Boldenone, Methenolone e anomalie del fattore estrogenico

*Nota per il lettore: la tesi di seguito esposta si affianca a quanto già ipotizzato dal “web writer”, nonché coach, autore e ricercatore, Type-IIx di MesoRx .

Introduzione:

Abbiamo imparato che il Boldenone, con tutta probabilità, ha una funzione di “ormone esca” per l’enzima Aromatasi. Sappiamo però che, probabilmente, la sua conversione in estrogeno lo vede convertirsi prevalentemente in Estrone [E1] e non in Estradiolo [E2]. Sappiamo che l’Estrone può convertirsi in Estradiolo (e viceversa) ma che il tasso in cui ciò avviene è molto basso. Siamo a conoscenza del fatto che l’E1 è un estrogeno molto meno potente dell’E2 e, come tale, è un estrogeno relativamente debole.[Kuhl H (August 2005), Escande A et al. (May 2006), Ruggiero RJ, Likis FE (2002)] Secondo uno studio, le affinità di legame relative dell’E1 per l’ERα e l’ERβ umani erano rispettivamente il 4,0% e il 3,5% di quelle dell’E2, e le capacità transazionali relative dell’E1 all’ERα e all’ERβ erano rispettivamente il 2,6% e il 4,3% di quelle dell’E2. [ Escande A et al. (May 2006)] In accordo, l’attività estrogenica dell’Estrone è stata riportata a circa il 4% di quella dell’Estradiolo.[Kuhl H (August 2005)] Non sicuramente una caratteristica favorevole per l’uso di una molecola senza la presenza di una base di Testosterone e/o hCG.

Farmacocinetica schematizzata del Boldenone Undecylenato
Conversione del Boldenone in Estrone attraverso l’interazione con l’enzima Aromatasi.

Conosciamo molto bene anche il Methenolone che, come derivato del DHT, non è soggetto ad aromatizzazione e quindi non ha la propensione a produrre effetti collaterali estrogenici come la ginecomastia.[William Llewellyn (2011). Anabolics] Come AAS, il Methenolone è antigonadotropo e esercita una soppressione dell’Asse HPT causando ipogonadismo reversibile e infertilità.[van Breda E et al. (Apr 2003)] Essendo un derivato del DHT conserva alcune caratteristiche antiestrogeniche, sebbene esse siano inferiori a quelle osservate con altre molecole simili come il Drostanolone. Queste proprietà, in un ambiente già predisposto a carenza di E2 [vedi mancanza di una base di Testosterone, mancato utilizzo di hCG e/o dosi sufficienti di questa, presenza di una molecola con marcati tassi di conversione in E1] non fanno altro che portare ad effetti avversi tipici dell’ipoestrogenemia [vedi, ad esempio, letargia, debolezza, dolori articolari, bassa libido, difficoltà a raggiungere e mantenere l’erezione ecc…].

Da sinistra: struttura molecolare del Methenolone privo di legame con l’estere e struttura molecolare dell’AAS legata all’estere Enantato.

Magari avete esperienza nell’uso di Boldenone Undecilenato, di Methenolone Enantato, o forse anche delle due molecole in combinazione ( magari con altri AAS). Forse potrete aver visto riportati i feedback degli utilizzatori in qualche forum in rete, o potreste anche essere a conoscenza di qualcuno che ha avuto effetti completamente diversi dai vostri con l’uso degli stessi farmaci. Nel primo caso (testimonianze su internet), avete, forse, ritenuto che questi utilizzatori si siano probabilmente somministrati prodotti non contenenti le suddette molecole (sperando di non essere voi gli interessati da ciò!). Nel secondo caso, in cui qualcuno che conoscete bene e capite che non ha alcuna motivazione per cui mentire e che sta usando AAS indubbiamente autentici (ad esempio, autenticati da HP/LC) vi riferisce allo stesso modo effetti completamente diversi da quelli da voi riscontrati.

Ma come stanno le cose? – come possono persone diverse sperimentare effetti così marcatamente diversi, persino opposti, dalla stessa molecola (o dalle stesse molecole) a dosi simili?

Non resta che:

  1. Affrontare questa domanda, in modo rigoroso, per rivelarci ciò che non era immediatamente evidente e, auspicabilmente, imparare alcuni fatti preziosi come risultato.
  2. Fornire soluzioni a coloro che sperimentano sintomi intollerabili di bassa estrogenicità come conseguenza dell’uso non medico di AAS.

Tesi
Teoria delle potenze estrogeniche dipendenti dalla molecola (per-AAS) e individualizzate (per utilizzatore):

Gli effetti di ogni AAS sull’estrogenicità (effetti associati all’attivazione di ER- α e β) dipendono da fattori dipendenti dalla molecola (per-AAS) e individualizzati (per-utilizzatore) che determinano sia

A. i livelli ematici effettivi che

B. gli effetti a livello tissutale dei prodotti aromatici di ogni AAS.

I prodotti aromatici consequenziali ai processi biochimici degli AAS vanno da quelli nulli (cioè non aromatizzabili), all’E1 (Estrone), un estrogeno debole, all’E2 (Estradiolo), un estrogeno potente (il più potente tra quelli endogeni) di cui tutti i lettori conoscono almeno l’esistenza e che è associato ai classici effetti estrogenici (sia che l’E2 sia “crashato” o meno), fino agli estrogeni non endogeni e altamente potenti come il 7α-metilestradiolo (il prodotto aromatico notevolmente potente del MENT, o anche noto come Trestolone).

Gli effetti di ciascun AAS (alla sua dose e durata) e dei suoi prodotti aromatici (alle loro concentrazioni e durate) determinano l’Androgeno/Estrogeno ratio (A/E), un indicatore degli effetti sistemici generali degli AAS (diretti e collaterali); ad esempio, ginecomastia. Il “braccio” androgeno del rapporto A/E è il prodotto della potenza dell’AAS di attivare l’AR alla sua area sotto la curva (AUC), come nmol×h/L. Il “braccio” estrogenico del rapporto A/E ha due aspetti: effetti estrogenici e antiestrogenici. Per quanto riguarda gli effetti estrogenici, questi sono il prodotto della concentrazione e della durata (AUC come nmol×h/L) dei prodotti aromatici (cioè gli estrogeni) e delle loro capacità di attivare ER- α e β. Reciprocamente, gli effetti antiestrogenici, che sono effetti intrinseci della classe degli AAS ben consolidati nell’uomo e negli animali, derivano dagli effetti ipofisari (cioè antigonadotropi) e tissutali locali (ad esempio, impediscono l’assorbimento degli estrogeni) degli AAS, che si ricollegano al “braccio” degli androgeni.

Gli effetti individualizzati (per utilizzatore) degli AAS sull’estrogenicità dipendono in gran parte da tre (3) fattori ereditabili discreti (cioè, il risultato del proprio fenotipo genetico) che sono soggetti a un’ampia variazione interindividuale (differenze tra utilizzatori): il profilo ormonale legante¹, l’espressione dell’isozima 17β-HSD e l’espressione dell’Aromatasi³. In primo luogo, il profilo ormonale legante dell’utilizzatore (cioè le attività di SHBG, albumina, α₁ glicoproteina acida, globulina legante i corticosteroidi) determina le attività di E1/E2 liberi (estrogeni liberi) e il rapporto E1/E2 liberi:androgeni. In secondo luogo, questo profilo ormonale vincolante¹ interagisce con la velocità di aromatizzazione dell’AAS (Vmax) e la lunghezza della catena di esteri (cioè logP e idrofobicità) quando le concentrazioni del farmaco raggiungono lo stato stazionario, influenzando il gradiente di concentrazione degli estrogeni attivi (E1 ed E2 liberi) poiché l’esterasi libera l’ormone progenitore dal profarmaco mediante idrolisi attiva nel sangue intero [4]. In terzo luogo, l’espressione dell’isoenzima 17β-HSD dell’utilizzatore determina il flusso netto di E1 ( estrogeno debole) rispetto all’E2 (estrogeno potente). Infine, l’espressione dell’Aromatasi dell’utilizzatore – in parte modificabile dall’autoregolazione della massa grassa – determina le concentrazioni assolute di estrogeni (E1 ed E2).

Nota: non lasciatevi dissuadere da questa presentazione così massiccia dei fattori che influenzano le concentrazioni di estrogeni nel sangue e le attività estrogeniche a livello tissutale, poiché non li abbiamo ancora analizzati. Continuate a leggere: questi fattori verranno illustrati man mano che procederemo.

Divergenza negli effetti estrogenici del Boldenone e del Methenolone; e i limiti dei livelli circolanti come indice della regolazione estrogenica tessuto-specifica:

Da referti di casi reali raccolti in rete, i cui soggetti proprietari hanno riferito l’uso di Boldenone e/o Methenolone.

Quattro (4) casi distinti in cui non è stata utilizzata alcuna molecola AI:

1- Innalzamento dell’E2 e dell’E1 sierici con 800mg di Boldenone Undecylenato, 600mg di Trenbolone e 300mg di Testosterone:

Boldenone Undecylenato (800mg) + Trenbolone Enantato (600mg) + Testosterone Enantato (300mg). Analisi del sangue: Estrone (E1): 1.352 pmol/L (Intervallo di riferimento: < 250 pmol/L), cioè 365,6 pg/mL (Molto alto).

2-Elevazioni dell’E2 sierica da 300 mg di Primo, 300 mg di Test:

*Methenolone Enantato + Testosterone Enantato analisi del sangue con E2 basso-moderato

3-Riduzione dell’E2 sotto la norma con 750mg di Testosterone Enantato, 500mg di Boldenone Undecylenato, 400mg di Methenolone Enantato:

*Testosterone Enantato + Boldenone Undecylenato + Methenolone Enantato, analisi del sangue E2

4-Mantenimento dell’E2 nella norma con 300mg di Testosterone Enantato, 180mg di Methenolone Enantato:

  • Methenolone Enantato 180mg + Testosterone Enantato 300mg (rosso) vs. Testosterone Cypionato 150mg (blu)

Cosa concludere da questi dati?

Che trarre qualsiasi deduzione (per non parlare delle conclusioni) da questi risultati divergenti è un azzardo. Essi ci indicano una sola cosa: semplicemente che il Boldenone Undecylenato e/o il Methenolone (Enantato) sembrano abbassare l’estrogenicità riflessa dagli esami del sangue in alcuni casi e che per caratteristiche molecolari i meccanismi sono di natura sicuramente diversa.

I risultati di queste analisi del sangue illustrano i rischi di trarre inferenze o conclusioni dalle analisi del sangue di laboratorio postate in rete da diversi utilizzatori.

Dopo che il lettore avrà compreso i limiti dei livelli circolanti come indice della regolazione degli estrogeni specifica per i tessuti, verrà spiegato – nel modo più parsimonioso possibile rispetto alle prove e alla domanda – i fattori che influenzano le concentrazioni di estrogeni nel sangue e le attività estrogeniche a livello tissutale, al fine di “dare un’occhiata sotto il velo” a ciò che potrebbe guidare questa divergenza negli effetti estrogenici del Boldenone e del Methenolone.

Limiti dei livelli circolanti di estrogeni come indice della regolazione estrogenica tessuto-specifica:

[10]

AD: Androstenedione

Struttura molecolare del Androstenedione.

La regolazione della produzione e del metabolismo degli estrogeni nei tessuti periferici è consentita dall’espressione locale dell’Aromatasi (CYP19A1), che converte gli androgeni in estrogeni (T ⇒ E2 e AD ⇒ E1 [l’E2 è l’estrogeno più prevalente nell’uomo; ciò può spiegare la maggiore tollerabilità del Boldenone nelle donne]). Gli estrogeni possono inoltre essere convertiti in solfati di estrogeni e in esteri acilici grassi di estrogeni tramite estrogeno solfotransferasi (EST) e acil-transferasi, rispettivamente. Infine, questi derivati degli estrogeni possono essere riconvertiti in estrogeni progenitori attraverso l’attività della solfatasi steroidea (sulfatasi) e della lipasi [10].

Il tessuto adiposo (AT) è particolarmente ricco di esteri acilici grassi degli estrogeni e, di conseguenza, possiede un ampio sistema di tamponamento che consente la regolazione locale della produzione e del metabolismo degli estrogeni… In particolare, in uno studio condotto su uomini obesi, le concentrazioni di esteri acilici grassi dell’E2 sono risultate correlate nel siero e nel grasso (Wang, et al., 2013) [10], indicando probabilmente che i livelli di estrogeni nel siero influenzano il contenuto di estrogeni immagazzinati nell’AT, ma la conversione in forme bioattive è regolata localmente [10].

Diversi studi clinici hanno dimostrato una dissociazione tra i livelli di estrogeni circolanti e quelli intra-adiposi, anche negli uomini (Blankenstein, et al., 1992; Belanger, et al., 2006; Deslypere, et al., 1985; Wang, et al., 2013) [10].

Fattori confondenti nei dati dell’estrogenicità di Boldenone e/o Methenolone:

In questo articolo si ragionerà sui fattori che determinano un fenomeno di apparenti contraddizioni multiple – per comprendere una realtà (cioè la nostra) in cui praticamente tutti dicono la “verità”, affermando di aver assunto quelli che ritengono essere gli stessi farmaci a dosi comparabili, eppure, sorprendentemente, l’estrogenicità (un fattore coinvolto nella tollerabilità) differisce tra gli individui. I fattori in gioco sono i seguenti:

  1. Le analisi ematiche di laboratorio possono non riflettere l’estrogenicità perché sono coinvolti meccanismi a livello tissutale (ad esempio, blocco dell’assorbimento degli estrogeni, attività intra- ed endocrina).
  2. Variazione interindividuale del profilo ormonale legante¹, dell’espressione dell’isoenzima 17β-HSD² e dell’espressione dell’Aromatasi³, per non parlare di fattori come l’espressione del ER (cioè la densità o il numero), ad esempio nel tessuto mammario (fattori che sono coinvolti nella tollerabilità).
  3. Incompletezza degli esami ematici di laboratorio in cui viene utilizzato il Boldenone (ad esempio, le misure di E2 nel siero sono insufficienti senza le misure di E1).
  4. Contraffazione o presenza di altra molecola nel prodotto (ad es. Methenolone viene sostituito da Testosterone o Drostanolone).
  5. Differenze nella lunghezza dell’estere (ad esempio, Boldenone Cypionato vs. Undecylenato) che riflettono il logP: coefficiente di ripartizione e la lipofilia: polarità; profondità di iniezione (ad esempio, nello spazio sottocutaneo vs. intramuscolare profondo) e sito di somministrazione che differiscono nel flusso sanguigno e quindi nell’attività dell’esterasi, influenzando indirettamente il tasso di reazioni dell’Aromatasi.
  6. Le presunte autodichiarazioni dei professionisti del fitness che traggono un reddito dalla generazione di notizie sui media possono essere motivate da travisamenti e/o frodi al fine di aumentare gli introiti pubblicitari come minimo, se non per integrare le loro scoperte scintillanti e nuove nel loro portafoglio utilizzandole come insegna o segno distintivo, su cui il loro lavoro (ad esempio, video su YouTube, scritti) sarà identificato e distinto.

Fattori che influenzano le concentrazioni di estrogeni nel sangue e le attività estrogeniche a livello tissutale:

Fattori dipendenti dalle molecole (Per-AAS)

  1. Prodotti aromatici e loro capacità di attivare ER- α e β.

a) Boldenone =[Aromatasi]=> E1 (Estrone, un estrogeno debole, 2% di potenza ER-α rispetto all’E2) ed E2 (Estradiolo, il 17β-OH lo rende 50 volte più potente dell’E2) {aromatizza in E1 ed E2}.

b) Methenolone =X[Aromatasi] {non aromatizza}, quindi non supera:

  1. Effetti antiestrogenici che sono effetti di classe degli AAS, specie nei DHT derivati:

a) inibizione delle gonadotropine secrete dall’ipofisi (che riducono indirettamente gli estrogeni) e

b) blocco diretto dell’attività degli estrogeni a livello degli organi bersaglio, impedendo l’assorbimento degli estrogeni, ad esempio, nelle cellule sinoviali, causando sintomi di “articolazione secca e dolorante”. È questo l’effetto che rende il Methenolone [1], [2] – e prima che venisse sospeso – Drostanolone [3], così efficace per il cancro al seno metastatico resistente al trattamento.

  1. Boldenone Undecylenato: a) velocità di aromatizzazione (Vmax) ridotta rispetto al Boldenone libero.

Km: pari alla concentrazione del substrato (ascissa; valori dell’asse delle ascisse) quando la velocità è la metà della velocità massima (1/2Vmax; ordinata; valori dell’asse delle ordinate).

T: Testosterone

L’aromatizzazione è ostacolata (rispetto al T) per gli androsta-1,4-diene-3-oni (come il Boldenone; Undecylenato.), per cui procede lentamente [17].

T =[Aromatasi]=> E2, Κm = 1,83nM, secondo la cinetica di Michaelis-Menten [18].

Non conosciamo il Km per l’attività dell’Aromatasi in vivo rispetto al Boldenone Undecylenato. Sappiamo però che l’enzima Aromatasi è saturabile, per cui al di sopra di una certa dose, che dipende dall’espressione³ o dal numero di proteine dell’Aromatasi (e dal profilo ormonale di legame¹), tale dose non causerà ulteriori aumenti degli estrogeni attivi (E2 ed E1 liberi). Poiché il Boldenone Undecylenato è soggetto a un’aromatizzazione ostacolata, la sua velocità di reazione (Vmax) deve essere relativamente rallentata. Di conseguenza, la sua Km in vivo deve essere spostata verso destra (rispetto a quella di T/E2) e richiede concentrazioni maggiori di T per la saturazione dell’Aromatasi. Questo ci dice che, rispetto al T, sono necessarie dosi più elevate di Boldenone prima che l’Aromatasi si saturi (non è soggetto ad alcun aumento di E2 a dosi superiori al punto di saturazione).

Inoltre sappiamo anche che il 40% in più di Vmax dell’Aromatasi in rapporto al T negli uomini anziani rispetto a quelli giovani è stato praticamente interamente spiegato dalla massa grassa e dalle SHBG (cioè il profilo ormonale legato¹).[18] Poiché l’Aromatasi è espressa anche negli adipociti (cellule grasse), il cui numero è soggetto ad aumentare a causa della lipogenesi di nuove cellule grasse (adipociti), il mantenimento di una bassa percentuale di grasso corporeo per tutta la vita è un fattore importante che può essere controllato dal soggetto. È importante capire che le cellule adipose non vengono distrutte dalla restrizione calorica: l’aspetto visivo di una bassa percentuale di grasso corporeo dopo una dieta ipocalorica non riflette la perdita di numero di adipociti, ma solo la riduzione delle riserve di lipidi all’interno di tali cellule. Solo la lisazione o il congelamento (ad esempio, lisazione chimica come Kybella, CoolSculpting, mesoterapia ecc.) per la successiva rimozione attraverso le feci o la liposuzione (rimozione fisica) delle cellule di grasso distruggono effettivamente queste cellule, in modo tale che si verifichi una riduzione dell’aromatizzazione.

Interconversione di E2 ed E1 da parte della 17β-HSD dopo somministrazione i.m. di Boldenone Undecylenato.

Fattori individuali (per utilizzatore):

  1. A seconda del profilo ormonale legato di un individuo¹, il rilascio più lento dal deposito per il Boldenone Undecylenato prima di raggiungere lo stato stazionario determinerà quasi certamente una riduzione dell’attività dell’Aromatasi.
  2. A seconda dell’espressione dell’isozima 17β-HSD di un individuo², il flusso netto di estrogeni potrebbe produrre E1 > E2 dopo la somministrazione di Boldenone Undecylenato, con il risultato che gli estrogeni prevalenti nella circolazione sanguigna sono molto più deboli rispetto all’E2.
  3. A seconda dell’espressione dell’Aromatasi³ di un individuo, la tollerabilità dell’estrogenicità da parte di androgeni aromatizzabili (ad esempio, il Boldenone) dipende in parte dal numero di Aromatasi.

Figura: Previsione del target molecolare del Methenolone (Primobolan/Rimobolan):

Nota: sebbene vi siano prove (Figura, sopra) che il Methenolone Enantato abbia un’alta probabilità di legare l’Aromatasi (citocromo P450 19A1) (probabilità dell’88%) – la cui inibizione competitiva ridurrebbe l’E2 sierica – e una bassa probabilità di legare la 17β-HSD1, la 17β-HSD2 e la 17β-HSD3 – non farò supposizioni su questi potenziali meccanismi per gli effetti sull’estrogenicità, perché il modello semplicemente non ne ha bisogno. Inoltre, non sappiamo quale modalità di legame utilizzerebbe né la sua rilevanza biologica. È dominio esclusivo della “bro-science” impegnarsi in queste speculazioni sconsiderate.

Fattori individuali per utilizzatore

Fattori individuali (definizioni):

¹: profilo ormonale legato: Le attività di SHBG, albumina, α₁ glicoproteina acida e globulina legante i corticosteroidi influenzano le porzioni inattive legate rispetto a quelle attive libere di androgeni ed estrogeni.
²: Espressione dell’isoenzima 17β-HSD: Il numero relativo di isozimi 17β-HSD di tipo 1 e di tipo 2 determina le proporzioni relative e i livelli assoluti di E2 ed E1 circolanti, rispettivamente.
³: Espressione dell’Aromatasi: Il numero assoluto di proteine Aromatasi determina i livelli di prodotti aromatici (cioè estrogeni).

17β-HSD

Struttura del 17β-HSD

La 17β-HSD è un gruppo di enzimi che interconvertono gli steroidi (estrogeni, androgeni) con un gruppo cheto in posizione 17 (ad esempio, E1, AD) e quelli con un gruppo idrossi nella stessa posizione (ad esempio, E2, T).

Tutti gli enzimi 17β-HSD catalizzano l’ossidazione o la riduzione del carbonio in posizione 17 nel substrato steroideo:

preferenze diverse per il substrato (ad esempio, E1, E2, T, 3β-diolo, DHT)
funzioni fisiologiche distinte (Jansson, 2009) [15].
Nell’uomo sono state identificate dodici (12) 17β-HSD… alcune catalizzano reazioni di substrati non steroidei… se il substrato è steroideo, la reazione è di ossidazione o riduzione, a seconda del cofattore e della localizzazione cellulare [16].

Per evitare di sovraccaricare il lettore con informazioni troppo complesse, questo lavoro si concentrerà sulle prime due (2) isoforme principali della 17β-HSD (tipo 1 e tipo 2).

La 17β-HSD1 (tipo 1), sotto il controllo del gene A1-Q327, catalizza la riduzione degli steroidi (estrogeni, androgeni) con un 17-cheto a uno che ha un gruppo idrossi nella stessa posizione. Quindi, da E1 (Estrone) =[17β-HSD1]=> E2 (Estradiolo), e da AD =[17β-HSD1]=> T.

L’espressione della 17β-HSD1 è correlata positivamente all’attivazione dell’E1 e ai livelli di E2 [15] e la sua inibizione li riduce. Inibizione della 17β-HSD1 => ↓E2 [16].

La 17β-HSD2 (tipo 2) inverte le reazioni della 17β-HSD1 (cioè, E2 =[17β-HSD2]=> E1 e E3 =[17β-HSD2]=> 16α-idrossiestrone) e converte il T =[17β-HSD2]=> AD (Androstenedione), ossidando il 17-idrossile per sostituire il C-17 con un gruppo 17-cheto.

La sovraespressione relativa della 17β-HSD2 e la sottoespressione della 17β-HSD1 producono l’effetto netto di un aumento dell’Estrone (E1), soggetto a variazioni interindividuali nel metabolismo.

Aromatasi

Struttura enzima Aromatasi

L’enzima Aromatasi, sotto il controllo del gene CYP19A1, è presente in vari tessuti dell’uomo… tra cui gonadi, cervello e tessuto adiposo (4) [20].

L’aromatasi è l’unico enzima umano in grado di aromatizzare l’anello A degli steroidi, convertendo così gli androgeni in estrogeni [21].

Questo enzima scinde il 19-metile dall’AAS e riconfigura l’anello A dello steroide in modo da formare tre doppi legami alternati. Questa configurazione dell’anello A è descritta come aromatica (pertanto, questo processo è definito aromatizzazione).

Negli uomini, esiste una variazione della popolazione nell’altezza e nell’espressione del gene dell’Aromatasi [22]. Questo ha senso perché gli estrogeni prodotti dall’aromatizzazione del T endogeno in E2 sono fondamentali per la crescita e il mantenimento delle ossa negli uomini.

Sintomi di bassa estrogenicità

  1. Articolazioni “secche” e doloranti (artralgia) – Gli estrogeni hanno naturalmente proprietà antinocicettive che potrebbero essere, da una prospettiva teleologica, una caratteristica di design per conferire alle donne la tolleranza al dolore durante il parto, quando i livelli di estrogeni sono naturalmente aumentati [8]. Si ritiene che ciò sia mediato da neuroni del midollo spinale contenenti oppioidi che esprimono ER (24) [8]. I dati sugli animali dimostrano che i topi ovariectomizzati presentano un turnover accelerato della cartilagine (25) che può contribuire alla riduzione dell’ammortizzazione articolare [8]. Gli estrogeni sopprimono la produzione di citochine infiammatorie, mentre una riduzione degli estrogeni aumenta i livelli di citochine infiammatorie come IL-1 e TNF-α (26)… Le cellule sinoviali esprimono l’Aromatasi e, quando questa catalizza la conversione dall’Androstenedione (AD) all’Estrone (E1) e all’Estradiolo (E2), l’espressione di IL-6 si riduce nell’articolazione (28) [8]. Pertanto, un basso livello di estrogeni, e di conseguenza di IA, può provocare un aumento relativo della produzione di IL-6, che notoriamente agisce come citochina pro- e anti-infiammatoria. È anche nota per essere uno dei mediatori chiave dell’aumento della perdita ossea nelle donne in post-menopausa (29) [8].
  2. Perdita ossea – Gli estrogeni svolgono un ruolo fondamentale nel prevenire la perdita di contenuto/densità minerale ossea. Sebbene gli androgeni abbiano effetti significativi sull’osso maschile, gli estrogeni sono più importanti per la crescita e il mantenimento dell’osso… L’E2 è essenziale per la normale mineralizzazione, massa e turnover dell’osso, ma non per la crescita lineare dell’osso negli uomini (648, 649) [9].
  3. Resistenza all’Insulina – Il metabolismo del glucosio per kg di muscolo è più alto del 45% nelle donne (756) (probabilmente mediato da ER-α) [9]. Negli uomini, gli effetti metabolici benefici del Testosterone sono mediati più dal suo prodotto aromatico (E2) che dagli androgeni (E2 > T nell’accumulo di ↓AT)… ~15% degli estrogeni circolanti deriva dalla sintesi e dalla secrezione testicolare (cellule di Leydig) e il resto dall’attività dell’Aromatasi periferica… [9].
  4. Aumento del grasso corporeo (↑AT; AT: tessuto adiposo) – Negli uomini, l’E2 regola le riserve di grasso corporeo > T. I topi maschi ERKO: Estrogen Receptor Knockout (ER null) hanno mostrato depositi di AT superiori del 100% a 9-12 mesi di età (invecchiati)… riflette sia l’iperplasia che l’ipertrofia degli adipociti (281) e si accompagna a intolleranza al glucosio e resistenza all’Insulina (IR) [9]. I topi maschi ERαKO presentano infiammazione del ↑AT, dimensioni degli adipociti e alterata tolleranza al glucosio [9].
  5. Disfunzioni sessuali – La segnalazione ER-α nell’uomo supporta: i dotti efferenti e le funzioni epididimali; il trasporto di ioni e il riassorbimento di H₂O necessari per sostenere il normale funzionamento degli spermatozoi (riproduzione maschile); il cervello, l’adipe, il muscolo scheletrico, le ossa, i tessuti cardiovascolari e immunitari [9].

Nota: mentre gli estrogeni esogeni causano patologie riproduttive maschili [9], gli estrogeni endogeni (a livelli normali di T) sono fondamentali per il funzionamento sessuale maschile.

  1. Ridotta reattività del muscolo scheletrico agli stimoli anabolici – Questa affermazione non è attualmente supportata dalle prove relative ai sintomi di bassa estrogenicità indotti dagli AAS. Nonostante sia un luogo comune tra i bodybuilder che l’uso di AI/SERM, attraverso l’azione antiestrogenica nel muscolo scheletrico, riduca l’anabolismo muscolare; o che l’E2 molto alto promuova l’anabolismo muscolare – queste affermazioni non sono supportate da alcuna prova reale (vale a dire, sottoposte a un design di studio rigoroso e a metodi probabilistici e statistici per distinguere causa, effetto e casualità). Ciò che è dimostrato è che la terapia estrogenica sostitutiva (HRT, in letteratura; diversa dalla TRT) aumenta la sintesi proteica muscolare (MPS) indotta dall’allenamento contro-resistenza (RT), ma a scapito della MPS basale (ad es, La sostituzione degli estrogeni nelle donne in post-menopausa riduce la MPS nelle 24 ore) [10]… Mentre le prove nei ruminanti (cioè nei bovini) supportano l’E2 esogeno + androgeni (ad esempio, impianti di Trenbolone Acetato), questo è, come la HRT (sostituzione degli estrogeni) nelle donne in post-menopausa, non analogo agli AAS negli uomini sani.
  • Poiché le donne in post-menopausa sono invecchiate e in genere non ricorrono alla terapia ormonale sostitutiva (estrogeni) per periodi di anni dopo la cessazione delle mestruazioni, la semplice associazione tra bassi estrogeni e attenuata reattività agli stimoli anabolici è più probabilmente legata ad altri fattori legati all’età che non alla riduzione degli estrogeni (ad esempio, la diminuzione della capacità rigenerativa delle cellule satelliti e la diminuzione dell’espressione dell’mRNA di IGF-IEc nel muscolo scheletrico).
  • Poiché i ruminanti non sperimentano un aumento dell’IGFBP-1 in risposta all’E2 esogeno come gli esseri umani [11], che riduce la disponibilità di IGF-I libero e scatena (endogenamente) la secrezione di GH tramite il ritiro del feedback, qualsiasi connessione estrogeno-anabolismo nel muscolo scheletrico umano è, nella migliore delle ipotesi, tenue e probabilmente un mero fattore terziario, legato invece al T endogeno e al processo di aromatizzazione (che aumenta l’IGF-I) piuttosto che al suo prodotto aromatico. Gli estrogeni (ad esempio, l’E2) aumentano in modo dose-dipendente l’IGFBP-1, motivo per cui le donne hanno livelli di GH endogeno molto più elevati ma livelli di IGF-I proporzionalmente più bassi rispetto agli uomini in base alla superficie corporea (una risposta ridotta al GH) [13], e per cui le donne che assumono contraccettivi ormonali (cioè estrogeni) devono titolare le dosi di rhGH per vedere i benefici sulla crescita e sul metabolismo, ad esempio nella carenza di Ormone della Crescita nell’adulto [14]. Nelle donne in premenopausa, l’Etinilestradiolo orale riduce i livelli di IGF-I fino a una media del 30% (24-27) [13].

I casi di Boldenone Undecylenato e Methenolone Enantato

L’uso di Methenolone Enantato e/o Boldenone Undecylenato può provocare sintomi di bassa estrogenicità, che possono (o meno) essere riflessi da concentrazioni di E2 inferiori alla norma.

Adattamento di Methenolone Enantato e/o Boldenone Undecylenato alla tesi qui esposta


Vedere Teoria delle potenze estrogeniche (modello teorico):

Ogni AAS influisce sul flusso netto di estrogenicità attraverso i suoi particolari effetti sulle concentrazioni di estrogeni nel sangue e sulle attività estrogeniche a livello tissutale nei seguenti modi:

Methenolone:

Struttura molecolare del Methenolone

Il Methenolone, in quanto AAS non aromatizzabile, non converte in estrogeni. Di conseguenza, a dosi moderate/elevate, i suoi effetti sul flusso netto di estrogeni rispetto agli aspetti degli effetti dipendenti dal composto (per-AAS) saranno marcatamente anti-estrogenici – l’inibizione delle gonadotropine secrete dall’ipofisi (che riducono indirettamente gli estrogeni nell’uomo attraverso la soppressione della sintesi e della secrezione di T endogeno [steroidogenesi] da cui dipende la biosintesi dell’Estradiolo [E2] nell’uomo), e il blocco diretto dell’attività degli estrogeni a livello degli organi bersaglio, impedendo l’assorbimento degli estrogeni nelle cellule (ad es. g., cellule sinoviali, causando sintomi di “articolazione secca e dolorante”).

Boldenone:

Struttura molecolare del Boldenone.

Il Boldenone, rispetto al Testosterone, aromatizza maggiormente in Estrone (E1) e scarsamente in Estradiolo (E2) [5]. L’E1 è un estrogeno debole perché manca del gruppo 17β-OH dell’E2 e possiede appena il 2% della potenza dell’E2 nel transattivare l’ER-α [6]. Poiché l’espressione dell’isoenzima 17β-HSD² dell’individuo determina il flusso netto dell’equilibrio E1/E2, è particolarmente determinante nel caso degli effetti del Boldenone sul flusso netto di estrogenicità.

Il Boldenone è soggetto a una grande variazione interindividuale rispetto a tutti e tre i fattori enumerati (profilo ormonale legato¹, espressione dell’isozima 17β-HSD² ed espressione dell’Aromatasi³). La sua Vmax relativamente lenta (velocità di reazione dell’Aromatasi), l’aromatizzazione maggiore in E1 (un estrogeno debole) e minore in E2, le sue porzioni libere o legate e il numero assoluto di Aromatasi sono fattori che determinano un’ampia divergenza degli effetti del Boldenone sull’estrogenicità.

Gestione dell’estrogenicità

Per visualizzare il modo in cui l’utente dovrebbe approcciarsi alla gestione dell’estrogenicità si può ricorrere a un semplice modello: la curva a U inversa:

Figura: Un modello semplificato – la curva a U.

L’asse x è correlato all’attivazione ER a livello tissutale, che potrebbe non essere riflessa dalle concentrazioni di estrogeni nel sangue. L’asse y riflette la tollerabilità. L’area sotto la curva agli estremi (troppo bassa o troppo alta) è caratteristicamente intollerabile. La gestione dell’estrogenicità è quindi un “problema Goldilocks”. L’estrogenicità non può essere troppo bassa o troppo alta, ma deve essere “giusta” rispetto alla tollerabilità individuale.

La sezione che segue è di carattere pratico: un diagramma di flusso decisionale a cui l’utilizzatore può fare riferimento in caso di sospetta bassa estrogenicità (“crash E2”).

Pratica – Un diagramma di flusso del processo decisionale per affrontare la bassa estrogenicità derivante dall’uso di Boldenone e/o Methenolone:

Diagramma di flusso indicativo/esemplificativo del processo decisionale di fronte a sintomi di bassa estrogenicità.

Conclusioni:

L’estrogenicità (sintomi associati all’attivazione dell’ER) degli AAS è soggetta a effetti per-AAS e per utilizzatore. Il Methenolone, in quanto AAS non aromatizzabile e DHT derivato, agisce come antiestrogeno e androgeno. Il Boldenone è un composto interessante proprio per il fatto che è soggetto a effetti divergenti tra gli utilizzatori, che dipendono da fattori quali il profilo ormonale di legame¹, l’espressione dell’isoenzima 17β-HSD² e l’espressione dell’Aromatasi³. Le analisi del sangue di laboratorio spesso non sono sufficientemente precise per gli utilizzatori di AAS che cercano di capire l’estrogenicità a causa di fattori che includono gli effetti locali sui tessuti e le dissociazioni tra intra- ed endocrinologia. È per questo motivo che l’auto interpretazione delle analisi del sangue e il loro utilizzo per dettare il dosaggio e le pratiche dei farmaci ancillari (vedi SERM e/o AI) – che sono più spesso cattiva “bro-science” che medicina – piuttosto che rimanere semplicemente in sintonia con la tollerabilità di questi agenti e lavorare attraverso il diagramma di flusso presentato come necessario, porta il più delle volte a un frustrante gioco di “whack-a-mole” per gli utilizzatori di AAS.

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti e fonti:

  • Primo and/or EQ Symptoms of Low vs. High Estrogens, Explained, and a Practical Flowchart of Decisionmaking for Symptoms of Low Estrogens as a Result of Primo and/or EQ Use. By Type-IIx

[1] Suchowsky, GK, Junkmann, K. [Anabolic steroids and their side-effects]. Acta Endocrinol (Copenh). 1962 Jan;39:68-78. German. PMID: 13918121.

[2] Junkmann, K, Suchowsky, G. [Research on anabolic-active steroids]. Arzneimittelforschung. 1962 Mar;12:214-8. German. PMID: 14452833.

[3] Trams, G. (1977). Effect of drostanolone propionate on the binding of oestradiol and dihydrotestosterone by normal and malignant target tissues. European Journal of Cancer (1965), 13(2), 149–153. doi:10.1016/0014-2964(77)90193-1

[4] Kalicharan, R. W., Bout, M. R., Oussoren, C., and Vromans, H. (2016). Where does hydrolysis of nandrolone decanoate occur in the human body after release from an oil depot? International Journal of Pharmaceutics, 515(1-2), 721–728. doi:10.1016/j.ijpharm.2016.10.068

[5] Gual, C., Morato, T., Hayano, M., Gut, M., and Dorfman, R. I. (1962). Biosynthesis of Estrogens. Endocrinology, 71(6), 920–925. doi:10.1210/endo-71-6-920

[6] Houtman, C. J., Sterk, S. S., van de Heijning, M. P. M., Brouwer, A., Stephany, R. W., van der Burg, B., and Sonneveld, E. (2009). Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays. Analytica Chimica Acta, 637(1-2), 247–258. doi:10.1016/j.aca.2008.09.037

[7] Thomas MP, Potter BV. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol. 2013;137:27-49. doi:10.1016/j.jsbmb.2012.12.014
[8] P. Niravath, Aromatase inhibitor-induced arthralgia: a review, Annals of Oncology, Volume 24, Issue 6, 2013, Pages 1443-1449, ISSN 0923-7534, doi.org/10.1093/annonc/mdt037.

[9] Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev. 2017 Jul 1;97(3):995-1043. doi:10.1152/physrev.00018.2016.

[10] Rubinow KB. Estrogens and Body Weight Regulation in Men. Adv Exp Med Biol. 2017;1043:285-313. doi:10.1007/978-3-319-70178-3_14

[11] Chidi-Ogbolu N, Baar K. Effect of Estrogen on Musculoskeletal Performance and Injury Risk. Front Physiol. 2019;9:1834. Published 2019 Jan 15. doi:10.3389/fphys.2018.01834

[12] Veldhuis, J. D., and Bowers, C. Y. (2003). Human GH pulsatility: An ensemble property regulated by age and gender. Journal of Endocrinological Investigation, 26(9), 799–813. doi:10.1007/bf03345229

[13] Chanson, P., Arnoux, A., Mavromati, M., Brailly-Tabard, S., Massart, C., … Young, J. (2016). Reference Values for IGF-I Serum Concentrations: Comparison of Six Immunoassays. The Journal of Clinical Endocrinology and Metabolism, 101(9), 3450–3458. doi:10.1210/jc.2016-1257

[14] Cook, D. M., Ludlam, W. H., and Cook, M. B. (1999). Route of Estrogen Administration Helps to Determine Growth Hormone (GH) Replacement Dose in GH-Deficient Adults1. The Journal of Clinical Endocrinology and Metabolism, 84(11), 3956–3960. doi:10.1210/jcem.84.11.6113

[15] He, W., Gauri, M., Li, T., Wang, R., and Lin, S.-X. (2016). Current knowledge of the multifunctional 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1). Gene, 588(1), 54–61. doi:10.1016/j.gene.2016.04.031

[16] Thomas MP, Potter BV. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol. 2013;137:27-49. doi:10.1016/j.jsbmb.2012.12.014

[17] Gual, C., Morato, T., Hayano, M., Gut, M., and Dorfman, R. I. (1962). Biosynthesis of Estrogens. Endocrinology, 71(6), 920–925. doi:10.1210/endo-71-6-920

[18] Lakshman, K. M., Kaplan, B., Travison, T. G., Basaria, S., Knapp, P. E., Singh, A. B., … Bhasin, S. (2010). The Effects of Injected Testosterone Dose and Age on the Conversion of Testosterone to Estradiol and Dihydrotestosterone in Young and Older Men. The Journal of Clinical Endocrinology and Metabolism, 95(8), 3955–3964. doi:10.1210/jc.2010-0102

[19] Fouad Mansour M, Pelletier M, Boulet MM, Mayrand D, Brochu G, Lebel S, Poirier D, Fradette J, Cianflone K, Luu-The V, Tchernof A. Oxidative activity of 17β-hydroxysteroid dehydrogenase on testosterone in male abdominal adipose tissues and cellular localization of 17β-HSD type 2. Mol Cell Endocrinol. 2015 Oct 15;414:168-76. doi: 10.1016/j.mce.2015.06.016. Epub 2015 Jun 26.

