, Lotti T, Dessinioti C, D’Erme AM (eds.). European Handbook of Dermatological Treatments. Springer. pp. 1451–1464.
  42. Wendowski, Oskar; Redshaw, Zoe; Mutungi, Gabriel (February 2017). “Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres”. Journal of Cachexia, Sarcopenia and Muscle. 8 (1): 48–56.
  43. Kohtz AS, Frye CA (2012). Dissociating behavioral, autonomic, and neuroendocrine effects of androgen steroids in animal models. Methods Mol. Biol. Methods in Molecular Biology. 829. pp. 397–431.
  44. Mozayani A, Raymon L (18 September 2011). Handbook of Drug Interactions: A Clinical and Forensic Guide. Springer Science & Business Media. pp. 656–.
  45. Hemat RA (2004). Principles Of Orthomolecularism. Urotext. p. 426.
  46. Grino PB, Griffin JE, Wilson JD (February 1990). “Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone”. Endocrinology. 126 (2): 1165–72.
  47. Wilderer PA (1 September 2010). “Bioassays for Estrogenic and Androgenic Effects of Water Constituents”. Treatise on Water Science, Four-Volume Set. Newnes. pp. 1805–.
  48. Diamanti-Kandarakis E (1999). “Current aspects of antiandrogen therapy in women”. Current Pharmaceutical Design. 5 (9): 707–23. PMID 10495361.
  49. von Deutsch DA, Abukhalaf IK, Lapu-Bula R (15 October 2003). “Anabolic Doping Agents”. In Mozayani A, Raymon L (eds.). Handbook of Drug Interactions: A Clinical and Forensic Guide. Springer Science & Business Media. pp. 510–.
  50. Swerdloff RS, Wang C (October 1998). “Dihydrotestosterone: a rationale for its use as a non-aromatizable androgen replacement therapeutic agent”. Baillière’s Clinical Endocrinology and Metabolism. 12 (3): 501–6.
  51. Kohtz AS, Frye CA (2012). Dissociating behavioral, autonomic, and neuroendocrine effects of androgen steroids in animal models. Methods Mol. Biol. Methods in Molecular Biology. 829. pp. 397–431.
  52. Rizner TL, Lin HK, Peehl DM, Steckelbroeck S, Bauman DR, Penning TM (July 2003). “Human type 3 3alpha-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) and androgen metabolism in prostate cells”. Endocrinology. 144 (7): 2922–32.
  53. Weiner IB, Gallagher M (2003). Handbook of Psychology, Biological Psychology. John Wiley & Sons. pp. 333–.
  54. Schill W, Comhaire FH, Hargreave TB (26 August 2006). Andrology for the Clinician. Springer Science & Business Media. pp. 243–.
  55. Hyde TE, Gengenbach MS (2007). Conservative Management of Sports Injuries. Jones & Bartlett Learning. pp. 1100–.
  56. “Androstanolone Drug Profile”. Adis Insight. 4 December 2006.
  57. Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 640–.
  58. Index Nominum 2000: International Drug Directory. Taylor & Francis. January 2000. pp. 63–.
  59. List PH, Hörhammer L (12 March 2013). Chemikalien und Drogen: Teil B: R, S. Springer-Verlag. pp. 523–.
  60. “Drugs@FDA: FDA Approved Drug Products”. United States Food and Drug Administration. Retrieved 16 November 2016.
  61. “Drug Product Database – Health Canada”. Health Canada. Retrieved 13 November 2016.
  62. Blume-Peytavi U, Whiting DA, Trüeb RM (26 June 2008). Hair Growth and Disorders. Springer Science & Business Media. pp. 161–162.
  63. Azzouni F, Mohler J (2012). “Role of 5α-reductase inhibitors in prostate cancer prevention and treatment”. Urology. 79 (6): 1197–205.
  64. Lotti F, Maggi M (28 April 2015). “Hormonal Treatment for Skin Androgen-Related Disorders”. In Katsambas A, Lotti T, Dessinioti C, D’Erme AM (eds.). European Handbook of Dermatological Treatments. Springer.