[20] Attardi BJ, Pham TC, Radler LC, Burgenson J, Hild SA, Reel JR. Dimethandrolone (7alpha,11beta-dimethyl-19-nortestosterone) and 11beta-methyl-19-nortestosterone are not converted to aromatic A-ring products in the presence of recombinant human aromatase. J Steroid Biochem Mol Biol. 2008;110(3-5):214-222. doi:10.1016/j.jsbmb.2007.11.009
[21] Thomas MP, Potter BV. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol. 2013;137:27-49. doi:10.1016/j.jsbmb.2012.12.014

[22] Ellis, J. A., Stebbing, M., and Harrap, S. B. (2001). Significant Population Variation in Adult Male Height Associated with the Y Chromosome and the Aromatase Gene. The Journal of Clinical Endocrinology and Metabolism, 86(9), 4147–4150. doi:10.1210/jcem.86.9.7875

uso degli inibitori della PDE-5 nel bodybuilding.

Introduzione:

Nel 1986 i ricercatori hanno svolto studi approfonditi sull’ossido nitrico (NO), un potente vasodilatatore che può migliorare la circolazione e la salute del cuore. I ricercatori della Pfizer iniziarono a sperimentare farmaci chiamati inibitori della PDE-5 che potenziano e perpetuano gli effetti di dilatazione dei vasi sanguigni dell’NO.

Il loro obiettivo, all’epoca, era quello di trovare un trattamento per l’angina. Il primo farmaco fu il Sildenafil citrato, ma le sperimentazioni dimostrarono che la sua efficacia nel trattamento della patologia era modesta.
Tuttavia, i ricercatori hanno iniziato a esaminare le note che descrivevano gli effetti collaterali del farmaco. Ed ecco che molti soggetti hanno riferito di aver sperimentato erezioni durature. Pfizer cambiò rapidamente marcia e avviò studi pilota sugli effetti del Sildenafil citrato sulla disfunzione erettile. Il Viagra, nome commerciale del Sildenafil, fu presto approvato dalla FDA.

Non sono gli anziani hanno beneficiato di questo effetto. Infatti, uomini più giovani si sono affezionati al farmaco, come hanno fatto con i suoi cugini Cialis [Tadalafil] e Levitra [Vardenafil], perché i farmaci in questione aiutavano a gestire l’ansia da prestazione e riducevano i tempi morti tra un episodio sessuale e l’altro.

Confronto tra le strutture di cGMP, Sildenafil e altri inibitori della PDE5.
a | Il substrato nativo, cGMP. b | Sildenafil. c | Vardenafil e Tadalafil. cGMP, guanosina monofosfato ciclico; PDE-5, fosfo-diesterasi di tipo 5.

Ma ci sono altri motivi per cui gli uomini potrebbero usare questa classe di farmaci. Non sono solo legati alla salute sessuale, ma anche al Bodybuilding. Infatti, ci sono prove sufficienti per sostenere l’idea di assumere questi farmaci ogni giorno, come qualsiasi altro integratore ritenuto “base” nella preparazione di un bodybuilder.

Caratteristiche dei PDE-5 inibitori:

Un inibitore della fosfodiesterasi di tipo 5 (inibitore della PDE-5) è un farmaco vasodilatatore che agisce bloccando l’azione degradativa della fosfodiesterasi di tipo 5 (PDE-5) specifica per il cGMP sul GMP ciclico nelle cellule muscolari lisce che rivestono i vasi sanguigni che riforniscono vari tessuti. Questi farmaci dilatano i corpi cavernosi del pene, facilitando l’erezione con la stimolazione sessuale, e sono utilizzati nel trattamento della disfunzione erettile (DE). Il Sildenafil è stato il primo trattamento orale efficace disponibile per la DE. Poiché la PDE-5 è presente anche nella muscolatura liscia delle pareti delle arteriole polmonari, due inibitori della PDE-5, il Sildenafil e il Tadalafil, sono approvati dalla FDA per il trattamento dell’ipertensione polmonare. Dal 2019 si stanno apprezzando i più ampi benefici cardiovascolari degli inibitori della PDE-5.[https://www.ncbi.nlm.nih.gov/]

Schema della via dell’Ossido Nitrico (NO)/guanosina monofosfato ciclico (cGMP)/ nucleotide ciclico fosfodiesterasi 5 (PDE-5) e del sito d’azione degli inibitori della PDE-5.

Parte del processo fisiologico di vasodilatazione prevede il rilascio di ossido nitrico (NO) da parte delle cellule endoteliali vascolari, che poi si diffonde alle vicine cellule muscolari lisce vascolari. Lì, l’NO attiva la guanilato ciclasi solubile che converte la guanosina trifosfato (GTP) in guanosina monofosfato ciclico (cGMP), il principale effettore del sistema. Ad esempio, nel pene, il rilascio di NO ad alti livelli dalle cellule endoteliali e dai nervi penieni durante la stimolazione sessuale porta al rilassamento della vascolarizzazione liscia dei corpi cavernosi, causando una vasocongestione e un’erezione prolungata.[https://www.ncbi.nlm.nih.gov/]

Gli inibitori della PDE-5 prolungano l’azione del cGMP inibendo la sua degradazione da parte dell’enzima PDE-5, presente in tutto il corpo. Nel pene, gli inibitori della PDE-5 potenziano gli effetti del cGMP per prolungare l’erezione e aumentare la soddisfazione sessuale, mentre nel muscolo scheletrico aumentano l’iperemia del tessuto per via della vasodilatazione.[https://www.nejm.org/] Tuttavia, gli inibitori della PDE-5 non provocano erezioni senza stimolazione sessuale.

Oltre agli effetti emodinamici, gli inibitori della PDE-5 hanno dimostrato in diversi esperimenti proprietà antinfiammatorie, antiossidanti, antiproliferative e metaboliche.[https://www.ncbi.nlm.nih.gov/] Ma sono ovviamente necessari studi più ampi e a lungo termine per stabilirne l’efficacia e la sicurezza rispetto ad altri farmaci in altre patologie.

Quindi l’uso di questa classe di farmaci nel Bodybuilding si limita al classico trattamento per la disfunzione erettile e il pompaggio muscolare? Non esattamente.

Sicuramente, il potenziale additivo dei PDE-5 inibitori per lo stimolo massimo del “pump”, in specie in combinazione con Citrullina, nel pre-palco può incidere positivamente sugli ultimi ritocchi del “look” dell’atleta. Ricordo inoltre che un maggiore afflusso di sangue al tessuto muscolare significa un migliore pompaggio dato dall’esercizio contro-resistenza e un maggiore afflusso di sostanze nutritive ai muscoli, il che è positivo per la performance, il recupero e la crescita muscolare.

Ma i potenziali non si fermano qui:

Tadalafil
  • Uno studio del 2005 ha rilevato che dosi di Tadalafil da 10 e 20mg, assunte in media 10 volte al mese, riducevano significativamente i livelli di Estradiolo, ma solo negli uomini che non avevano troppo grasso corporeo – quelli con un IMC inferiore a 27 (1). Gli uomini con più grasso corporeo hanno livelli di Aromatasi più elevati e convertono maggiormente il Testosterone in Estradiolo, indipendentemente dal Tadalafil assunto.
  • Uno studio sugli effetti del Sildenafil su 140 uomini con un basso livello di Testosterone, di età compresa tra i 40 e i 70 anni, ha rilevato che il farmaco ha aumentato i livelli di Testosterone di circa 100 punti (2). Sebbene una parte di questo aumento dell’ormone maschile possa essere dovuta alla mancata conversione in Estradiolo di una parte del Testosterone, una percentuale di questo aumento sembra derivare anche da una maggiore produzione di Testosterone da parte dei testicoli.
  • Il Sildenafil riduce lo stress ossidativo indotto dal diabete e migliora la sensibilità all’Insulina. (3) Questo esperimento, a differenza degli altri, è stato condotto sui ratti, ma è probabile che funzioni in modo simile anche nell’uomo.

Inoltre:

Sildenafil

Sildenafil e crescita muscolare:

L’ipotesi che i farmaci che influenzano il flusso sanguigno possano essere utili per la crescita muscolare negli adulti più anziani, ha spinto il Dipartimento di Medicina Interna dell’Università del Texas Medical Branch ha condurre uno studio.

Time-line dello studio

Secondo i ricercatori, le riduzioni della funzione muscolare scheletrica si verificano nel corso di un invecchiamento sano, ma anche con la sedentarietà o con diverse malattie come il cancro, la distrofia muscolare e l’insufficienza cardiaca. Tuttavia, non esistono terapie farmacologiche accettate per migliorare la funzione muscolare scheletrica compromessa.

L’ossido nitrico può influenzare la funzione del muscolo scheletrico attraverso effetti sull’accoppiamento eccitazione-contrazione, sulla funzione miofibrillare, sulla perfusione e sul metabolismo.

I soggetti dello studio erano di mezza età, non allenati e per lo più in sovrappeso, e dovevano assumere un’integrazione giornaliera di Sildenafil per otto giorni, mentre si è analizzato l’effetto sulla sintesi proteica muscolare (il processo che guida la crescita muscolare) e sulla funzione muscolare rispetto a un placebo.

Lo studio ha dimostrato che l’aumento della segnalazione dell’ossido nitrico-guanosina monofosfato ciclico mediante la somministrazione giornaliera a breve termine dell’inibitore della fosfodiesterasi 5, il Sildenafil, aumenta la sintesi proteica, altera l’espressione proteica e la nitrosilazione e riduce la fatica nel muscolo scheletrico umano.

Questi risultati suggeriscono che gli inibitori della fosfodiesterasi 5 rappresentano un valido intervento farmacologico per migliorare la funzione muscolare.
Ciò che è stato rilevato, infatti, è che Il Sildenafil aumenta la sintesi proteica muscolare e riduce l’affaticamento muscolare.

Effetti del trattamento con Sildenafil sulla funzione muscolare scheletrica. (A) Forza isometrica degli estensori del ginocchio (percentuale media del giorno di riferimento ± errore standard (SE)) dopo 8 giorni di trattamento, determinata con la dinamometria. (B) Forza isocinetica (120° al secondo) degli estensori del ginocchio (percentuale media del giorno di riferimento ± SE) dopo 8 giorni di trattamento, determinata con la dinamometria. (C) Ripetizioni riuscite (percentuale media del giorno di riferimento ± SE) durante contrazioni isocinetiche affaticanti (120° al secondo) dopo 8 giorni di trattamento. *p = 0,016 rispetto al placebo, t-test non accoppiato, N = 6 placebo, 5 sildenafil. Il numero individuale di ripetizioni riuscite prima (pre) e dopo (post) il trattamento per i soggetti che hanno ricevuto il placebo (pannello superiore) e il Sildenafil (pannello inferiore) è mostrato a destra.
Effetti del trattamento con Sildenafil sul proteoma del muscolo scheletrico. (A) Sintesi proteica del muscolo scheletrico (media ± SE) dopo 8 giorni di trattamento, determinata utilizzando l’approccio precursore-prodotto per determinare il tasso di sintesi frazionale. *p = 0,004 rispetto al placebo, t-test non accoppiato, N = 6 placebo, 5 Sildenafil. Percorsi canonici (B) e funzionali (C) influenzati in modo differenziato da sildenafil e placebo, determinati utilizzando l’Ingenuity Pathways Analysis (IPA) dell’espressione proteica in campioni di biopsia del muscolo scheletrico (sono mostrati i 6 percorsi principali). Percorsi canonici (D) e funzionali (E) influenzati in modo differenziato dal Sildenafil e dal placebo, determinati utilizzando l’IPA della S-nitrosilazione delle proteine nei campioni di biopsia del muscolo scheletrico (sono indicati i sei percorsi principali).

L’affaticamento del muscolo scheletrico nel primo giorno di trattamento non era statisticamente diverso dal basale o diverso tra i gruppi di trattamento. Tuttavia, gli scienziati hanno ammesso che dopo otto giorni di trattamento, i soggetti del gruppo Sildenafil hanno completato un numero significativamente maggiore di ripetizioni di successo rispetto al basale in rapporto a quelli che hanno ricevuto il placebo durante contrazioni isocinetiche massimali ripetute.

Essendo un farmaco già approvato e con un eccellente record di sicurezza, i risultati di questo studio suggeriscono che il Sildenafil, e possibilmente altri inibitori della fosfodiesterasi 5, rappresenta una potenziale strategia farmacologica per migliorare la funzione del muscolo scheletrico.

Jeff Nippard


Jeff Nippard, un famoso blogger di fitness su YouTube, ha cercato di mettere le cose in chiaro. Per prima cosa ha contattato Jorn Tromellen, ricercatore sul metabolismo muscolare. Tromellen ha rivelato che in realtà i risultati sono meno impressionanti di quanto sembri. Il Sildenafil non è paragonabile agli AAS, ovviamente, in quanto quando si assume il Sildenafil la sintesi proteica aumenta nel giro di un’ora o due. Mentre gli AAS la stimolano in modo significativo (vedi attività genomica) per tutta la vita attiva del farmaco.

Tuttavia, questo non era sufficiente per Nippard, così si è rivolto a colui che ha effettivamente usato il Sildenafil: il compianto John Meadows.

John Meadows

Meadows ha fatto uso di Sildenafil per tutta la sua carriera agonistica. La prima cosa che ha ammesso è che il livello “di lavoro” del Sildenafil dipendono dalla quantità di cibo presente nello stomaco.

Lui ammette che, gli atleti lo usano prevalentemente per avere più “pump” prima di salire sul palco.

Poi Meadows ha confrontato le sensazioni generali dopo l’assunzione di Testosterone e Sildenafil e, ovviamente, non sono neanche lontanamente paragonabili. Considero questa deduzione al pari dell’affermazione secondo cui l’uomo non possa respirare sottacqua senza attrezzatura apposita… banalità…

La verità è che questo studio ha lasciato ancora più domande rispetto a prima. I risultati sembrano molto promettenti, ma rimangono ancora alcune perplessità.

Lo studio è stato condotto su persone non allenate. Quindi la prima domanda è: Funzionerebbe anche su soggetti più giovani e/o allenati?.

E ancora: sappiamo che avviene un aumento della sintesi proteica, ma non è chiaro se ciò sia a carico delle fibre miofibrillari o di altri tessuti.

Possibili effetti avversi dall’uso di inibitori del PDE-5:

Tutti gli inibitori della PDE-5 sono generalmente ben tollerati.[1] La comparsa di effetti collaterali, o reazioni avverse al farmaco (ADR), con gli inibitori della PDE-5 dipende dalla dose e dal tipo di agente.[https://www.ncbi.nlm.nih.gov/] La cefalea è una ADR molto comune, che si verifica nel >10% dei pazienti. Altre ADR comuni sono: vertigini, vampate di calore, dispepsia, congestione nasale o rinite.[6] Anche il mal di schiena e i dolori muscolari sono più comuni nei pazienti che assumono Tadalafil.[https://www.ncbi.nlm.nih.gov/]

Nel 2007, la Food and Drug Administration (FDA) statunitense ha annunciato l’aggiunta di un’avvertenza sulla possibile perdita improvvisa dell’udito alle etichette dei farmaci inibitori della PDE-5.[https://www.fda.gov/]

Dal 2007 sono emerse prove che suggeriscono che gli inibitori della PDE-5 possono causare una neuropatia ottica anteriore,[https://doi.org/1] anche se l’aumento del rischio assoluto è piccolo.[https://www.ncbi.nlm.nih.gov/]

Infine, si teme che gli inibitori della PDE-5 possano aumentare il rischio di mortalità neonatale nelle donne in gravidanza, e sono stati sospesi gli studi sull’uso dei farmaci per la restrizione della crescita fetale.[https://www.ncbi.nlm.nih.gov/]

Gli inibitori della PDE5 sono metabolizzati principalmente dal sistema enzimatico del citocromo P450, in particolare dal CYP3A4. Esiste la possibilità di interazioni avverse con altri farmaci che inibiscono o inducono il CYP3A4, tra cui gli inibitori della proteasi dell’HIV, il Ketoconazolo e l’Itraconazolo,[Australian Medicines Handbook 2006.] anche se la co-somministrazione non è stata collegata a cambiamenti nella sicurezza o nell’efficacia di entrambi gli agenti. [La combinazione con nitrovasodilatatori come la nitroglicerina e il PETN è controindicata perché può verificarsi ipotensione potenzialmente pericolosa per la vita.[Haberfeld H, ed. (2009). Austria-Codex (in German) (2009/2010 ed.). Vienna: Österreichischer Apothekerverlag.] Gli inibitori della PDE5 non interagiscono sinergicamente con altri farmaci antipertensivi.[https://www.ncbi.nlm.nih.gov/]

Conclusioni:

L’uso sporadico di questi farmaci (meno di 8-10 volte al mese) potrebbe non conferire effetti duraturi sulla salute. Tuttavia, il Tadalafil è approvato per l’uso una volta al giorno ed è ragionevole pensare che i pazienti, giovani o anziani, che hanno una tale prescrizione e lo usano ogni giorno, stiano raccogliendo alcuni, se non tutti, i benefici di cui sopra.

Tuttavia, se ulteriori ricerche confermeranno o aggiungeranno ulteriori elementi positivi all’elenco, potremmo arrivare al punto in cui i medici raccomanderanno quasi universalmente l’uso pressoché quotidiano di questi farmaci.

Per il momento, l’applicazione del Sildenafil nel Bodybuilding si è dimostrata più redditizia come “NO booster” potenziato e coadiuvato dalla Citrullina sia come mezzo per aumentare marcatamente il “pump” sul palco e sia per aumentare l’afflusso ematico nei muscoli (vedi ossigeno e nutrienti) durante il workout.

Diversamente, piccole dosi di Tadalafil possono garantire un contenuto controllo estrogenico in soggetti con body fat contenute, senza il rischio di incorrere il alterazioni lipidiche ematiche.

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  1. Greco EA et al. Testosterone:Estradiol ratio changes associated with long-term tadalafil administration: a pilot study. J Sex Med. 2006 Jul;3(4):716-722. PubMed.
  2. Spitzer M et al. Sildenafil increases serum testosterone levels by a direct action on the testes. Andrology. 2013 Nov;1(6):913-8. PubMed.
  3. Milani E et al. Reduction of diabetes-induced oxidative stress by phos- phodiesterase inhibitors in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2005 Feb;140(2):251-5. PubMed.

AAS ed effetto sulla libido [nelle donne]

Introduzione:

Come deducibile dal titolo, questo articolo si concentra sugli effetti degli androgeni sulla libido nelle donne.

Nell’articolo precedente, abbiamo discusso di come il Testosterone (T) e il suo prodotto della 5α-reduttasi, il DHT, nonché l’Estradiolo, esercitino un chiaro effetto organizzatore e attivatore sul comportamento sessuale, compreso il desiderio sessuale (libido). In questa sede ci concentriamo sugli effetti degli androgeni sulla libido nelle donne, dove gli effetti possono essere meno consistenti e robusti, nonostante sia interessante notare una maggiore reattività comportamentale agli androgeni nelle donne. [1]. [2].

Le donne e gli uomini differiscono ampiamente per quanto riguarda la libido. Pochi sosterrebbero, nonostante alcune variazioni e l’esistenza di valori anomali relativi, che gli uomini non siano caratteristicamente più virili delle donne. Eppure, nonostante un ampio consenso tra i ricercatori biologi e biomedici, così come tra i non addetti ai lavori, sul fatto che il Testosterone sia implicato nelle differenze di sesso nella libido e che anzi la aumenti, in letteratura si trovano prove sorprendentemente contrastanti su questo argomento, in particolare per quanto riguarda le differenze nelle e tra le donne.

Effetto soglia

Mentre negli uomini (nonostante una forte evidenza del contrario), la visione medica prevalente è che essi sono soggetti a un effetto soglia del Testosterone sul comportamento (compresa la libido); questo modello non si applica alle donne. Le donne, quindi, non sono soggette ad alcun effetto soglia o soglia minima, al di sopra del quale le concentrazioni di T non contribuiscono all’aumento della libido, o al di sotto del quale si manifestano i sintomi di una carenza di androgeni, con conseguente patologia, rispettivamente. Ciò è dovuto in parte alla mancanza di intervalli di riferimento stabiliti per le concentrazioni di T normali o sane e alla mancanza di un’adeguata sensibilità del test per rilevare le basse concentrazioni che potrebbero costituire la soglia minima per le concentrazioni di Testosterone (poiché sarebbero molto basse).

Ancora più interessante, però, è la mancanza di un limite superiore teorico, o tetto, per gli effetti comportamentali degli androgeni nelle donne.

Punti di apparente contraddizione negli effetti del Testosterone sulla libido nelle donne

Esistono diverse linee di risposta apparentemente contraddittorie della libido al Testosterone nelle donne rispetto alle loro controparti maschili.

Le donne sono fortemente influenzate dai cosiddetti affetti (umore, benessere ed energia) sulla libido. Dati i potenti effetti dell’umore sulla libido nelle donne, la depressione, l’ansia e lo stress aumentano la produzione surrenale di precursori del Testosterone e di altri ormoni surrenali nelle donne; mentre negli uomini questi stati d’animo negativi diminuiscono la produzione testicolare di Testosterone (che la produzione dei precursori surrenali non può superare). [1]. Eppure, una minoranza significativa di uomini dimostra un aumento paradossale della libido in stati di ansia e persino di depressione, mentre le donne non dimostrano apparentemente questo aumento paradossale della libido.

Un ostacolo fondamentale che presenta difficoltà nello studio degli effetti degli androgeni sulla libido è che la risposta genitale femminile (secrezione vaginale) è fondamentalmente dissociata dalla cognizione o dalla percezione dell’eccitazione sessuale. Si osserva spesso che la risposta genitale non è percepita come un aumento dell’eccitazione sessuale nelle donne, mentre negli uomini la risposta erettile aumenta in modo inequivocabile la libido, contribuendo a modulare ulteriormente il desiderio e la funzione (contribuendo al mantenimento dell’erezione). [1]. Eppure, il trattamento delle disfunzioni sessuali nelle donne attraverso il miglioramento dei sintomi della secchezza vaginale può essere secondo solo al miglioramento degli affetti (umore, benessere ed energia) nell’efficacia terapeutica.

Il normale ciclo mestruale ovulatorio dell’adulto. [3].

Tuttavia, l’effetto degli ormoni sulla libido femminile è innegabilmente potente. Durante il ciclo ovulatorio-mestruale (OMC), la fase follicolare tardiva, appena prima dell’ovulazione, è caratterizzata da LH e T elevati, Progesterone basso, E2 in aumento (da 5pg/mL nella fase follicolare precoce a un picco di 200-500pg/mL appena prima dell’ovulazione) che diminuisce bruscamente, e FSH in concomitante aumento. [3]. Le donne riferiscono assiduamente che la libido aumenta costantemente nella settimana precedente l’ovulazione e raggiunge un picco intorno al momento dell’ovulazione, per poi essere seguita da un calo precipitoso nella settimana successiva. [6]. Durante l’OMC dell’adulto, la produzione ovarica di T segue un andamento ciclico in cui i livelli di T aumentano durante la fase follicolare e raggiungono un picco approssimativamente per il terzo medio dell’OMC, diminuendo durante l’ultimo terzo (fase luteale) per raggiungere il nadir nei primi giorni della fase follicolare successiva. All’interno del terzo medio, i livelli di T possono essere relativamente stabili o comparire in picchi peri-ovulatori. [1]. In questo caso, il T può avere un’influenza di controllo; oppure, E2, LH e FSH possono essere i fattori principali dell’aumento della libido.

Effetti dei contraccettivi orali sul ciclo mestruale ovulatorio. [3].

I contraccettivi orali dovrebbero teoricamente ridurre la libido riducendo il T libero (gli estrogeni esogeni, spesso associati a un progestinico) e aumentando le SHBG (che lega il T e l’E2). I progestinici esercitano generalmente effetti antiandrogeni, sono associati a una diminuzione dell’espressione dell’AR e la combinazione con gli estrogeni aumenta l’espressione della PR. [4]. [5]. Sebbene i contraccettivi orali siano associati a una diminuzione della libido con una certa rilevanza, l’effetto non è robusto e si osservano eccezioni. Queste sono solitamente attribuite a differenze qualitative nella popolazione di donne che utilizzano contraccettivi orali, che possono avere un’ansia di tratto più bassa e quindi affetti più positivi (umore, benessere ed energia), una ridotta prevalenza di problemi sessuali e comportamenti e atteggiamenti sessuali generalmente più permissivi (forse anche un Testosterone endogeno di base più alto).

Effetti della menopausa sul ciclo ovulatorio mestruale [3].

Gli effetti più evidenti del potenziamento della libido nelle donne da parte del Testosterone derivano dalla somministrazione della TOS (terapia ormonale sostitutiva) a donne senza problemi sessuali. Tuttavia, ciò comporta ancora una certa confusione. La popolazione di donne a cui viene prescritta la TOS è generalmente in perimenopausa (in fase di transizione verso la riduzione, la diminuzione o la totale abolizione pratica della secrezione di E2 e Progesterone che caratterizza la menopausa). Le femmine di ratto ovariectomizzate a cui viene somministrato il solo E2 (Estradiolo Benzoato) sono moderatamente ricettive dal punto di vista sessuale, mentre il trattamento con E2 + Progesterone le rende pienamente ricettive e proattive dal punto di vista sessuale. [6]. La terapia ormonale sostitutiva per le donne somministrata come estrogeno + Testosterone (e in genere Testosterone sovrafisiologico) aumenta costantemente la libido nelle donne senza problemi sessuali. Mentre gli estrogeni esogeni riducono il Testosterone libero e gli estrogeni biodisponibili, aumentando di fatto le SHBG, il Testosterone esogeno aumenta il Testosterone libero e gli estrogeni biodisponibili riducendo le SHBG e l’aromatizzazione del T a E2. Sorge spontanea la domanda: qual è il contributo – positivo, negativo o neutro – dell’aumento degli estrogeni biodisponibili sulla libido? E nelle donne rispetto agli uomini?

Inoltre, la terapia ormonale sostitutiva di solito migliora l’umore, il benessere e l’energia: data l’influenza dominante degli affetti sulla libido nelle donne, gli effetti dell’E2+T sono solo indiretti, in quanto migliorano questi fattori?

Inoltre, con la somministrazione a lungo termine della TOS alle donne in menopausa e in postmenopausa, si verifica alla fine (dopo almeno diversi mesi) una diminuzione del miglioramento della libido. Questo fenomeno è stato variamente attribuito a tre fattori potenzialmente confondenti:

  • Che sia l’aumento in sé o il grado di variazione delle concentrazioni di Testosterone, piuttosto che la quantità assoluta di Testosterone, a determinare l’aumento della libido; una volta che le variazioni delle concentrazioni di T si riducono, sembrerebbe che la libido si riduca o si riduca in modo analogo.
  • Che esiste una diminuzione della sensibilità all’AR legata all’età (nelle donne come negli uomini) e che, con l’avanzare dell’età, la loro sensibilità diminuisce.
  • Che vi sia una desensibilizzazione agli effetti comportamentali (cioè alla libido) degli androgeni. Bancroft e colleghi hanno proposto l’ipotesi della desensibilizzazione come quadro ipotetico per spiegare le apparenti contraddizioni degli effetti Testosterone-libido nelle donne. [1]. [2].

Ipotesi di desensibilizzazione

Un tentativo teorico di spiegare le differenze di sesso negli effetti degli androgeni sulla libido. [1]. [2].:

1-La maggiore variabilità della sensibilità agli androgeni nelle donne potrebbe derivare da una maggiore variabilità genetica nelle donne, sulla base del fatto che in esse la risposta comportamentale agli steroidi gonadici è meno determinante rispetto agli uomini.

2-Una delle conseguenze dei livelli di T molto più elevati negli uomini è che essi mostrano effetti mascolinizzanti, come l’aumento della crescita e della massa muscolare, che dipendono dagli effetti anabolizzanti periferici del T. È stato ipotizzato che se i maschi fossero sensibili agli effetti del T sul sistema nervoso centrale come le femmine, gli effetti comportamentali di questi livelli mascolinizzanti sarebbero disadattivi (si veda al precedente articolo sugli effetti degli steroidi anabolizzanti-androgeni sulla libido negli uomini: Funzione del recettore degli androgeni nel SNC (maschi)). Pertanto, nel maschio è necessario ridurre la reattività agli effetti degli androgeni nel cervello.

3-L’esposizione a livelli di T sostanzialmente più elevati durante lo sviluppo fetale e anche durante le prime settimane postnatali [il picco perinatale] potrebbe essere responsabile della desensibilizzazione del SNC agli effetti del T nel maschio. Tale desensibilizzazione agirebbe presumibilmente a livello genomico piuttosto che nella fase recettoriale dell’azione ormonale… e a breve termine, sia l’esposizione al T che al DHT determina una sovraregolazione dell’AR. Una conseguenza di tale desensibilizzazione nell’uomo sarebbe che le variazioni geneticamente determinate nella risposta dei recettori del SNC al T verrebbero “appiattite”, consentendo livelli molto più elevati di T dalla pubertà in poi senza iperstimolazione dei meccanismi del SNC.

4-Senza questa desensibilizzazione nelle femmine, la variabilità genetica di base sarebbe più evidente, a livelli molto più bassi di T, e si manifesterebbe come una maggiore variabilità nella reattività comportamentale, dimostrata a partire dal primo sviluppo adolescenziale.

5-L’evidenza di studi su donne con iperplasia surrenalica congenita (CAH), in particolare la varietà a perdita di sale associata a livelli più elevati di T durante lo sviluppo fetale, mostra non solo un certo grado di mascolinizzazione del comportamento, ma anche bassi livelli di interesse sessuale. Sebbene in questi casi vi sia una serie di fattori che potrebbero compromettere il normale sviluppo sessuale, questa evidenza è coerente con l’esistenza di un certo grado di desensibilizzazione agli elevati livelli fetali di T, che diminuiscono e rimangono bassi dopo la nascita quando la CAH viene trattata.

6-Una domanda interessante è se questo ipotetico meccanismo di desensibilizzazione sia un “effetto organizzativo” dell’alto T che è operativo solo durante lo sviluppo precoce, o se tale soppressione sia possibile se l’esposizione ad alti livelli avviene più tardi nello sviluppo. In molti degli studi sulla TOS esaminati in precedenza sono state riportate prove di “tolleranza” agli [effetti comportamentali sulla libido del] T sovrafisiologico. Ciò suggerisce che tale desensibilizzazione potrebbe verificarsi anche più tardi nella vita, almeno in una certa misura… Tuttavia, è possibile che nelle donne, con l’avanzare dell’età, si verifichi un declino della sensibilità all’AR paragonabile a quello riscontrato negli uomini.

Conclusione

Mentre gli androgeni endogeni (T e DHT) esercitano un chiaro effetto sulla libido negli uomini, nelle donne gli effetti del T sono meno chiari, nonostante una maggiore reattività comportamentale, dovuta a una maggiore sensibilità agli effetti dell’umore, dell’energia e del benessere, nonché ai capricci di una complessa interazione tra ciclo ovulatorio-mestruale e comportamento.

Gli androgeni sovrafisiologici aumentano generalmente la libido negli uomini (anche in quelli normali e sani) e nelle donne, ma le modifiche chimiche degli androgeni possono influire sul fatto che determinati androgeni esercitino un effetto di potenziamento o addirittura di soppressione (ad esempio, il Nandrolone) sulla libido sia negli uomini che nelle donne.

È indispensabile che il lettore comprenda l’importante ruolo della Dopamina e del sistema eccitatorio e la modulazione della libido da parte degli ormoni steroidei attraverso i circuiti della dopamina. Per approfondire questo aspetto della libido negli esseri umani (sia negli uomini che nelle donne), consultare la sezione Dopamina e libido (dal precedente articolo sugli effetti degli steroidi anabolizzanti-androgeni sulla libido maschile). Sebbene sia difficile distinguere gli effetti del Testosterone sul comportamento sessuale nelle donne da quelli degli estrogeni, di cui il Testosterone esogeno aumenta la biodisponibilità, esistono prove inconfutabili che il Testosterone a dosi sovrafisiologiche aumenta la libido nelle donne senza problemi sessuali.

L’ipotesi della desensibilizzazione è un quadro teorico per spiegare le apparenti contraddizioni tra i sessi (e tra le donne) negli effetti degli androgeni sulla libido.

Gli uomini sono semplici, il Testosterone governa chiaramente la funzione sessuale e la libido (con una certa influenza dell’aromatizzazione in Estradiolo, in particolare nel SNC e nel cervello). Le donne sono più sfaccettate nelle dinamiche del loro ambiente ormonale e per trarre qualsiasi inferenza sugli effetti ormonali sul comportamento femminile è necessario un modello teorico ricco di sfumature, un osservatore informato e una lente granulare, anche solo per tentare una descrizione razionale.

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  • Fonte studi articolo Type-IIx

[1] Bancroft, J. Androgens and sexual function in men and women. In: Bremner, W., Bagattel, C., eds. Androgens in health and disease. Totowa: Humana Press.

[2] Bancroft, J. (2002). Sexual effects of androgens in women: some theoretical considerations. Fertility and Sterility, 77, 55–59. doi:10.1016/s0015-0282(02)02961-8

[3] Chidi-Ogbolu N, Baar K. (2019). Effect of Estrogen on Musculoskeletal Performance and Injury Risk. Front Physiol.;9:1834. doi:10.3389/fphys.2018.01834

[4] Eyster, K. M. (Ed.). (2016). Estrogen Receptors. Methods in Molecular Biology. doi:10.1007/978-1-4939-3127-9

[5] Sansone, A., Romanelli, F., Sansone, M., Lenzi, A., & Di Luigi, L. (2016). Gynecomastia and hormones. Endocrine, 55(1), 37–44. doi:10.1007/s12020-016-0975-9

[6] Pfaus, J. G. (2009). Pathways of Sexual Desire. The Journal of Sexual Medicine, 6(6), 1506–1533. doi:10.1111/j.1743-6109.2009.01309.x

AAS ed effetto sulla libido [negli uomini]

Introduzione:

In questo articolo mi concentrerò sugli effetti degli androgeni sulla libido negli uomini (nel prossimo articolo analizzerò gli effetti degli androgeni sulla libido nelle donne). Verrà inoltre presentato il Nandrolone come controesempio al generale aumento della libido da parte degli androgeni e verranno enumerati e discussi i meccanismi putativi che ostacolano la libido e la funzione sessuale. Infine, verrà discusso il neurotrasmettitore dopamina e la sua influenza sul sistema eccitatorio, in particolare la sua relazione con la soppressione della libido da parte del Nandrolone. Si ipotizza un nuovo meccanismo in base al quale il Nandrolone contribuisce probabilmente a sopprimere la libido attraverso un aumento del metabolismo della dopamina.

Negli uomini, gli androgeni endogeni Testosterone (T) e il suo prodotto della 5α-reduttasi, il DHT, nonché l’Estradiolo, esercitano un chiaro effetto organizzatore e attivatore sul comportamento sessuale, compreso il desiderio sessuale (libido) che è riconducibile allo spermarca (la comparsa della prima eiaculazione) e alla maturazione (la pubertà nel maschio è associata a un aumento di 18 volte delle concentrazioni di Testosterone endogeno). [1].

Gli uomini si differenziano ampiamente dalle donne per quanto riguarda la libido. Pochi sosterrebbero, nonostante alcune variazioni e l’esistenza di relativi outlier, che gli uomini non siano caratteristicamente più virili delle donne. Eppure, nonostante un ampio consenso tra i ricercatori biologi e biomedici, così come tra i non addetti ai lavori, sul fatto che il Testosterone sia implicato nelle differenze di sesso nella libido e che anzi migliori la libido, in letteratura si trovano prove sorprendentemente contrastanti su questo argomento, in particolare per quanto riguarda le differenze nelle e tra le donne. Gli effetti particolari degli androgeni sulla libido nelle donne sono discussi nella seconda parte di questa serie.

  • Definizioni

Libido: desiderio o interesse sessuale che nasce dall’eccitazione e dalla risposta centrale, che si manifesta con pensieri sul sesso accompagnati da una risposta genitale. [1].

Funzione sessuale: concetto più ampio che comprende le misure della libido (ad esempio, il Male Sexual Health Questionnaire: desiderio sessuale [comprehensive]), come un aspetto o una componente.

Gli steroidi anabolizzanti-androgeni (AAS) o gli androgeni migliorano, con differenze tra molecole, la funzione sessuale (agendo sul SNC e sui tessuti genitali). [2].

Effetto soglia

È chiaro che la TRT (terapia sostitutiva del Testosterone) somministrata terapeuticamente a un uomo ipogonadico allevierà quasi certamente i sintomi della scarsa libido, in assenza di una patologia organica della funzione sessuale.

Concettualmente, la visione medica prevalente è che le concentrazioni di Testosterone negli uomini sono soggette a un effetto soglia, con una linea di base stabilita di concentrazioni normali di Testosterone totale (TT) e Testosterone libero (fT) (normale TT 450 – 1.000 ng/dL e fT 1 – 2% di TT), al di sotto della quale prevalgono gli effetti negativi sulla libido e sulla funzione sessuale; e al di sopra della quale si manifestano pochi cambiamenti comportamentali.

La TRT per alleviare i sintomi dell’ipogonadismo (compresa la scarsa libido) mostra effetti chiari e consistenti, aumentando generalmente la frequenza dei rapporti sessuali e della masturbazione. Tuttavia, è necessario fare importanti distinzioni tra i pazienti che utilizzano la TRT. In primo luogo, la TRT viene spesso prescritta a uomini anziani, altrimenti sani e con relazioni stabili, il che aumenta naturalmente le opportunità di rapporti sessuali. La TRT viene prescritta più frequentemente in culture che hanno una visione liberale della masturbazione e ne riportano onestamente la frequenza. In effetti, gli uomini differiscono da una cultura all’altra per quanto riguarda la manifestazione della libido come comportamento masturbatorio [3]; e la popolazione dei consumatori di AAS o androgeni (ad esempio, per obiettivi di miglioramento del fisico o delle prestazioni) può essere qualitativamente diversa da quella della TRT. Pertanto, le misure dei cambiamenti della libido causati dagli androgeni devono necessariamente essere misurate in modo da non essere influenzate da questi fattori culturali o socio-relazionali.

Esiste davvero un “effetto tetto” ai livelli endogeni, al di sopra del quale gli androgeni non hanno alcun effetto sulla libido?

È interessante notare che le prove suggeriscono fortemente l’assenza di un limite superiore teorico, o tetto massimo, per gli effetti comportamentali degli androgeni. I dati relativi agli uomini normali e sani (la popolazione a cui si rivolge la visione medica prevalente) suggeriscono che non esiste un limite superiore teorico, o almeno che, se tale limite esiste, è di gran lunga superiore anche ai livelli endogeni normali di androgeni circolanti:

Anderson e colleghi hanno dimostrato che una dose settimanale di 200mg di Testosterone Enantato aumenta l’interesse sessuale in uomini normali e sani. In particolare, i risultati hanno mostrato un aumento dei punteggi della Sottoscala 2 della Sexual Experience Scale, che misura l’entità in cui un individuo cerca o permette (piuttosto che evita o rifiuta) stimoli sessuali di tipo audiovisivo o immaginario; si tratta, quindi, di un indice di interesse sessuale indipendente dall’interazione con un partner (maggiore validità rispetto alla frequenza del coito, poiché la disponibilità di un partner romantico influenza la frequenza delle attività sessuali; la frequenza della masturbazione è influenzata culturalmente; ecc.) [4].

Su e colleghi hanno dimostrato che una dose giornaliera di 240mg di Metiltestosterone ha aumentato l’eccitazione sessuale su scala analogica visiva (VAS) in uomini normali e sani. [5].

Moss e colleghi hanno dimostrato che gli atleti maschi che fanno uso di androgeni si impegnano in una maggiore frequenza di rapporti sessuali e raggiungono un numero più elevato di eiaculazioni settimanali (tutti i soggetti avevano la disponibilità di un partner sessuale) rispetto alle loro controparti che non fanno uso di androgeni. [6].

Funzione del recettore degli androgeni nel SNC (maschi)

I modelli di knockout del recettore degli androgeni (ARKO) sono uno strumento utile per studiare la funzione dei T/androgeni. Nei tessuti del SNC, l’eliminazione del recettore AR (espressione nulla) provoca nei roditori maschi un comportamento privo di attività sessuale e aggressività. [7].

Ciò ha implicazioni teleologiche: non è solo un costrutto sociale che ci si aspetta che gli uomini, entro i limiti della società, siano l’inseguitore romantico (chiedere un appuntamento, piuttosto che lo faccia la donna); e forse anche che mostrino aggressività in camera da letto (essere un gentiluomo per le strade, ma una bestia tra le lenzuola). È probabile che le pressioni ambientali e l’interesse della specie umana per la riproduzione si basino sul fatto che gli uomini affermino il loro ruolo sessuale nella competizione per le compagne e che questa competizione sia necessariamente legata alla prestanza fisica. Come spesso accade, la società interagisce con la biologia, definendo i confini dell’aggressività maschile e della ricerca sessuale.

L’ipotesi della desensibilizzazione (che verrà approfondita nel prossimo articolo) descrive un modello teorico che trae inferenze su alcuni probabili processi biologici ed epigenetici che determinano la desensibilizzazione comportamentale agli androgeni nei maschi a causa dell’aumento perinatale del Testosterone (e, di conseguenza, la manifestazione di comportamenti potenzialmente disadattivi se tale desensibilizzazione viene abbandonata, in età adulta, quando i livelli di T aumentano di 18 volte). In particolare, Bancroft e colleghi sostengono che “l’esposizione a livelli di T sostanzialmente più elevati durante lo sviluppo fetale e anche durante le prime settimane postnatali [il picco perinatale] potrebbe essere responsabile della desensibilizzazione del SNC agli effetti del T nel maschio. Tale desensibilizzazione agirebbe presumibilmente a livello genomico piuttosto che nella fase recettoriale dell’azione ormonale… e a breve termine, sia l’esposizione al T che al DHT determina una sovraregolazione dell’AR. Una conseguenza di tale desensibilizzazione nel maschio consisterebbe nelle variazioni geneticamente determinate nella reattività dei recettori del SNC al T che verrebbero “appiattite”, consentendo livelli molto più elevati di T dalla pubertà in poi senza iperstimolazione dei meccanismi del SNC.” [1].

La diminuzione della libido Nandrolone-correlata:

Un farmaco in particolare, utilizzato clinicamente e terapeuticamente negli uomini e nelle donne, che rappresenta un controesempio all’apparente aumento della libido da parte degli androgeni è il Nandrolone. Infatti, è spesso associato a una riduzione della libido. [8]. Una logica non dichiarata – forse poco rassicurante – del suo uso negli uomini con HIV, piuttosto che il Testosterone, è quella di ridurre la libido (e quindi di ridurre le interazioni sessuali tra uomini gay per ridurre la diffusione della malattia).

Hulsbæk e colleghi hanno somministrato il Nandrolone in dosi diverse a tre gruppi: (1) uomini il cui Testosterone totale (TT) era ≥11 nmol/L (100 mg di Nandrolone Decanoato ogni tre settimane), (2) uomini il cui TT era <11 nmol/L (200mg di Nandrolone Decanoato ogni tre settimane) e (3) donne (50mg ogni tre settimane), per 12 settimane. I risultati non hanno mostrato alcuna incidenza di aumento della libido da parte del Nandrolone Decanoato (0/9 donne e 0/3 uomini; 1 incidenza di aumento della libido è stata riportata nel gruppo placebo, a cui è stato somministrato un veicolo inattivo a base di olio senza androgeni). [9].

Prolattina

È stato affermato che è improbabile che il Nandrolone diminuisca la libido aumentando la Prolattina. Mentre alti livelli di Prolattina negli uomini, come nel caso degli adenomi che secernono Prolattina, sono associati a sintomi di ipogonadismo (cioè bassa libido) e persino galattorrea (lattazione), è improbabile che il Nandrolone aumenti la Prolattina (almeno alle dosi utilizzate nella pratica comune). In generale, gli androgeni aromatizzabili (ad esempio, Testosterone [10], MENT [11]) mostrano una tendenza (una tendenza, piuttosto che un effetto significativo) ad aumentare la Prolattina sierica come conseguenza dei loro prodotti aromatici (cioè gli estrogeni) che agiscono come fattori stimolanti la secrezione di Prolattina dall’ipofisi anteriore [10]. Il Nandrolone a dosi inferiori non sembra avere effetti significativi sulla Prolattina sierica (probabilmente a causa di livelli di E2 inferiori alla norma) [12].

Al contrario, gli androgeni non aromatizzabili (ad esempio, Trenbolone, Oxandrolone, ecc.) probabilmente riducono la Prolattina sierica. Questa è un’osservazione empirica basata sui risultati di analisi del sangue umano, nonché la base di un’ipotesi prevalente, a conoscenza di questo autore, avanzata per la prima volta da De Las Heras e colleghi nel 1979. [13].:

Poiché è stato riportato che la secrezione di Prolattina nel ratto maschio è pulsatile (17), l’analisi delle differenze tra i livelli basali di Prolattina basata su una singola determinazione può essere fuorviante. Una possibilità alternativa è che alcuni androgeni siano in realtà inibitori della secrezione di Prolattina. Nei nostri studi, i valori più bassi tra tutti i gruppi sono stati ottenuti negli animali trattati con Diidrotestosterone o Androstanediolo, anche se le differenze non hanno mai raggiunto la significatività. Nolin et al. (11) hanno riportato che il Diidrotestosterone ha soppresso in modo significativo i livelli di Prolattina in ratti femmina intatti.

Tra i fattori che probabilmente influenzano l’incapacità del Nandrolone di aumentare – e persino di diminuire – la libido vi sono [8]:

  • Estrogeni*: Il nandrolone tende a determinare livelli di estrogeni sub-normali negli uomini a dosi terapeutiche fino a 200mg settimanali. Dopo 6 settimane, l’Estradiolo sierico (E2) si è ridotto a 11 ± 9pg/mL con una dose settimanale di 100mg di Nandrolone Decanoato e a 14 ± 4pg/mL con una dose settimanale di 200mg di Nandrolone Decanoato in uomini normali [14]. L’influenza degli estrogeni e dell’Estradiolo sulla libido non è stata stabilita, né negli uomini né nelle donne; tuttavia, alcune indicazioni suggeriscono una curva a forma di U inversa rispetto alle concentrazioni di Estradiolo e alla libido (con concentrazioni troppo basse e troppo alte che causano riduzioni della libido).
  • 5α-riduzione a DHN, un androgeno indebolito: Il Nandrolone, a differenza del Testosterone che viene convertito in DHT, più potente, nel SNC e nei tessuti sessuali dalla 5α-reduttasi, diminuisce la sua potenza androgena in questi organi bersaglio producendo DHN (5α-diidronandrolone). È stato dimostrato che gli inibitori della 5α-reduttasi (ad esempio, Dutasteride, Finasteride) che riducono la 5α-riduzione del T in DHT sono associati a una riduzione della libido negli uomini sani. [15].
  • Feedback negativo (inibizione) delle gonadotropine: Il Nandrolone, privo del gruppo metile C-19 del Testosterone, presenta un’omologia più ampia per la superfamiglia dei recettori nucleari, compreso il Recettore del Progesterone (PR), dati gli effetti di questa modifica sulle sue proprietà stereochimiche e sulla sua forma conformazionale. Pertanto, contribuisce a disregolare la secrezione di gonadotropine regolata dal GnRH ipotalamico, che comprende l’interazione tra la secrezione dell’Ormone Luteinizzante (LH) e dell’Ormone Follicolo-Stimolante (FSH) dall’ipotalamo [regolatori positivi], della globulina legante gli ormoni sessuali (SHBG) e dell’inibina dalle cellule del Sertoli [regolatori negativi] e del T dalle cellule di Leydig [regolatore negativo], in modo più pluripotente rispetto al Testosterone. Il Nandrolone serve a disregolare questo sistema di regolazione agendo per:
    esercitare un feedback negativo sull’ipofisi (secrezione di LH) attraverso la sua aromatizzazione, anche se ridotta, in Estradiolo e maggiormente in Estrone
    -rallentare la frequenza degli impulsi dell’ormone di rilascio delle gonadotropine (GnRH) ipotalamico mediante un’azione androgena ed estrogenica
    -disregolare la regolazione ipotalamica del T e delle gonadotropine attraverso la segnalazione/pulsatilità del dendro KNDy come analogo del progestinico o del Progesterone
    -aumentano l’espressione della Prolattina ad alte dosi (attraverso il suo prodotto aromatico, l’Estrone e, in misura minore, l’Estradiolo) – l’elevata Prolattina sierica ha un ruolo terziario nella riduzione della libido (principalmente agendo sull’ipotalamo). [16].
  • Aumento del metabolismo della Dopamina (cioè della sua degradazione netta): A conoscenza di questo autore, si tratta di un nuovo meccanismo putativo, mai proposto prima, per il modo in cui il Nandrolone può contribuire alla riduzione della libido: il Nandrolone aumenta l’acido omovanillico (HVA) nel siero dell’uomo [14], riflettendo il suo metabolismo (cioè la sua degradazione), ed è probabilmente correlato alla riduzione del numero di recettori della Dopamina, L’acido omovanillico (HVA) sierico è cambiato significativamente con il Nandrolone Decanoato a 100mg settimanali (+17,6 ± 7,7 pmol/L) e con il Nandrolone Decanoato a 300mg settimanali (+11,0 ± 3,3 pmol/L), ma non nei gruppi di Testosterone Enantato a 100mg o di Testosterone Enantato a 300mg settimanali [14]. Quindi, anche a dosaggi clinici terapeutici, esiste un effetto del Nandrolone sul metabolismo della Dopamina. Gli stimoli erotici di natura audiovisiva riducono l’HVA [17], riflettendo l’aumento dell’attività dopaminergica associata all’eccitazione sessuale. Ne consegue quindi che, se l’attività dopaminergica è parte integrante della libido e delle manifestazioni della risposta genitale e dei pensieri sul sesso derivanti dall’eccitazione centrale (riflessa dalla diminuzione dell’HVA), gli effetti del Nandrolone sul metabolismo della Dopamina (riflessi dall’aumento dell’HVA) potrebbero determinare una riduzione dell’eccitazione sessuale.

*Il ruolo esatto dell’Estradiolo in ogni area della funzione sessuale maschile, compresa la libido, la funzione erettile e la spermatogenesi, è difficile da determinare con esattezza. Un complesso equilibrio di Testosterone, Estradiolo, Aromatasi ed ER nei testicoli, nel pene e nel cervello conferma un’interazione ormonale indispensabile e altamente regolata degli estrogeni nell’uomo. Gli ER e l’Aromatasi condividono le posizioni topografiche con i feromoni nel cervello, rendendo chiaro che gli estrogeni contribuiscono allo sviluppo sessuale precoce e al comportamento sessuale in età adulta. Gli estrogeni possono sostenere la libido e influenzare la quantità di recettori della serotonina nel cervello, modulando l’umore, lo stato mentale, la cognizione e le emozioni. La funzione erettile è influenzata negativamente dall’esposizione agli estrogeni nelle prime fasi dello sviluppo del pene e l’esposizione all’Estradiolo nel pene maturo porta a un aumento della permeabilità vascolare con conseguente aumento della disfunzione erettile. La disfunzione erettile dovuta a una maggiore esposizione all’Estradiolo è indipendente dal livello di Testosterone. Inoltre, la spermatogenesi dipende in qualche misura dall’Estradiolo, poiché tutte le cellule coinvolte nel processo di produzione dello sperma contengono Aromatasi ed esprimono ER. Infine, i livelli di Estradiolo devono essere presi in considerazione quando si trattano uomini con TRT, poiché i livelli di estradiolo inferiori a 5ng/dl sono correlati a una diminuzione della libido.

Inoltre, l’Estrone, che rappresenta il maggior metabolita della aromatizzazione del Nandrolone, essendo meno potente del Estradiolo (circa il 4% dell’attività estrogenica del E2) nelle attività tissutali, aggrava la condizione di riduzione della libido e della funzionalità erettile negli utilizzatori di questo progestinico .

Dopamina e libido

Il sistema eccitatorio stimola la libido, mentre il sistema inibitorio stimola la ricompensa sessuale, la sedazione e la sazietà. Il nucleo del sistema eccitatorio si trova nei sistemi cerebrali della Dopamina (DA) (incertoipotalamico e mesolimbico) che collegano l’ipotalamo e i sistemi limbici e comprende le Melanocortine (MC), l’Ossitocina (OT) e la Noradrenalina (NE). Il sistema inibitorio contiene i sistemi cerebrali degli oppioidi, degli Endocannabinoidi (ECB) e della Serotonina (5-HT), che si attivano durante i periodi di inibizione sessuale e bloccano il sistema eccitatorio. [18].

I farmaci che stimolano l’attivazione della DA ipotalamica o che bloccano il rilascio di ECB o 5-HT e/o il legame postsinaptico possono stimolare la libido. [18].

Gli ormoni steroidei attivano i meccanismi di eccitazione sessuale dirigendo la sintesi di enzimi e recettori per i sistemi neurochimici interattivi di DA, NE, MC e OT, che agiscono nelle regioni cerebrali ipotalamiche e limbiche per stimolare l’eccitazione sessuale, l’attenzione e i comportamenti. L’attivazione di questi sistemi neurochimici eccitatori smorza l’influenza dei meccanismi inibitori, quali:

  • gli oppioidi endogeni rilasciati nella corteccia, nel sistema limbico, nell’ipotalamo e nel mesencefalo durante un orgasmo o una ricompensa sessuale (che inducono un periodo refrattario e una diminuzione dell’espressione dell’AR nelle regioni ipotalamiche e limbiche)
  • ECB che mediano la sedazione e
  • 5-HT, che viene elevata in queste regioni per indurre refrattarietà e sazietà sessuale. [18].

L’Estradiolo (E2) facilita il rilascio di DA e il Testosterone (T) potenzia la sintesi di Ossido Nitrico che controlla il rilascio di DA nei ratti (86-88). [18]. Pertanto, gli ormoni steroidei endogeni sembrano porre le basi – [un effetto priming] – per un aumento della sintesi e del rilascio di DA durante i periodi in cui la risposta sessuale potrebbe essere potenziata. [18].

Il lavoro comportamentale (ad esempio, il corteggiamento negli esseri umani o l’attraversamento di griglie elettrificate per raggiungere una compagna nei ratti maschi) per acquisire la ricompensa sessuale, considerato analogo alla libido nella ricerca osservazionale sugli animali, è ridotto dalla castrazione, indicando che l’azione degli steroidi gonadici nel cervello è necessaria per lo sviluppo e/o il mantenimento di questo comportamento strumentale. Il lavoro comportamentale per acquisire la ricompensa sessuale (cioè la libido) è analogamente ridotto da lesioni all’amigdala basolaterale, una regione cerebrale che concentra gli steroidi, e dalla somministrazione di un antagonista della Dopamina al nucleo accumbens all’interno del sistema limbico. Questo comportamento strumentale viene ripristinato nei ratti maschi con lesioni all’amigdala basale dall’infusione di anfetamina nel nucleo accumbens, indicando che il rilascio mesolimbico di DA è parte integrante della libido. [18].

Esiste un nesso preciso tra gli ormoni steroidei (ad esempio, androgeni ed estrogeni), l’attività della Dopamina e la libido. Gli steroidi sessuali endogeni innescano la sintesi e il rilascio di Dopamina nei centri cerebrali chiave per sostenere le funzioni sessuali e la Dopamina stimola il sistema eccitatorio centrale per governare la libido e il conseguente comportamento sessuale.

Conclusione

Gli androgeni endogeni (Testosterone e DHT) esercitano un chiaro effetto sulla libido negli uomini; effetto nel quale è implicato anche l’Estradiolo. Gli androgeni sovrafisiologici generalmente aumentano la libido negli uomini (anche in quelli normali e sani), ma le modifiche chimiche degli androgeni possono influire sul fatto che determinati androgeni esercitino un effetto di aumento o addirittura di soppressione della libido. In generale, l’eccezione conferma la regola per quanto riguarda l’affermazione che gli androgeni tendono ad aumentare la libido negli uomini.

Il Testosterone, in quanto ormone sessuale maschile primario, ha la funzione biologica di controllare l’espressione del comportamento sessuale e aggressivo maschile, che deve necessariamente essere collegato alla prestanza fisica per quanto riguarda i vantaggi adattativi e competitivi per promuovere la sopravvivenza della specie umana.

I meccanismi dell’influenza degli androgeni sulla libido coinvolgono il neurotrasmettitore Dopamina e la sua attivazione del sistema eccitatorio, nonché gli effetti indiretti degli estrogeni, l’amplificazione periferica e la diminuzione, le gonadotropine dell’Asse Ipotalamo-Ipofisi-Gonadi, gli effetti sul metabolismo della Dopamina e persino gli effetti terziari sulla libido della Prolattina.

Per gli uomini è semplice: il Testosterone governa chiaramente la funzione sessuale e la libido (con una certa influenza dell’aromatizzazione in Estradiolo, in particolare nel SNC e nel cervello).

Nella prossimo articolo, analizzeremo come le donne siano più sfaccettate nelle dinamiche del loro ambiente ormonale e le ramificazioni dei cambiamenti ormonali del ciclo ovulatorio-mestruale; l’influenza predominante degli affetti (umore, benessere ed energia) sulla libido femminile; i problemi che derivano dalla difficoltà intrinseca di disgiungere gli effetti degli androgeni da quelli degli estrogeni nelle donne; l’ipotesi della desensibilizzazione e il suo potere esplicativo nel descrivere le differenze negli effetti degli androgeni sulla libido nelle donne rispetto agli uomini e tra le donne, nonché altri fattori che influenzano la libido e che sono correlati alle difficoltà nell’assegnare la causalità agli effetti degli androgeni esogeni sulla libido femminile.

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  • Fonte studi articolo Type-IIx

[1] Bancroft, J. Androgens and sexual function in men and women. In: Bremner, W., Bagattel, C., eds. Androgens in health and disease. Totowa: Humana Press.

[2] Isidori, A. M., Buvat, J., Corona, G., Goldstein, I., Jannini, E. A., Lenzi, A., … Maggi, M. (2014). A Critical Analysis of the Role of Testosterone in Erectile Function: From Pathophysiology to Treatment—A Systematic Review. European Urology, 65(1), 99–112. doi:10.1016/j.eururo.2013.08.048

[3] Anderson, R. A., Martin, C. W., Kung, A. W. C., Everington, D., Pun, T. C., Tan, K. C. B., … Baird, D. T. (1999). 7α-Methyl-19-Nortestosterone Maintains Sexual Behavior and Mood in Hypogonadal Men1. The Journal of Clinical Endocrinology & Metabolism, 84(10), 3556–3562. doi:10.1210/jcem.84.10.6028

[4] Anderson, R. A., Bancroft, J., & Wu, F. C. (1992). The effects of exogenous testosterone on sexuality and mood of normal men. The Journal of Clinical Endocrinology & Metabolism, 75(6), 1503–1507. doi:10.1210/jcem.75.6.1464655

[5] Su, T.-P. (1993). Neuropsychiatric Effects of Anabolic Steroids in Male Normal Volunteers. JAMA: The Journal of the American Medical Association, 269(21), 2760. doi:10.1001/jama.1993.03500210060032

[6] Moss, H. B., Panzak, G. L., & Tarter, R. E. (1993). Sexual functioning of male anabolic steroid abusers. Archives of Sexual Behavior, 22(1), 1–12. doi:10.1007/bf01552908

[7] Sato, T., Matsumoto, T., Kawano, H., Watanabe, T., Uematsu, Y., Sekine, K., … Kato, S. (2004). Brain masculinization requires androgen receptor function. Proceedings of the National Academy of Sciences, 101(6), 1673–1678. doi:10.1073/pnas.0305303101

[8] Pan, M. M., & Kovac, J. R. (2016). Beyond testosterone cypionate: evidence behind the use of nandrolone in male health and wellness. Translational Andrology and Urology, 5(2), 213–219. doi:10.21037/tau.2016.03.03

[9] Hulsbæk, S., Bandholm, T., Ban, I., Foss, N. B., Jensen, J.-E. B., Kehlet, H., & Kristensen, M. T. (2021). Feasibility and preliminary effect of anabolic steroids in addition to strength training and nutritional supplement in rehabilitation of patients with hip fracture: a randomized controlled pilot trial (HIP-SAP1 trial). BMC Geriatrics, 21(1). doi:10.1186/s12877-021-02273-z

[10] Sodi, R., Fikri, R., Diver, M., Ranganath, L., & Vora, J. (2005). Testosterone replacement-induced hyperprolactinaemia: case report and review of the literature. Annals of Clinical Biochemistry, 42(2), 153–159. doi:10.1258/0004563053492784

[11] Segaloff, A., Weeth, J. B., Cuningham, M., & Meyer, K. K. (1964). Hormonal therapy in cancer of the breast.XXIII. Effect of 7α-methyl-19-nortestosterone acetate and testosterone propionate on clinical course and hormonal excretion. Cancer, 17(10), 1248–1253. doi:10.1002/1097-0142(196410)17:10<1248::aid-cncr2820171005>3.0.co;2-a

[12] Maeda Y, Nakanishi T, Ozawa K, Kijima Y, Nakayama I, Shoji T, Sasaoka T. Anabolic steroid-associated hypogonadism in male hemodialysis patients. Clin Nephrol. 1989 Oct;32(4):198-201. PMID: 2805460.

[13] De Las Heras, F., & Negro-vilar, A. (1979). Effect of Aromatizable Androgens and Estradiol on Prolactin Secretion in Prepuberal Male Rats. Archives of Andrology, 2(2), 135–139. doi:10.3109/01485017908987305

[14] Hannan, C.J., Friedl, K., Zold, A., Kettler, T., & Plymate, S. (1991). Psychological and serum homovanillic acid changes in men administered androgenic steroids. Psychoneuroendocrinology, 16(4), 335–343. doi:10.1016/0306-4530(91)90019-p

[15] Lee S, Lee YB, Choe SJ, Lee WS. Adverse Sexual Effects of Treatment with Finasteride or Dutasteride for Male Androgenetic Alopecia: A Systematic Review and Meta-analysis. Acta Derm Venereol. 2019 Jan 1;99(1):12-17. doi:10.2340/00015555-3035

[16] Bond, P. Article: Regulation of Testosterone Production. Aug 2021. Source: https://thinksteroids.com/articles/regulation-of-testosterone-production/

[17] Meston, C. M., & McCall, K. M. (2005). Dopamine and Norepinephrine Responses to Film-Induced Sexual Arousal in Sexually Functional and Sexually Dysfunctional Women. Journal of Sex & Marital Therapy, 31(4), 303–317. doi:10.1080/00926230590950217

[18] Pfaus, J. G. (2009). Pathways of Sexual Desire. The Journal of Sexual Medicine, 6(6), 1506–1533. doi:10.1111/j.1743-6109.2009.01309.x

Attività neuroprotettiva tra Testosterone, AAS sintetici e Estradiolo.

Introduzione:

E’ solo di recente che si è iniziato a trattare in maniera più dettagliata dei potenziali effetti collaterali neuronali degli AAS. Infatti, ci si è sempre e solo concentrati sull’impatto che queste molecole possono avere, per esempio, sulla lipidemia ematica, sulla funzionalità epatica e renale , tralasciando tutte quelle alterazioni che possono emergere a livello comportamentale e plastico-cerebrale, che sono certamente da non sottovalutare. Trattai già dell’attività neurosteroidea, vi rimando quindi alla lettura di quell’articolo per ulteriori approfondimenti.

Vista la scarsa diffusioni di valide informazioni sulla attività neuronale degli AAS, un mito comune che circola nella comunità del bodybuilding e dei pazienti in TRT è che il Testosterone sia intrinsecamente neuroprotettivo e che sia in questo unico rispetto a tutti gli altri steroidi androgeni anabolizzanti.

Ma il motivo per cui il Testosterone è neuroprotettivo è semplicemente perché esso aromatizza ad un tasso tale da fornire una quantità di Estradiolo sufficiente a bilanciare l’Androgenicità esercitata dallo stesso Testosterone e dal DHT.

I dati ottenuti in modelli di roditori che utilizzano cellule corticali lo suggeriscono in modo molto convincente, mostrando come l’inibitore dell’aromatasi Anastrozolo (Arimidex) elimini completamente gli effetti neuroprotettivi del Testosterone [1].

AAS sintetici e Testosterone a confronto:

Sono stati pubblicati molti studi che suggeriscono quanto gli AAS sintetici siano peggiori rispetto al Testosterone per quanto riguarda le malattie cardiovascolari, la neurotossicità e una miriade di altri esiti organici deleteri.

Ritengo che una parte significativa di questi dati sia in parte estremizzata, data la mancanza di osservazioni di risposta seguenti alla somministrazione di estrogeni esogeni. In definitiva, il Testosterone è l’Androgeno più sicuro a dosaggi fisiologici. Il DHEA segue il grado favorevole di sicurezza, ma questo è un altro discorso.

Tuttavia, si ipotizza che molti AAS non siano così pericolosi come siamo portati a credere. Attenzione però, con questo non si intende assolutamente dire che essi abbiano un ottimale margine di sicurezza.

L’ipotesi è che alcune molecole non sono intrinsecamente più pericolose del Testosterone, ma è la loro mancanza di aromatizzazione, di 5-α riduzione o di diversa affinità per i recettori fuori bersaglio a renderli più pericolosi.

L’effetto sui Recettori degli Estrogeni (ER) e l’affinità dell’AAS per l’attività dell’Enzima Aromatasi sono i fattori principali che incidono sulla validità di un ormone in un contesto di monoterapia.

I derivati del DHT non possono essere convertiti dall’Enzima Aromatasi in un estrogeno come l’Estradiolo.

Il Nandrolone (19-nortestosterone) e i suoi derivati (19-nor) hanno ciascuno la propria affinità (o mancanza di affinità) per i ER e l’interazione con l’Aromatasi, che spesso si traduce in livelli di estrogeni inferiori alla media (esistono eccezioni come il Trestolone/MENT il quale si converte nel potente 7α-methyl-Estradiolo).

In sostanza, credo che alcuni AAS possano risultare significativamente più cardiotossici e neurotossici nei dati perché vengono sempre utilizzati da soli con una quantità insufficiente di estrogeni per bilanciare l’attività androgenica.

L’importanza di mantenere livelli ottimali di Estradiolo:

Livelli correttamente bilanciati di estrogeni sono necessari per la libido, la qualità dell’erezione, la vasodilatazione, la salute cardiovascolare, la salute del cervello, la salute delle ossa e molte altre funzioni sistemiche.

Nelle donne il rischio di malattie cardiovascolari aumenta notevolmente dopo la menopausa.

Non è una coincidenza che la maggior parte delle donne che sviluppano malattie cardiache lo facciano dopo che la produzione di estrogeni è scesa a livelli inferiori a quelli maschili.

Se non si dispone di una quantità sufficiente di estrogeni rispetto ai livelli di androgeni nell’organismo, i livelli di cardiotossicità e neurotossicità saranno significativamente più alti di quelli che si avrebbero se si mantenessero livelli ottimali di estrogeni.

Dal punto di vista del Bodybuilding, gli estrogeni sono necessari per ottimizzare la crescita muscolare, l’insulino-sensibilità e la sintesi di IGF-1 e fattori di crescita/segnalazione cellulare.

Per questo motivo gli AAS altamente aromatizzabili possono indirettamente determinare un maggiore potenziale di crescita e sono spesso classificati come composti “Bulking”.

Aneddoticamente, molti bodybuilder riferiscono di essere cresciuti al massimo durante l’Off-Season, quando i loro livelli di estrogeni erano sufficientemente alti.

La logica di inserimento di una “base” di Testosterone:

Il Testosterone non ha una selettività tissutale e, in realtà, è un modesto “costruttore muscolare” milligrammo per milligrammo rispetto ad altri AAS sintetici sviluppati negli anni successivi alla sua scoperta.

Per quanto riguarda la ritenzione di azoto, sulla carta non è superiore a molti AAS.

Tuttavia, il Testosterone aromatizza in Estradiolo a un ritmo strettamente regolato, è bioidentico e il corpo sa esattamente cosa fare con esso.

Inoltre, il corpo sa quanto Testosterone legare con le SHBG, quanto liberarne e mettere a disposizione dei tessuti, nonché quanto 5α ridurne a DHT per antagonizzare l’attivazione dei Recettori degli Estrogeni nel caso in cui questa vada fuori controllo.

Dal punto di vista del bodybuilding, il Testosterone è sottovalutato sotto molti aspetti.

Tuttavia, in un contesto di salute generale, longevità e bodybuilding, il Testosterone non può essere battuto a dosaggi terapeutici.

Utilizzando una base di Testosterone o una fonte di estrogeni sufficiente, le carenze di altri agenti anabolizzanti possono essere attenuate in una certa misura, motivo per cui il Testosterone è la base della maggior parte dei cicli di SARM steroidei e non steroidei.

Bilancio tra Testosterone, DHT ed Estradiolo:

La steroidogenesi nell’organismo si esplica come un’enorme orchestra volta alla regolazione di innumerevoli funzioni. Essa è molto più complessa della semplice sintesi di Testosterone, estrogeni e DHT.

La steroidogenesi umana, con le principali classi di ormoni steroidei, i singoli steroidi e le vie enzimatiche.[Häggström M, Richfield D (2014). “Diagram of the pathways of human steroidogenesis”. WikiJournal of Medicine.] I cambiamenti nella struttura molecolare da un precursore sono evidenziati in bianco.

Anche a livello acuto, l’equilibrio tra androgeni ed estrogeni nell’organismo è strettamente regolato e viene attuato per garantire una ottimizzazione della salute.

Questo equilibrio diventa sempre più disfunzionale con l’età, uno stile di vita scorretto, un’alimentazione scorretta, una cattiva igiene del sonno e numerosi altri fattori.

Tuttavia, come detto precedentemente, l’organismo sa esattamente cosa fare con il Testosterone, come creare una quantità ottimale di estrogeni e quanto Testosterone ridurre in DHT per contrastare l’eccesso di estrogeni e sostenere le caratteristiche sessuali secondarie maschili.

Quando si confrontano i dati clinici su un AAS sintetico con il Testosterone in un contesto di monoterapia, bisogna considerare che questi studi utilizzano l’AAS sintetico da solo, non con estrogeni esogeni o qualsiasi ormone supplementare che potrebbe essere necessario per bilanciare la sua androgenicità, la mancanza di attività estrogenica e/o l’interazione con l’Aromatasi.

Ovviamente, se si prende un composto che non aromatizza a sufficienza in estrogeni e lo si confronta con l’androgeno bioidentico che il nostro corpo sa aromatizzare e 5α ridurre in modo perfettamente bilanciato, si può solo immaginare quale sarà la scelta migliore data dall’osservazione comparativa in termini di cardiotossicità e neurotossicità.

La neurotossicità di Testosterone, Nandrolone e Stanozololo:

Confrontando l’effetto del Testosterone con quello del 19-nortestosterone (Nandrolone) e dello Stanozololo (Winstrol) sulla neurotossicità, si vede chiaramente che sono gli estrogeni a proteggere i neuroni del cervello, non il Testosterone in se.

Strutture molecolari di Testosterone, Nandrolone e Stanozololo

Nello studio del 2007 di Rosamaria Orlando et al., un dosaggio fisiologico di Testosterone risultava essere neuroprotettivo [1]. Il Testosterone amplificava la neurotossicità solo a dosaggi sovrafisiologici.

L’effetto neuroprotettivo di un dosaggio fisiologico di Testosterone è stato completamente eliminato quando è stato co-somministrato l’inibitore dell’Aromatasi Anastrozolo (Arimidex), suggerendo che la tossicità intrinseca del Testosterone come androgeno è controbilanciata solo dalla sua aromatizzazione in 17β-estradiolo.

Struttura molecolare di Estradiolo

A differenza del Testosterone, il Nandrolone non presenta un tasso di aromatizzazione sufficiente in termini assoluti (quantità) e specifici (tipo di estrogeno) mentre lo Stanozololo non subisce a nessun grado l’aromatizzazione.

Come prevedibile, il Nandrolone e lo Stanozololo sono risultati entrambi neurotossici a ogni singola dose valutata, indipendentemente dalla co-somministrazione o meno di Anastrozolo.

L’antiandrogeno Flutamide è stato in grado di attenuare la neurotossicità di tutti e tre gli androgeni, rafforzando così ulteriormente il fatto che dosaggi fisiologici di androgeni senza una quantità sufficiente di estrogeni a controbilanciarne gli effetti, o dosaggi sovrafisiologici di androgeni possono facilitare la morte neuronale.

Nessuno degli steroidi androgeni anabolizzanti di questo studio è risultato tossico in assenza di NMDA (recettore N-metil-D-aspartato), suggerendo quindi che il meccanismo attraverso il quale gli androgeni non controbilanciati facilitano la morte neuronale è una maggiore vulnerabilità agli insulti eccitotossici.

Rappresentazione grafica semplificata della struttura del recettore NMDA

Effetto neuroprotettivo del Testosterone a dosaggi fisiologici senza Anastrozolo:

A dosaggi fisiologici senza la presenza di un inibitore dell’Aromatasi, il Testosterone ha dimostrato di avere un effetto neuroprotettivo.

Spesso si ritiene che sia l’androgeno stesso (Testosterone) a proteggere il cervello. Tuttavia, l’inibitore dell’Aromatasi Anastrozolo ha eliminato completamente tutti gli effetti neuroprotettivi del Testosterone allo stesso dosaggio fisiologico.

L’Anastrozolo ha esacerbato la neurotossicità a ogni singolo dosaggio di Testosterone quando è stato co-somministrato.

Ciò suggerisce che il Testosterone non è un androgeno unico e con attività che neuroprotettiva maggiore rispetto a tutti gli altri AAS, ma che è la sua aromatizzazione in estrogeni a essere neuroprotettiva.

Neurotossicità del Testosterone a dosaggi soprafisiologici con e senza Anastrozolo:

A dosaggi sovrafisiologici il Testosterone ha dimostrato di esacerbare la neurotossicità. Sebbene la sua aromatizzazione in estrogeni prevenga comunque una quantità significativa di morte neuronale, possiamo vedere chiaramente che le concentrazioni sovrafisiologiche di Testosterone esacerbano la neurotossicità in ogni caso e che i livelli sovrafisiologici di estrogeni non forniscono un aumento dose-dipendente della neuroprotezione.

Quindi, i dati suggeriscono che le concentrazioni fisiologiche di Testosterone facilitano la neuroprotezione cerebrale attraverso l’aromatizzazione in estrogeni, ma c’è una soglia per questa neuroprotezione e le concentrazioni sovrafisiologiche non sono comunque neurologicamente salutari.

La neurotossicità del Nandrolone è indipendente dall’uso di Anastrozolo:

Il Nandrolone ha esacerbato la neurotossicità a tutti i dosaggi, indipendentemente dal fatto che sia stata valutata una concentrazione bassa o alta.

Inoltre, la co-somministrazione di Anastrozolo non ha avuto alcun impatto sulla neurotossicità del Nandrolone in questo modello, a qualsiasi dosaggio.

Ciò suggerisce che il Nandrolone non aromatizza in estrogeni ad un tasso sufficiente, né attiva i recettori degli estrogeni da solo ad un grado soddisfacente per fornire gli effetti neuroprotettivi di livelli sani di estrogeni.

Sarebbe probabilmente necessaria una fonte di estrogeni da co-somministrare con il Nandrolone per poterlo considerare una valida alternativa alla monoterapia in un contesto di HRT o di ciclo con un certo margine di “sicurezza”.

La neurotossicità dello Stanozololo è indipendente dall’uso di Anastrozolo:

Lo Stanozololo ha esacerbato la neurotossicità a tutti i dosaggi, indipendentemente dal fatto che si valutasse una concentrazione bassa o alta.

Inoltre, la co-somministrazione di Anastrozolo non ha avuto alcun impatto sulla neurotossicità dello Stanozololo in questo modello, a qualsiasi dosaggio.

Sappiamo già che lo Stanozololo non è soggetto ad aromatizzazione.

Anche in questo caso, i dati suggeriscono che sarebbe necessaria una fonte di estrogeni da co-somministrare con lo Stanozololo per poterlo considerare una valida alternativa alla monoterapia in un contesto di HRT o di ciclo con un certo margine di “sicurezza”.

Attenuazione della neurotossicità con co-somministrazione di antiandrogeni:

Gli androgeni non controbilanciati da una quantità sufficiente di estrogeni sono cardiotossici e neurotossici.

Per questo motivo la Flutamide (un anti-androgeno) è stata in grado di eliminare la neurotossicità del Nandrolone e dello Stanozololo.

Gli antiandrogeni hanno una risposta dose-dipendente proprio come gli AAS, quindi si verifica una competizione tra gli antiandrogeni e gli androgeni per il legame e l’attivazione del Recettore degli Androgeni (AR).

Gli antiandrogeni agiscono come antagonisti competitivi dell’AR o come steroidi sintetici di fortuna, anche se con un’androgenicità significativamente ridotta o pressoché assente.

In pratica, a seconda dell’antiandrogeno utilizzato, o enzimatico (vedi inibitori della 5α-reduttasi come la Finasteride) o competitivo (vedi Bicalutamide, Flutamide ecc…), essi agiranno riducendo l’attività degli androgeni a livello sistemico (orali) o topico (soluzione da applicare).

L’efficacia dell’antiandrogeno nell’inibire il legame degli androgeni con l’AR si basa sull’affinità di legame, sulla costante di legame, sull’emivita, sul dosaggio utilizzato e su una miriade di altri fattori.

La Flutamide è un antagonista selettivo del recettore degli androgeni non-steroideo, competitivo e “silenzioso” dell’AR. Si tratta di un antiandrogeno primitivo e di livello inferiore rispetto agli sviluppi più recenti della medicina, tuttavia è ancora efficace nell’impedire agli androgeni di legarsi ai recettori bersaglio specifici.

Per questo motivo la Flutamide è stata in grado di eliminare completamente la neurotossicità del Nandrolone e dello Stanozololo a tutti i dosaggi. Impedendo al Nandrolone e allo Stanozololo di legarsi ai recettori degli androgeni, essi non sono più in grado di innescare la trascrizione e, quindi, manifestare i loro effetti nei tessuti.

I dati relativi alla Flutamide e all’Anastrozolo rafforzano il fatto che il Nandrolone non converte in estrogeni ad un tasso sufficiente da fornire la neuroprotezione necessaria per evitare la morte neuronale. Con o senza inibitore dell’Aromatasi, il Nandrolone aggrava la neurotossicità allo stesso modo.

Senza un inibitore dell’Aromatasi ma con un antiandrogeno, la Neurotossicità del Nandrolone viene eliminata completamente. Ed è probabile che lo stesso valga anche per la cardiotossicità intrinseca del Nandrolone.

Quanto detto vale, prevedibilmente, anche per lo Stanozololo, che non è soggetto ad aromatizzazione.

È qui che tutti gli studi che dimostrano quanto il Nandrolone abbia un influenza negativa per il cuore e il cervello vengono messi in discussione, poiché gli esiti negativi riscontrati nei dati potrebbero non essere stati così drastici se fosse stata co-somministrata una fonte di estrogeni.

Lo stesso dosaggio di Flutamide non è stato in grado di compensare completamente la neurotossicità del Testosterone a dosaggi sovrafisiologici senza la presenza di Anastrozolo.

Quando i dosaggi di Testosterone superano le concentrazioni fisiologiche, la vulnerabilità alla neurotossicità e alla cardiotossicità sale vertiginosamente.

Una quantità eccessiva di qualsiasi cosa nell’organismo è dannosa, e il Testosterone non è esente da questo problema solo perché è l’ormone bioidentico che produciamo naturalmente e che è soggetto ad aromatizzazione in estrogeni.

L’aromatizzazione degli androgeni in estrogeni regola la neurotossicità:


Riflettendo sui dati con e senza inibitore dell’Aromatasi, possiamo vedere chiaramente che sono gli estrogeni ad esercitare la neuroprotezione, non il Testosterone.

Molti pensano erroneamente che il Testosterone sia un androgeno unico che si lega all’AR in qualche modo speciale per proteggere il cervello e che gli altri AAS lo danneggino. Ma i dati ci mostrano che le cose siano proprio così nette.

Infatti, i dati mostrino chiaramente che con la co-somministrazione di Anastrozolo l’effetto neuroprotettivo viene annullato, mentre senza Anastrozolo si ha un effetto neuroprotettivo.

Se si dispone di una quantità sufficiente di estrogeni per bilanciare gli androgeni nel corpo, si ottiene un livello stabile e ottimale di neuroprotezione, che si riflette nel modo in cui il nostro corpo regola l’aromatizzazione endogena degli androgeni.

Ma se si ha un livello sovrafisiologico di androgeni o si inibisce l’Aromatasi così da impedire la sintesi di una quantità di estrogeni necessari per svolgere le funzioni organiche, la neurotossicità aumenta indipendentemente dal fatto che si stia valutando il Testosterone e non un AAS sintetico non bioidentico. E tutto ciò si ricollega alla logica dell’utilizzo di una base di Testosterone durante il ciclo o di una fonte sufficiente di estrogeni esogeni in caso di carenza.

Questo rafforza anche il fatto che gli inibitori dell’aromatasi sono più che altro deleteri se usati senza una reale necessità.

Sarebbe opportuno fare tutto il possibile per evitare l’uso di inibitori dell’Aromatasi.

Se si ha bisogno di un inibitore dell’Aromatasi, è spesso probabile che ciò sia legato, per esempio, ad un dosaggio troppo alto di Testosterone (o altri AAS soggetti ad aromatizzazione), o ad una percentuale di grasso troppo alta (più grasso = più Aromatasi). Altre volte ciò può dipendere da un polimorfismo genetico che determina un metabolismo degli ormoni sessuali alterato o da una sovraespressione epigenetico-dipendente alla modificata omeostasi ormonale.