  65. Wendowski, Oskar; Redshaw, Zoe; Mutungi, Gabriel (February 2017). “Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres”. Journal of Cachexia, Sarcopenia and Muscle. 8 (1): 48–56.
  66. Kohtz AS, Frye CA (2012). Dissociating behavioral, autonomic, and neuroendocrine effects of androgen steroids in animal models. Methods Mol. Biol. Methods in Molecular Biology. 829. pp. 397–431.
  67. Llewellyn W (2009). Anabolics. Molecular Nutrition Llc. pp. 19, 163.
  68. Okeigwe I, Kuohung W (2014). “5-Alpha reductase deficiency: a 40-year retrospective review”. Curr Opin Endocrinol Diabetes Obes. 21 (6): 483–7.
  69. Heesakkers J, Chapple C, Ridder DD, Farag F (24 February 2016). Practical Functional Urology. Springer. pp. 280–.
  70. Imperato-McGinley J, Zhu YS (2002). “Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency”. Mol. Cell. Endocrinol. 198 (1–2): 51–9.
  71. Coutts, S. B.; Kicman, A. T.; Hurst, D. T.; Cowan, D. A. (1997-11-01). “Intramuscular administration of 5α-dihydrotestosterone heptanoate: changes in urinary hormone profile”. Clinical Chemistry. 43 (11): 2091–2098.
  72. Imperato-McGinley J, Peterson RE, Gautier T, Sturla E (1979). “Androgens and the evolution of male-gender identity among male pseudohermaphrodites with 5alpha-reductase deficiency”. N. Engl. J. Med. 300 (22): 1233–7.
  73. Kang HJ, Imperato-McGinley J, Zhu YS, Rosenwaks Z (2014). “The effect of 5α-reductase-2 deficiency on human fertility”. Fertil. Steril. 101 (2): 310–6.
  74. Katz MD, Cai LQ, Zhu YS, Herrera C, DeFillo-Ricart M, Shackleton CH, Imperato-McGinley J (1995). “The biochemical and phenotypic characterization of females homozygous for 5 alpha-reductase-2 deficiency”. J. Clin. Endocrinol. Metab. 80 (11): 3160–7.
  75. Cilotti A, Danza G, Serio M (2001). “Clinical application of 5alpha-reductase inhibitors”. J. Endocrinol. Invest. 24 (3): 199–203.
  76. Bradbury R (30 January 2007). Cancer. Springer Science & Business Media. pp. 49–.Burchum J, Rosenthal L (2 December 2014). Lehne’s Pharmacology for Nursing Care. Elsevier Health Sciences. pp. 803–.
  77. Bostwick DG, Cheng L (24 January 2014). Urologic Surgical Pathology. Elsevier Health Sciences. pp. 492–.
  78. Harris GS, Kozarich JW (1997). “Steroid 5alpha-reductase inhibitors in androgen-dependent disorders”. Curr Opin Chem Biol. 1 (2): 254–9.
  79. Sun J, Xiang H, Yang LL, Chen JB (2011). “A review on steroidal 5α-reductase inhibitors for treatment of benign prostatic hyperplasia”. Curr. Med. Chem. 18 (23): 3576–89.
  80. Torres F (2015). Androgenetic, diffuse and senescent alopecia in men: practical evaluation and management. Curr. Probl. Dermatol. Current Problems in Dermatology. 47. pp. 33–44.
  81. Check JH, Cohen R (2015). “An update on the treatment of female alopecia and the introduction of a potential novel therapy”. Clin Exp Obstet Gynecol. 42 (4): 411–5.
  82. Blume-Peytavi U, Whiting DA, Trüeb RM (26 June 2008). Hair Growth and Disorders. Springer Science & Business Media. pp. 182, 369.
  83. Check JH, Cohen R (2015). “An update on the treatment of female alopecia and the introduction of a potential novel therapy”. Clin Exp Obstet Gynecol. 42 (4): 411–5.
  84. Blume-Peytavi U, Whiting DA, Trüeb RM (26 June 2008). Hair Growth and Disorders. Springer Science & Business Media. pp. 182, 369.
  85. https://jme.bioscientifica.com/view/journals/jme/36/2/0360247.xml
  86. https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.2011.207175
  87. https://pubmed.ncbi.nlm.nih.gov/22419647/
  88. https://pubmed.ncbi.nlm.nih.gov/19854955/
  89. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035750/
  90. https://www.nature.com/articles/4500931