In definitiva, la probabilità che vi sia il bisogno di un AI per gestire una dose terapeutica di Testosterone, se i soprariportati punti sono ottimizzati, non è così probabile.

In un contesto di Bodybuilding con dosaggi sovrafisiologici, ritengo inoltre che nella maggior parte dei casi (quindi non in tutti) l’uso di un AI solo per poter utilizzare una dose “troppo alta” di Testosterone sia una strategia sbagliata.

È opportuno assumere estrogeni esogeni per prevenire la neurotossicità e la cardiotossicità?

Il fatto che siano gli estrogeni a fornire protezione neurologica, e non il Testosterone, non significa assolutamente che si debba iniziare ad assumere pillole anticoncezionali come fossero caramelle. Gli estrogeni non controbilancianti nell’organismo sono a loro volta cancerogeni. C’è un motivo per cui i primi trattamenti per il cancro al seno sono stati SERM e gli AI. Inoltre, gli estrogeni non forniscono neuroprotezione in modo dipendente dalla dose.

C’è un punto di equilibrio per ogni cosa nell’organismo, e una quantità eccessiva di qualsiasi cosa può essere dannosa. Un pretrattamento di 4 giorni con basse concentrazioni 0,01 μM (10 nM) di 17β-estradiolo è stato sostanzialmente neuroprotettivo contro la tossicità NMDA.

Tuttavia, è possibile notare chiaramente dal grafico che non si è verificata una diminuzione dose-dipendente della neurotossicità.

La neuroprotezione è stata significativamente inferiore con 1μM di 17β-estradiolo rispetto al dosaggio molto più basso di 0,01 μM di 17β-estradiolo.

L’organismo ha un sistema strettamente regolato in cui è necessaria una certa quantità di estrogeni per le funzioni fisiologiche. Una quantità eccessiva di estrogeni senza una quantità sufficiente di androgeni può provocare lo sviluppo di tumori, ginecomastia e diversi altri problemi.

Troppo pochi estrogeni ed eccessivi androgeni possono causare malattie cardiovascolari, morte neuronale e altrettanti problemi.

Quindi, cosa concludere?

Quindi, se si utilizza un androgeno senza una quantità sufficiente di estrogeni opposti per bilanciarlo, non solo si inibisce la crescita muscolare e la perdita di grasso, ma si mette il corpo in uno stato di salute che si deteriora ancora più rapidamente di quello in cui si sarebbe già trovato semplicemente a causa dei livelli di androgeni sovrafisiologici.

Se si utilizza una dose di Testosterone da TRT, sarebbe meglio non inibire inutilmente l’Aromatasi.

Inoltre, se si utilizza un AAS che o non è un potente substrato per l’aromatasi o non è soggetto ad essa (e questo interessa tutti i SARM steroidei e non steroidei), sarebbe meglio aggiungere al ciclo una base di Testosterone o una fonte di estrogeni adeguata. La co-somministrazione di DHEA non è garante di una risultante estrogenica ematica adeguata per via di variabili enzimatiche legate alla conversione dell’androgeno surrenalico a Androstenedione e Estradiolo.

La cosa interessante da valutare sarebbe se tutti gli AAS precedentemente descritti dalla letteratura riportata come deleteri per il cuore e il cervello sarebbero ancora descritti come tali se un dosaggio adeguato di estrogeni esogeni venisse usato insieme ad essi negli studi corrispondenti.

Questo apre sicuramente nuove prospettive per potenziali alternative alla HRT.

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  1. https://www.ncbi.nlm.nih.gov/pubmed/17662261

AAS e loro impatto su HDL e Capacità di Efflusso del Colesterolo (CEC)

Introduzione:

Nel 1957 sono stati pubblicati i primi risultati del Framingham Heart Study [1]. Si trattava (o dovrei dire si tratta, visto che è ancora in corso) di uno studio epidemiologico che cercava di individuare i fattori di rischio per le malattie cardiovascolari. Lo studio prende il nome dalla città di Framingham, Massachusetts, negli Stati Uniti. Sono stati reclutati 5.209 residenti della città di età compresa tra i 30 e i 62 anni. Diversi dati di questo gruppo di persone (coorte) sono stati raccolti nel tempo per scoprire questi fattori di rischio. Nella loro importante pubblicazione, hanno identificato tre fattori di rischio per le malattie cardiovascolari: ipertensione, obesità e ipercolesterolemia (alti livelli di colesterolo).

Ai fini di questo articolo, mi concentrerò sul Colesterolo. Prima di parlare dell’effetto degli Steroidi Anabolizzanti Androgeni sul colesterolo HDL, fornirò alcune informazioni di base.

Relazione tra malattie cardiovascolari e colesterolo LDL e HDL:

Dopo i risultati iniziali del Framingham Heart Study, il ruolo del colesterolo nello sviluppo del rischio di malattie cardiovascolari è stato ulteriormente chiarito. Un primo passo avanti in quest’area di ricerca è stata la suddivisione del colesterolo in colesterolo a bassa densità (LDL) e colesterolo ad alta densità (HDL) e il loro rispettivo contributo al rischio di malattie cardiovascolari. Queste due frazioni di colesterolo sono note al grande pubblico rispettivamente come colesterolo “cattivo” e “buono”.

Il colesterolo LDL elevato è stato associato a un aumento del rischio di malattie cardiovascolari. Dopo decenni di ricerche, una pletora di prove ha stabilito con certezza che questa associazione è causale [2]. In effetti, la terapia per abbassare le LDL, ad esempio con l’uso di statine, è una pietra miliare del trattamento delle dislipidemie. L’associazione tra colesterolo HDL e rischio di malattie cardiovascolari è opposta a quella del colesterolo LDL: un colesterolo HDL elevato è risultato associato a una diminuzione del rischio di malattie cardiovascolari. Gli studi epidemiologici rilevano una riduzione del rischio cardiovascolare di circa il 2-3% per ogni aumento di 1 mg/dL di colesterolo HDL [3].

A differenza del colesterolo LDL, tuttavia, non sembra esistere un legame causale diretto tra i livelli di colesterolo HDL e il rischio di malattie cardiovascolari [4]. Studi genetici sull’uomo, in cui sono state analizzate alcune mutazioni genetiche che portano a livelli più o meno elevati di colesterolo HDL, non hanno dimostrato chiaramente un’associazione con il rischio di malattie cardiovascolari. Questo sarebbe stato prevedibile se ci fosse stato un legame causale diretto. Lo scollamento tra i livelli di colesterolo HDL e il rischio di malattie cardiovascolari è diventato forse più dolorosamente evidente negli studi clinici sui farmaci. Sono stati sviluppati (o esistevano già) alcuni farmaci che aumentano i livelli di colesterolo HDL in modo significativo, ma non riescono a ridurre la mortalità o l’incidenza di eventi cardiovascolari, come ictus o infarto del miocardio [5]. Ciò include anche l’uso di integratori da banco, come la Niacina [5, 6].

Nota: quando si parla di “colesterolo LDL”, “colesterolo HDL” o “colesterolo VLDL” ci si riferisce alle lipoproteine trasportatrici. La sigla VLDL sta per “very low density lipoproteins”, LDL per “low density lipoproteins” e HDL per “high density lipoproteins”. La densità a cui si fa riferimento è legata al loro contenuto lipidico. In particolare la densità è tanto più bassa quanto maggiori sono i trigliceridi racchiusi all’interno della particella. Ne deriva che le VLDL sono lipoproteine ad alto contenuto in trigliceridi, le LDL sono lipoproteine a basso contenuto in trigliceridi e le HDL sono lipoproteine estremamente povere di trigliceridi. In compenso LDL e HDL sono caratterizzate da un alto contenuto in colesterolo. Ognuna di queste lipoproteine ricopre ruoli diversi. Le VLDL hanno il compito di trasferire trigliceridi dal fegato ai tessuti; in particolare, dopo essere state sintetizzate nel fegato, vengono riversate nel circolo ematico e cedute soprattutto al tessuto muscolare e a quello adiposo. LDL ed HDL trasportano il colesterolo nel circolo sanguigno. Mentre le LDL hanno lo scopo di cederlo ai tessuti, le HDL sono deputate alla rimozione del colesterolo presente in eccesso nel plasma. Le VLDL vengono sintetizzate soprattutto nelle cellule epatiche (epatociti) e trasportano principalmente Trigliceridi di origine endogena.

Le IDL (lipoproteine a densità intermedia) sono il prodotto del catabolismo parziale delle VLDL. Sono più piccole (da 25 a 30 nm), hanno più Colesterolo e meno Trigliceridi.
Hanno una densità compresa tra 1,006 e 1,019 g/ml e migrano elettroforeticamente con le ß-globuline. Per ogni molecola tipica di VLDL che viene degradata, viene prodotta una IDL.

Per la stima del VLDL-C è necessario dividere il valore dei Trigliceridi misurato per 5, nel caso in cui siano espressi in mg/dL, o 2.2, nel caso siano espressi in mmol/L. Nella maggior parte dei casi, la formula consente di effettuare una stima accurata del reale valore del VLDL-C.

AAS e riduzione del HDL:

Ora siete un po’ più informati sulla relazione tra malattie cardiovascolari e colesterolo LDL e HDL. Diversi studi interventistici hanno esaminato l’effetto dell’uso di AAS sul colesterolo.  Peter Bond ha fatto un piccolo riassunto di questi studi nel suo libro “Book on Steroids” il quale riporto nella tabella sottostante. Sebbene non tutti gli studi abbiano riscontrato una diminuzione statisticamente significativa del colesterolo HDL (↔️), molti lo fanno e nel complesso mostrano inequivocabilmente una diminuzione. Ciò è particolarmente vero per gli AAS orali, che sembrano avere l’effetto maggiore sul colesterolo HDL.

In uno studio, condotto dal gruppo di Bhasin [11], sono stati somministrati dosaggi graduali di Testosterone (25, 50 125, 300 e 600mg di Testosterone Enantato alla settimana). Gli autori hanno quindi potuto valutare se esisteva una relazione dose-risposta tra il dosaggio di Testosterone e il colesterolo HDL, e così è stato. Hanno riscontrato una moderata relazione inversa (r = -0,40) tra i livelli di Testosterone e il colesterolo HDL. Quindi, almeno fino a una dose compresa tra 300 e 600mg settimanali, più alto è il dosaggio, maggiore è la diminuzione del colesterolo HDL.

In un recente studio, 100 consumatori di AAS sono stati seguiti nel tempo durante l’autosomministrazione di questa classe di farmaci. Il dosaggio medio, basato sulle informazioni riportate sull’etichetta, era di 898mg a settimana, rendendo così il loro ciclo di AAS abbastanza rappresentativo dell’uso comune da parte dei bodybuilder. Le misurazioni sono state effettuate prima, durante, 3 mesi dopo la fine del ciclo e 1 anno dopo l’inizio del ciclo. Il colesterolo HDL è diminuito di 0,4 mmol/L (da 1,2 a 0,8) durante l’uso. Si tratta di una diminuzione sostanziale. I valori erano tornati ai valori di base 3 mesi dopo la cessazione dell’uso di AAS.

Meccanismo attraverso il quale gli AAS abbassano l’HDL:

Si ritiene che gli steroidi anabolizzanti riducano il colesterolo HDL aumentando l’attività di un enzima chiamato lipasi epatica [7, 8, 9, 10]. Si tratta di un enzima prodotto principalmente dal fegato. Essendo una lipasi, catalizza le reazioni di idrolisi dei lipidi. In particolare, scinde gli acidi grassi dal triacilglicerolo (Trigliceride) e i fosfolipidi dalle particelle lipoproteiche, come il colesterolo HDL. Idrolizzando il triacilglicerolo e i fosfolipidi dal colesterolo HDL, riduce le dimensioni di queste particelle. Queste particelle più piccole vengono catabolizzate a un ritmo più elevato [12].

Thompson et al. hanno esaminato queste sottofrazioni di colesterolo HDL che differiscono per dimensioni [8]. Hanno misurato i livelli di colesterolo HDL2 e HDL3: le particelle di colesterolo HDL2 sono più grandi e di densità inferiore rispetto a quelle HDL3. Gli uomini partecipanti hanno ricevuto 200mg di Testosterone Enantato alla settimana o 6mg di Stanozololo orale (Winstrol) al giorno per 6 settimane in un design crossover. I risultati sono stati i seguenti:

*Differenza significativa (P < 0,05) rispetto al valore basale.

Come si può notare, la maggiore diminuzione relativa è stata osservata nella frazione HDL2 più grande a seguito del trattamento con Stanozololo. Al contrario, il Testosterone non ha mostrato una diminuzione statisticamente significativa nella frazione HDL2, ma ha fatto altrettanto nella frazione HDL3 più piccola. Non è del tutto chiaro cosa provochi la diminuzione di questa frazione.

Quando dei bodybuilder sono stati randomizzati a ricevere 200mg di Nandrolone Decanoato alla settimana o un placebo [13]. Non sono stati riscontrati cambiamenti statisticamente significativi nel colesterolo totale, nel colesterolo LDL e nel colesterolo HDL. Analogamente, non sono stati riscontrati cambiamenti significativi nelle sottofrazioni di colesterolo HDL2 e HDL3. In particolare, nella stessa pubblicazione, gli autori riferiscono anche di uno studio in cui hanno seguito un gruppo di atleti di forza che si autosomministravano steroidi anabolizzanti. Sono stati utilizzati diversi composti in vari dosaggi, ma vale la pena sottolineare che la maggior parte di essi comprendeva anche uno steroide anabolizzante orale (soprattutto Stanozololo). In questo caso, il colesterolo HDL è sceso in picchiata: da 1,08 mmol/L a 0,43 mmol/L dopo 8 settimane. La sottofrazione di colesterolo HDL2 è scesa da 0,21 a 0,05 e la sottofrazione di colesterolo HDL3 è scesa da 0,87 a 0,40 mmol/L.

Effetto degli AAS sulla funzione del colesterolo HDL:

Dato il legame tra l’effetto di un farmaco sui livelli di colesterolo HDL e il rischio di malattie cardiovascolari, la ricerca ha iniziato a concentrarsi sulla funzione del colesterolo HDL. Il colesterolo HDL è il protagonista di un processo chiamato trasporto inverso del colesterolo. Nell’aterosclerosi, il colesterolo si accumula nelle cellule del sistema immunitario (macrofagi) e nelle cellule muscolari lisce che circondano i vasi sanguigni [14]. Queste cellule, a loro volta, diventano le cosiddette cellule schiumose, che segnano il punto di partenza dell’aterosclerosi. Le particelle di colesterolo HDL sono in grado di raccogliere il colesterolo da queste cellule – efflusso di colesterolo. L’efflusso del colesterolo dalle cellule schiumose nelle particelle di colesterolo HDL è uno dei modi in cui si ritiene che il colesterolo HDL eserciti i suoi effetti protettivi sulle arterie. Il colesterolo HDL raccolto può poi essere riportato al fegato, che lo incorpora nella bile e può quindi essere secreto nelle feci. Allo stesso modo, le particelle di colesterolo HDL possono trasferire parte del loro contenuto alle particelle LDL, che possono finire nuovamente nelle cellule schiumose o essere assorbite dal fegato.

Esistono metodi per misurare la capacità di efflusso del colesterolo HDL e l’idea attuale è che la sua modulazione possa influire sul rischio di malattie cardiovascolari, contrariamente ai livelli di colesterolo HDL in sé. Esistono diversi modi in cui il colesterolo HDL può assorbire il colesterolo dalle cellule schiumose. Uno di questi coinvolge un trasportatore chiamato ATP-binding casette transporter A1 (ABCA1), che si ritiene sia il più importante [15, 16]. Contribuiscono anche altri trasportatori, come ABCG1 e il recettore scavenger B1, oltre alla diffusione semplice.

Diamo uno sguardo agli studi che hanno valutato l’impatto dell’uso di steroidi anabolizzanti sulla capacità di efflusso del colesterolo HDL. In uno studio (non controllato), uomini anziani ipogonadici sono stati randomizzati alla TRT con o senza Dutasteride (un inibitore della 5a-reduttasi) [17]. Dopo 3 mesi, la TRT era riuscita a riportare i livelli di Testosterone di questi uomini all’interno del range di normalità. Il colesterolo HDL e la capacità di efflusso del colesterolo HDL sono rimasti inalterati.

Un altro studio, randomizzato e controllato, ha applicato un approccio leggermente diverso [18]. Uomini sani, di età compresa tra i 19 e i 55 anni, sono stati castrati medicalmente per sopprimere completamente la loro produzione endogena. In seguito, hanno ricevuto un placebo, una TRT a basso dosaggio, una TRT sostitutiva completa o una TRT sostitutiva completa con Letrozolo, un inibitore dell’Aromatasi che inibisce la conversione del Testosterone in Estradiolo. Il colesterolo HDL è aumentato leggermente nel gruppo placebo e in quello a basso dosaggio, mentre è rimasto inalterato nei due gruppi che hanno ricevuto una dose sostitutiva completa. Inoltre, mentre è stata riscontrata una piccola diminuzione della capacità di efflusso di ABCA1 nel gruppo che ha ricevuto anche il Letrozolo, non sono stati osservati cambiamenti negli altri tre gruppi. A causa delle dimensioni ridotte dei gruppi, è possibile che un piccolo effetto non sia stato notato.

E i dosaggi elevati? Sfortunatamente, esiste un solo studio che ha esaminato questo aspetto, ed era di natura trasversale (si tratta di misurazioni effettuate in un solo momento, il che rende impossibile/difficile trarre conclusioni)[19]. I ricercatori hanno confrontato le misurazioni di un gruppo di utilizzatori di AAS con quelle di non utilizzatori e controlli sedentari, che avevano un’età corrispondente. I consumatori di AAS erano forti utilizzatori, avendo fatto uso di AAS in media per circa 8 anni con un dosaggio medio di (apparentemente) 2,5g settimanali. La capacità delle HDL di effluire il colesterolo dai macrofagi è risultata inferiore del 13% nei consumatori di AAS rispetto ai non consumatori con allenamento della forza. Anche in questo caso, a causa della natura trasversale dello studio, è difficile dire se questo sia causale.

Conclusioni:

Gli AAS riducono il colesterolo HDL, in modo dose-dipendente, e questo sembra verificarsi in modo particolarmente marcato con gli AAS orali17α-alchilati. Non è certo come questo si traduca in un rischio di malattia cardiovascolare, in quanto esiste una discrepanza tra la capacità di un farmaco di alterare il colesterolo HDL e il suo effetto su di esso. La correlazione tra i livelli di colesterolo HDL misurati e il rischio di malattie cardiovascolari non è causale. I ricercatori ritengono che la capacità di efflusso del colesterolo HDL possa avere una migliore capacità predittiva, oltre a essere causalmente correlata. Pertanto, i farmaci che influiscono sulla capacità di efflusso potrebbero influenzare il rischio di malattie cardiovascolari. L’effetto degli AAS su questo aspetto non è ancora così chiaro a causa della scarsità di dati, soprattutto per quanto riguarda i dosaggi sovrafisiologici. Alcuni dati suggeriscono che potrebbero avere un impatto negativo sulla capacità di efflusso del colesterolo. Uno studio di coorte longitudinale probabilmente risponderà a questa domanda con maggiore certezza in futuro. Se la capacità di efflusso del colesterolo HDL diminuisce effettivamente in seguito all’uso di AAS, questa diminuzione indotta dagli AAS potrebbe essere dannosa per la salute cardiovascolare.

Certo, vi sono farmaci, non che integratori erboristici da banco, con azione di “tampone” della dislipidemia ematica. Ma ciò non elimina il problema lo rallenta nella sua potenziale comparsa soprattutto agendo sui rapporti tra i marcatori del profilo lipidico ematico. Ciò significa che potenzialmente, e il condizionale è d’obbligo vista la sensibile differenza soggettiva riscontrabile, l’uso di Monacolina-K, Niacina e EPA, nei corretti dosaggi, potrà causare una riduzione del HDL leggermente/moderatamente inferiore rispetto all’utilizzatore meno accorto, con conseguente alterazione delle ratio HDL:LDL, HDL:Trigliceridi e HDL:Colesterolo totale “rallentata” e meno marcata. Di per se questa pratica supplementativa potrebbe portare anche ad una riduzione anche della capacità di efflusso del colesterolo HDL, ma non vi sono, ad oggi, conferme inoppugnabili che ciò avvenga.

Ah, quasi dimenticavo di ricordare ai meno informati che anche i SARM non steroidei (vedi Ostarina, LGD-4033, ecc…) alterano il profilo lipidico ematico a diverso grado. Anche i SERM (Tamoxifene, Clomifene, Raloxifene ecc…) e AI (Letrozolo, Anastrozolo, Exemestane ecc…) hanno un potenziale di alterazione della lipidemia ematica.

Gabriel Bellizzi

Riferimenti:

  1. T. R. Dawber, F. E. Moore, and G. V. Mann. Measuring the risk of coronary heart disease in adult population groups: Ii. coronary heart disease in the framingham study. American Journal of Public Health and the Nations Health, 47(4 Pt 2):4, 1957
  2. Ference, Brian A., et al. “Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.” European heart journal 38.32 (2017): 2459-2472.
  3. Gordon, David J., et al. “High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies.” Circulation 79.1 (1989): 8-15.
  4. Rader, Daniel J., and G. Kees Hovingh. “HDL and cardiovascular disease.” The Lancet 384.9943 (2014): 618-625.
  5. Keene, Daniel, et al. “Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117 411 patients.” Bmj 349 (2014).
  6. Schandelmaier, Stefan, et al. “Niacin for primary and secondary prevention of cardiovascular events.” Cochrane Database of Systematic Reviews 6 (2017).
  7. Friedl, Karl E., et al. “High-density lipoprotein cholesterol is not decreased if an aromatizable androgen is administered.” Metabolism 39.1 (1990): 69-74.
  8. Thompson, Paul D., et al. “Contrasting effects of testosterone and stanozolol on serum lipoprotein levels.” Jama 261.8 (1989): 1165-1168.
  9. Zmuda, Joseph M., et al. “The effect of testosterone aromatization on high-density lipoprotein cholesterol level and postheparin lipolytic activity.” Metabolism 42.4 (1993): 446-450.
  10. Herbst, Karen L., et al. “Testosterone administration to men increases hepatic lipase activity and decreases HDL and LDL size in 3 wk.” American Journal of Physiology-Endocrinology and Metabolism 284.6 (2003): E1112-E1118.
  11. Singh, Atam B., et al. “The effects of varying doses of T on insulin sensitivity, plasma lipids, apolipoproteins, and C-reactive protein in healthy young men.” The Journal of Clinical Endocrinology & Metabolism 87.1 (2002): 136-143.
  12. Jin, Weijun, Dawn Marchadier, and Daniel J. Rader. “Lipases and HDL metabolism.” Trends in Endocrinology & Metabolism 13.4 (2002): 174-178.
  13. Hartgens, F., et al. “Effects of androgenic-anabolic steroids on apolipoproteins and lipoprotein (a).” British journal of sports medicine 38.3 (2004): 253-259.
  14. Ouimet, Mireille, Tessa J. Barrett, and Edward A. Fisher. “HDL and reverse cholesterol transport: Basic mechanisms and their roles in vascular health and disease.” Circulation research 124.10 (2019): 1505-1518.
  15. Du, Xian-Ming, et al. “HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export.” Circulation research 116.7 (2015): 1133-1142.
  16. Adorni, Maria Pia, et al. “The roles of different pathways in the release of cholesterol from macrophages.” Journal of lipid research 48.11 (2007): 2453-2462.
  17. Rubinow, Katya B., et al. “Testosterone replacement in hypogonadal men alters the HDL proteome but not HDL cholesterol efflux capacity.” Journal of lipid research 53.7 (2012): 1376-1383.
  18. Rubinow, Katya B., et al. “Sex steroids mediate discrete effects on HDL cholesterol efflux capacity and particle concentration in healthy men.” Journal of clinical lipidology 12.4 (2018): 1072-1082.
  19. de Souza, Francis Ribeiro, et al. “Diminished cholesterol efflux mediated by HDL and coronary artery disease in young male anabolic androgenic steroid users.” Atherosclerosis 283 (2019): 100-105.

Enclomifene nel trattamento del ipogonadismo secondario.

Introduzione:

Attualmente gli unici trattamenti approvati per l’ipogonadismo o la carenza di Testosterone sono la Terapia Sostitutiva con Testosterone (TRT) e la terapia con gonadotropina corionica umana (hCG). Tra le due, la TRT è sicuramente quella più comunemente prescritta. Uno dei motivi è rappresentato dal fatto che l’hCG è inefficace nell’ipogonadismo primario, un tipo di ipogonadismo in cui la causa è l’insufficienza testicolare. Questo esclude circa il 15% dei casi di carenza di Testosterone [1]. Altri motivi possono essere il fatto che l’hCG richiede iniezioni frequenti (di solito tre volte alla settimana) ed è più costoso di alcune alternative alla TRT.

Un problema centrale della TRT non affiancata dall’uso regolare di hCG (o abbinamento dell’hCG con l’hMG) è che sopprime la spermatogenesi e quindi porta all’infertilità in un numero considerevole di uomini. Inoltre, le dimensioni dei testicoli diminuiscono. Per gli uomini che desiderano preservare la fertilità e le dimensioni dei testicoli, la TRT in modalità priva di hCG è ovviamente un candidato non ideale. Sebbene questo aspetto sia meno importante per gli uomini più anziani che possono beneficiare della TRT, in quanto è meno probabile che abbiano in programma di avere figli, è un problema importante per gli uomini giovani che desiderano trattare l’ipogonadismo.

Come discusso nel mio precedente articolo sulla fertilità durante l’uso di AAS o in TRT, il Testosterone sopprime la secrezione di LH e FSH, con conseguente inibizione della spermatogenesi. Parte di questa soppressione è mediata dalla conversione del Testosterone in Estradiolo. Si potrebbero quindi aumentare i livelli di Testosterone annullando l’effetto soppressivo dell’Estradiolo sull’ipotalamo e, conseguentemente, sull’ipofisi. In effetti, l’uso di modulatori selettivi dei recettori degli estrogeni (SERM) – che esercitano un’azione antagonista sui recettori degli estrogeni nell’ipotalamo e nell’ipofisi – porta a un forte aumento di LH, FSH e Testosterone negli uomini con ipogonadismo secondario [2]. Allo stesso modo, l’uso di inibitori dell’Aromatasi – che impediscono al Testosterone di essere convertito in Estradiolo dall’azione dell’Enzima Aromatasi – porta a un aumento di LH, FSH e Testosterone negli uomini trattati [3]. Una conseguenza di ciò è che la spermatogenesi può essere preservata sebbene l’uso di AI sia maggiormente deleterio per il profilo lipidico ematico.

Enclomifene nell’Ipogonadismo Secondario:

Per inserire tra le opzioni terapeutiche per il trattamento dell’ipogonadismo secondario l’Enclomifene, un’azienda farmaceutica, la Repros Therapeutics Inc. ha tentato di farlo approvare dalla FDA. Prima di continuare a parlare di come si è svolto il processo, vorrei fornire alcune informazioni sul SERM in questione: l’Enclomifene Citrato (nome commerciale Androxal, successivamente ribattezzato EnCyzix).

Negli anni ’60 è stato scoperto che un farmaco chiamato clomifene citrato induce l’ovulazione. In quanto tale, poteva essere utilizzato come modalità di trattamento per promuovere la fertilità in caso di anovulazione o oligovulazione. Già all’epoca si sapeva che il clomifene agisce aumentando il rilascio di gonadotropine (LH e FSH) [4]. Per questo motivo, i ricercatori hanno iniziato a valutarne l’effetto anche negli uomini sulla spermatogenesi e sul testosterone. Nei decenni successivi, numerosi studi hanno dimostrato la sua efficacia nello stimolare la produzione di testosterone negli uomini ipogonadici. Tuttavia, il clomifene non è stato approvato dalla FDA per il trattamento dell’ipogonadismo. Tuttavia, viene prescritto off-label per questa indicazione e la linea guida 2018 per la valutazione e la gestione della carenza di testosterone dell’American Urological Association ne sostiene condizionatamente l’uso come alternativa alla TRT [5].

Un problema legato al trattamento con Clomifene è che, nonostante il significativo aumento dei livelli di Testosterone, i dati sul suo effetto sulla riduzione dei sintomi dell’ipogonadismo sono contrastanti [6]. Studi su larga scala e di buona qualità potrebbero chiarire questi aspetti e forse fare luce su quali pazienti potrebbero trarre i maggiori benefici dal suo utilizzo. Poiché il brevetto del farmaco è scaduto da tempo e vengono prodotti farmaci generici, le aziende farmaceutiche non sono molto attratte dagli investimenti. Pertanto, questi studi potrebbero non venir mai realizzati.

Come accade per molti altri farmaci, anche il Clomifene è una miscela racemica. Ciò significa che è costituito da una molecola di tipo “levogiro” e una di tipo “destrogiro”. In genere solo uno di questi stereoisomeri, come vengono chiamati, è il composto attivo. E ciò dà come risultato che si adatta meglio al recettore su cui agisce. Come un guanto si adatta solo a una mano e non all’altra, il tipo “levogiro” è più efficace nel legarsi a un recettore “levogiro” rispetto allo stereoisomero “destrogiro”. Il Clomifene è costituito dagli stereoisomeri Zuclomifene (nell’immagine sotto a sinistra) e, come alcuni di voi già sapranno, l’Enclomifene (nell’immagine sotto a destra):

Da sinistra: Zuclomifene e Enclomifene.

In generale, lo Zuclomifene è considerato un agonista del recettore degli estrogeni, mentre l’Enclomifene è considerato un potente antagonista degli estrogeni [7]. L’Enclomifene può quindi essere considerato lo stereoisomero attivo del Clomifene. L’idea dell’Enclomifene privo dello stereoisomero Zuclomifene, quindi, è quella di avere qualcosa di più efficace e sicuro del Clomifene. Tuttavia, l’aspetto più importante è che Repros Therapeutics Inc. potrebbe brevettarne l’uso terapeutico per il trattamento dell’ipogonadismo maschile.

E’ di interesse sottolineare che la miscela racemica del Clomifene è composta per il 38% da Zuclomifene e per il 62% da Enclomifene. Lo Zuclomifene è lo stereoisomero (Z) del Clomifene, mentre l’Enclomifene è lo stereoisomero (E). Lo Zuclomifene è leggermente estrogenico, e a differenza dell’Enclomifene, esso ha azione antigonadotropa a causa dell’attivazione del recettore degli estrogeni con successiva riduzione dei livelli di Testosterone negli uomini. È inoltre circa cinque volte più potente dell’Enclomifene nell’indurre l’ovulazione nelle donne.

Dati clinici sull’Enclomifene:

Per richiedere l’approvazione della FDA, l’azienda farmaceutica ha dovuto condurre alcuni studi clinici. Il primo studio pubblicato comprendeva solo 12 uomini e non era in cieco [8]. In altre parole, sia i partecipanti che i ricercatori sapevano quale trattamento stavano ricevendo gli uomini. I partecipanti erano uomini con ipogonadismo secondario trattati in precedenza con Testosterone topico. Sono stati randomizzati a ricevere nuovamente Testosterone topico o Enclomifene (25mg al giorno).

Dopo sei mesi di trattamento, i livelli di Testosterone erano praticamente gli stessi tra i gruppi: 545ng/dL (18,9nmol/L) nel gruppo che riceveva il gel e 525ng/dL (18,2nmol/L) nel gruppo che riceveva l’Enclomifene. Anche i livelli di Testosterone libero sono aumentati e sono rimasti praticamente invariati tra i gruppi. Inoltre, e naturalmente, il numero di spermatozoi è stato ridotto negli uomini che ricevevano Testosterone, con numeri intorno ai 20milioni/mL. Inoltre, come previsto, il numero di spermatozoi è aumentato negli uomini che hanno ricevuto l’Enclomifene, con una media di circa 150milioni/mL.

Sono stati condotti un paio di studi clinici successivi. Forse il più interessante è stato quello pubblicato nel 2016, rivolto a uomini ipogonadici obesi [9]. Il documento comprende due studi paralleli randomizzati, in doppio cieco, a doppio braccio e controllati con placebo. Si tratta di un’affermazione che lascia a bocca aperta e credo che il termine “doppio cieco” richieda qualche spiegazione. Nel precedente studio di cui mi sono occupato, ho detto che era di natura non cieca. Quindi i partecipanti e i ricercatori sapevano quale trattamento stava ricevendo ciascun soggetto. Di solito, quando si confrontano due farmaci diversi, si possono semplicemente mettere in cieco i soggetti (e i ricercatori) dando ai gruppi capsule, o pastiglie, o altro identici. Tuttavia, il gel di Testosterone è un gel, mentre l’Enclomifene è una compressa da inghiottire. Quindi non è possibile farlo. Per poter effettuare uno studio come questo in cieco, è necessario somministrare a entrambi i gruppi sia le pastiglie che il gel. Quindi un gruppo riceve un gel placebo e l’Enclomifene, mentre l’altro gruppo riceve un gel di Testosterone e una compressa placebo. Ovvero, doppio braccio. (E poiché lo studio era controllato con placebo, un gruppo ha ricevuto un gel e una compressa placebo).

I due studi descritti in questo articolo hanno utilizzato lo stesso protocollo e l’aspetto forse più interessante è stata la dimensione del campione: 256 soggetti in totale! Finalmente si è capito qualcosa. L’intervento è durato 16 settimane e i soggetti del gruppo Enclomifene hanno ricevuto 12,5mg al giorno e sono stati trattati fino a 25mg al giorno se i livelli di Testosterone non erano aumentati ad almeno 450ng/dL (15,6nmol/L) alla quarta settimana. La dose è stata aumentata per la metà dei soggetti che ricevevano l’Enclomifene. A questo punto le cose iniziano a farsi interessanti: sebbene metà dei soggetti sia stata modificata nel dosaggio alla quarta settimana, non è successo assolutamente nulla con la concentrazione media di Testosterone:

E, in effetti, alla fine dell’intervento, la media del gruppo era appena al di sotto del valore limite di 450ng/dL (15,6nmol/L) per l’up-titration. Infine, 29 degli 85 uomini del gruppo Enclomifene non hanno visto il loro Testosterone aumentare al di sopra del valore limite di ipogonadismo di 300ng/dL (10,4nmol/L) dopo 16 settimane di trattamento. Inoltre, i ricercatori hanno fatto un LAVORO ORRIBILE nel trattare correttamente il gruppo che utilizzava il gel di Testosterone, come si può vedere dalla concentrazione media di Testosterone di quel gruppo. Quasi come se l’avessero fatto apposta per far sì che il gruppo Enclomifene facesse meglio in alcune misurazioni… (anche se si tratta di uno studio a doppio braccio, è comunque possibile istruire i pazienti in modo scorretto con l’applicazione del gel).

È importante notare che gli unici endpoint erano i livelli di Testosterone, LH e FSH e la concentrazione di sperma. Non sono stati analizzati endpoint clinicamente rilevanti, come il desiderio sessuale, la funzione erettile, la stanchezza/vitalità, ecc. A quanto pare, nemmeno negli altri studi (pubblicati). O, forse, sono stati analizzati, ma semplicemente non sono stati riportati nei risultati dello studio perché erano deludenti. E penso che potrebbe essere stata la seconda ipotesi, visto che la FDA non ha approvato il farmaco per il trattamento dell’ipogonadismo secondario, a causa della mancanza di un miglioramento sintomatico misurabile [10]. Anche l’equivalente della FDA nell’UE, l’EMA, ha rifiutato l’autorizzazione all’immissione in commercio dell’Enclomifene qualche tempo dopo, con preoccupazioni simili:

“Il CHMP [Comitato per i Medicinali per Uso Umano] ha osservato che, sebbene gli studi abbiano mostrato un aumento dei livelli di Testosterone con EnCyzix [Enclomifene], non hanno esaminato se EnCyzix migliorasse sintomi quali la densità e resistenza ossea, l’aumento di peso, l’impotenza e la libido. Inoltre, il farmaco comporta un rischio di tromboembolismo venoso (problemi dovuti alla formazione di coaguli di sangue nelle vene)”.

E il Clomifene mostra in realtà risultati molto simili, anche mg per mg, a quelli dell’Enclomifene. Non riassumerò qui l’intera letteratura sul Clomifene, ma prendiamo ad esempio uno studio di Katz et al. in cui 86 giovani uomini ipogonadici hanno ricevuto il Clomifene Citrato a 25mg o 50mg a giorni alterni per una media di 19 mesi e hanno visto aumentare il Testosterone totale del 152% (da 192 ng/dL a 485 ng/dL) [11]. In particolare, il Testosterone libero è aumentato di ben il 332%. Se consideriamo un altro studio condotto su uomini obesi, il Testosterone è aumentato del 98% (da 303ng/dL a 599ng/dL) con 25mg al giorno [12]. In termini di aumento del Testosterone, l’Enclomifene non sembra avere un vantaggio rispetto al Clomifene (non sono riuscito a trovare uno studio di confronto testa a testa).

Conclusioni:

Quindi, per concludere, purtroppo non esiste ancora un’alternativa approvata dalla FDA oltre all’hCG o alla TRT per il trattamento dell’ipogonadismo. E con ciò, gli uomini ipogonadici che cercano un trattamento saranno vincolati alle iniezioni di hCG ( e spesso anche hMG) se desiderano preservare la fertilità durante la TRT. Forse i SERM (attuali) sono solo un vicolo cieco, poiché il loro antagonismo con gli estrogeni contrasta anche gli effetti positivi. Infatti, come hanno dimostrato elegantemente Finkelstein et al., l’aggiunta di un inibitore dell’Aromatasi a un gel di Testosterone ha un impatto negativo sul grasso corporeo e sulla funzione sessuale [13]. Avrebbero dovuto inserire anche l’aumento della neurotossicità e cardiotossicità da carenza di Estradiolo, oltre a stati depressivi e condizioni annesse.

Gabriel Bellizzi

Riferimenti:

  1. Tajar, Abdelouahid, et al. “Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Ageing Study.” The Journal of Clinical Endocrinology & Metabolism 95.4 (2010): 1810-1818.
  2. Wheeler, Karen M., et al. “Clomiphene citrate for the treatment of hypogonadism.” Sexual medicine reviews 7.2 (2019): 272-276.
  3. De Ronde, Willem, and Frank H. de Jong. “Aromatase inhibitors in men: effects and therapeutic options.” Reproductive Biology and Endocrinology 9.1 (2011): 1-7.
  4. Jungck, Edwin C., et al. “Effect of clomiphene citrate on spermatogenesis in the human: a preliminary report.” Obstetrical & Gynecological Survey 19.3 (1964): 520.
  5. Mulhall, John P., et al. “Evaluation and management of testosterone deficiency: AUA guideline.” The Journal of urology 200.2 (2018): 423-432.
  6. Scovell, Jason M., and Mohit Khera. “Testosterone replacement therapy versus clomiphene citrate in the young hypogonadal male.” European urology focus 4.3 (2018): 321-323.
  7. Fontenot, Gregory K., Ronald D. Wiehle, and Joseph S. Podolski. “Differential effects of isomers of clomiphene citrate on reproductive tissues in male mice.” BJU Int 117.2 (2016): 344-50.
  8. Kaminetsky, Jed, et al. “Oral enclomiphene citrate stimulates the endogenous production of testosterone and sperm counts in men with low testosterone: comparison with testosterone gel.” The journal of sexual medicine 10.6 (2013): 1628-1635.
  9. Kim, Edward D., Andrew McCullough, and Jed Kaminetsky. “Oral enclomiphene citrate raises testosterone and preserves sperm counts in obese hypogonadal men, unlike topical testosterone: restoration instead of replacement.” BJU international 117.4 (2016): 677-685.
  10. Earl, Joshua A., and Edward D. Kim. “Enclomiphene citrate: A treatment that maintains fertility in men with secondary hypogonadism.” Expert review of endocrinology & metabolism 14.3 (2019): 157-165.
  11. Katz, Darren J., et al. “Outcomes of clomiphene citrate treatment in young hypogonadal men.” BJU International-British Journal of Urology 110.4 (2012): 573.
  12. Pelusi, Carla, et al. “Clomiphene citrate effect in obese men with low serum testosterone treated with metformin due to dysmetabolic disorders: a randomized, double-blind, placebo-controlled study.” PLoS One 12.9 (2017): e0183369.
  13. Finkelstein, Joel S., et al. “Gonadal steroids and body composition, strength, and sexual function in men.” New England Journal of Medicine 369.11 (2013): 1011-1022.

Indicazioni alimentari e supplementative per la gestione del “Off-Season”.

Introduzione:

Il BodyBuilding si differenzia dagli sport di prestazione perché il giorno della gara gli atleti vengono giudicati in base all’aspetto piuttosto che alle capacità atletiche. I bodybuilder posano sul palco dove vengono giudicati per la muscolatura, la definizione e la simmetria. Nel corso di una stagione, i bodybuilder attraversano tre fasi diverse: la fase di crescita muscolare (Off-Season), la dieta per la competizione (preparazione alla gara) e la gara stessa. La maggior parte della letteratura riguarda la fase di dieta pre-gara e la peak week.[1]

Tuttavia, la letteratura scientifica sulle raccomandazioni alimentari per i bodybuilder durante la Off-Season è carente. Si tratta di una lacuna importante, poiché la maggior parte della carriera di un bodybuilder si svolge in questa fase, in cui l’obiettivo è aumentare la massa muscolare riducendo al minimo l’aumento eccessivo della massa grassa. I bodybuilder sono noti per avere atteggiamenti rigidi nei confronti della selezione degli alimenti, della frequenza dei pasti, dei tempi di alimentazione e dell’integrazione [2]. Storicamente, le informazioni sull’alimentazione e l’integrazione sono state trasmesse dalle riviste di bodybuilding e dai concorrenti di successo, ma recentemente sono emerse più informazioni attraverso Internet e i forum [3,4]. Di conseguenza, molte delle strategie alimentari utilizzate dai bodybuilder non hanno un solido supporto scientifico e la letteratura scientifica dimostra che alcune di queste strategie, tra cui l’uso massiccio di farmaci, ma anche di integratori più in generale, possono essere ovviamente dannosi per la salute [5,6,7].

Poiché i bodybuilder trascorrono la maggior parte del loro tempo in Off-Season, è evidente la necessità di raccomandazioni nutrizionali e di supplementazione, sia OTC che PEDs, il più possibile “sicure” e basate sull’evidenza per questa popolazione. È stato inoltre dimostrato che alcuni bodybuilder, e non soltanto i concorrenti di alto livello nel bodybuilding “Natural”, potrebbero essere interessati a informazioni basate sull’evidenza [8]. Con il supporto della review realizzata e pubblicata da Juma Iraki et al. che tratta del Off-Season a livello alimentare e integrativo, lo scopo di questo articolo sarà quello di riportare quanto evidenziato dalla letteratura scientifica sugli argomenti relativi all’alimentazione e all’integrazione alimentare e supplementazione PEDs rilevanti per i bodybuilder nella Off-Season e di fornire raccomandazioni pratiche sull’assunzione di energia, macronutrienti, frequenza dei pasti, tempistica dei nutrienti, integratori alimentari e PEDs .

Transizione dalla dieta pre-gara/peak week alla dieta in Off-Season – Reverse Diet Vs. Recovery Diet:

Il primo step che il bodybuilder si trova davanti è la gestione del passaggio da una dieta ipocalorica ad una ipercalorica. Ed è in questo frangente che emergono due strategie simili all’apparenza ma in realtà diverse: la “Recovery Diet” e la “Reverse Diet”.

Ora, molto semplicemente, la “Recovery Diet” consiste in un graduale aumento calorico ma di consistenza tale che l’atleta esca dalla condizione di ipocalorica nel giro di due settimane circa. Con la “Reverse Diet”, invece, abbiamo sempre un graduale aumento calorico ma caratterizzato da una ridotta consistenza dello stesso (si parla di circa 100Kcal/die a settimana). In questo caso specifico, il bodybuilder rimarrebbe in ipocalorica per diverse settimane con possibile emersione di problemi psicofisici legati al protrarsi dello stato stressorio.

Quindi, con il termine “Recovery Diet” ci riferiamo ad uno schema alimentare avente l’obiettivo generale di RECUPERARE da un periodo di dieta cronica sperimentato durante la preparazione alla gara. La “Recovery Diet” incoraggia i bodybuilder a guadagnare il 5-10% del loro peso di gara nelle prime 4-8 settimane successive all’evento. Questo con l’intento di accelerare l’aumento di grasso corporeo e far rientrare il soggetto in un range di grasso corporeo “sano”, fisiologico, il prima possibile. In seguito, si consiglia agli atleti di rallentare il ritmo di aumento del peso e di mantenere un surplus controllato, con un aumento medio dello 0,5-1% del peso corporeo al mese passando pienamente nella Off-Season. Questo fino a quando non raggiungono un punto in cui un ulteriore aumento di peso è considerato improduttivo. Con il termine “Reverse Diet” ci si riferisce ad una strategia la quale può ancora essere attuata con discreti vantaggi per aiutare un agonista a recuperare dopo il contest. Tuttavia, se rispettata e seguita correttamente, piccoli aumenti di cibo di ~100 Kcal/die a settimana potrebbero comunque protrarre il deficit calorico del soggetto, prolungando così il periodo di dieta ipocalorica. Sebbene questa possa essere una strategia utile in alcune circostanze, ad esempio durante l’avvicinamento alla competizione, le modalità di applicazione non permettono un recupero di una bf salubre in tempi ottimali. È risaputo che un bodybuilder in condizioni di picco non è necessariamente al massimo della salute, e questo è in gran parte correlato al livello di grasso corporeo. Accettare un certo aumento di grasso avrà effetti positivi su tutti gli aspetti della Off-Season come le prestazioni in allenamento, i marcatori ormonali, la disponibilità di energia, la qualità del sonno e, inoltre, sarà vantaggioso sulla longevità complessiva dello sport praticato.

In definitiva, se si parte da body fat estremamente basse, tipiche da gara, allora la “Recovery Diet” è la scelta migliore per shiftare dal regime ipocalorico che ha caratterizzato il periodo di preparazione alla gara a quello ipercalorico del Off-Season. Discorso diverso se ci troviamo di fronte ad un soggetto amatoriale, con una body fat del 8-10% arrivato al termine del percorso di “Cut”. In questo caso la “Reverse Diet” è la scelta più funzionale permettendo un controllo migliore degli incrementi calorici evitando che la massa grassa sfori eccessivamente e che il lavoro precedentemente svolto in “Cut” venga facilmente e totalmente compromesso. Anche “ibridazioni” con aumenti settimanali di 45-50g di CHO die possono essere applicati con buoni risultati.

Energia:

Durante la Off-Season, l’obiettivo principale di un bodybuilder è quello di aumentare la massa muscolare riducendo al minimo l’aumento della massa grassa attraverso l’uso di allenamenti contro-resistenza e il mantenimento di un bilancio energetico positivo. Per valutare con precisione il fabbisogno energetico dei bodybuilder durante la bassa stagione, è necessario considerare il volume, la frequenza e l’intensità dell’allenamento. Durante la fase off-season, è stato riportato che i bodybuilder si allenano alla resistenza 5-6 volte a settimana, esercitando ogni gruppo muscolare 1-2 volte a settimana [9]. È stato inoltre riferito che seguono una routine di allenamento ad alto volume con 4-5 esercizi per gruppo muscolare, eseguendo 3-6 serie per esercizio, 7-12 ripetizioni massime (RM) per ogni serie con 1-2 minuti di riposo tra le serie. La durata della sessione di allenamento è stata indicata in ~40-90 minuti. Tuttavia, i piani di allenamento possono variare notevolmente da atleta ad atleta. È necessario valutare anche l’apporto calorico medio dei bodybuilder. Nella fase off-season, l’apporto energetico è di solito sostanzialmente più elevato rispetto alla fase di dieta: tra i bodybuilder maschi è stato riportato un apporto medio di ~3800 kcal/giorno durante la fase off-season e di ~2400 kcal/giorno durante la fase di dieta [2].

  • Bilancio energetico positivo:

È stato dimostrato che un bilancio energetico positivo ha un importante effetto anabolico, anche in assenza di allenamento contro-resistenza [10]. Tuttavia, la combinazione di un bilancio energetico positivo con l’allenamento contro-resistenza rappresenta il metodo più efficace per garantire che gli effetti anabolici siano diretti all’aumento della massa muscolo-scheletrica [11,12]. L’entità del surplus energetico ideale per guadagnare massa muscolare limitando l’accumulo di tessuto adiposo può variare in base allo stato di allenamento. Nei soggetti non allenati, è stato dimostrato che un surplus energetico sostanziale di circa 2.000 kcal, combinato con l’allenamento contro-resistenza, fornisce un robusto aumento di peso, in cui il contributo della massa magra (LBM) può raggiungere il 100% [12]. Tuttavia, nei soggetti allenati, un surplus energetico sostanziale potrebbe non essere necessario o vantaggioso. Uno studio condotto su atleti d’élite ha esaminato l’effetto delle indicazioni dietetiche sui cambiamenti della composizione corporea tra gli atleti d’élite quando l’allenamento contro-resistenza è stato combinato con diverse entità di surplus energetico. Un gruppo con un peso corporeo medio di 75kg ha consumato energia ad libitum (2964 kcal) per raggiungere un surplus molto ridotto, mentre un secondo gruppo con un peso corporeo medio di 71kg ha ricevuto una consulenza dietetica e ha consumato ~600 kcal in più rispetto al gruppo ad libitum [13].

Entrambi i gruppi hanno seguito lo stesso programma di allenamento contro-resistenza di 4 giorni alla settimana per un periodo di 8-12 settimane. I ricercatori hanno ipotizzato che il gruppo ipercalorico avrebbe avuto un aumento maggiore del peso corporeo e della LBM. Sebbene il gruppo ipercalorico abbia ottenuto un aumento maggiore della LBM rispetto a quelli che mangiavano ad libitum, questo non ha raggiunto la significatività statistica (1,7kg contro 1,2kg, rispettivamente). Inoltre, rispetto al gruppo che mangiava a sazietà, hanno registrato un aumento significativamente maggiore della massa grassa (1,1kg contro 0,2kg, rispettivamente). I ricercatori hanno concluso che un surplus di 200-300 kcal al giorno negli atleti altamente allenati potrebbe essere più appropriato di 500 kcal per minimizzare il rischio di inutili aumenti di grasso corporeo. I soggetti non allenati, più lontani dal loro tetto genetico di massa muscolare, possono essere in grado di aumentare i muscoli a un ritmo più veloce rispetto agli individui allenati.

Il tasso di crescita muscolare può rallentare con l’avanzare dell’età [14]. Pertanto, un maggiore surplus energetico può essere più vantaggioso per i bodybuilder alle prime armi, mentre i bodybuilder avanzati potrebbero trarre maggiore beneficio da diete ipercaloriche conservative per limitare inutili aumenti di grasso corporeo. Studi precedenti hanno raccomandato ai bodybuilder di consumare una dieta leggermente ipercalorica, con un aumento dell’apporto energetico di circa il 15% rispetto al mantenimento nella Off-Season [15]. Tuttavia, ciò non tiene conto della storia di allenamento e del livello di esperienza del singolo bodybuilder. Poiché la capacità di aumentare la massa muscolare è limitata, un surplus aggressivo può portare a un inutile aumento del grasso corporeo, che aumenterebbe la durata o la gravità dei successivi periodi di preparazione alle gare, aumentando di conseguenza la durata o la gravità della scarsa disponibilità energetica. Pertanto, il numero di calorie che un bodybuilder consuma al di sopra del livello di mantenimento può essere stabilito in base al livello di esperienza e poi regolato in base al tasso di aumento di peso e ai cambiamenti nella composizione corporea. Dato che i bodybuilder spesso aumentano rapidamente di peso dopo una gara, potrebbe essere utile avere un obiettivo di aumento di peso per settimana e regolarsi di conseguenza [16,17].

Tuttavia, come detto precedentemente, inizialmente, dopo la gara, potrebbe essere utile un aumento di peso più rapido per aiutare a riportare il concorrente a uno stato di salute sia psicologico che fisiologico, prima che il tasso di aumento di peso venga rallentato per limitare l’accumulo eccessivo di tessuto adiposo. Nella letteratura scientifica si raccomanda di puntare a un aumento di peso di circa 0,25-0,5 kg a settimana per cercare di aumentare la LBM e ridurre al minimo l’aumento della massa grassa [14,18]. Per un bodybuilder avanzato, un potenziale aumento di 2kg di peso corporeo su base mensile potrebbe essere eccessivo e comportare un’inutile accumulazione di grasso corporeo; pertanto, questo tasso dovrebbe essere considerato con cautela. Sulla base delle prove attuali, potrebbe essere opportuno raccomandare ai bodybuilder di consumare una dieta leggermente ipercalorica (~10-20% sopra le calorie di mantenimento) nella Off-Season e raccomandare ai bodybuilder avanzati di puntare all’estremità inferiore di questa raccomandazione, o addirittura di essere più conservativi se si verificano aumenti sostanziali della massa grassa. Dato che i bodybuilder consumano in media 45 kcal/kg durante la bassa stagione, il surplus raccomandato equivale a circa 42-48 kcal/kg [2]. Potrebbe essere utile puntare a un aumento di peso di circa 0,25-0,5% del peso corporeo a settimana, regolando al contempo l’apporto energetico in base alle variazioni della composizione corporea. Inoltre, potrebbe essere più appropriato considerare le variazioni di peso medie settimanali basate su pesate giornaliere (o più volte alla settimana) per limitare gli errori delle fluttuazioni giornaliere del peso che possono verificarsi durante la settimana. Una volta determinato il surplus calorico, il passo successivo sarà quello di distribuire le calorie tra proteine, grassi e carboidrati.

Proteine:

Il turnover proteico del muscolo scheletrico è il rapporto tra la sintesi proteica muscolare (MPS) e la degradazione proteica muscolare (MPB). L’ipertrofia del muscolo scheletrico richiede un equilibrio netto in cui la MPS supera la MPB. L’esercizio contro-resistenza fornisce lo stimolo di tensione iniziale che induce l’ipertrofia risultante dall’aumento cumulativo della MPS dopo l’esercizio cronico [19]; tuttavia, l’aumento della massa grassa (FFM) può essere limitato se l’apporto proteico giornaliero è insufficiente [20]. Oltre alla quantità totale consumata al giorno, i ricercatori hanno ipotizzato che la qualità delle proteine possa aumentare il guadagno muscolare indotto dall’allenamento contro-resistenza [21]. Pertanto, entrambi questi argomenti saranno discussi nelle sezioni seguenti.

  • Introito proteico giornaliero:

Mentre l’attuale RDA per le proteine negli individui sani sedentari è di 0,8 g/kg, in una meta-analisi del 2018 di Morton e colleghi [22] è stato osservato che il doppio di questa quantità massimizza l’ipertrofia indotta dall’allenamento contro-resistenza. Inoltre, gli autori hanno osservato che “potrebbe essere prudente raccomandare ~2,2g di proteine/kg/die per coloro che cercano di massimizzare i guadagni di FFM indotti dall’allenamento contro-resistenza”, poiché 2,2g/kg era l’estremità superiore del limite di confidenza [22] e le differenze individuali impongono che alcuni atleti abbiano un fabbisogno proteico più elevato di altri [23]. Inoltre, la raccomandazione “meglio prevenire che curare” è probabilmente sicura, vista l’assenza di danni apparenti in studi di 1-2 anni tra i sollevatori che consumavano apporti proteici di almeno 2,2 g/kg [24,25]. Infine, la media e il limite superiore di confidenza del 95% per il fabbisogno proteico utilizzando la tecnica di ossidazione degli aminoacidi con indicatore tra i bodybuilder maschi nei giorni di non allenamento sono stati riportati rispettivamente come 1,7 e 2,2g/kg [26], che è simile al fabbisogno tra le donne quando è normalizzato alla FFM [27].

Tuttavia, è stato riportato che i bodybuilder consumano fino a 4,3g/kg di proteine al giorno tra i soggetti di sesso maschile e 2,8g/kg tra quelli di sesso femminile, superando di gran lunga queste raccomandazioni [2]. Le linee guida precedentemente fornite per i bodybuilder nella Off-Season erano di consumare il 25-30% del loro apporto energetico dalle proteine [15]. Potrebbe essere ragionevole opporsi all’indicazione di raccomandazioni basate su percentuali dell’apporto energetico totale, poiché un individuo con un peso non particolarmente elevato ma con un alto fabbisogno energetico potrebbe finire per consumare proteine che superano di gran lunga quelle necessarie e quindi richieste. Inoltre, questo può portare a un’assunzione insufficiente di carboidrati e grassi se l’atleta mira a un apporto calorico specifico. Pertanto, potrebbe essere più appropriato raccomandare un fabbisogno proteico basato sul peso corporeo. Pertanto, i bodybuilder dovrebbero consumare un minimo di 1,6g/kg di proteine nella Off-Season, anche se un obiettivo più vicino a 2,2 g/kg potrebbe garantire una risposta ottimizzata in modo più coerente in una maggiore percentuale di atleti.

E per i “Doped”? Dovremo ormai sapere che la fisiologia di base è la medesima per ogni individuo con le consuete variabili. Detto ciò, l’uso di PEDs va si ad alterare la fisiologia ma in questo specifico ambito, ossia introito proteico per massimizzare lo stimolo ipertrofico, hanno una azione di perfezionamento dell'”economia proteica cellulare”: in parole più semplici, sembra che l’uso di AAS porti ad una migliore resa nell’utilizzo degli amminoacidi scissi e assorbiti dalle proteine alimentari. Di conseguenza, a parità di apporto proteico, la veicolazione degli amminoacidi a scopo plastico è maggiore come minore è l’attività catabolica. Ciò significa che abusare delle proteine, in special modo durante una fase ipercalorica, perchè si è sotto AAS potrebbe risultare più inutile di quanto non lo sia in contesto “Natural”.

Infine, ed è necessario sottolinearlo, tra i bodybuilder che lottano con la fame in Off-Season e che di conseguenza assumono quantità caloriche che portano a un aumento di peso più rapido e all’accumulo di grasso in eccesso, un apporto proteico più elevato può essere utile (se non controindicato per motivi clinici). In uno studio condotto da Antonio e colleghi, i partecipanti ad allenamenti contro-resistenza che consumavano più proteine (4,4g/kg al giorno) e più calorie hanno guadagnato una quantità simile di FFM, ma non hanno guadagnato ulteriore grasso corporeo rispetto al gruppo che consumava meno proteine e meno calorie [28]. Allo stesso modo, in uno studio di follow-up, un gruppo che consumava 3,4g/kg di proteine al giorno ha guadagnato una quantità simile di FFM, ma ha perso una percentuale maggiore di grasso corporeo rispetto a un gruppo a basso contenuto proteico, ancora una volta, nonostante un apporto energetico più elevato [29]. Gli autori di questi studi sulla “vita libera” hanno ipotizzato che i loro risultati fossero dovuti a un aumento della termogenesi indotta dalla dieta attraverso protocolli alimentari ad alto contenuto proteico. Tuttavia, ciò è in contrasto con uno studio di Bray e colleghi del 2012 sul reparto metabolico, più strettamente controllato, in cui il contenuto proteico della dieta influenzava la percentuale di massa corporea acquisita, mentre la massa corporea totale era dettata dal solo contenuto energetico della dieta [30].

Pertanto, mentre la termogenesi indotta dalla dieta potrebbe essere significativamente più elevata con assunzioni di proteine nell’intervallo di 3 g/kg o superiore, la perdita di grasso o la mancanza di aumento di peso osservata da Antonio e colleghi, nonostante un apporto energetico più elevato, potrebbe con più probabilità riflettere l’effetto saziante di assunzioni proteiche molto elevate che diminuiscono l’assunzione calorica effettiva, piuttosto che un aumento della sola termogenesi.

  • Qualità delle Proteine:

Gli aminoacidi essenziali (EAA) sono gli unici aminoacidi necessari per stimolare il processo di MPS [31]. Sebbene tutti gli aminoacidi forniscano i “mattoni” necessari per la sintesi di nuovi tessuti, l’aminoacido Leucina in particolare sembra essere particolarmente importante come “innesco metabolico” della MPS [32]. È stato suggerito che una concentrazione sufficiente di Leucina è necessaria per raggiungere una “soglia di Leucina” che è richiesta per stimolare al massimo la MPS [33]. In breve, dal punto di vista della costruzione muscolare, le fonti proteiche che innescano una consistente risposta della MPS (quantità sufficiente di Leucina) e forniscono i mattoni essenziali per la costruzione di nuovo tessuto muscolare (contengono l’intero spettro di aminoacidi essenziali in abbondanza) possono essere considerate di “qualità superiore”.

Sebbene l’effetto meccanicistico della Leucina sulle MPS esuli dallo scopo di questo articolo, si invitano i lettori a leggere una rassegna che tratta questo argomento in dettaglio [34]. In generale, su una base di grammo per grammo, le fonti proteiche di origine animale contengono in genere più Leucina ed EAA, anche se ci sono eccezioni degne di nota. Le proteine della soia, uno dei più comuni integratori proteici di origine vegetale, contengono tutti gli EAA, ma in una quantità inferiore per grammo rispetto alle proteine del latte e quindi, in uno studio, hanno prodotto un aumento minore delle MPS rispetto al siero di latte dopo un’ingestione acuta [35]. È interessante notare che in questo stesso studio la soia ha prodotto un aumento maggiore delle MPS rispetto alla caseina, anch’essa una proteina casearia di “alta qualità”, presumibilmente a causa della più lenta velocità di digestione della caseina [35]. Rammentate sempre la differenza tra risposta “acuta” e “cronica”. Per l’appunto, ciò significa che, sebbene il contenuto di Leucina e di EAA di una fonte proteica debba essere preso in considerazione, la risposta acuta alla MPS non è l’unica variabile legata all’ipertrofia a lungo termine. Infatti, una proteina di alta qualità ma “lenta” come la caseina produce inizialmente una risposta MPS di minore ampiezza. Tuttavia, la caseina (e altre proteine a lenta digestione) può produrre un’area MPS sotto la curva simile o maggiore se osservata longitudinalmente rispetto a una fonte proteica “veloce” come il siero di latte, che determina un aumento iniziale maggiore e poi una brusca riduzione [36].

Inoltre, la risposta acuta della MPS a un determinato tipo di proteina non deve essere vista in una prospettiva riduzionista. Nel mondo reale si consumano quotidianamente più porzioni di varie fonti proteiche, rendendo probabilmente superflue alcune di queste distinzioni nel profilo aminoacidico e nella cinetica di digestione. Infatti, in una meta-analisi che ha confrontato i cambiamenti longitudinali della composizione corporea con diversi tipi di integratori proteici, non sono state riscontrate differenze significative tra i partecipanti che consumavano soia rispetto al siero di latte, ad altre proteine del latte o alle proteine isolate del manzo [37].

Come dimostrato in uno studio che ha messo a confronto gruppi che consumavano proteine dopo l’allenamento (in aggiunta a una dieta già composta dal 25% di proteine), sia che venissero forniti 48g di proteine del siero del latte (contenenti 5,5g di Leucina), sia che venissero forniti 48g di proteine del riso (contenenti 3,8g di Leucina), non è stato osservato alcun impatto sui cambiamenti della composizione corporea tra i gruppi dopo otto settimane [38]. Pertanto, se consumate in quantità sufficienti (soprattutto se si considera l’apporto proteico totale giornaliero), la qualità delle proteine di un singolo pasto è meno preoccupante. Tuttavia, se si volesse consumare una dieta dominata da fonti proteiche di origine vegetale, esistono alternative alla soia e al riso. Ad esempio, le proteine isolate del pisello sono ricche di EAA e di Leucina. In uno studio di 12 settimane, un gruppo che consumava 50g di proteine isolate di pisello al giorno ha registrato un aumento maggiore dello spessore muscolare indotto dall’allenamento di resistenza rispetto al placebo, non significativamente diverso da un gruppo che consumava 50g di siero di latte [39].

Pertanto, nel contesto delle indicazioni di questo articolo, la qualità delle proteine può essere un problema solo se si utilizza la fascia bassa delle linee guida sulle proteine (1,6g/kg) o se si consuma una dieta a base prevalentemente vegetale. In entrambi i casi, potrebbe essere utile integrare con fonti proteiche ricche di Leucina e di EAA, a seconda delle preferenze alimentari (ad esempio, proteine del latte o del pisello se si è vegani), per garantire la risposta attesa della MPS all’assunzione di proteine.

Grassi:

Il grasso è un nutriente fondamentale per molte funzioni dell’organismo. Tuttavia, non si sa molto dell’effetto dei grassi alimentari sull’ipertrofia del muscolo scheletrico. È stato riportato che l’assunzione di grassi alimentari tra i bodybuilder varia dall’8 al 33% delle calorie totali [2]. Sebbene i trigliceridi intramuscolari possano fungere da substrato energetico durante l’allenamento di resistenza, non sono un fattore limitante poiché i substrati derivano principalmente da processi anaerobici [40]. Di interesse per il bodybuilder, è dimostrato che negli atleti allenati contro-resistenza [41] e nei giocatori di hockey [42] le diete a basso contenuto di carboidrati (30-45% dell’energia o meno) possono influire sul rapporto Testosterone libero/Cortisolo (fTC), il che potrebbe avere un impatto negativo sul recupero. D’altra parte, la riduzione dei grassi alimentari nelle diete isocaloriche da ~30-40% a ~15-25% ha portato a riduzioni significative ma modeste dei livelli di Testosterone [43,44,45,46].

Tuttavia, non è chiaro se le variazioni di Testosterone all’interno di intervalli normali influenzino in modo significativo l’aumento della massa muscolare [47]. Nonostante la possibilità che i livelli di testosterone possano essere più elevati quando si consuma una percentuale maggiore di energia proveniente dai grassi alimentari, i cambiamenti effettivi nella massa muscolare durante gli studi longitudinali di individui allenati alla resistenza che seguono diete “chetogeniche” ad alto contenuto di grassi sono stati costantemente inferiori rispetto ad approcci moderati o a basso contenuto di grassi con ampi carboidrati [48,49,50,51]. Non è ancora stato chiarito se ciò sia dovuto a cambiamenti nella capacità di esercizio, ad alterazioni del rapporto fTC o a qualche altro meccanismo legato alla componente ad alto contenuto di grassi o a basso contenuto di carboidrati della dieta.

Tuttavia, ciò indica che forse si dovrebbe consumare una proporzione più moderata di grassi nella dieta, piuttosto che un apporto basso o alto. In letteratura sono state proposte raccomandazioni del 15-20% e del 20-30% delle calorie provenienti dai grassi alimentari [15,52]. Tuttavia, sono necessarie ulteriori ricerche per stabilire l’effetto e la quantità ottimale di grassi alimentari per favorire l’ipertrofia muscolare.

Sulla base delle evidenze attuali, può essere prudente raccomandare che i grassi alimentari rappresentino il 20-35% delle calorie, in linea con le raccomandazioni dell’American College of Sports Medicine per gli atleti [53], che nella maggior parte dei casi corrispondono a circa 0,5-1,5 g/kg/giorno. Inoltre, va notato che un apporto sufficiente di proteine e carboidrati non deve essere compromesso da un’elevata assunzione di grassi nella dieta.

Anche la qualità dei grassi, come gli essenziali omega 3 e gli omega 6, potrebbe essere importante per i bodybuilder. Se l’apporto di questi acidi grassi è sufficiente, non è necessario integrarli con una dieta di alta qualità contenente buone fonti di acidi grassi. Tuttavia, per alcuni potrebbe essere difficile assumere le quantità ottimali. Per questo motivo, l’argomento verrà trattato in modo più approfondito nella sezione dedicata agli integratori alimentari.

Carboidrati:

A differenza delle proteine e dei grassi, i carboidrati sono considerati non essenziali per la dieta umana perché l’organismo è in grado di produrre il glucosio necessario ai tessuti attraverso la gluconeogenesi [54]. Tuttavia, l’assunzione di carboidrati ha un ruolo importante nella dieta del bodybuilder come regolatore degli ormoni tiroidei e come contributo al fabbisogno di micronutrienti [55,56]. Inoltre, una dieta a basso contenuto di carboidrati potrebbe limitare la rigenerazione dell’adenosina trifosfato (ATP) e limitare la capacità dei muscoli di contrarsi con una forza elevata [57,58]. Durante l’esercizio ad alta intensità, il glicogeno muscolare è il principale contributore di substrato energetico ed è stato dimostrato che la glicolisi fornisce circa l’80% del fabbisogno di ATP di una serie di flessioni del gomito se portata al cedimento muscolare [59]. Nonostante ciò, parte del glicogeno utilizzato durante questo tipo di esercizio può essere risintetizzato dal lattato, il che potrebbe ridurre il fabbisogno di carboidrati. È stato inoltre dimostrato che l’allenamento contro-resistenza riduce il glicogeno muscolare del 24-40% in una singola sessione [59,60].

La quantità esaurita può variare in base alla durata, all’intensità e al lavoro svolto, ma l’allenamento tipico del bodybuilding con ripetizioni più elevate e carichi moderati sembra causare la maggiore riduzione delle scorte di glicogeno muscolare [61]. Inoltre, è stato suggerito che quando le scorte di glicogeno sono troppo basse (~70 mmol/kg), ciò può inibire il rilascio di calcio e accelerare l’insorgenza della fatica muscolare [62]. Un basso livello di glicogeno muscolare riduce significativamente il numero di ripetizioni eseguite quando si eseguono tre serie di Squat all’80% di 1RM [57].

Tuttavia, è stato dimostrato che il consumo di una dieta contenente 7,7 g/kg/die di carboidrati per 48 ore prima di una sessione di allenamento non ha un effetto maggiore sulle prestazioni rispetto a 0,37g/kg/die quando si eseguono 15 serie a 15RM di esercizi per la parte inferiore del corpo [63]. Analogamente, un altro studio ha rilevato che una dieta con il 70% di carboidrati rispetto a una dieta con il 50% di carboidrati non ha un effetto maggiore sulle prestazioni durante l’esercizio sopramassimale; tuttavia, una dieta composta dal 25% di carboidrati ha ridotto significativamente le prestazioni [64].

Inoltre, visti gli effetti negativi a lungo termine sulla massa muscolare osservati di recente in studi su popolazioni allenate alla resistenza che seguono diete chetogeniche [49,51], potrebbe essere prudente per i bodybuilder assicurarsi semplicemente un apporto sufficiente di carboidrati, visti questi risultati disparati. Pertanto, mentre le diete a moderato e alto contenuto di carboidrati sono probabilmente appropriate per il bodybuilding, le diete a bassissimo contenuto di carboidrati possono essere dannose per l’allenamento.

Nei bodybuilder maschi, sono stati riportati apporti medi di carboidrati pari a 5,3g/kg/giorno durante la Off-Season [2]. Tuttavia, non sono state stabilite le quantità ottimali di carboidrati per i bodybuilder. In letteratura sono state proposte raccomandazioni per gli sport di forza, tra cui il bodybuilding, con assunzioni di 4-7g/kg/giorno e 5-6g/kg [15,65]. I carboidrati sembrano essere importanti per il bodybuilder, ma per ottenere benefici possono essere necessarie solo quantità moderate. Pertanto, dopo aver destinato le calorie alle proteine (1,6-2,2g/kg/die) e ai grassi (0,5-1,5g/kg/die), le restanti calorie dovrebbero essere destinate ai carboidrati. Tuttavia, sulla base delle prove attuali, potrebbe essere ragionevole consumare quantità sufficienti di carboidrati nell’intervallo ≥3-5g/kg/giorno, se possibile.

Sono necessarie ulteriori ricerche tra i bodybuilder per stabilire se l’assunzione abituale di carboidrati, superiore o inferiore a quella osservata, possa produrre ulteriori benefici. La Tabella sottostante riassume le raccomandazioni per le calorie e i macronutrienti.

Raccomandazioni dietetiche per i bodybuilder in Off-Season.

Distribuzione e timing dei nutrienti:

Si dice che i bodybuilder consumino in media sei pasti al giorno [66]; tuttavia, non esistono studi che esaminino specificamente quale possa essere la frequenza ottimale dei pasti per questa popolazione [65]. Questa elevata frequenza dei pasti si basa sulla convinzione di un maggiore stato di anabolismo e persino di un migliore utilizzo dei nutrienti durante il giorno, che potrebbe tradursi in un miglioramento della composizione corporea.

Il concetto di temporizzazione dell’assunzione di proteine per massimizzare l’ipertrofia comprende diverse strategie di dosaggio. La prima a comparire in letteratura è stata il consumo di proteine in prossimità dell’allenamento contro-resistenza. I picchi di MPS sono più elevati in questo periodo quando si consumano proteine; pertanto, questa strategia è stata proposta per migliorare l’efficienza della riparazione e del rimodellamento del muscolo scheletrico [31]. Inoltre, a causa dell'”effetto muscolo pieno”, per cui un ulteriore apporto di proteine non aumenta la MPS finché non è trascorso un tempo sufficiente, distribuire uniformemente l’assunzione di proteine tra più pasti è un’altra strategia studiata per massimizzare la MPS totale giornaliera [67]. Infine, il consumo prima di andare a letto di proteine a lenta digestione (come la caseina) per evitare periodi catabolici prolungati durante il sonno è la strategia proposta più di recente per migliorare il bilancio proteico netto giornaliero [68], sebbene si sia dimostrata inutile nel perseguire il fine o, per lo meno, non molto diversa dalla risultante di una assunzione di isolate in un contesto alimentare con parità nel totale proteico giornaliero. Ciascuna di queste tre strategie sarà discussa in seguito.

  • Dosaggio proteico:

Il periodo post-allenamento consente un picco della MPS più elevato quando si consumano proteine [31] e per raggiungere il picco di MPS può essere necessaria un’adeguata dose di Leucina “soglia” [32]. Diversi studi hanno esaminato il dosaggio proteico necessario per massimizzare la MPS dopo l’allenamento [69,70,71]. In uno studio sono stati consumati 0, 5, 10, 20 o 40g di proteine d’uovo intere dopo l’esercizio contro-resistenza della parte inferiore del corpo, con 20g che stimolavano al massimo la MPS [69]. Risultati simili sono stati riscontrati anche in un altro studio, in cui 20 g di siero di latte sono stati sufficienti a stimolare al massimo i tassi post-assorbitivi di MPS sia a riposo che dopo un lavoro unilaterale delle gambe all’80% del 1RM [70]. Inoltre, 40g di siero di latte non hanno prodotto ulteriori aumenti di MPS in questo studio e hanno portato all’ossidazione amminoacidica e alla produzione di urea.

Tuttavia, uno studio recente ha rilevato che, durante l’esecuzione di esercizi contro-resistenza per tutto il corpo al 75% del 1RM, 40g di siero di latte hanno prodotto una risposta MPS significativamente più elevata rispetto a 20g [71]. Esiste quindi una relazione tra il volume di tessuto muscolare danneggiato e stimolato e l’assunzione adeguata di proteine. È interessante notare che gli autori di una meta-analisi del 2013 hanno osservato che, nonostante gli studi con traccianti a breve termine mostrassero risposte nella MPS maggiori quando le proteine venivano consumate nella “finestra anabolica” post-allenamento, negli studi longitudinali sull’allenamento non è stato riscontrato alcun effetto significativo sull’ipertrofia quando si controllava l’apporto proteico totale giornaliero, indipendentemente dal fatto che le proteine fossero consumate all’interno della “finestra anabolica” o al di fuori di essa [72].

  • Nutrient Timing:

Analogamente, i ricercatori di uno studio tracciante a breve termine che ha esaminato il dosaggio delle proteine nel corso di 12 ore hanno riportato una maggiore area sotto la curva della MPS quando sono state consumate quattro dosi di proteine del siero di latte da 20g ogni tre ore rispetto a due dosi da 40g a distanza di sei ore e otto dosi da 10g ogni ora e mezza [73]. In teoria, data la soglia oltre la quale le proteine supplementari consumate in una singola seduta non contribuiscono ulteriormente alla MPS [69] e a causa del “periodo refrattario” postprandiale durante il quale la MPS non può essere nuovamente stimolata al massimo [67], si potrebbe concludere che un bodybuilder dovrebbe raggiungere, ma non superare, questa dose soglia ogni poche ore per massimizzare l’ipertrofia a lungo termine. Tuttavia, gli autori di una review sistematica del 2018 sugli integratori proteici, comprendente 34 studi randomizzati e controllati, hanno riportato guadagni di massa magra simili tra i gruppi che utilizzavano un programma di dosaggio con i pasti (che comportava un minor numero di dosi di proteine di entità elevata) e tra i pasti (che comportava un maggior numero di dosi di proteine di entità moderata) [74].

È interessante notare che i dati che esaminano l’alimentazione proteica notturna mostrano uno distacco simile tra gli studi meccanicistici a breve termine e gli interventi di allenamento a lungo termine. Nel 2012 è stata condotta la prima ricerca che esaminava la risposta acuta all’alimentazione notturna con caseina [68]. Gli autori hanno riportato che 40g di caseina consumati prima di andare a letto sono stati digeriti, assorbiti e hanno stimolato la MPS e migliorato l’equilibrio proteico dell’intero corpo durante il periodo notturno in misura maggiore rispetto al placebo. Negli anni successivi sono stati pubblicati altri studi in acuto che hanno confermato [75] e riconfermato questi risultati in una popolazione più anziana [76]. Nel 2015, gli autori del primo studio longitudinale hanno riportato un aumento della forza e dell’ipertrofia in un gruppo a cui era stato somministrato un supplemento proteico notturno rispetto a un gruppo placebo [77].

Tuttavia, la quantità totale di proteine giornaliere non è stata equiparata, in quanto il gruppo con proteine notturne ha consumato 1,9g/kg/giorno, mentre il gruppo placebo ha consumato solo 1,3g/kg. È importante notare che in entrambi gli unici studi longitudinali con corrispondenza proteica che hanno confrontato l’integrazione notturna di caseina con i gruppi che hanno assunto l’integrazione prima, non sono state riportate differenze significative nell’aumento della FFM tra i gruppi [78,79]. Pertanto, la domanda è la stessa per ogni strategia di distribuzione: perché ci sono ripetuti distacchi tra gli studi meccanicistici a breve termine sulle MPS e le ricerche a lungo termine che esaminano l’effettiva ipertrofia? La risposta potrebbe risiedere nei metodi utilizzati negli studi sulla MPS, in quanto i partecipanti sono a digiuno, ricevono solo proteine in polvere in isolamento, spesso viene loro somministrato del siero di latte (che viene digerito molto rapidamente) e vengono osservati per brevi periodi. Questi contesti di laboratorio determinano tempi di digestione e cinetiche degli aminoacidi diversi da quelli che si verificano nel “mondo reale”. In particolare, in queste condizioni di laboratorio i livelli di base degli aminoacidi nel corpo sono più bassi del normale e la digestione e il successivo apporto di aminoacidi al muscolo sono più rapidi.

In condizioni di vita libera, le proteine vengono consumate principalmente da fonti alimentari intere, più volte al giorno e insieme ad altri alimenti, il che ritarda lo svuotamento gastrico. Per questi motivi, gli aminoacidi vengono titolati nel flusso sanguigno in modo più lento e costante; pertanto, in condizioni normali, le scorte sono quasi sempre prontamente disponibili [80]. Pertanto, l’efficacia della “finestra anabolica” e persino delle strategie di distribuzione delle proteine potrebbe non tradursi nella pratica. Inoltre, le limitazioni specifiche del laboratorio si estendono anche agli studi sull’alimentazione notturna. Si consideri, ad esempio, che 26g di proteine provenienti da una bistecca magra determinano un aumento sostenuto della MPS che dura almeno sei ore (l’intero periodo di tempo studiato) [81].

Inoltre, 26g sono solo il ~37% della dose di proteine contenuta in media in una cena americana [82], che richiederebbe più tempo per essere digerita a causa della maggiore porzione di proteine e dell’aggiunta di fibre, lipidi e altri nutrienti che ritarderebbero ulteriormente la digestione [80]. Pertanto, il tipico pasto finale potrebbe già soddisfare lo scopo di un frullato di caseina. Detto questo, nonostante queste discrepanze tra MPS e risultati della composizione corporea, non c’è nulla di male nel tentare queste strategie, soprattutto se attuate in modo pragmatico e senza introdurre ulteriori oneri logistici nel proprio programma quotidiano.

Pertanto, potrebbe essere prudente consigliare ai bodybuilder di suddividere l’assunzione giornaliera di 1,6-2,2 g/kg di proteine in più pasti contenenti ciascuno ~0,40-0,55g/kg [80] e di fare in modo che uno di questi pasti avvenga entro 1-2 ore prima o dopo l’allenamento, mentre un’alimentazione costituita da una fonte proteica e non proteica venga consumata 1-2 ore prima di dormire. Ad esempio, un bodybuilder di 90 kg potrebbe consumare 40-50g di proteine alle 8-9 del mattino per la colazione, allenarsi alle 11, consumare 40-50g di proteine alle 12-13 per il pranzo/post-allenamento, 40-50g di proteine a cena tra le 17-18, e poi un pasto finale di 40-50g di proteine non contenenti fonti proteiche grasse alle 21-10 prima di andare a letto entro le 23.

I carboidrati consumati prima dell’allenamento sono spesso una strategia utilizzata dagli atleti per migliorare le prestazioni negli esercizi ad alta intensità. La completa risintesi del glicogeno può essere raggiunta entro 24 ore da un allenamento che depaupera il glicogeno se si consumano quantità sufficienti di carboidrati [83]. Tuttavia, solo il 24-40% del glicogeno muscolare viene esaurito dopo un allenamento contro-resistenza [59,60]. Pertanto, una quantità di ≥3-5g/kg di carboidrati al giorno sarebbe probabilmente sufficiente per la risintesi del glicogeno. Questo elevato apporto giornaliero di carboidrati probabilmente riduce anche l’impatto della tempistica dei carboidrati pre-allenamento sulle prestazioni dell’esercizio.