Mestanolone (Methyldihydrotestosterone)

338px-Mestanolone
Mestanolone

Androgenico: 78-254
Anabolico: 107 (valore sovrastimato)
Standard: Testosterone
Nome Chimico: 17α-Methyl-4,5α-dihydrotestosterone
Attività estrogenica: nessuna
Attività Progestinica: nessuna
Aromatizzazione: no

Il Mestanolone, noto anche come 17α-methyl-4,5α-Diidrotestosterone (17α-methyl-DHT) o 17α-methyl-5α-androstan-17β-ol-3-one, è uno steroide androgeno anabolizzante (AAS), commercializzato in forma orale sotto il nome di Androstalone e Ermalone, ad oggi per lo più in disuso in ambito medico.[1][2][3][4]

Il Mestanolone è uno steroide androstano sintetico e un derivato del Diidrotestosterone (DHT) metilato in posizione C17α. [1][4] Infatti, differisce dal DHT solo per la presenza del gruppo metile nella posizione C17α.[1][4] Stretti parenti sintetici del Mestanolone includono Mesterolone (1α-Methyl-4,5α-dihydrotestosterone), Oxandrolone (2-oxa-17α-methyl-DHT), Oxymetholone (2-idrossimetilene-17α-methyl-DHT) e Stanozololo (un derivato del 17α-methyl-DHT (Mestanolone) con un anello pirazolico fuso con l’anello A.)[1][4]

338px-Androstanolone.svg
Differenze nella struttura dello scheletro carbossilico tra Mestanolone (metilazione in C17α) e Mesterolone (metilazione in C1α). 

Il Mestanolone fu sintetizzato per la prima volta nel 1935 insieme al Methyltestosterone e al Methandriolo.[5][6] È stato sviluppato dalla Roussel negli anni ’50 ed è stato introdotto per uso medico, con i marchi Androstalone ed Ermalone, intorno al 1960.[4][10][8] Venne inizialmente commercializzato in Germania.[4] Inizialmente si pensava che il farmaco fosse un potente agente anabolizzante, ma le ricerche successive hanno dimostrato che in realtà ha effetti anabolici relativamente deboli ed esplica principalmente azione androgena.[4] Il Mestanolone, insieme al molto più conosciuto 4-Chlorodehydromethyltestosterone (Oral Turinabol) è stato utilizzaErmalone-Mestanolone-1080x675to come agente dopante negli atleti olimpionici della Germania Orientale all’interno di un programma di doping sponsorizzato dallo stato negli anni ’70 e ’80.[4] Il motivo del suo uso, come precedentemente accennato, era giustificato maggiormente dal suo valore androgeno piuttosto che su quello anabolizzante. Il suo uso garantiva un ottima risposta neuro steroidea con conseguente stimolazione del Sistema Nervoso Centrale e migliorata interazione neuromuscolare, con vantaggi nella velocità, nella forza, nell’aggressività, nella concentrazione, nella resistenza fisica e allo stress mentale.[4] Oggi, l’uso del  Mestanolone è stato per lo più sospeso in medicina, sebbene sia ancora disponibile in Giappone.[2][3][4] Il Mestanolone era comunemente disponibile sotto forma di compresse sublinguali da 25mg (marchio Ermalone).[7]