Spesso si sostiene che il consumo di carboidrati con le proteine dopo l’allenamento abbia un effetto anabolico dovuto alla secrezione di Insulina. Sebbene sia stato dimostrato che l’Insulina ha effetti anabolici [84], a livelli fisiologici il suo rilascio ha uno scarso impatto sull’anabolismo post-esercizio [85]. Inoltre, diversi studi non hanno evidenziato ulteriori effetti sulla sintesi proteica muscolare post-esercizio quando i carboidrati sono combinati con gli aminoacidi [86,87].

Inoltre, per i bodybuilder che non hanno bisogno di enfatizzare il rifornimento di glicogeno, le proteine aumentano la MPS post-allenamento a livelli massimi anche senza l’aggiunta di carboidrati [86,87]. Anche se il consumo di carboidrati nel post-allenamento non è certo dannoso, è improbabile che questo favorisca l’ipertrofia a lungo termine, come discusso in precedenti review [1,88]. Pertanto, è meglio concentrarsi sul consumo di un’adeguata quantità di carboidrati giornalieri e basare la distribuzione dei carboidrati intorno all’allenamento sulle preferenze personali.

Supplementazione OTC:

In un recente sondaggio condotto tra i bodybuilder, è stato riportato che tutti i partecipanti assumevano integratori alimentari [9]. Gli integratori alimentari più comuni erano: integratori di proteine (86%), creatina (68%), aminoacidi a catena ramificata (67%), glutammina (42%), vitamine (40%), olio di pesce (37%) e prodotti contenenti caffeina/efedrina (24%).

Sebbene gli integratori proteici siano molto popolari tra i bodybuilder, vengono utilizzati prevalentemente come gli alimenti interi per raggiungere gli obiettivi proteici. Pertanto, non verranno discussi in dettaglio. I lettori sono invitati a leggere la posizione dell’ISSN su questo argomento [89]. Inoltre, la trattazione di tutti gli integratori comunemente utilizzati dai bodybuilder esula dallo scopo di questo articolo. L’attenzione si concentrerà piuttosto sugli integratori alimentari che potrebbero potenzialmente produrre un effetto ergogenico e sugli integratori che possono garantire un apporto sufficiente di micronutrienti e acidi grassi essenziali.

  • Creatina Monoidrato:

La Creatin-fosfato si trova in alte concentrazioni nel muscolo scheletrico e cardiaco, dove agisce come fonte di energia [90]. La Creatina può essere ottenuta anche attraverso la dieta nei soggetti che consumano carne; tuttavia, le concentrazioni di Creatina nella carne si riducono con la cottura [91].

Numerosi studi hanno osservato un aumento della massa e della forza muscolare in seguito a fasi di carico di Creatina, in genere di 20g al giorno per circa una settimana, spesso seguite da fasi di mantenimento di 2-3g di Creatina al giorno [92]. Tuttavia, la fase di carico potrebbe non essere necessaria. È stato dimostrato che la saturazione della Creatina muscolare dopo un’integrazione di 3g di Creatina Monoidrato per 28 giorni è simile al consumo di Creatina Monoidrato dopo la tipica fase di carico [93].

La maggior parte degli individui non raggiunge i 3g giornalieri con la dieta e può essere necessaria un’integrazione. Esistono numerose forme di Creatina negli integratori in commercio, tra le quali la Creatina Monoidrato è la più studiata. Le versioni più recenti di Creatina, come la kre-alkalyn [94] e la Creatina etil-estere [95], non si sono dimostrate superiori alla Creatina Monoidrato, nonostante abbiano in genere un prezzo più elevato. Pertanto, si raccomanda il consumo di 3-5g di Creatina Monoidrato al giorno. La tempistica di assunzione della Creatina non sembra avere importanza, poiché la saturazione delle riserve di Creatin-fosfato richiede circa 28 giorni per raggiungere le concentrazioni massime quando si consumano 3g al giorno e non ha un effetto in acuto [93].

  • Caffeina:

Uno degli integratori alimentari più utilizzati dai bodybuilder sono gli stimolanti, in particolare la Caffeina [9]. Oltre ad aumentare l’eccitazione [96], la Caffeina può ridurre il dolore e lo sforzo percepito durante l’esercizio [97] e migliora la gestione del Calcio, aumentando la potenza [98]. Studi sull’allenamento contro-resistenza hanno rilevato che la Caffeina riduce la fatica e aumenta la forza [99,100]. Tuttavia, non tutti gli studi hanno dimostrato un effetto ergogenico sull’allenamento contro-resistenza [101]. Gli studi che hanno dimostrato un effetto ergogenico hanno utilizzato dosaggi elevati di caffeina (5-6 mg/kg), che sono al limite superiore di quello che è considerato un dosaggio sicuro [99,100]. Tuttavia, può essere consigliabile consumare il dosaggio minimo efficace per individuo, poiché l’assunzione regolare può generare tolleranza [102]. A causa dell’effetto acuto della Caffeina, è consigliabile assumerla circa 1 ora prima dell’esercizio fisico [99]. Tuttavia, l’emivita della Caffeina è di circa 3-9 ore; pertanto, può essere consigliabile consumare la Caffeina all’inizio della giornata per favorire un sonno sano se l’esercizio fisico viene svolto più tardi nel corso della giornata [103]. Sono necessarie ulteriori ricerche per trovare un consenso sull’uso della Caffeina nell’allenamento contro-resistenza, ma sulla base delle prove attuali un dosaggio di 5-6 mg/kg consumato prima dell’esercizio potrebbe produrre un effetto ergogenico sulle prestazioni nell’allenamento contro-resistenza.

  • Beta-Alanina:

È stato dimostrato che l’ingestione di 4-6 g di beta-alanina aumenta i livelli di carnosina muscolare [104]. La carnosina agisce come tampone del pH nel muscolo scheletrico e può ritardare l’inizio dell’affaticamento muscolare durante l’esercizio ad alta intensità [105]. Una meta-analisi ha concluso che la beta-alanina potrebbe produrre effetti ergogenici durante l’esercizio ad alta intensità della durata di 60-240 secondi [104]. Inoltre, non sono stati riscontrati effetti benefici negli esercizi di durata inferiore a 60 secondi. La maggior parte degli studi inclusi nella meta-analisi riguardava l’esercizio di resistenza.

Tuttavia, è dimostrato che l’integrazione di beta-alanina può migliorare la resistenza muscolare negli atleti allenati alla resistenza [105] e può migliorare la composizione corporea [106]. Sono necessari ulteriori studi per esaminare l’effetto ergogenico della beta-alanina sulla composizione corporea e sulle prestazioni. Tuttavia, dato che i bodybuilder si allenano spesso con più di 10 ripetizioni per serie e spesso includono tecniche di intensità come drop set, pause di riposo, myo reps e altre, la beta-alanina potrebbe apportare un beneficio alla resistenza di queste serie [9].

Pertanto, potrebbe essere ragionevole per un bodybuilder consumare 3-5 g di beta alanina al giorno durante le fasi di allenamento ad alte ripetizioni o nelle fasi di allenamento in cui si incorporano diverse tecniche di intensità che prolungano la durata di un set. Come la creatina monoidrato, la beta-alanina non ha un effetto acuto, in quanto le concentrazioni di carnosina muscolare richiedono circa 4 settimane per raggiungere concentrazioni tali da produrre un effetto ergogenico, a condizione che se ne consumi una quantità sufficiente al giorno [104].

  • Citrullina Malato:

Recentemente, la Citrullina Malato ha guadagnato popolarità tra i bodybuilder. Il potenziale effetto ergogenico è dovuto all’aumento del flusso ematico al muscolo, alla produzione di ATP e alla potenziale capacità della Citrullina Malato di agire come agente tampone [107]. È stato dimostrato che il consumo di 8g di Citrullina Malato aumenta le ripetizioni fino al cedimento del 50% [107,108,109,110], riduce l’indolenzimento muscolare del 40% [107] e migliora la forza massimale e la potenza anaerobica [111].

Tuttavia, non tutti gli studi hanno osservato effetti ergogenici del consumo di Citrullina Malato. Due studi recenti non hanno mostrato un miglioramento delle prestazioni, un aumento della risposta del gonfiore muscolare dovuto all’allenamento, un’attenuazione della fatica o un aumento dell’attenzione e dell’energia in seguito all’integrazione di Citrullina Malato in uomini allenati contro-resistenza a livello amatoriale [112,113].

Una recente meta-analisi di Trexler et al. ha analizzato 12 studi sullla CM per le prestazioni di forza e potenza [114]. Sebbene abbiano riscontrato solo una piccola dimensione dell’effetto (0,20), hanno concluso che questo potrebbe essere rilevante per gli atleti di alto livello in cui i risultati delle competizioni si decidono su margini ridotti, come i culturisti agonisti di alto livello. Si consiglia di assumere la Citrullina Malato circa 60 minuti prima dell’esercizio fisico per consentire un assorbimento sufficiente.

Sono necessarie ulteriori ricerche per determinare l’efficacia della Citrullina Malato nell’esercizio contro-resistenza. Allo stato attuale, i dati indicano un effetto benefico o neutro sulle prestazioni. Pertanto, sulla base delle prove attuali, 8g al giorno di Citrullina Malato consumati prima dell’esercizio potrebbero avere dei benefici interessanti per i bodybuilder.

  • Alfa-GPC:

L’Alfa-GPC (alfa-glicerofosfocolina o colina alfoscerato) è un fosfolipide contenente colina. Quando viene ingerita, l’Alfa-GPC viene metabolizzata in colina e glicerolo-1-fosfato. La colina è un precursore dell’acetilcolina, un neurotrasmettitore coinvolto nella memoria, nell’attenzione e nella contrazione dei muscoli scheletrici. Il glicerolo-1-fosfato serve a sostenere le membrane cellulari.[https://pubmed.ncbi.nlm.]

L’Alfa-GPC sembra attraversare facilmente la barriera emato-encefalica e viene assorbito rapidamente. Attualmente è il miglior colinergico per aumentare i livelli plasmatici e cerebrali di colina.[https://pubmed.ncbi.nlm.]

L’integrazione orale di Alfa-GPC è interessante soprattutto per scopi nootropici o di potenziamento cognitivo. Esistono numerosi studi sui roditori che supportano questo effetto, ma non è ancora stato dimostrato negli esseri umani altrimenti sani. Negli anziani affetti da demenza lieve o moderata – che comporta un’alterazione della neurotrasmissione colinergica – l’Alfa-GPC migliora i sintomi cognitivi (ad esempio, disturbi della memoria e dell’attenzione).[https://pubmed.ncbi.nlm] L’Alfa-GPC può anche migliorare l’efficacia degli inibitori dell’acetilcolinesterasi (cioè i farmaci che aumentano la disponibilità di acetilcolina rallentandone la degradazione), utilizzati per il trattamento della malattia di Alzheimer.[https://pubmed.ncbi.nlm.]

Gli atleti sono un’altra popolazione che può trarre beneficio dall’integrazione di Alfa-GPC. Prove preliminari suggeriscono che l’alfa-GPC aumenta la potenza del salto verticale.[https://jissn.biomedcentral.com][https://pubmed.ncbi.nlm.] Inoltre, uno studio pilota ha riportato che l’Alfa-GPC ha aumentato il picco di forza nella panca, ma non la potenza di picco o il tasso di sviluppo della forza.[Ziegenfuss T, Landis J, Hofheins JJ Int Soc Sports Nutr.] Attualmente non è chiaro se l’Alfa-GPC aumenti la forza isometrica, ma i dati empirici e aneddotici sono incoraggianti [https://pubmed.ncbi.nlm.]

L’integrazione di un dosaggio pari a 600mg di Alpha-GPC prima di un test di potenza (spinte su panca) ha riportato un miglioramento della potenza del 14% rispetto al placebo quando assunta 45 minuti prima dell’attività; si trattava di uno studio pilota.[http://www.jissn.com] In media si è notato che il dosaggio di Alfa-GPC efficacie per trarre miglioramenti nella forza è nel range dei 300-600mg 45-30 minuti prima della seduta allenante.

  • Multi Vitaminico-Multi Minerale:

Storicamente, i bodybuilder hanno utilizzato diete restrittive che eliminano alimenti o interi gruppi di alimenti. Di conseguenza, sono comuni numerose carenze di vitamine e minerali. Nei bodybuilder a dieta sono state osservate carenze di Calcio, vitamina D, Zinco, Ferro e altre ancora [115,116,117]. Tuttavia, la maggior parte della letteratura sulle pratiche alimentari dei bodybuilder risale agli anni ’80 e ’90; pertanto, sono necessari dati più recenti [2].

Più di recente, le pratiche alimentari dei bodybuilder che seguono una dieta tradizionale restrittiva sono state confrontate con quelle degli agonisti che utilizzano un approccio dietetico basato sui macronutrienti, in cui nessun alimento o gruppo alimentare è off limits [118]. Non sorprende che i concorrenti che utilizzano un approccio dietetico più flessibile presentino meno carenze di micronutrienti. In particolare, la vitamina E, la vitamina K e le proteine sono risultate significativamente inferiori nelle donne che utilizzavano approcci dietetici rigidi rispetto a quelle che utilizzavano approcci più flessibili. Nel presente articolo, specie se si parla di Off-Season, si raccomanda di utilizzare un approccio dietetico flessibile, in cui nessun alimento o gruppo viene eliminato dalla dieta.

In questo modo, è meno probabile che si verifichino carenze di micronutrienti, soprattutto se si considera che le atlete in Off-Season hanno a disposizione una maggiore quantità di calorie rispetto a quelle a dieta per un contest, il che dovrebbe consentire loro di incorporare una maggiore varietà di alimenti.

Ciononostante, può essere consigliabile raccomandare un integratore multivitaminico/minerale a basso dosaggio (≤100% RDA) come misura di sicurezza per prevenire eventuali carenze di micronutrienti, sottolineando al contempo il consumo di una buona varietà di alimenti al giorno per soddisfare il fabbisogno di micronutrienti.

  • Omega 3 (EPA-DHA):

Gli acidi grassi polinsaturi con un doppio legame a tre atomi di distanza dal gruppo metilico terminale sono noti come ω-3 o acidi grassi omega-3 (O3). Un basso apporto di O3 nelle diete occidentali rispetto ad altre fonti di grassi alimentari (come gli acidi grassi omega-6) è associato a un peggioramento della salute multispettrale negli studi epidemiologici [119]. Pertanto, è interessante concentrarsi specificamente sulle modifiche della dieta per fornire acidi eicosapentaenoici e docosaesaenoici (EPA e DHA) – la carenza alimentare più comune nel mondo occidentale; ma vale la pena notare che la misurazione, l’interazione e l’effetto di O3 e acidi grassi omega-6 in relazione alla salute non sono chiari e vanno oltre lo scopo di questo articolo. Per una rassegna si rimanda ad altra pubblicazione [120].

Oltre alla salute, c’è interesse per i potenziali effetti anabolici degli integratori di EPA e DHA [121], che di solito vengono forniti attraverso l’olio di pesce o, in alcuni casi, l’olio di alghe. Tuttavia, ci sono dati contrastanti sulla capacità dell’olio di pesce di aumentare la risposta della sintesi proteica muscolare all’ingestione di proteine. Mentre un articolo di revisione del 2014 ha evidenziato una serie di studi secondo cui l’olio di pesce può aumentare la risposta [122], uno studio recente non ha rilevato alcun effetto sulla risposta della MPS a una sessione di allenamento contro-resistenza e all’ingestione di proteine dopo l’allenamento [123]. Inoltre, i dati sull’ipertrofia longitudinale sono pochi [124] e gli studi sulle prestazioni dell’allenamento contro-resistenza sono contrastanti [125] e in gran parte non applicabili o difficili da valutare a causa dell’uso di partecipanti non allenati o di allenamenti non standardizzati ed ecologicamente non realistici rispetto al bodybuilding.

In una recente review che affronta specificamente la questione se gli integratori di O3 possano o meno aumentare l’ipertrofia [126], gli autori hanno concluso che attualmente non ci sono prove sufficienti per fare tale affermazione. Sebbene siano necessarie ulteriori ricerche prima di poter raccomandare l’integrazione di O3 (o di alterazioni della dieta) a fini di costruzione muscolare, i benefici per la salute dell’integrazione di O3 sono degni di nota. Ad esempio, recenti meta-analisi hanno riportato che l’integrazione di olio di pesce riduce i sintomi della depressione [127], diminuisce il rischio di morte cardiaca [128], riduce la pressione sanguigna [129] e diminuisce la circonferenza vita [130]. Pertanto, gli atleti estetici possono prendere in considerazione l’integrazione giornaliera di olio di pesce (o di alghe) (1.5-2.5g di EPA/DHA) per la salute generale e multi spettro, ma sono necessari studi futuri per formulare raccomandazioni relative alle prestazioni nel bodybuilding.

  • Acido Arachidonico (AA):

L’Acido Arachidonico (AA) è l’acido grasso omega-6 più rilevante dal punto di vista biologico e, nella membrana lipidica di una cellula, è l’acido grasso che viene confrontato con i due acidi grassi dell’olio di pesce (EPA e DHA) nella costituzione di un rapporto omega-3:6. Dati recenti suggeriscono un’assunzione giornaliera di 50-250mg di Acido Arachidonico[https://www.ncbi.nlm.][https://www.ncbi.nlm.][https://www.ncbi.nlm.][https://www.ncbi.nlm.] con alcune fonti che stimano livelli fino a 500mg al giorno;[https://www.ncbi.nlm.] l’assunzione di Acido Arachidonico sembra essere inferiore nei vegetariani[https://www.ncbi.nlm.].

Si ritiene che l’Acido Arachidonico sia importante per il metabolismo del muscolo scheletrico, poiché si pensa che i fosfolipidi della membrana del sarcoplasma riflettano la dieta,[https://www.ncbi.nlm.][https://www.ncbi.nlm.] l’allenamento stesso sembra alterare il contenuto di fosfolipidi del muscolo (indipendentemente dalla composizione delle fibre muscolari[https://www.ncbi.nlm.] e associato a un rapporto omega 6:3 più basso[https://www.ncbi.nlm.][https://www.ncbi.nlm.]) e gli eicosanoidi dell’Acido Arachidonico interagiscono con la sintesi proteica muscolare attraverso i loro recettori.

L’Acido Arachidonico segnala la sintesi proteica muscolare attraverso una via dipendente dalla COX-2 (che suggerisce il coinvolgimento delle prostaglandine)[https://www.ncbi.nlm.] che è associata ad aumenti sia della prostaglandina E2 (PGE2) che del PGF(2α),[https://www.ncbi.nlm.][https://www.ncbi.nlm.][https://www.ncbi.nlm.][https://www.ncbi.nlm.] anche se l’incubazione con PGE2 o PGF(2α) isolati non sembra replicare pienamente gli effetti ipertrofici dell’Acido Arachidonico. [https://www.ncbi.nlm.] PGE2 e PGF(2α) sono indotti anche dall’esercizio fisico (nello specifico, dallo stiramento delle cellule muscolari in vitro[https://www.ncbi.nlm.]) ed è stato osservato sia nel siero[https://pubmed.ncbi.nlm.][https://www.ncbi.nlm.] che a livello intramuscolare (quadruplicato, da 0,95+/-0,26ng/mL a 3,97+/-0. La capacità del riflesso da stiramento di aumentare le concentrazioni di PGE2 e PGF(2α)[https://www.ncbi.nlm.] potrebbe essere dovuta semplicemente al fatto che lo stiramento aumenta l’attività delle COX2.[https://www.ncbi.nlm.][https://www.ncbi.nlm.]

Va notato che l’integrazione di 1.500mg di Acido Arachidonico (rispetto a una dieta di controllo contenente 200mg dello stesso) per 49 giorni ha aumentato la secrezione di PGE2 da parte di cellule immunitarie stimolate (del 50-100%) in giovani uomini altrimenti sani,[https://www.ncbi.nlm.] ma la rilevanza di questo studio per il muscolo scheletrico non è nota. Questo studio ha anche osservato che, senza stimolazione, non c’erano differenze significative tra i gruppi.[https://www.ncbi.nlm.] Altrove, è stata osservata una tendenza all’aumento delle concentrazioni sieriche di PGE2 a riposo in uomini allenati a cui sono stati somministrati 1.000mg di Acido Arachidonico per 50 giorni.[https://www.ncbi.nlm.]

L’Acido Arachidonico, attraverso gli eicosanoidi noti come PGF(2α) e PGE2, stimola la sintesi proteica muscolare. Sono prodotti a partire dall’Acido Arachidonico, ma normalmente non formano i rispettivi eicosanoidi per la costruzione del muscolo finché la cellula non viene stimolata da un fattore di stress (come il riflesso di stiramento di una cellula muscolare) che ne induce la produzione.

Il recettore per il PGF(2α) (recettore FP) sembra essere sovraregolato dagli inibitori della COX1 (l’acetaminofene utilizzato in questo studio)[https://www.ncbi.nlm.] e si ritiene che una maggiore segnalazione del PGF(2α) sia alla base del miglioramento della sintesi proteica muscolare osservato nei soggetti anziani con farmaci antinfiammatori. La supplementazione di Acido Arachidonico non sembra influenzare la quantità di recettori FP nei giovani;[https://www.ncbi.nlm.] mentre l’esercizio fisico stesso può aumentare il contenuto di recettori EP3, né gli inibitori della COX1[https://www.ncbi.nlm.] né l’Acido Arachidonico[https://www.ncbi.nlm.] sembrano influenzarlo ulteriormente.

Tuttavia, è stato riscontrato che l’uso di inibitori della COX2 (nei giovani) sopprime l’aumento di PGF(2α) indotto dall’esercizio fisico (Ibuprofene e Acetaminofene)[https://www.ncbi.nlm.][https://www.ncbi.nlm.] e di PGE2,[https://www.ncbi.nlm.] il che si pensa sia dovuto al fatto che la conversione da PGH2 in questi metaboliti dipende dall’attività della COX2.

Poiché la produzione di questi eicosanoidi dipende dall’enzima COX2, si ritiene che l’inibizione di questo enzima riduca gli effetti anabolizzanti dell’esercizio fisico se assunto prima dello stesso.

L’acido arachidonico (così come l’EPA dall’olio di pesce) non ha compromesso l’assorbimento del glucosio nelle cellule muscolari isolate e 10μM di acido grasso sono in grado di attenuare la resistenza all’Insulina indotta dai grassi saturi; [https://pubmed.ncbi.nlm.] un fenomeno osservato con i grassi saturi a 18 o più catene di carbonio[https://www.ncbi.nlm.] che non sembra applicarsi agli acidi grassi polinsaturi di uguale lunghezza di catena[https://www.ncbi.nlm.][https://www.ncbi.nlm.] ed è probabilmente legato all’aumento delle ceramidi intracellulari[https://www.ncbi.nlm.] che compromettono la segnalazione di Akt[https://www.ncbi.nlm.][https://www.ncbi.nlm.] e riducono l’assorbimento di glucosio mediato da GLUT4 con l’Insulina.[https://www.ncbi.nlm.]

L’Acido Arachidonico e i grassi polinsaturi omega-3 sono entrambi associati a una migliore sensibilità all’Insulina delle cellule muscolari, che potrebbe essere secondaria alla riduzione dei livelli di grassi saturi nella membrana lipidica e quindi alla riduzione delle concentrazioni intracellulari di ceramidi. È possibile che ciò non sia correlato agli eicosanoidi o al rapporto omega-3:6.

In 31 uomini allenati, sottoposti a un programma di sollevamento pesi e a una dieta standardizzata (500kcal in eccesso con 2g/kg di proteine) con 1g di Acido Arachidonico al giorno o placebo, l’integrazione per 50 giorni è sembrata aumentare la potenza di picco (7,1%) e la potenza media (3,6%) al test di Wingate, ma non è riuscita a influenzare positivamente la massa muscolare o le misure di potenza del sollevamento pesi (bench press e leg press).[https://www.ncbi.nlm.]

Attualmente non ci sono prove sufficienti per raccomandare una dose ideale di integrazione di Acido Arachidonico, ma aneddoticamente si usa un dosaggio di circa 1.500 mg da assumere 45 minuti prima dell’allenamento per un periodo medio di 8 settimane. Non è certo che si tratti di una dose ottimale o che sia necessaria la tempistica.

Va inoltre notato che per le persone affette da patologie infiammatorie croniche, come l’artrite reumatoide o le malattie infiammatorie intestinali, la dose ideale di Acido Arachidonico può essere in realtà una sua restrizione dietetica. Nei casi di malattie infiammatorie, l’integrazione di Acido Arachidonico è probabilmente controindicata.

Raccomandazioni per gli integratori alimentari e il dosaggio per i bodybuilder in Off-Season:

  • Creatina Monoidrato= 3-5g/die;
  • Beta-Alanina= 3-5g/die;
  • Citrullina Malato= 8g/pre-workout;
  • Alfa-GPC= 300-600mg/pre-workout;
  • Caffeina= 5-6mg/Kg/pre-workout (media standard tra 200 e 600mg/die);
  • Multi Vitaminico – Multi Minerale= ≤100% RDA/die;
  • Omega 3 (EPA-DHA)= 1.5-2.5g/die;
  • Acido Arachidonico= 1.5g/pre-workout.

Supplementazione PEDs:

Una cosa occorre premettere prima di procedere con la descrizione delle molecole più utilizzate nel contesto della Off-Season: non esistono PEDs esclusivamente confinabili in uno dei contesti della programmazione di un bodybuilder. Esiste il grado di versatilità il quale sta ad indicare quanto una molecola possa essere gestita con facilità in situazioni preparatorie differenti. Esistono molecole che per caratteristiche possono dare vantaggi maggiori in Off-Season/Bulk per via di alcune loro caratteristiche che in altro contesto, per esempio il pre-contest, risulterebbero più complesse da gestire. Ma questo non significa che tali molecole siano generalemnte da considerarsi “off-limitz” in un altra fase della preparazione annuale.

Premesso ciò, l’attenzione in questo paragrafo si concentrerà sui principali PEDs usati in Off-Season.

Tra tutti gli AAS, il Testosterone è quello che non ha bisogno di particolari presentazioni. Si tratta dell’ormone sessuale maschile per antonomasia. Nell’uomo, il Testosterone svolge un ruolo fondamentale nello sviluppo dei tessuti riproduttivi maschili, come i testicoli e la prostata, oltre a promuovere le caratteristiche sessuali secondarie, come l’aumento della massa muscolare e ossea e la crescita dei peli. Inoltre, in entrambi i sessi, il Testosterone è coinvolto nella salute e nel benessere, compresi gli stati d’animo, il comportamento e la prevenzione dell’osteoporosi in cooperazione con l’Estradiolo. Livelli insufficienti di Testosterone negli uomini possono portare ad anomalie, tra cui la fragilità e la perdita ossea.

In generale, il Testosterone promuove la sintesi proteica e quindi la crescita dei tessuti dotati di recettori per gli androgeni. Il Testosterone può essere descritto come avente effetti virilizzanti e anabolizzanti (anche se queste descrizioni categoriali sono in qualche modo arbitrarie, poiché vi è una grande sovrapposizione reciproca tra di essi).

  • Gli effetti anabolizzanti comprendono la crescita della massa e della forza muscolare, l’aumento della densità e della resistenza ossea e la stimolazione della crescita lineare e della maturazione ossea.
  • Gli effetti androgeni comprendono la maturazione degli organi sessuali, in particolare del pene, e la formazione dello scroto nel feto, e dopo la nascita (di solito nella pubertà) l’approfondimento della voce, la crescita dei peli del viso (come la barba) e dei peli ascellari. Molti di questi effetti rientrano nella categoria dei caratteri sessuali secondari maschili.

Al principio degli anni 30 del novecento avvenne la sintesi chimica del Testosterone, quando Butenandt e G. Hanisch pubblicarono un articolo che descriveva “Un metodo per preparare il Testosterone dal colesterolo”. Solo una settimana dopo, il terzo gruppo, Ruzicka e A. Wettstein, annunciò una domanda di brevetto in un documento “Sulla preparazione artificiale dell’ormone testicolare Testosterone (Androsten-3-one-17-ol).” Ruzicka e Butenandt ricevettero il premio Nobel per la chimica nel 1939 per il loro lavoro.

Gli studi clinici sull’uomo, che prevedevano dosi PO (per via orale) di Methyltestosterone o iniezioni di Testosterone Propionato, iniziarono già nel 1937. Il Testosterone Propionato è menzionato in una lettera all’editore della rivista Strength and Health nel 1938; questo è il primo riferimento noto a un AAS in una rivista statunitense di sollevamento pesi o Bodybuilding.

Lo sviluppo delle proprietà di costruzione muscolare del Testosterone proseguì negli anni ’40, in Unione Sovietica e nei paesi del blocco orientale come la Germania dell’Est, dove sono stati utilizzati programmi di AAS per migliorare le prestazioni dei sollevatori di pesi olimpici e di altri dilettanti già prima degli anni ’50. In risposta al successo dei sollevatori di pesi russi, il medico della squadra olimpica statunitense John Ziegler lavorò con un equipe di chimici per sviluppare un AAS con effetti androgeni ridotti. Ma questa è un altra storia.

L’uso del Testosterone nello sport si diffuse tra gli anni ’50 e gli anni ’60. Le forme utilizzate nei primi tempi erano il Testosterone in sospensione e il Testosterone Propionato, che rappresentano con il Methyltestosterone (Testosterone metilato in C-17) le forme più datate dell’ormone in questione (1935).

In ambito culturistico, il Testosterone rappresenta un AAS sufficientemente versatile in maniera dose-dipendente e sensibilità-dipendente dal momento che il dosaggio dovrebbe essere tarato in base alle risposte metaboliche soggettive alle quali è soggetto l’ormone (vedi, ad esempio, aromatizzazione in estrogeni). Questo ultimo punto è di estrema importanza al fine di evitare l’uso/abuso di AI (Inibitori dell’Aromatasi) e/o SERM (Modulatori Selettivi del Recettore degli Estrogeni). Oltre a peggiorare potenzialmente il quadro lipidico, sommandosi all’azione degli AAS utilizzati, essi riducono l’espressione epatica di IGF-1 cosa che può ridurre la risposta anabolizzante del protocollo PEDs. Nei soggetti caratterizzati da una elevata sensibilità all’attività estrogenica, le procedure applicate vedono: 1) l’uso di Raloxifene o Tamoxifene (SERM) a dosi sufficienti a impedire la comparsa o il peggioramento di una ginecomastia in stadio iniziale già presente e non ancora asportata chirurgicamente 2) l’uso di dosi fisiologiche di Testosterone come base onde evitare la comparsa di stati letargici, affaticabilità, disfunzioni sessuali ecc 3) l’uso di un “mix” composto da Testosterone e Boldenone (vedi in seguito) tale da poter usufruire della bassa e diversa sensibilità all’azione dell’Enzima Aromatasi su quest’ultimo riuscendo ad avere un controllo estrogenico teoricamente migliore (Testosterone e Boldenone mostrano qualità anabolizzanti intrinseche simili).

In un contesto Off-Season, quindi, vista l’importanza della presenza di un buon livello di Estradiolo sia sul complesso degli effetti anabolizzanti ricercati sia per la sua attività sessuale e cerebrale, il Testosterone andrebbe inizialmente calibrato sul soggetto e nel caso affiancato da dosi altrettanto ben tarate di SERM la dove ne risultasse un reale bisogno.

L’uso di un estere che garantisca un rilascio graduale della molecola (vedi Enantato o Cypionato) risulta la scelta migliore al fine di creare una soglia ematica stabile e esente da picchi e cali che possono risultare controproducenti a livello psicofisico. Tenere sempre in considerazione l’emivita di una molecola è uno dei punti fondamentali per sfruttarla al meglio. Nel caso degli esteri sopra citati, una divisione del dosaggio settimanale in due somministrazioni uguali distanziate da quattro-cinque giorni l’una dall’altra risulta una pratica ottimale allo scopo di creare una soglia ematica stabile.

I dosaggi comunemente utilizzati, parlando di molecole esterificate, vanno da 200mg ad 1g a settimana. Per quanto riguarda il Testosterone in sospensione, le dosi comunemente utilizzate vanno dai 175mg ai 700mg a settimana.

Il Boldenone [1,4-androstadiene-3-one,17b-ol], commercializzato con il nome di Equipoise, Ganabol, Equigan, Ultragan, e Boldane,  è uno steroide anabolizzante-androgeno spesso legato all’estere Undecylenato. Strutturalmente molto simile al Testosterone, il Boldenone differisce da questo per il doppio legame tra C1 e C2.

La Ciba brevettò il Boldenone nel 1949. Successivamente, negli anni ’50 e ’60, sviluppò diversi esteri sperimentali del farmaco. Uno di questi era il Boldenone Undecilenato, che fu introdotto per uso clinico con il marchio Parenabol e fu utilizzato alla fine degli anni ’60 e all’inizio degli anni ’70. Tuttavia, fu sospeso prima della fine degli anni ’70. Ad oggi l’uso del Boldenone è legale in alcuni paesi in campo veterinario.

Essendo una molecola che ha mostrato una bassa tendenza alla conversione in Estradiolo, come accennato nella sezione dedicata al Testosterone, viene spesso utilizzata come agente “mix” da abbinare come base al Testosterone al fine di avere un maggiore controllo sui livelli estrogenici.

Se qualcuno volesse usare 500mg di Testosterone, ma non potrebbe usare un tale dosaggio dal momento che presenta particolare difficoltà nella gestione estrogenica in specie senza l’uso di AI come Exemestane o Anastrozolo, una conclusione a cui molti superficialmente sono giunti è che si potrebbe semplicemente usare il Boldenone al dosaggio sopra citato per ridurre della metà l’attività estrogenica, ma comunque supportare un’adeguata produzione di Estradiolo. Ma quando si approfondisci l’ipotesi e la si testa sul campo, è davvero così che stanno le cose? In realtà no, o, comunque, la media delle variabili di risposta spinge a confermare una maggiore validità nel “mixare” Testosterone e Boldenone coprendo la dose base calcolata in precedenza, e con variazione di percentuale T:B ratio da 1:1 a 2:1.

Comunque, oltre a rappresentare genericamente una discreta molecola sia in in preparazione alla gara che in Off-Season, I dosaggi utilizzati si settano nel range tra i 200mg ed i 500mg a settimana, spesso abbinato ad una dose variabile (vedi sopra) di Testosterone.

Il Nandrolone, noto anche come 19-nortestosterone, è uno Steroide Androgeno Anabolizzante (AAS) utilizzato sotto forma di molecola legata a esteri come quello Decanoato (nome commerciale Deca-Durabolin) e il Fenilpropionato (nome commerciale Durabolin). Gli esteri del Nandrolone sono utilizzati nel trattamento di anemie, cachessia (sindrome da deperimento), osteoporosi, cancro al seno e per altre indicazioni mediche.

Il Nandrolone è stato sintetizzato per la prima volta nel 1950. È stato introdotto per la prima volta nel mercato farmaceutico, come Nandrolone Fenilpropionato, nel 1959, e poi come Nandrolone Decanoato nel 1962, seguito da ulteriori esteri.

Il Nandrolone ha una bassa affinità di interazione con l’Enzima Aromatasi convertendo in Estrone, un estrogeno molto meno potente dell’Estradiolo, circa 10 volte meno attivo, e, come tale, è un estrogeno relativamente debole. In una condizione di somministrazione del Nandrolone senza una base di Testosterone, i livelli di Estradiolo calerebbero marcatamente a favore di un aumento del Estrone il quale non potrebbe però sostituire nelle diverse attività tissutali il prima citato E2. Le conseguenze negative si verificherebbero dall’attività sessuale all’attività neurosteroidea.

Infatti, un effetto da non sottovalutare con l’uso di Nandrolone è il suo impatto sul SNC. L’impatto del Nandrolone sul Sistema Nervoso Centrale è stato osservato scientificamente. Nello studio intitolato “The Impact of Nandrolone Decanoate on the Central Nervous System” vengono descritti chiaramente i numerosi effetti psicologici di questa molecola. Essi comprendono e influenzano:

1- Aggressività
2- Ansia, paura e stress
3- Ricompensa e dipendenza
4- Apprendimento, memoria e capacità di lavoro
5- Locomozione e attività fisica
6- Effetti sulla HPAA (Asse Ipotalamo-Pituitaria-Surrene)
7- Effetto sui neurotrasmettitori: Recettore Acido γ-Aminobutirrico Tipo A (GABAA); Recettori 5-idrossitriptamina (5-HT) e 5-HT; Recettori della Dopamina e Recettori Oppioidi.

Questo effetto, unito alla modesta potenzialità anabolizzante se confrontata con altre molecole anche della stessa famiglia, fa pendere l’ago della bilancia verso gli svantaggi d’uso piuttosto che i vantaggi. Sebbene vi sia un rapporto tra Testosterone e Nandrolone finalizzato a ridurre la comparsa di questi effetti avversi (ratio T:N = 2:1) su un buon numero di soggetti risulta dare comunque problemi rilevanti.

Il suo uso principale in Off-Season comprende dosaggi medi tra i 200mg ed i 400mg a settimana, con un adeguato rapporto con il Testosterone. Se utilizzato a fini di recupero articolare viene usato a dosaggi di 100mg a settimana, e con tali dosaggi difficilmente emergono i problemi sopra elencati a patto che ci sia una base di Testosterone.

Il Drostanolone, noto anche come 2α-metil-5α-diidrotestosterone (2α-metil-DHT) o come 2α-metil-5α-androstan-17β-ol-3-one, è uno steroide androstano sintetico e un derivato del DHT. Si tratta nello specifico di DHT con un gruppo metile in posizione C2α. La forma esterificata Drostanolone Propionato è stata usata in passato nel trattamento del cancro al seno nelle donne per via della sua attività antiestrogenica. Questa azione il Drostanolone la esplica sia agendo come antagonista del recettore degli estrogeni e sia come inibitore dell’Enzima Aromatasi. Ed è proprio per questo motivo che una molecola generalmente relegata all’uso in “Cut” o pre-gara trova un suo uso funzionale in Off-Season. La sua attività AI è comunque moderata ma sufficiente in un buon numero di soggetti per evitare l’aggiunta di SERM e/o AI di altro genere. L’attività AI moderata sembra non incidere negativamente in modo sensibile sull’Asse GH/IGF1.

L’effetto miotrofico risulta simile a quello osservato con il Methenolone, in generale moderatamente inferiore al Testosterone. I dosaggi utilizzati in Off-Season per il controllo estrogenico sono nel range dei 200-400mg a settimana (diviso in due iniezioni distanziate da 4-5 giorni) per l’estere Enantato, mentre per il Propionato 150-350mg a settimana (dosi a giorni alterni o giornaliere).

Il Trenbolone, noto anche come 19-nor-δ9,11-testosterone o come estra-4,9,11-trien-17β-ol-3-one, è uno steroide sintetico e un derivato del Nandrolone (19-nortestosterone) sintetizzato per la prima volta nel 1963. Si tratta nello specifico di Nandrolone con due doppi legami aggiuntivi nel nucleo steroideo. Gli esteri del Trenbolone, che hanno un estere in posizione C17β, includono il Trenbolone Acetato, il Trenbolone Enantato, Il Trenbolone Hexahydrobenzylcarbonato e il Trenbolone Undecanoato. Il Trenbolone Acetato (marchi Finajet, Finaplix, e altri) e il Trenbolone Hexahydrobenzylcarbonato (marchi Parabolan, Hexabolan), sono o sono stati commercializzati per uso veterinario e clinico nell’uomo. Il Trenbolone Acetato è utilizzato in medicina veterinaria nel bestiame per aumentare la crescita muscolare e l’appetito degli animali, mentre il Trenbolone Hexahydrobenzylcarbonato è stato utilizzato in passato a livello clinico nell’uomo, ma ora non è più commercializzato.

Si tratta di uno degli AAS più versatili in assoluto, con un ottima resa tanto in preparazione alla gara quanto in Off-Season. L’enorme potenziale anabolizzante del Trenbolone, così come dei suoi analoghi, è stato riportato fin dagli anni ’60. La sua diffusione nel Bodybuilding è iniziata circa negli anni ’80 del secolo scorso. La sua elevata potenzialità miotrofica, lipolitica e di spinta mentale lo resero in poco tempo estremamente popolare tra i culturisti.

In Off-Season viene utilizzato nelle sue forme eseterificate Enantato e Hexahydrobenzylcarbonato a dosaggi nell’ordine dei 100-400mg a settimana (divisa in due somministrazioni distanziate l’una dall’altra da 4-5 giorni), sebbene il trend d’oltre oceano è arrivato a dosaggi decisamente eccessivi e nell’ordine del grammo. Per l’esetere Acetato i dosaggi medi vanno da 150mg a 350mg a settimana con dosaggi a giorni alterni o giornalieri.