Il Mestanolone è un AAS con effetti molto simili all’Androstanolone (diidrotestosterone; DHT) essendo praticamente una versione orale di quest’ultimo.[4] A causa dell’inattivazione da parte della 3α-idrossisteroide deidrogenasi (3α-HSD) nel muscolo scheletrico, il Mestanolone, sebbene dotato di una metilazione in posizione C-17 la quale  ne migliora la stabilità del legame recettoriale, è descritto come un agente anabolizzante molto scarso, analogamente all’Androstanolone e al Mesterolone.[4] Poiché il Mestanolone è un composto 5α ridotto, non è un substrato soggetto all’enzima aromatasi  e. quindi, non convertendo in estrogeno oltre a non possedere attività estrogenica intrinseca.[4] Inoltre, il farmaco non ha attività progestinica.[4] Come per gli altri AAS 17α-alchilati, il Mestanolone presenta un certo grado di epatotossicità.[4]

dhtmestanolone
Differenze nella struttura dello scheletro carbossilico tra Diidrotestosterone e Mestanolone (aggiunta metilazione in C17α). 

Come risaputo, gli AAS, a diverso grado di impatto,  possono avere effetti deleteri sul colesterolo sierico. Il Mestanolone non è da meno presentando la tendenza a causare una riduzione delle concentrazioni di colesterolo HDL (“buono”) e un aumento delle concentrazioni di colesterolo LDL (“cattivo”), cosa che comporta uno sbilanciamento dell’equilibrio HDL/LDL che si traduce in un rischio maggiore di sviluppare arteriosclerosi. L’impatto relativo all’assunzione di un AAS nei confronti dei lipidi ematici dipende dalla dose, dalla via di somministrazione (per via orale o iniettabile), dal tipo di steroide (aromatizzabile o non aromatizzabile), e dal livello di resistenza al metabolismo epatico.

Essendo il Mestanolone un AAS con consistente attività androgenica, la soglia dei possibili forti effetti collaterali androgenici è generalmente alta ed è paragonabile a quella riscontrabile con altri composti come il Mesterolone. Per questa ragione, il suo uso in ambito femminile non è stato molto diffuso dal momento che poteva essere causa di severi effetti virilizzanti.

Quando l’uso del Mestanolone veniva applicato in campo sportivo, i dosaggi comunemente utilizzati erano mediamente tra i 10 ed i 20mg al giorno con un timing di somministrazione tra una dose e la successiva di 12 ore. I tempi di utilizzo rimanevano entro le 6-8 settimane onde evitare di creare un eccessivo stress epatico. Tra i bodybuilder, il Mestanolone era spesso inserito durante la preparazione alla gara vista la sua facile gestibilità non causando ritenzione idrica, non essendo soggetto ad aromatizzazione, esercitando una blanda azione anti-estrogenica (sia recettoriale che come ligando inibitorio dell’enzima Aromatasi) e possedendo una buona azione lipolitica (legame con i AR adipocitari).

Come già detto in precedenza, l’uso del Mestanolone è stato per lo più sospeso in ambito medico anche se rimane disponibile in Giappone.[2][3][4] Nel mercato nero è raramente reperibile per via della sua attuale e pressoché assente richiesta tra gli atleti.

Gabriel Bellizzi

Riferimenti:

1- J. Elks (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 775.

2- Index Nominum 2000: International Drug Directory. Taylor & Francis. 2000. pp. 655.

3-  https://www.drugs.com/international/mestanolone.html

4- William Llewellyn (2017). Anabolics 11th. Molecular Nutrition Llc. p. 284-285-286.

5- Schänzer W (1996). “Metabolism of anabolic androgenic steroids”. Clin. Chem. 42 (7): 1001–20.

6- Ruzicka, L.; Goldberg, M. W.; Rosenberg, H. R. (1935). “Sexualhormone X. Herstellung des 17-Methyl-testosterons und anderer Androsten- und Androstanderivate. Zusammenhänge zwischen chemischer Konstitution und männlicher Hormonwirkung”. Helvetica Chimica Acta. 18 (1): 1487–1498.

7- H.-L. Krüskemper (22 October 2013). Anabolic Steroids. Elsevier. pp. 196.