E’ necessario ricordare ai lettori che gli effetti collaterali a livello del SNC possono verificarsi in alcuni punti come nel caso del Nandrolone sebbene i vantaggi rendano il Trenbolone più bilanciato tra sides e vantaggi.

Il Trestolone, noto anche come 7α-metil-19-nortestosterone (MENT) o come 7α-metilestr-4-en-17β-ol-3-one, è uno steroide sintetico e un derivato del Nandrolone (19-nortestosterone). È una forma modificata del Nandrolone con un gruppo metile in posizione C7α. Tra gli AAS strettamente correlati vi sono il 7α-metil-19-norandrostenedione (MENT dione, trestione), un pro-ormone androgeno del Trestolone, e il Dimetandrolone (7α, 11β-dimetil-19-nortestosterone), il derivato metilato C11β del Trestolone, nonché il Mibolerone (7α,17α-dimetil-19-nortestosterone) e il Dimetiltrienolone (7α,17α-dimetil-δ9,11-19-nortestosterone). Anche il progestinico Tibolone (7α-metil-17α-etinil-δ5(10)-19-nortestosterone) è strettamente correlato al Trestolone.

Il Trestolone è stato descritto per la prima volta nel 1963. Tuttavia, non è stato successivamente studiato fino al 1990. Lo sviluppo del Trestolone per un potenziale uso nella contraccezione ormonale maschile e nella terapia sostitutiva degli androgeni è stato avviato nel 1993 ed è proseguito in seguito. Non sembra che siano stati condotti ulteriori sviluppi dal 2013. Il Trestolone è stato sviluppato dal Population Council, un’organizzazione non governativa senza scopo di lucro dedicata alla salute riproduttiva.

Come AAS, il Trestolone è un agonista del recettore degli androgeni (AR), analogamente agli androgeni come il Testosterone e il Diidrotestosterone (DHT). Questo AAS presenta spiccate proprietà anticortisolemiche sia attraverso l’inibizione enzimatica sia per attività antagonista recettoriale. Il Trestolone non è un substrato per la 5α-reduttasi e quindi non è potenziato o inattivato nei cosiddetti tessuti “androgeni” come la pelle, i follicoli piliferi e la ghiandola prostatica. Come tale, ha un elevato rapporto tra attività anabolica e androgena, analogamente ad altri derivati del Nandrolone. Il Trestolone è un substrato per l’Aromatasi e quindi produce come metabolita l’estrogeno 7α-metilestradiolo. Tuttavia, il Trestolone ha solo una debole attività estrogenica e una quantità che sembrerebbe essere insufficiente per scopi terapici sostitutivi, come evidenziato dalla diminuzione della densità minerale ossea negli uomini trattati con esso per l’ipogonadismo.

Il potenziale anabolizzante del Trestolone ha mostrato un grado di superiorità miotrofica rispetto al Trenbolone. Le sue caratteristiche ne fanno prediligere l’uso in Off-Season/Bulk. I dosaggi utilizzati con la forma Acetato sono nell’ordine dei 150-350mg a settimana con una cadenza nelle somministrazioni a giorni alterni. Sebbene sia più rara da reperire, la forma Enantato è utilizzato nel range dei 200-400mg a settimana divisi in somministrazioni ogni 4-5 giorni.

L’Oxymetholone, noto anche come 2-idrossimetilene-17α-metil-4,5α-diidrotestosterone (2-idrossimetilene-17α-metil-DHT) o come 2-idrossimetilene-17α-metil-5α-androstan-17β-olo-3-one, è uno steroide androstanico sintetico e un derivato 17α-alchilato del DHT.
L’Oxymetholone è stato descritto per la prima volta in un articolo del 1959 da scienziati della Syntex. È stato introdotto per uso medico dalla Syntex e dalla Imperial Chemical Industries nel Regno Unito con il marchio Anapolon nel 1961. L’Oxymetholone è stato introdotto anche con i marchi Adroyd (Parke-Davis) nel 1961 e Anadrol (Syntex) nel 1962. Il farmaco è stato commercializzato negli Stati Uniti nei primi anni ’60.

Come altri AAS, l’Oxymetholone è un agonista del recettore degli androgeni (AR). Non è un substrato per la 5α-reduttasi (dal momento che è già 5α-ridotto) ed è uno substrato scarso per il 3α-idrossisteroide deidrogenasi (3α-HSD), e quindi mostra un alto rapporto di attività anabolizzante rispetto all’effetto androgenico.

Data la sua derivanza dal DHT, l’Oxymetholone non è un substrato per l’Enzima Aromatasi e quindi non può essere aromatizzato in metaboliti estrogenici. Tuttavia, caratteristica unica tra i derivati del DHT, l’Oxymetholone è comunque associato a un’estrogenicità relativamente elevata ed è noto per avere il potenziale di produrre effetti collaterali estrogenici come ginecomastia (anche se non comune) e ritenzione idrica. È stato suggerito che questo può essere una conseguenza del legame diretto a l’attivazione del recettore degli estrogeni da parte dell’Oxymetholone (estrogenicità intrinseca). L’Oxymetholone non possiede alcuna attività progestinica significativa. Per via della caratteristica attività estrogenica intrinseca, con l’uso di Oxymetholone è spesso necessario l’uso di un SERM onde avere un controllo sulla aumentata attività estrogenica.

A causa della sua struttura 17α-alchilata, l’Oxymetholone è epatotossico. L’uso a lungo termine del farmaco può causare una varietà di disturbi gravi, tra cui l’epatite, il cancro al fegato e la cirrosi; pertanto si raccomandano test periodici di funzionalità epatica per coloro che assumono l’Oxymetholone a fini terapeutici. Questa molecola ha ottenuto, infatti, la nomea di essere uno tra gli AAS più epatotossici. Ciò deriva da i dosaggi comunemente, ed erroneamente, utilizzati in contesto culturistico. Si parla di dosaggi che facilmente sforano i 150mg/die. 

Osservazioni e esaminazione di diversi referti di esami ematici hanno evidenziato una soglia di “vantaggio/svantaggio” a favore del primo con un dosaggio calcolato con la formula 1mg/Kg. Genericamente, però, il dosaggio standard e conservativo si attesta nel range dei 50-100mg/die per non più di 28 giorni consecutivi, al fine di ridurre l’impatto negativo sul fegato e lipidemia.

Il Methandrostenolone, noto anche come 17α-metil-δ1-testosterone o come 17α-metilandrost-1,4-dien-17β-ol-3-one, è uno steroide androstanico sintetico e un derivato 17α-alchilato del Testosterone. È una modifica del Testosterone con un gruppo metile in posizione C17α e un doppio legame aggiuntivo tra le posizioni C1 e C2. Il farmaco è anche il derivato 17α-metilato del Boldenone (δ1-testosterone) e l’analogo δ1 del Methyltestosterone (17α-metiltestosterone).

Il Methandrostenolone è stato descritto per la prima volta nel 1955. È stato sintetizzato dai ricercatori dei laboratori CIBA di Basilea, in Svizzera. La CIBA depositò un brevetto statunitense nel 1957 e iniziò a commercializzare il farmaco sotto il nome di Dianabol nel 1958 negli Stati Uniti. Inizialmente veniva prescritto alle vittime di ustioni e agli anziani. Tra i primi utilizzatori vi furono i giocatori dell’Oklahoma University e l’allenatore dei San Diego Chargers Sid Gillman, che somministrò il Dianabol alla sua squadra a partire dal 1963.

Anche se il primo a somministrare il Methandrostenolone agli atleti fu il Dr. John Ziegler, personaggio che ebbe non poca importanza nella storia dell’uso degli AAS negli Stati Uniti. Ziegler contribuì a facilitare l’adozione degli AAS in generale, e del Dianabol in particolare, da parte degli atleti americani. Ziegler fu la prima persona a somministrare il Dianabol agli atleti competitivi poco dopo la sua introduzione da parte della CIBA nel 1958. Ebbe accesso al laboratorio CIBA a Summit (New Jersey) nel corso degli anni 50’ e somministrava già ai pesisti il Testosterone Propionato per “scopi di ricerca”. Da li il passo fu breve per la diffusione a macchia d’olio di questo AAS tra i culturisti.

Data la sua principale modifica strutturale, ossia la metilazione in C-17, il Methandrostenolone mostra un aumentata  stabilità del legame recettoriale aumentando così l’affinità sia al AR sia, successivamente all’aromatizzazione nel suo metabolita 17-Methylestradiolo, per i recettori estrogenici rendendo il composto molto più estrogenico del Testosterone. Tale caratteristiche migliora però il potenziale proliferativo dei AR e l’influenza positiva sulla sintesi di IGF-1. Da non dimenticare è il suo significativo impatto anticortisolemico.

Trattandosi di una molecola con una discreta tendenza all’aromatizzazione, il suo uso tipico la vede inserita nelle fasi Off-Season. Il calcolo del dosaggio, per via dati aneddotici e osservativi raccolti, lo si ottiene con la formula 5mg/12Kg di peso corporeo. Trattandosi di un composto orale metilato in C-17 se ne scoraggia l’utilizzo oltre i 28 giorni consecutivi onde ridurre l’impatto negativo su fegato e lipidemia. Data la sua emivita di circa 4h, il dosaggio giornaliero dovrebbe essere diviso in più assunzioni distribuite durante l’arco della giornata.

Struttura molecolare di hGH

L’Ormone della Crescita (GH) o Somatotropina, noto anche come Ormone della Crescita Umano (hGH o HGH), è un ormone peptidico che stimola la crescita, la riproduzione e la rigenerazione cellulare nell’uomo e in altri animali. È quindi importante per lo sviluppo umano. Il GH stimola anche la produzione di IGF-1 e aumenta la concentrazione di glucosio e acidi grassi liberi nel sangue. È un tipo di mitogeno specifico solo per i recettori di alcuni tipi di cellule. Il GH è un polipeptide a catena singola di 191 aminoacidi che viene sintetizzato, immagazzinato e secreto dalle cellule somatotrope nelle ali laterali dell’ipofisi anteriore.

Una forma ricombinante di hGH, chiamata Somatropina, viene utilizzata come farmaco da prescrizione per il trattamento dei disturbi della crescita nei bambini e della carenza di Ormone della Crescita negli adulti. Molte delle funzioni dell’hGH rimangono sconosciute.

Nel suo ruolo di agente anabolizzante, l’hGH è stato utilizzato dagli sportivi agonisti almeno dal 1982, quando la sola forma disponibile era quella derivata dall’Ipofisi dei cadaveri, ed è stato vietato dal CIO e dall’NCAA. L’analisi tradizionale delle urine non è in grado di rilevare il doping con HGH, pertanto il divieto è stato applicato solo all’inizio degli anni 2000, quando sono stati sviluppati test del sangue in grado di distinguere tra hGH naturale e artificiale.

In ambiente bodybuilding, l’hGH viene utilizzato in Off-Season (dai soggetti meglio informati) a dosaggi nel range delle 4-8UI al giorno o 8-16UI a giorni alterni. La somministrazione in concomitanza con l’uso di Insulina ha mostrato effetti sinergici molto evidenti che trovano la loro origine nel miglioramento della sintesi di IGF-1 e della sua frazione libera quindi attiva. Ricordo inoltre che l’uso di hGH può causare una sottoregolazione della funzionalità tiroidea per via del feedback negativo causato da un aumento della conversione del T4 in T3 per azione del GH. L’uso di T4, nel periodo d’uso in Off-Season, è in alcuni casi una necessità.

Struttura molecolare di IGF-1

Il Fattore di Crescita Insulino-Simile 1 (IGF-1), chiamato anche Somatomedina C, è un ormone dalla struttura molecolare simile a quella dell’insulina che svolge un ruolo importante nella crescita infantile e ha effetti anabolici negli adulti. L’IGF-1 è costituito da 70 aminoacidi in una singola catena con tre ponti disolfuro intramolecolari.

L’IGF-1 è prodotto principalmente dal fegato. La produzione è stimolata dall’Ormone della Crescita (GH). La maggior parte dell’IGF-1 è legata a una delle 6 proteine di legame (IGF-BP). L’IGFBP-1 è regolato dall’Insulina. L’IGF-1 viene prodotto durante tutta la vita; i tassi più alti di produzione di IGF-1 si verificano durante la crescita puberale. I livelli più bassi si verificano nell’infanzia e nella vecchiaia.

L’IGF-1 lega e attiva il proprio recettore, l’IGF-1R, attraverso l’espressione sulla superficie cellulare delle tirosin-chinasi recettoriali (RTK) e segnala ulteriormente attraverso molteplici cascate di trasduzione intracellulare. L’IGF-1R è l’induttore che svolge un ruolo critico nella modulazione degli effetti metabolici dell’IGF-1 per la senescenza e la sopravvivenza cellulare. L’IGF-1 è responsabile di stimolare la crescita di tutti i tipi di cellule e di provocare effetti metabolici significativi. Un importante effetto metabolico dell’IGF-1 è la sua capacità di segnalare alle cellule che sono disponibili nutrienti sufficienti per l’ipertrofia e la divisione cellulare. Questi segnali consentono inoltre all’IGF-1 di inibire l’apoptosi cellulare e di aumentare la produzione di proteine cellulari. I recettori dell’IGF-1 sono ubiquitari, il che consente che i cambiamenti metabolici causati dall’IGF-1 si verifichino in tutti i tipi di cellule. Gli effetti metabolici dell’IGF-1 sono di vasta portata e possono coordinare il metabolismo delle proteine, dei carboidrati e dei grassi in una varietà di tipi di cellule diverse. La regolazione degli effetti metabolici dell’IGF-1 sui tessuti bersaglio è coordinata anche con altri ormoni, come l’Ormone della Crescita e l’Insulina.

L’IGF-1 da DNA ricombinante è disponibile principalmente in due diversi formati/varianti, lr3 e DES. È importante ricordare che, a prescindere dalla variante, tutti funzionano a livello sistemico nell’organismo e che, nonostante la somministrazione dell’ormone per via intramuscolare direttamente in un muscolo specifico, non genererà una crescita localizzata misurabile.

Ovviamente tralascerò di descrivere l’IGF-1 bioidentico commercializzato come Mecasermina dal momento che la sua farmacocinetica è identica a quella del IGF-1 endogeno. Dirò soltanto che mediamente viene utilizzato in dosi giornaliere nel range tra 60-1.000mcg post-workout. L’emivita di questa forma di IGF-1 è di circa 5.8h.

IGF-1 LR3: Questa forma è la variante di IGF-1 più comune e molto popolare sul mercato e utilizzata da bodybuilder e atleti di altre discipline. Contiene IGF-1 bioidentico costituito dalla catena originale di 70 aminoacidi, ma con 13 aminoacidi in più all’estremità N, per un totale di 83 aminoacidi. Possiede anche una seconda modifica, in cui un’Arginina si trova in 3a posizione invece dell’Acido Glutammico originale. Il risultato di queste modifiche è che l’IGF-1 continua a svolgere la sua attività originaria sul recettore dell’IGF-1 nei tessuti corporei e ha un’affinità di legame molto bassa per le proteine leganti l’IGF menzionate in precedenza. Inoltre, presenta una vita attiva significativamente più lunga, di circa 20-30 ore, rispetto a quella dell’IGF-1 di 12-15 ore. L’insieme di questi fattori ha dimostrato che l’LR3 ha un’efficacia circa tre volte superiore a quella dell’IGF-1.

I dosaggi medi utilizzati per questa forma sono nel range dei 40-80mcg/die. A causa della sua lunga vita attiva nell’organismo, la variante LR3 non dovrebbe essere somministrata più di una volta al giorno per il semplice fatto che non risulta necessario. Nei giorni di allenamento, il dosaggio di IGF-1 è solitamente somministrato subito dopo l’allenamento. La scelta è a discrezione dell’utilizzatore, in quanto può essere benissimo somministrato sia prima che dopo (solo prima dell’allenamento o solo dopo l’allenamento). E’ possibile comunque dividere il dosaggio giornaliero in due somministrazioni nell’arco della giornata, il dosaggio giornaliero completo può essere diviso quindi a metà tra i due (ad esempio, 20mcg prima dell’allenamento e 20mcg dopo l’allenamento, per un totale di 40mcg al giorno). Nei giorni di non allenamento, può essere somministrato in qualsiasi momento della giornata.

IGF-1 DES: Conosciuto anche come DES(1-3)IGF-1, questa è la forma di IGF-1 comunemente conosciuta come ad azione molto rapida e di solito è la meno preferita tra le due. Le sue modifiche rispetto alla molecola originale di IGF-1 sono tali da farle mancare i primi 3 aminoacidi all’N terminale, il che conferisce all’IGF-1 DES un totale di 67 aminoacidi nella sua catena rispetto ai 70 originali. Questa modifica garantisce all’IGF-1 DES una ridotta affinità di legame per le proteine leganti l’IGF menzionate in precedenza, oltre a una maggiore forza di legame e potenziale miotrofico, circa dieci volte superiore a quella dell’IGF-1 originale e cinque volte superiore a quella dell’IGF-1 LR3. A differenza dell’IGF-1 LR3, l’IGF-1 DES ha un’emivita molto più breve, di circa 20-30 minuti. Grazie alla sua attività più rapida e alla maggiore forza/potenza, la variante DES dell’IGF-1 è comunemente ritenuta in grado di ottenere una crescita muscolare localizzata nel sito in cui viene iniettata. Sebbene ciò sia in parte vero, gli studi hanno dimostrato che, come l’IGF-1 in generale, agisce a livello sistemico una volta raggiunti i capillari e il flusso sanguigno. Quindi l’effetto localizzato è minimo e non significativamente differente dall’effetto sistemico.

Il dosaggio della variante DES è leggermente più variabile rispetto a quello del LR3. Per l’IGF-1 DES, il dosaggio varia da 50 a 150 mcg al giorno. A causa della sua emivita molto più breve rispetto alla variante LR3, è possibile utilizzare dosaggi più elevati con una ipotetica riduzione del rischio di effetti a lungo termine sull’organismo, anche se è necessario usare comunque cautela. Può essere utilizzato nello stesso modo dell’IGF-1 LR3 post-workout, ed è infatti comunemente usato in questo modo a causa della sua breve emivita.

Entrambe le forme di IGF-1 possono essere somministrate per via intramuscolare o sottocutanea. L’uso di una delle due forme non deve superare la durata di 30 giorni prima di una pausa di almeno 2 settimane, anche se fare pause più lunghe di 2 settimane tra un ciclo di IGF-1 e l’altro è l’opzione migliore. Questo non solo per ridurre il rischio di effetti sulla salute a lungo termine, ma anche per garantire che i recettori dell’IGF-1 tornino ad un grado di sensibilità ottimale e, quindi, a “rispondere” correttamente dopo un ciclo.

L’insulina è un ormone peptidico prodotto dalle cellule beta delle isole pancreatiche. Regola il metabolismo dei carboidrati, dei grassi e delle proteine promuovendo l’assorbimento del glucosio dal sangue nelle cellule del fegato, dei grassi e dei muscoli scheletrici. In questi tessuti il glucosio assorbito viene convertito in glicogeno attraverso la glicogenesi o in grassi (trigliceridi) attraverso la lipogenesi o, nel caso del fegato, in entrambi. La produzione e la secrezione di glucosio da parte del fegato sono fortemente inibite da alte concentrazioni di Insulina nel sangue. L’Insulina circolante influisce anche sulla sintesi di proteine in un’ampia varietà di tessuti. È quindi un ormone anabolico e anticatabolico, che promuove la conversione di piccole molecole nel sangue in grandi molecole all’interno delle cellule. Bassi livelli di Insulina nel sangue hanno l’effetto opposto, favorendo un diffuso catabolismo, soprattutto del grasso corporeo di riserva.

La maggior parte dei bodybuilder utilizza una sola forma di Insulina (ad azione rapida o ultra-rapida), anche se alcuni utilizzano anche un’Insulina a lunga durata d’azione o in monoterapia insulinica o in conbinazione con le forme ad azione rapida o ultra-rapida.

L’Humalog® (Insulina Lispro) è senza dubbio la forma di Insulina più diffusa tra i bodybuilder insieme all’Humulin-R. L’Humalog è un analogo a breve durata d’azione dell’Insulina umana, in particolare l’analogo Lys(B28) Pro(B29) dell’Insulina che si crea quando gli aminoacidi in posizione 28 e 29 sono invertiti. È considerata equipotente all’Insulina solubile normale su base unitaria, ma con un’attività più rapida. L’inizio dell’azione del farmaco in seguito alla somministrazione sottocutanea è di circa 10-15 minuti e il suo picco d’effetto viene raggiunto in 30-90 minuti.
La durata d’azione totale è compresa tra 3-5 ore. L’Insulina lispro viene solitamente utilizzata come supplemento a un prodotto a base di Insulina a più lunga durata d’azione, fornendo un farmaco ad azione rapida che può essere assunto prima o subito dopo i pasti per imitare la secrezione insulinica naturale dell’organismo. Molti atleti ritengono che la sua breve finestra d’effetto la renda un farmaco insulinico ideale per
scopi dopanti, in quanto la maggior parte dell’azione può essere concentrata nel periodo successivo all’allenamento sfruttando l’assimilazione dei nutrienti durante la così detta “finestra anabolica”. Proprio al fine di potenziare la “finestra anabolica”, l’Humalog viene usata in concomitanza del GH il quale viene somministrato in una tempistica tale che i due picchi di rilascio (curva ematica massima) si “incrocino” andando a creare un affetto additivo di potenziamento della sintesi epatica di IGF-1 e della sua attività per via della riduzione dei trasportatori IGFBP.

Tuttavia, l’uso di una base insulinica composta da Insuline Glargine (Lantus), con una vita attiva di 24-26.5h, la quale sembra avere effetti di maggiore affinità di legame per il recettore del IGF-1 rispetto all’Insulina umana regolare o uno dei qualsiasi altri analoghi, viene da alcuni inserita nei protocolli Off-Season. 

I dosaggi di Insulina non andrebbero calcolati in modo distaccato dal piano alimentare e dal suo contenuto glucidico. Se il margine di “sicurezza” indica un assunzione di 10-15g di Carboidrati per UI di Insulina, questi non dovrebbero essere addizionati al piano alimentare già tarata in surplus calorico. Il calcolo delle unità dovrebbe essere tarato sul quantitativo glucidico della dieta e sul rapporto con il peso corporeo dell’atleta. Facciamo un semplice esempio: Soggetto di 90Kg = formula 1UI ogni 10Kg di peso = 9UI massime somministrabili per pasto e in base alla vita attiva della forma utilizzata = assicurarsi che il pasto appena successivo alla somministrazione dell’Insulina a questo dosaggio sia pari o superiore ai 90g di Carboidrati.
Il monitoraggio della glicemia attraverso un glucometro è ovviamente d’obbligo in un protocollo di Insulina.

Nota: tali informazioni esposte non rappresentano in nessun modo un parere medico ne tanto meno una prescrizione e/o incentivo all’uso di sostanze dopanti e illegali. Le descrizioni presentate per i PEDs solitamente più utilizzati in Off-Season sono sintetiche sia per motivi di “Off Topic” sia per ragioni legate alla loro descrizione approfondita in altri articoli presenti nel database di questo sito. In queste pubblicazioni potrete trovare informazioni inerenti anche agli affetti collaterali connessi ad un uso/abuso “off-label” dei diversi PEDs.

Conclusioni:

Per concludere e fare una sintesi delle nozioni esposte in questo articolo, dobbiamo ricordarci che i bodybuilder in Off-Season dovrebbero concentrarsi sul consumo di una dieta leggermente ipercalorica (~10-20% sopra le calorie di mantenimento) con l’obiettivo di guadagnare ~0,25-0,5% del peso corporeo a settimana per un “Natural”, mentre nel caso di un “Doped” la soglia può spostarsi tra l’1-2% con variabili connesse a risposte genetiche differenziali e anzianità nella carriera culturistica (principiante, intermedio e avanzato). In ogni caso, in una fetta maggioritaria di praticanti, ai bodybuilder avanzati si consiglia di essere più prudenti con il surplus calorico e il tasso di aumento di peso settimanale. L’assunzione di proteine nella dieta è raccomandata a 1,6-2,2 g/kg/giorno, con particolare attenzione a una quantità sufficiente di proteine a ogni pasto (0,40-0,55 g/kg/pasto) e a una distribuzione uniforme nell’arco della giornata (3-6 pasti). Per i “Doped”, in alcuni casi, l’introito proteico può essere portato, con minimi vantaggi in contesto ipercalorico, a 2,5g/Kg con le medesime linee guida di suddivisione per numero di pasti. I grassi alimentari devono essere consumati a livelli moderati, né troppo bassi né troppo alti (0,5-1,5 g/kg/die), per evitare un rapporto fTC sfavorevole e per prevenire riduzioni dei livelli di testosterone. Nei “Doped” l’obbiettivo con i lipidi è principalmente quello di assumerne una dose necessaria, e altamente qualitativa, al fine di assimilare vitamine liposolubili, per substrato strutturale, per sintesi di eicosanoidi (vedi assunzione EPA, DHA e AA), protezioni epidermide e capelli; di conseguenza attenersi ad un dosaggio medio pari a 35-50g/die. Dopo che le calorie sono state distribuite tra Proteine e Grassi, le restanti calorie dovrebbero provenire dai Carboidrati, assicurandosi di consumarne una quantità sufficiente (≥3-5 g/kg/giorno). Si possono ottenere benefici maggiori consumando proteine (0,40-0,55 g/kg/pasto) in prossimità delle sessioni di allenamento (1-2 ore prima dell’esercizio ed entro 1-2 ore dopo l’esercizio). È opportuno prendere in considerazione la Creatina Monoidrato (3-5 g/giorno) e la Caffeina (5-6 mg/kg), in quanto possono produrre effetti ergogenici per i bodybuilder. Inoltre, Beta-Alanina (3-5 g/die) e Citrullina Malato (8 g/die) sono integratori alimentari che possono essere presi in considerazione in quanto potenzialmente utili per i bodybuilder, a seconda dei regimi di allenamento individuali. I bodybuilder che non sono in grado di assumere un apporto sufficiente di micronutrienti e acidi grassi essenziali nella loro dieta dovrebbero prendere in considerazione l’integrazione di questi nutrienti per evitare carenze. Il limite principale di questo articolo è la mancanza di studi su larga scala e a lungo termine sui bodybuilder durante la Off-Season. Sono necessarie ulteriori ricerche su questa popolazione per ottimizzare la nutrizione e le raccomandazioni sugli integratori alimentari.

Gabriel Bellizzi

Riferimenti:

1. Helms E.R., Aragon A.A., Fitschen P.J. Evidence-based recommendations for natural bodybuilding contest preparation: Nutrition and supplementation. J. Int. Soc. Sports Nutr. 2014;11:20. doi: 10.1186/1550-2783-11-20. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Spendlove J., Mitchell L., Gifford J., Hackett D., Slater G., Cobley S., O’Connor H. Dietary Intake of Competitive Bodybuilders. Sports Med. 2015;45:1041–1063. doi: 10.1007/s40279-015-0329-4. [PubMed] [CrossRef] [Google Scholar]

3. Cho S., Lee H., Kim K. Physical Characteristics and Dietary Patterns of Strength Athletes; Bodybuilders, Weight Lifters. [(accessed on 25 March 2019)];Korean J. Community Nutr. 2007 12:864–872. Available online: https://www.komci.org/GSResult.php?RID=0106KJCN%2F2007.12.6.864&DT=6 [Google Scholar]

4. Philen R.M., Ortiz D.I., Auerbach S.B., Falk H. Survey of Advertising for Nutritional Supplements in Health and Bodybuilding Magazines. JAMA. 1992;268:1008. doi: 10.1001/jama.1992.03490080082029. [PubMed] [CrossRef] [Google Scholar]

5. Giampreti A., Lonati D., Locatelli C., Rocchi L., Campailla M.T. Acute neurotoxicity after yohimbine ingestion by a bodybuilder. [(accessed on 25 March 2019)];Clin. Toxicol. 2009 47:827–829. doi: 10.1080/15563650903081601. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19640235 [PubMed] [CrossRef] [Google Scholar]

6. Grunewald K.K., Bailey R.S. Commercially Marketed Supplements for Bodybuilding Athletes. Sports Med. 1993;15:90–103. doi: 10.2165/00007256-199315020-00003. [PubMed] [CrossRef] [Google Scholar]

7. Della Guardia L., Cavallaro M., Cena H. The risks of self-made diets: The case of an amateur bodybuilder. J. Int. Soc. Sports Nutr. 2015;12:5. doi: 10.1186/s12970-015-0077-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Mitchell L., Hackett D., Gifford J., Estermann F., O’Connor H. Do Bodybuilders Use Evidence-Based Nutrition Strategies to Manipulate Physique? [(accessed on 25 March 2019)];Sports. 2017 5:76. doi: 10.3390/sports5040076. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969027/ [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Hackett D.A., Johnson N.A., Chow C.-M. Training Practices and Ergogenic Aids Used by Male Bodybuilders. J. Strength Cond. Res. 2013;27:1609–1617. doi: 10.1519/JSC.0b013e318271272a. [PubMed] [CrossRef] [Google Scholar]

10. Forbes G.B., Brown M.R., Welle S.L., Lipinski B.A. Deliberate overfeeding in women and men: Energy cost and composition of the weight gain. Br. J. Nutr. 1986;56:1–9. doi: 10.1079/BJN19860080. [PubMed] [CrossRef] [Google Scholar]

11. Kreider R.B., Klesges R., Harmon K., Ramsey L., Bullen D., Wood L., Almada A., Grindstaff P., Li Y. Effects of Ingesting Supplements Designed to Promote Lean Tissue Accretion on Body Composition during Resistance Training. Int. J. Sport Nutr. 1996;6:234–246. doi: 10.1123/ijsn.6.3.234. [PubMed] [CrossRef] [Google Scholar]

12. Rozenek R., Ward P., Long S., Garhammer J. Effects of high-calorie supplements on body composition and muscular strength following resistance training. J. Sports Med. Phys. Fit. 2002;42:340–347. [PubMed] [Google Scholar]

13. Garthe I., Raastad T., Refsnes P.E., Sundgot-Borgen J. Effect of nutritional intervention on body composition and performance in elite athletes. Eur. J. Sport Sci. 2013;13:295–303. doi: 10.1080/17461391.2011.643923. [PubMed] [CrossRef] [Google Scholar]

14. American College og Sports Medicine American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. [(accessed on 25 March 2019)];Med. Sci. Sport. Exerc. 2009 41:687–708. doi: 10.1249/MSS.0b013e3181915670. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19204579 [PubMed] [CrossRef] [Google Scholar]

15. Lambert C.P., Frank L.L., Evans W.J., Lambert D.C.P. Macronutrient Considerations for the Sport of Bodybuilding. Sports Med. 2004;34:317–327. doi: 10.2165/00007256-200434050-00004. [PubMed] [CrossRef] [Google Scholar]

16. Walberg-Rankin J., Edmonds C.E., Gwazdauskas F.C. Diet and Weight Changes of Female Bodybuilders Before and After Competition. Int. J. Sport Nutr. 1993;3:87–102. doi: 10.1123/ijsn.3.1.87. [PubMed] [CrossRef] [Google Scholar]

17. Lamar-Hildebrand N., Saldanha L., Endres J. Dietary and exercise practices of college-aged female bodybuilders. J. Am. Diet. Assoc. 1989;89:1308–1310. [PubMed] [Google Scholar]

18. Houston M.E. Gaining Weight: The Scientific Basis of Increasing Skeletal Muscle Mass. Can. J. Appl. Physiol. 1999;24:305–316. doi: 10.1139/h99-024. [PubMed] [CrossRef] [Google Scholar]

19. Phillips S.M. A Brief Review of Critical Processes in Exercise-Induced Muscular Hypertrophy. Sports Med. 2014;44:71–77. doi: 10.1007/s40279-014-0152-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Campbell B.I., Aguilar D., Conlin L., Vargas A., Schoenfeld B.J., Corson A., Gai C., Best S., Galvan E., Couvillion K. Effects of High Versus Low Protein Intake on Body Composition and Maximal Strength in Aspiring Female Physique Athletes Engaging in an 8-Week Resistance Training Program. Int. J. Sport Nutr. Exerc. Metab. 2018;28:580–585. doi: 10.1123/ijsnem.2017-0389. [PubMed] [CrossRef] [Google Scholar]

21. Morton R.W., McGlory C., Phillips S.M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front. Physiol. 2015;6:1–9. doi: 10.3389/fphys.2015.00245. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Morton R.W., Murphy K.T., McKellar S.E., Schoenfeld B.J., Henselmans M., Helms E., Aragon A.A., Devries M.C., Banfield L., Krieger J.W., et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. [(accessed on 25 March 2019)];Br. J. Sports Med. 2018 52:376–384. doi: 10.1136/bjsports-2017-097608. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28698222 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Houltham S.D., Rowlands D.S. A snapshot of nitrogen balance in endurance-trained women. Appl. Physiol. Nutr. Metab. 2014;39:219–225. doi: 10.1139/apnm-2013-0182. [PubMed] [CrossRef] [Google Scholar]

24. Antonio J., Ellerbroek A. Case Reports on Well-Trained Bodybuilders: Two Years on a High Protein Diet. [(accessed on 25 March 2019)];JEPonline. 2018 21:14–24. Available online: https://www.asep.org/asep/asep/JEPonlineFEBRUARY2018_Antonio.pdf [Google Scholar]

25. Antonio J., Ellerbroek A., Silver T., Vargas L., Peacock C. The effects of a high protein diet on indices of health and body composition—A crossover trial in resistance-trained men. J. Int. Soc. Sports Nutr. 2016;13:8. doi: 10.1186/s12970-016-0114-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Bandegan A., Courtney-Martin G., Rafii M., Pencharz P.B., Lemon P.W. Indicator Amino Acid–Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance. J. Nutr. 2017;147:850–857. doi: 10.3945/jn.116.236331. [PubMed] [CrossRef] [Google Scholar]

27. Malowany J.M., West D.W.D., Williamson E., Volterman K.A., Sawan S.A., Mazzulla M., Moore D.R. Protein to Maximize Whole-Body Anabolism in Resistance-trained Females after Exercise. Med. Sci. Sports Exerc. 2019;51:798–804. doi: 10.1249/MSS.0000000000001832. [PubMed] [CrossRef] [Google Scholar]

28. Antonio J., Peacock C.A., Ellerbroek A., Fromhoff B., Silver T. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. J. Int. Soc. Sports Nutr. 2014;11:19. doi: 10.1186/1550-2783-11-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Antonio J., Ellerbroek A., Silver T., Orris S., Scheiner M., Gonzalez A., Peacock C.A. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women—A follow-up investigation. J. Int. Soc. Sports Nutr. 2015;12:39. doi: 10.1186/s12970-015-0100-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Bray G.A., Smith S.R., de Jonge L., Xie H., Rood J., Martin C.K., Most M., Brock C., Mancuso S., Redman L.M. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: A randomized controlled trial. [(accessed on 25 March 2019)];JAMA. 2012 307:47–55. doi: 10.1001/jama.2011.1918. Available online: https://www.ncbi.nlm.nih.gov/pubmed/22215165 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Tipton K.D., Ferrando A.A., Phillips S.M., Doyle D., Wolfe R.R. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am. J. Physiol. Metab. 1999;276:628–634. doi: 10.1152/ajpendo.1999.276.4.E628. [PubMed] [CrossRef] [Google Scholar]

32. Rieu I., Balage M., Sornet C., Giraudet C., Pujos E., Grizard J., Mosoni L., Dardevet D. Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J. Physiol. 2006;575:305–315. doi: 10.1113/jphysiol.2006.110742. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Burd N.A., Tang J.E., Moore D.R., Phillips S.M. Exercise training and protein metabolism: Influences of contraction, protein intake, and sex-based differences. [(accessed on 25 March 2019)];J. Appl. Physiol. 2008 106:1692–1701. doi: 10.1152/japplphysiol.91351.2008. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19036897 [PubMed] [CrossRef] [Google Scholar]

34. Drummond M.J., Dreyer H.C., Fry C.S., Glynn E.L., Rasmussen B.B. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J. Appl. Physiol. 2009;106:1374–1384. doi: 10.1152/japplphysiol.91397.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Tang J.E., Moore D.R., Kujbida G.W., Tarnopolsky M.A., Phillips S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009;107:987–992. doi: 10.1152/japplphysiol.00076.2009. [PubMed] [CrossRef] [Google Scholar]

36. Kanda A., Nakayama K., Sanbongi C., Nagata M., Ikegami S., Itoh H. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise. Nutrients. 2016;8:339. doi: 10.3390/nu8060339. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Messina M., Lynch H., Dickinson J.M., Reed K.E. No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise. Int. J. Sport Nutr. Exerc. Metab. 2018;28:674–685. doi: 10.1123/ijsnem.2018-0071. [PubMed] [CrossRef] [Google Scholar]

38. Joy J.M., Lowery R.P., Wilson J.M., Purpura M., De Souza E.O., Mc Wilson S., Kalman D.S., Dudeck J.E., Jäger R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr. J. 2013;12:86. doi: 10.1186/1475-2891-12-86. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Babault N., Paizis C., Deley G., Guérin-Deremaux L., Saniez M.-H., Lefranc-Millot C., Allaert F.A. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein. J. Int. Soc. Sports Nutr. 2015;12:1692. doi: 10.1186/s12970-014-0064-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Tesch P.A. Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Graefe’s Arch. Clin. Exp. Ophthalmol. 1990;61:5–10. [PubMed] [Google Scholar]

41. Lane A.R., Duke J.W., Hackney A.C. Influence of dietary carbohydrate intake on the free testosterone: Cortisol ratio responses to short-term intensive exercise training. [(accessed on 25 March 2019)];Eur. J. Appl. Physiol. 2010 108:1125–1131. doi: 10.1007/s00421-009-1220-5. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20091182 [PubMed] [CrossRef] [Google Scholar]

42. Tegelman R., Aberg T., Pousette A., Carlström K. Effects of a diet regimen on pituitary and steroid hormones in male ice hockey players. [(accessed on 25 March 2019)];Int. J. Sports Med. 1992 13:420–430. doi: 10.1055/s-2007-1021292. Available online: https://www.ncbi.nlm.nih.gov/pubmed/1387870 [PubMed] [CrossRef] [Google Scholar]

43. Dorgan J.F., Judd J.T., Longcope C., Brown C., Schatzkin A., Clevidence B.A., Campbell W.S., Nair P.P., Franz C., Kahle L., et al. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: A controlled feeding study. Am. J. Clin. Nutr. 1996;64:850–855. doi: 10.1093/ajcn/64.6.850. [PubMed] [CrossRef] [Google Scholar]

44. Hämäläinen E., Adlercreutz H., Puska P., Pietinen P. Decrease of serum total and free testosterone during a low-fat high-fibre diet. J. Steroid Biochem. 1983;18:369–370. doi: 10.1016/0022-4731(83)90117-6. [PubMed] [CrossRef] [Google Scholar]

45. Hämäläinen E., Adlercreutz H., Puska P., Pietinen P. Diet and serum sex hormones in healthy men. J. Steroid Biochem. 1984;20:459–464. doi: 10.1016/0022-4731(84)90254-1. [PubMed] [CrossRef] [Google Scholar]

46. Wang C., Catlin D.H., Starcevic B., Heber D., Ambler C., Berman N., Lucas G., Leung A., Schramm K., Lee P.W.N., et al. Low-Fat High-Fiber Diet Decreased Serum and Urine Androgens in Men. J. Clin. Endocrinol. Metab. 2005;90:3550–3559. doi: 10.1210/jc.2004-1530. [PubMed] [CrossRef] [Google Scholar]

47. Morton R.W., Sato K., Gallaugher M.P.B., Oikawa S.Y., McNicholas P.D., Fujita S., Phillips S.M. Muscle Androgen Receptor Content but Not Systemic Hormones Is Associated With Resistance Training-Induced Skeletal Muscle Hypertrophy in Healthy, Young Men. Front. Physiol. 2018;9:9. doi: 10.3389/fphys.2018.01373. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Tinsley G.M., Willoughby D.S. Fat-Free Mass Changes During Ketogenic Diets and the Potential Role of Resistance Training. Int. J. Sport Nutr. Exerc. Metab. 2016;26:78–92. doi: 10.1123/ijsnem.2015-0070. [PubMed] [CrossRef] [Google Scholar]

49. Vargas S., Romance R., Petro J.L., Bonilla D.A., Galancho I., Espinar S., Kreider R.B., Benítez-Porres J. Efficacy of ketogenic diet on body composition during resistance training in trained men: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2018;15:31. doi: 10.1186/s12970-018-0236-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Kephart W.C., Pledge C.D., Roberson P.A., Mumford P.W., Romero M.A., Mobley C.B., Martin J.S., Young K.C., Lowery R.P., Wilson J.M., et al. The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study. Sports. 2018;6:1. doi: 10.3390/sports6010001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Greene D.A., Varley B.J., Hartwig T.B., Chapman P., Rigney M. A Low-Carbohydrate Ketogenic Diet Reduces Body Mass Without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes. [(accessed on 26 March 2019)];J. Strength Cond. Res. 2018 32:3373–3382. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30335720 [PubMed] [Google Scholar]

52. Bird S. Strength Nutrition: Maximizing Your Anabolic Potential. Strength Cond. J. 2010;32:80–86. doi: 10.1519/SSC.0b013e3181d5284e. [CrossRef] [Google Scholar]

53. American Dietetic Association. Dietitians of Canada. American College of Sports Medicine. Rodriguez N.R., Di Marco N.M., Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. [(accessed on 26 March 2019)];Med. Sci. Sports Exerc. 2009 41:709–731. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19225360 [PubMed] [Google Scholar]

54. Chung S.T., Chacko S.K., Sunehag A.L., Haymond M.W. Measurements of Gluconeogenesis and Glycogenolysis: A Methodological Review. Diabetes. 2015;64:3996–4010. doi: 10.2337/db15-0640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Azizi F. Effect of dietary composition on fasting-induced changes in serum thyroid hormones and thyrotropin. Metabolism. 1978;27:935–942. doi: 10.1016/0026-0495(78)90137-3. [PubMed] [CrossRef] [Google Scholar]

56. Mathieson R.A., Walberg J.L., Gwazdauskas F.C., Hinkle D.E., Gregg J.M. The effect of varying carbohydrate content of a very-low-caloric diet on resting metabolic rate and thyroid hormones. Metabolism. 1986;35:394–398. doi: 10.1016/0026-0495(86)90126-5. [PubMed] [CrossRef] [Google Scholar]

57. Leveritt M., Abernethy P.J. Effects of Carbohydrate Restriction on Strength Performance. J. Strength Cond. Res. 1999;13:52–57. [Google Scholar]

58. Jacobs I., Kaiser P., Tesch P. Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers. Graefe’s Arch. Clin. Exp. Ophthalmol. 1981;46:47–53. doi: 10.1007/BF00422176. [PubMed] [CrossRef] [Google Scholar]

59. Ray S., Sale D.G., Lee P., Garner S., MacDougall J.D., McCartney N. Muscle Substrate Utilization and Lactate Production During Weightlifting. Can. J. Appl. Physiol. 1999;24:209–215. [PubMed] [Google Scholar]

60. Tesch P.A., Colliander E.B., Kaiser P. Muscle metabolism during intense, heavy-resistance exercise. Graefe’s Arch. Clin. Exp. Ophthalmol. 1986;55:362–366. doi: 10.1007/BF00422734. [PubMed] [CrossRef] [Google Scholar]

61. Pascoe D.D., Costill D.L., Fink W.J., Robergs R.A., Zachwieja J.J. Glycogen resynthesis in skeletal muscle following resistive exercise. Med. Sci. Sports Exerc. 1993;25:349. doi: 10.1249/00005768-199303000-00009. [PubMed] [CrossRef] [Google Scholar]

62. Ørtenblad N., Westerblad H., Nielsen J. Muscle glycogen stores and fatigue. [(accessed on 26 March 2019)];J. Physiol. 2013 591:4405–4413. doi: 10.1113/jphysiol.2013.251629. Available online: https://www.ncbi.nlm.nih.gov/pubmed/23652590 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Mitchell J.B., DiLauro P.C., Pizza F.X., Cavender D.L. The Effect of Preexercise Carbohydrate Status on Resistance Exercise Performance. Int. J. Sport Nutr. 1997;7:185–196. doi: 10.1123/ijsn.7.3.185. [PubMed] [CrossRef] [Google Scholar]

64. Lima-Silva A.E., Silva-Cavalcante M.D., Oliveira R.S., Kiss M.A., Pires F.O., Bertuzzi R., Bishop D. Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise. Appl. Physiol. Nutr. Metab. 2013;38:928–934. doi: 10.1139/apnm-2012-0467. [PubMed] [CrossRef] [Google Scholar]

65. Vega F., Jackson R. Dietary habits of bodybuilders and other regular exercisers. Nutr. Res. 1996;16:3–10. doi: 10.1016/0271-5317(95)02054-3. [CrossRef] [Google Scholar]

66. Chappell A.J., Simper T., Barker M.E. Nutritional strategies of high level natural bodybuilders during competition preparation. J. Int. Soc. Sports Nutr. 2018;15:4. doi: 10.1186/s12970-018-0209-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Atherton P.J., Etheridge T., Watt P.W., Wilkinson D., Selby A., Rankin D., Smith K., Rennie M.J. Muscle full effect after oral protein: Time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am. J. Clin. Nutr. 2010;92:1080–1088. doi: 10.3945/ajcn.2010.29819. [PubMed] [CrossRef] [Google Scholar]

68. Res P.T., Groen B., Pennings B., Beelen M., Wallis G.A., Gijsen A.P., Senden J.M., Van Loon L.J. Protein ingestion before sleep improves postexercise overnight recovery. [(accessed on 25 March 2019)];Med. Sci. Sports Exerc. 2012 44:1560–1569. doi: 10.1249/MSS.0b013e31824cc363. Available online: https://www.ncbi.nlm.nih.gov/pubmed/22330017 [PubMed] [CrossRef] [Google Scholar]

69. Moore D.R., Robinson M.J., Fry J.L., Tang J.E., Glover E.I., Wilkinson S.B., Prior T., Tarnopolsky M.A., Phillips S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. [(accessed on 25 March 2019)];Am. J. Clin. Nutr. 2009 89:161–168. doi: 10.3945/ajcn.2008.26401. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19056590 [PubMed] [CrossRef] [Google Scholar]

70. Witard O.C., Jackman S.R., Breen L., Smith K., Selby A., Tipton K.D. Muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after. [(accessed on 25 March 2019)];Am. J. Clin. Nutr. 2014 99:86–95. doi: 10.3945/ajcn.112.055517. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24257722 [PubMed] [CrossRef] [Google Scholar]

71. Macnaughton L.S., Wardle S.L., Witard O.C., McGlory C., Hamilton D.L., Jeromson S., Lawrence C.E., Wallis G.A., Tipton K.D. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol. Rep. 2016;4:e12893. doi: 10.14814/phy2.12893. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Schoenfeld B.J., Aragon A.A., Krieger J.W. The effect of protein timing on muscle strength and hypertrophy: A meta-analysis. J. Int. Soc. Sports Nutr. 2013;10:53. doi: 10.1186/1550-2783-10-53. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Areta J.L., Burke L.M., Ross M.L., Camera D.M., West D.W.D., Broad E.M., Jeacocke N.A., Moore D.R., Stellingwerff T., Phillips S.M., et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013;591:2319–2331. doi: 10.1113/jphysiol.2012.244897. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Hudson J.L., Bergia R.E., Campbell W.W. Effects of protein supplements consumed with meals, versus between meals, on resistance training–induced body composition changes in adults: A systematic review. Nutr. Rev. 2018;76:461–468. doi: 10.1093/nutrit/nuy012. [PubMed] [CrossRef] [Google Scholar]

75. Trommelen J., Kouw I.W.K., Holwerda A.M., Snijders T., Halson S.L., Rollo I., Verdijk L.B., Van Loon L.J.C. Pre-sleep dietary protein-derived amino acids are incorporated in myofibrillar protein during post-exercise overnight recovery. [(accessed on 25 March 2019)];Am. J. Physiol. Metab. 2018 1:457–467. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28536184 [Google Scholar]

76. Kouw I.W., Holwerda A.M., Trommelen J., Kramer I.F., Bastiaanse J., Halson S.L., Wodzig W.K., Verdijk L.B., Van Loon L.J. Protein Ingestion before Sleep Increases Overnight Muscle Protein Synthesis Rates in Healthy Older Men: A Randomized Controlled Trial. [(accessed on 25 March 2019)];J. Nutr. 2017 147:2252–2261. doi: 10.3945/jn.117.254532. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28855419 [PubMed] [CrossRef] [Google Scholar]

77. Snijders T., Res P.T., Smeets J.S., Van Vliet S., Van Kranenburg J., Maase K., Kies A.K., Verdijk L.B., Van Loon L.J. Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. [(accessed on 25 March 2019)];J. Nutr. 2015 145:1178–1184. doi: 10.3945/jn.114.208371. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25926415 [PubMed] [CrossRef] [Google Scholar]

78. Joy J.M., Vogel R.M., Broughton K.S., Kudla U., Kerr N.Y., Davison J.M., Wildman R.E.C., DiMarco N.M. Daytime and nighttime casein supplements similarly increase muscle size and strength in response to resistance training earlier in the day: A preliminary investigation. J. Int. Soc. Sports Nutr. 2018;15:24. doi: 10.1186/s12970-018-0228-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Antonio J., Ellerbroek A., Peacock C., Silver T. Casein Protein Supplementation in Trained Men and Women: Morning versus Evening. Int. J. Exerc. Sci. 2017;10:479–486. [PMC free article] [PubMed] [Google Scholar]

80. Schoenfeld B.J., Aragon A.A. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J. Int. Soc. Sports Nutr. 2018;15:10. doi: 10.1186/s12970-018-0215-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Pennings B., Groen B.B., Van Dijk J.-W., De Lange A., Kiskini A., Kuklinski M., Senden J.M., Van Loon L.J. Minced beef is more rapidly digested and absorbed than beef steak, resulting in greater postprandial protein retention in older men. Am. J. Clin. Nutr. 2013;98:121–128. doi: 10.3945/ajcn.112.051201. [PubMed] [CrossRef] [Google Scholar]

82. Kim I.Y., Schutzler S., Schrader A., Spencer H.J., Azhar G., Ferrando A.A., Wolfe R.R. The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults. [(accessed on 25 March 2019)];Am. J. Physiol. Metab. 2016 310:73–80. doi: 10.1152/ajpendo.00365.2015. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26530155 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Jentjens R., Jeukendrup A.E. Determinants of Post-Exercise Glycogen Synthesis During Short-Term Recovery. Sports Med. 2003;33:117–144. doi: 10.2165/00007256-200333020-00004. [PubMed] [CrossRef] [Google Scholar]

84. Biolo G., Williams B.D., Fleming R.Y., Wolfe R.R. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999;48:949–957. doi: 10.2337/diabetes.48.5.949. [PubMed] [CrossRef] [Google Scholar]

85. Greenhaff P.L., Karagounis L.G., Peirce N., Simpson E.J., Hazell M., Layfield R., Wackerhage H., Smith K., Atherton P., Selby A., et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Metab. 2008;295:E595–E604. doi: 10.1152/ajpendo.90411.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Glynn E.L., Fry C.S., Timmerman K.L., Drummond M.J., Volpi E., Rasmussen B.B., Leroy J.L., Gadsden P., De Cossío T.G., Gertler P. Addition of Carbohydrate or Alanine to an Essential Amino Acid Mixture Does Not Enhance Human Skeletal Muscle Protein Anabolism123. J. Nutr. 2013;143:307–314. doi: 10.3945/jn.112.168203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Koopman R., Beelen M., Stellingwerff T., Pennings B., Saris W.H.M., Kies A.K., Kuipers H., Van Loon L.J.C. Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. Am. J. Physiol. Metab. 2007;293:E833–E842. doi: 10.1152/ajpendo.00135.2007. [PubMed] [CrossRef] [Google Scholar]

88. Aragon A.A., Schoenfeld B.J. Nutrient timing revisited: Is there a post-exercise anabolic window? J. Int. Soc. Sports Nutr. 2013;10:5. doi: 10.1186/1550-2783-10-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Jäger R., Kerksick C.M., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., Purpura M., Ziegenfuss T.N., Ferrando A.A., Arent S.M., et al. International Society of Sports Nutrition position stand: Protein and exercise. [(accessed on 25 March 2019)];J. Int. Soc. Sport. Nutr. 2017 4:20. doi: 10.1186/s12970-017-0177-8. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28642676 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Darrabie M.D., Arciniegas A.J.L., Mishra R., Bowles D.E., Jacobs D.O., Santacruz L. AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. Am. J. Physiol. Metab. 2011;300:870–876. doi: 10.1152/ajpendo.00554.2010. [PubMed] [CrossRef] [Google Scholar]

91. Purchas R., Busboom J., Wilkinson B. Changes in the forms of iron and in concentrations of taurine, carnosine, coenzyme Q10, and creatine in beef longissimus muscle with cooking and simulated stomach and duodenal digestion. Meat Sci. 2006;74:443–449. doi: 10.1016/j.meatsci.2006.03.015. [PubMed] [CrossRef] [Google Scholar]

92. Branch J.D. Effect of Creatine Supplementation on Body Composition and Performance: A Meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2003;13:198–226. doi: 10.1123/ijsnem.13.2.198. [PubMed] [CrossRef] [Google Scholar]

93. Hultman E., Söderlund K., Timmons J.A., Cederblad G., Greenhaff P.L. Muscle creatine loading in men. [(accessed on 25 March 2019)];J. Appl. Physiol. Soc. 1996 81:232–237. doi: 10.1152/jappl.1996.81.1.232. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8828669 [PubMed] [CrossRef] [Google Scholar]

94. Jagim A.R., Oliver J.M., Sanchez A., Galvan E., Fluckey J., Riechman S., Greenwood M., Kelly K., Meininger C., Rasmussen C., et al. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J. Int. Soc. Sports Nutr. 2012;9:43. doi: 10.1186/1550-2783-9-43. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Spillane M., Schoch R., Cooke M., Harvey T., Greenwood M., Kreider R., Willoughby D.S., Cooke M. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J. Int. Soc. Sports Nutr. 2009;6:6. doi: 10.1186/1550-2783-6-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Childs E., De Wit H., Wit H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology. 2006;185:514–523. doi: 10.1007/s00213-006-0341-3. [PubMed] [CrossRef] [Google Scholar]

97. Bellar D., Kamimori G.H., Glickman E.L. The Effects of Low-Dose Caffeine on Perceived Pain During a Grip to Exhaustion Task. J. Strength Cond. Res. 2011;25:1225–1228. doi: 10.1519/JSC.0b013e3181d9901f. [PubMed] [CrossRef] [Google Scholar]

98. Davis J.K., Green J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. [(accessed on 25 March 2019)];Sport. Med. 2009 39:813–832. doi: 10.2165/11317770-000000000-00000. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19757860 [PubMed] [CrossRef] [Google Scholar]

99. Wickwire P.J., McLester J.R., Gendle S., Hudson G., Pritchett R.C., Laurent C.M., Green J.M. Effects of Caffeine on Repetitions to Failure and Ratings of Perceived Exertion during Resistance Training. Int. J. Sports Physiol. Perform. 2007;2:250–259. [PubMed] [Google Scholar]

100. Duncan M.J., Oxford S.W. The effect of caffeine ingestion on mood state and bench press performance to failure. [(accessed on 25 March 2019)];J. Strength Cond. Res. 2001 25:178–185. doi: 10.1519/JSC.0b013e318201bddb. Available online: https://www.ncbi.nlm.nih.gov/pubmed/22124354 [PubMed] [CrossRef] [Google Scholar]

101. Williams A.D., Cribb P.J., Cooke M.B., Hayes A. The Effect of Ephedra and Caffeine on Maximal Strength and Power in Resistance-Trained Athletes. J. Strength Cond. Res. 2008;22:464–470. doi: 10.1519/JSC.0b013e3181660320. [PubMed] [CrossRef] [Google Scholar]

102. Tarnopolsky M.A., Atkinson S.A., MacDougall J.D., Sale D.G., Sutton J.R. Physiological responses to caffeine during endurance running in habitual caffeine users. Med. Sci. Sports Exerc. 1989;21:418–424. doi: 10.1249/00005768-198908000-00013. [PubMed] [CrossRef] [Google Scholar]

103. Blanchard J., Sawers S.J.A. The absolute bioavailability of caffeine in man. Eur. J. Clin. Pharmacol. 1983;24:93–98. doi: 10.1007/BF00613933. [PubMed] [CrossRef] [Google Scholar]

104. Hobson R.M., Saunders B., Ball G., Harris R.C., Sale C. Effects of β-alanine supplementation on exercise performance: A meta-analysis. Amino Acids. 2012;43:25–37. doi: 10.1007/s00726-011-1200-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Hoffman J., Ratamess N.A., Ross R., Kang J., Magrelli J., Neese K., Faigenbaum A.D., Wise J.A. Beta-alanine and the hormonal response to exercise. [(accessed on 25 March 2019)];Int. J. Sports Med. 2008 29:952–958. doi: 10.1055/s-2008-1038678. Available online: https://www.ncbi.nlm.nih.gov/pubmed/18548362 [PubMed] [CrossRef] [Google Scholar]

106. Hoffman J., Ratamess N., Kang J., Mangine G., Faigenbaum A., Stout J. Effect of creatine and β-alanine supplementation on performance and endocrine responses in strength/power athletes. [(accessed on 25 March 2019)];Int. J. Sport Nutr. Exerc. Metab. 2006 16:430–446. doi: 10.1123/ijsnem.16.4.430. Available online: https://www.ncbi.nlm.nih.gov/pubmed/17136944 [PubMed] [CrossRef] [Google Scholar]

107. Pérez-Guisado J., Jakeman P.M. Citrulline Malate Enhances Athletic Anaerobic Performance and Relieves Muscle Soreness. J. Strength Cond. Res. 2010;24:1215–1222. doi: 10.1519/JSC.0b013e3181cb28e0. [PubMed] [CrossRef] [Google Scholar]

108. Wax B., Kavazis A.N., Weldon K., Sperlak J. Effects of Supplemental Citrulline Malate Ingestion During Repeated Bouts of Lower-Body Exercise in Advanced Weightlifters. J. Strength Cond. Res. 2015;29:786–792. doi: 10.1519/JSC.0000000000000670. [PubMed] [CrossRef] [Google Scholar]

109. Wax B., Kavazis A.N., Luckett W. Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics and Resistance Exercise Performance in Trained Males. [(accessed on 25 March 2019)];J. Diet. 2016 13:269–282. doi: 10.3109/19390211.2015.1008615. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25674699 [PubMed] [CrossRef] [Google Scholar]

110. Glenn J.M., Gray M., Wethington L.N., Stone M.S., Stewart R.W., Jr., Moyen N.E. Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. [(accessed on 25 March 2019)];Eur. J. Nutr. 2017 56:775–784. doi: 10.1007/s00394-015-1124-6. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26658899 [PubMed] [CrossRef] [Google Scholar]

111. Glenn J.M., Gray M., Jensen A., Stone M.S., Vincenzo J.L. Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. Eur. J. Sport Sci. 2016;16:1–9. doi: 10.1080/17461391.2016.1158321. [PubMed] [CrossRef] [Google Scholar]

112. Gonzalez A.M., Spitz R.W., Ghigiarelli J.J., Sell K.M., Mangine G.T. Acute Effect of Citrulline Malate Supplementation on Upper-Body Resistance Exercise Performance in Recreationally Resistance-Trained Men. J. Strength Cond. Res. 2018;32:3088–3094. doi: 10.1519/JSC.0000000000002373. [PubMed] [CrossRef] [Google Scholar]

113. Farney T.M., Bliss M.V., Hearon C.M., Salazar D.A. The Effect of Citrulline Malate Supplementation On Muscle Fatigue Among Healthy Participants. J. Strength Cond. Res. 2017:1. doi: 10.1519/JSC.0000000000002356. [PubMed] [CrossRef] [Google Scholar]

114. Trexler E.T., Persky A.M., Ryan E.D., Schwartz T.A., Stoner L., Smith-Ryan A.E. Acute Effects of Citrulline Supplementation on High-Intensity Strength and Power Performance: A Systematic Review and Meta-Analysis. Sports Med. 2019;49:707–718. doi: 10.1007/s40279-019-01091-z. [PubMed] [CrossRef] [Google Scholar]

115. Kleiner S.M., Bazzarre T.L., Litchford M.D. Metabolic profiles, diet, and health practices of championship male and female bodybuilders. J. Am. Diet. Assoc. 1990;90:962–967. [PubMed] [Google Scholar]

116. Kleiner S.M., Bazzarre T.L., Ainsworth B.E. Nutritional Status of Nationally Ranked Elite Bodybuilders. Int. J. Sport Nutr. 1994;4:54–69. doi: 10.1123/ijsn.4.1.54. [PubMed] [CrossRef] [Google Scholar]

117. Sandoval W.M., Heyward V.H. Food Selection Patterns of Bodybuilders. Int. J. Sport Nutr. 1991;1:61–68. doi: 10.1123/ijsn.1.1.61. [PubMed] [CrossRef] [Google Scholar]

118. Ismaeel A., Weems S., Willoughby D.S. A Comparison of the Nutrient Intakes of Macronutrient-Based Dieting and Strict Dieting Bodybuilders. Int. J. Sport Nutr. Exerc. Metab. 2018;28:502–508. doi: 10.1123/ijsnem.2017-0323. [PubMed] [CrossRef] [Google Scholar]

119. Nelson J.R., Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad. Med. 2019;131:268–277. doi: 10.1080/00325481.2019.1607414. [PubMed] [CrossRef] [Google Scholar]

120. Harris W.S. The Omega-6: Omega-3 ratio: A critical appraisal and possible successor. [(accessed on 15 June 2019)];Prostaglandins Leukot Essent Fatty Acids. 2018 132:34–40. doi: 10.1016/j.plefa.2018.03.003. Available online: https://www.ncbi.nlm.nih.gov/m/pubmed/29599053/ [PubMed] [CrossRef] [Google Scholar]

121. Tachtsis B., Camera D., Lacham-Kaplan O. Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration. Nutrients. 2018;10:309. doi: 10.3390/nu10030309. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Di Girolamo F.G., Situlin R., Mazzucco S., Valentini R., Toigo G., Biolo G. Omega-3 fatty acids and protein metabolism: Enhancement of anabolic interventions for sarcopenia. [(accessed on 15 June 2019)];Curr. Opin. Clin. Nutr. Metab Care. 2014 17:145–150. doi: 10.1097/MCO.0000000000000032. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24500439 [PubMed] [CrossRef] [Google Scholar]

123. McGlory C., Wardle S.L., Macnaughton L.S., Witard O.C., Scott F., Dick J., Bell J.G., Phillips S.M., Galloway S.D.R., Hamilton D.L., et al. Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiol. Rep. 2016;4:e12715. doi: 10.14814/phy2.12715. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Crestani D.M., Bonin E.F.R., Barbieri R.A., Zagatto A.M., Higino W.P., Milion F. Chronic supplementation of omega-3 can improve body composition and maximal strength, but does not change the resistance to neuromuscular fatigue. [(accessed on 15 June 2019)];Sport Sci. Health. 2017 13:259–265. doi: 10.1007/s11332-016-0322-9. Available online: https://link.springer.com/article/10.1007/s11332-016-0322-9 [CrossRef] [Google Scholar]

125. Lewis E.J.H., Radonic P.W., Wolever T.M.S., Wells G.D. 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J. Int. Soc. Sports Nutr. 2015;12:28. doi: 10.1186/s12970-015-0089-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Rossato L.T., Schoenfeld B.J., De Oliveira E.P. Is there sufficient evidence to supplement omega-3 fatty acids to increase muscle mass and strength in young and older adults? Clin. Nutr. 2019 doi: 10.1016/j.clnu.2019.01.001. [PubMed] [CrossRef] [Google Scholar]

127. Mocking R.J.T., Harmsen I., Assies J., Koeter M.W.J., Ruhé H.G., Schene A.H. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl. Psychiatry. 2016;6:e756. doi: 10.1038/tp.2016.29. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Maki K.C., Palacios O.M., Bell M., Toth P.P. Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: An updated meta-analysis and review of research gaps. J. Clin. Lipidol. 2017;11:1152–1160.e2. doi: 10.1016/j.jacl.2017.07.010. [PubMed] [CrossRef] [Google Scholar]

129. Miller P.E., Van Elswyk M., Alexander D.D. Long-Chain Omega-3 Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid and Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Am. J. Hypertens. 2014;27:885–896. doi: 10.1093/ajh/hpu024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Du S., Jin J., Fang W., Su Q. Does Fish Oil Have an Anti-Obesity Effect in Overweight/Obese Adults? A Meta-Analysis of Randomized Controlled Trials. PLoS ONE. 2015;10:e0142652. doi: 10.1371/journal.pone.0142652. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Impatto degli aumenti nei livelli fisiologici del Testosterone sulla composizione corporea.

Introduzione:

Con il nuovo anno riprendo la pubblicazione degli articoli e lo faccio trattando un argomento che spesso, direttamente o indirettamente, è emerso nelle discussioni tra clienti e colleghi.

Il Testosterone è senza dubbio l’ormone simbolo per l’uomo della strada, preso dalla frenesia del mondo moderno e dal raggiungimento di obbiettivi tanto futili quanto irrealistici. Lo so che ve lo state domandando e la risposta è “si”. Questa entrata filosofica è perfetta per introdurre una questione legata al Androgeno per eccellenza.

Tanto per fare un esempio: quanti rimedi da banco vi sono stati proposti per migliorare i livelli plasmatici di Testosterone? Tra Tribulus Terrestris, Maca e Boro il conto è presto perso. E quanti di questi supplementi OTC hanno dato reali risultati? Misurabili, quantificabili con i livelli di partenza e che si sono tradotti in significativi miglioramenti della composizione corporea? …

La necessità di un ottimale apporto di Zinco, Vitamina D e altri macro e microelementi implicati nella biosintesi androgena, nella Testosterone:Estradiolo ratio ecc… non sono di certo messi in dubbio. Ad esserlo è il marketing, è l’affermazione sensazionalistica che va sempre con cura soppesata e valutata in concreto.

Ma, ipotizzando un miglioramento dei livelli di Testosterone endogeno rispetto al basale di partenza, ed entro l’intervallo di riferimento standard (es. per gli uomini dai 240 ai 950ng/dl dopo i 18 anni), garantite da trattamenti iatrogeni, quanto può incidere ciò nel miglioramento della composizione corporea?…

L’articolo che segue si basa sulle informazioni raccolte nella Research Review di James Krieger.

Iniziamo dalla letteratura scientifica

È assodato che l’uso AAS, che comporta la somministrazione di dosi sovrafisiologiche di Testosterone o ormoni correlati, provoca marcati aumenti delle dimensioni muscolari, ben oltre ciò che può essere ottenuto di base fisiologica dal soggetto, anche se questi guadagni addizionali sono limitati geneticamente. Nonostante ciò, mentre è assodato che dosi sovrafisiologiche di Testosterone, suoi derivati e analoghi aumenteranno significativamente i potenziali guadagni ipertrofici, questo non ci dice se le variazioni del Testosterone all’interno di un normale intervallo fisiologico possano avere qualche impatto. C’è una vasta gamma di livelli ematici di Testosterone da un uomo all’altro. Ad esempio, in uno studio nel quale sono stati presi in esame 456 uomini sani e non obesi di età compresa tra 19 e 39 anni, l’intervallo delle concentrazioni di Testosterone nel sangue (misurato al mattino dopo un digiuno notturno) era il seguente:

Lo studio di cui sopra è stato eseguito su un campione di individui della  Framingham Heart Study Generation 3. Tuttavia, gli intervalli di concentrazione di Testosterone possono variare a seconda della popolazione e del dosaggio utilizzato per misurare il Testosterone. Anche i laboratori variano molto nei loro intervalli di riferimento. Travison et al. hanno estrapolato i dati da quattro importanti studi di coorte e hanno utilizzato modelli statistici per stabilire intervalli di riferimento che potrebbero essere applicati in diversi laboratori. Ecco la gamma di concentrazioni di Testosterone nel sangue che hanno stabilito:

Indipendentemente dall’intervallo di riferimento utilizzato, non c’è dubbio che vi sia un’ampia variazione nei livelli di Testosterone tra gli uomini, anche tra gli uomini sani e non obesi (poiché, come ben sappiamo, l’obesità è associata a un livello di Testosterone inferiore). Ciò solleva la questione se le variazioni in un intervallo normale possano influire sensibilmente sui guadagni muscolari. Un uomo con livelli di Testosterone naturalmente più alti riesce ad avere un maggior margine ipertrofico muscolare rispetto ad un uomo con livelli più bassi, anche se entrambi gli uomini sono all’interno di un intervallo normale? La risposta a questa domanda può avere particolare rilevanza per gli uomini che invecchiano. Il Testosterone diminuisce con l’età, ed è un altro dato di fatto, sebbene l’attività contro resistenza e una alimentazione sana possono rallentarne il declino. Ad esempio, ecco i dati dello studio French Telecom, che mostra il calo del Testosterone in tutti i percentili con l’età degli uomini.

Percentili di distribuzione plasmatica del Testosterone in un campione di 1.408 uomini caucasici dello studio Telecom, Parigi, Francia, 1985-1987

Ancora una volta, si può vedere l’ampia variazione nei livelli fisiologici di Testosterone, che vanno da 350-400ng/dL nel 5° percentile 850-1000ng/dL nel 95° percentile. Il declino continua negli anni ’60, ’70 e oltre. Ecco i dati che mostrano i livelli medi di Testosterone nei decenni di durata della vita; questi dati sono tratti da sei studi:

Testosterone totale (ng/ml) per fascia di età (moltiplicare per 100 per ottenere ng/dL); dati da 6 diversi studi.

Poiché anche la massa muscolare diminuisce con l’età e poiché gli uomini con bassi livelli di Testosterone mostrano tassi di perdita muscolare più rapidi rispetto agli uomini con livelli più alti, potremmo ipotizzare che gli uomini più anziani potrebbero trarre beneficio dal portare il Testosterone nell’intervallo fisiologico medio-alto.

Pertanto, tutti questi dati sollevano una serie di domande importanti:

  • I livelli di Testosterone di base sono correlati alla risposta all’allenamento?
  • Il Testosterone estremamente basso compromette la massa muscolare e i guadagni muscolari?
  • Le variazioni all’interno del normale range fisiologico influiscono sulla massa muscolare?
  • Se i livelli di Testosterone sono bassi o al limite, portare i livelli fino alla fascia media o superiore aiuta a migliorare la massa muscolare?
  • Se le variazioni nel normale range fisiologico hanno un impatto sulle condizioni muscolari negli uomini, hanno lo stesso impatto anche nelle donne?

Diamo un’occhiata alla ricerca per poter cercare di dare una risposta a queste domande.

I livelli basali di Testosterone sono correlati con la risposta all’allenamento?

Un modo per esaminare se esiste una relazione tra Testosterone in range fisiologico e guadagni muscolari è quello di guardare le risposte all’allenamento di un insieme di individui e vedere se i livelli di Testosterone di base sono correlati alla quantità di muscoli guadagnata da ciascuna persona. McCall et al. non hanno trovato alcuna correlazione tra i livelli basali di Testosterone e i cambiamenti nella dimensione muscolare in giovani uomini allenati a livello amatoriale. Tuttavia, Ahtiainen et al. hanno trovato una forte correlazione tra i livelli di Testosterone di base e il miglioramento della forza isometrica massima in 21 settimane. Ma la correlazione con l’ipertrofia non è stata affrontata.

Data la relazione tra l’ipertrofia e l’espressione di forza isometrica, potremmo ipotizzare che ci fosse una relazione tra il Testosterone di base e l’ipertrofia in questo studio, ma non è possibile saperlo con certezza.

In uno studio di Bhasin et al., uomini con infezione da HIV con Testosterone basso (<349ng/dL) sono stati assegnati in modo casuale a gruppo placebo, solo allenamento contro-resistenza, solo iniezioni di Testosterone o Testosterone e allenamento contro-resistenza combinati.

I livelli di Testosterone al basale non erano correlati con la variazione della massa magra (FFM) e non c’erano differenze significative nel guadagno assoluto di FFM tra uomini che avevano livelli di Testosterone <275ng/dL e uomini che avevano livelli di 275-350ng/dL .

E’ possibile anche confrontare i guadagni muscolari tra maschi e femmine, poiché gli uomini hanno 10 volte più Testosterone delle donne. Se i livelli di Testosterone di base fossero correlati con la risposta all’allenamento, ci aspetteremmo che gli uomini abbiano maggiori guadagni rispetto alle donne. Tuttavia, quando uomini e donne vengono sottoposti a programmi di allenamento contro-resistenza, mentre i guadagni muscolari assoluti sono maggiori negli uomini, i guadagni muscolari relativi (cioè i guadagni percentuali) sono per lo più simili.

Nel complesso, questi dati limitati suggerirebbero che i livelli di Testosterone non influiscono realmente sui guadagni. Tuttavia, si tratta di dati trasversali e non sono realmente progettati per affrontare la questione se le variazioni del Testosterone fisiologico abbiano un impatto sui guadagni di massa muscolare.

Pertanto, è necessario esaminare alcune ricerche in cui i livelli di Testosterone vengono direttamente manipolati.

Livelli di Testosterone estremamente bassi compromettono la massa muscolare e i guadagni muscolari?

Un modo per esaminare l’impatto del Testosterone sui guadagni muscolari è vedere cosa succede quando si sopprime la produzione di Testosterone. Maura et al. ha somministrato a giovani uomini il Lupron, un farmaco antiandrogeno che sopprime la produzione naturale di Testosterone. I livelli di Testosterone sono scesi da 535ng/dL a 31ng/dL dopo 10 settimane. Pertanto, la media dei soggetti trattati con Lupron aveva livelli di Testosterone simili a quelli di una donna.

La massa magra è diminuita di 2,1 kg e la sintesi proteica dell’intero corpo è diminuita del 13%. Naturalmente, non c’era alcun tipo di allenamento in questo studio. Forse l’allenamento con i pesi potrebbe interagire con questa risposta.

Kvorning et al. hanno somministrato a giovani uomini il Goserelin, che sopprime la produzione naturale di Testosterone, o un placebo. Gli uomini, che avevano una minima esperienza di allenamento contro-resistenza, si sono impegnati in un programma di allenamento della forza di 8 settimane. I livelli di Testosterone sono scesi da 651ng/dL a 57ng/dL, e poi 31ng/dL nel gruppo che ha ricevuto il Goserelina.

La soppressione del Testosterone non ha compromesso i miglioramenti nelle prestazioni del 10-RM rispetto al placebo. Tuttavia, i miglioramenti nella forza isometrica erano significativamente inferiori con il Goserelina.

I miglioramenti nella massa magra delle gambe erano significativamente inferiori per il gruppo Goserelina e anche la massa corporea magra totale tendeva verso quella direzione (valore P di 0,07, dove 0,05 è considerato significativo). L’aumento medio della massa magra è stato di 1kg maggiore nel gruppo placebo rispetto al gruppo Goserelina. La differenza nella massa magra della gamba era di 0,2kg.

Pertanto, questo studio ha dimostrato che la soppressione della produzione di Testosterone ha compromesso i guadagni di massa magra, ma la differenza non era marcata, pari a circa 1kg di differenza complessiva nei guadagni di massa magra in 8 settimane.

Non sono state eseguite misurazioni dirette della dimensione muscolare, sebbene le grandi differenze nei guadagni di forza isometrica probabilmente indichino che i guadagni muscolari erano inferiori con la soppressione del Testosterone. Quindi, questi dati suggerirebbero che c’è un impatto del Testosterone sul guadagno muscolare, pur essendo di piccola entità.

Molecola di Goserelina. La Goserelina è un agonista delle gonadotropine iniettabile (agonista GnRH), conosciuta anche come agonista dell’Ormone di Rilascio dell’Ormone Luteinizzante (LHRH). 

Quindi le variazioni all’interno dell’intervallo fisiologico normale influiscono sulla massa muscolare?

Nessuna delle ricerche discusse finora può davvero dirci se le variazioni all’interno del normale range fisiologico possono avere un impatto sulla massa muscolare. Ci sono tre modi in cui è possibile rispondere a questa domanda. Il primo modo è guardare ai dati trasversali. Più semplicemente si tratta di prendere grandi gruppi di uomini e di dividerli in categorie in base ai loro livelli di Testosterone. Quindi si osserva se la massa muscolare differisce tra gli uomini in diverse categorie o se i livelli di Testosterone sono correlati ai livelli di massa muscolare.

  • He et al. hanno esaminato 270 uomini sedentari dell’HERITAGE Family Study. Dopo aver controllato per età e ascendenza, il Testosterone non era correlato alla massa magra. È interessante notare, tuttavia, che era correlato negativamente con l’indice di massa magra (FFM diviso per altezza al quadrato, simile all’IMC), il che significa che le persone con un indice FFM più elevato avevano livelli più bassi di Testosterone. Questo significa che avere più Testosterone significa in realtà avere meno muscoli? No! Questi dati sono confusi dal fatto che alcuni degli uomini erano obesi e che l’indice di massa corporea più elevato e le percentuali di grasso corporeo più elevate erano associate a un livello di Testosterone più basso. Ecco i livelli di testosterone per quartili di BMI; è possibile notare che i livelli di Testosterone diminuiscono all’aumentare dell’IMC.

Poiché gli uomini obesi hanno anche più FFM, questo può far credere che ci sia una relazione negativa tra FFM e livelli di Testosterone. Ciò di cui si ha bisogno per comprendere la questione è una ricerca che esamini la relazione negli individui non obesi.

Testosterone per quartili di BMI negli uomini. 1 nmol/L = 0,0347 ng/dL

Poiché gli uomini obesi hanno anche più FFM, questo può far sembrare che ci sia una relazione negativa tra FFM e livelli di Testosterone. Ciò di cui si necessita per comprendere la questione è una ricerca che esamini la relazione negli individui non obesi.

  • Van Den Beld et al. non hanno trovata alcuna relazione tra Testosterone e massa magra negli uomini anziani (età 73-94 anni).
  • Mouser et al. hanno raccolto dati sul Testosterone e sulla composizione corporea di 252 uomini nel National Health And Nutrition Examination Survey (NHANES) del 1999-2000 di età compresa tra 18 e 85 anni. Uomini che non rientravano nell’intervallo normale per il Testosterone (da 240 a 950ng/dL). ) non sono stati inclusi nell’analisi. Gli uomini sono stati suddivisi in quartili in base ai loro livelli di Testosterone. Gli uomini hanno mostrato quantità progressivamente più elevate di massa magra nella parte inferiore del corpo con livelli crescenti di Testosterone, anche dopo aver aggiustato la media per età, razza, presenza di diabete, partecipazione auto-riferita all’attività fisica, proteina C-reattiva e assunzione di proteine ​​​​nella dieta. I quartili 3 e 4 erano statisticamente significativi rispetto al quartile 1. Un modello in qualche modo simile è emerso per la parte superiore del corpo, sebbene non vi fosse alcuna differenza tra il quartile 3 e 4.

Questi dati hanno mostrato che gli uomini nel 3° quartile avevano il 14,2% in più di massa magra nell’area inferiore e il 5,6% in più di massa magra in quella superiore rispetto agli uomini nel 1° quartile. Gli uomini del 4° quartile avevano il 22,1% in più di massa magra nell’area inferiore e il 5,6% in più di massa magra in quella superiore rispetto agli uomini del 1° quartile. Se si prendesse un ipotetico uomo nel 1° quartile con 17kg di massa magra nell’area inferiore, si potrebbe prevedere che un uomo nel 3° quartile possa avere 19,4kg e un uomo nel 4° quartile 20,6kg. Pertanto, questi dati hanno mostrato che gli uomini nell’estremità superiore dell’intervallo fisiologico del Testosterone avevano una massa corporea magra maggiore rispetto agli uomini nell’estremità inferiore, anche tenendo conto di altre variabili che potrebbero influenzare il Testosterone.

I dati trasversali di Mouser indicano che esiste potenzialmente una relazione tra i livelli di Testosterone nell’intervallo fisiologico e la massa magra di cui si dispone. Tuttavia, un problema con i dati trasversali è che non possono stabilire causa ed effetto. Un altro modo in cui è possibile affrontare la questione se le variazioni all’interno di un intervallo fisiologico influiscano sulla massa muscolare è sopprimere la produzione naturale di Testosterone usando farmaci, quindi somministrare dosi diverse di Testosterone e osservare se c’è un effetto dose-risposta. Ci sono quattro studi che hanno fatto questo.

  • Shalendar Bhasin et al. hanno somministrato a giovani uomini sani un agonista dell’ormone di rilascio delle gonadotropine (GnRH) per sopprimere la secrezione endogena di Testosterone. Hanno quindi somministrato agli uomini iniezioni settimanali di 25, 50, 125, 300 o 600mg di Testosterone Enantato per 20 settimane. Ecco i livelli ematici medi di Testosterone per le diverse dosi; come prevedibile, i livelli ematici sono aumentati con l’aumentare delle dosi e le dosi da 300 e 600mg hanno ovviamente portato a livelli di Testosterone al di sopra del normale intervallo fisiologico.

C’è stato un aumento dose-dipendente della massa magra; maggiori livelli ematici di Testosterone hanno portato a maggiori aumenti della FFM.

Anche il volume muscolare della coscia è aumentato in modo dose-dipendente.

La variazione della massa magra e la variazione del volume muscolare del quadricipite erano significativamente correlate con i livelli ematici di Testosterone.

Nel complesso, questo studio ha mostrato un effetto dose-risposta del Testosterone sulla dimensione muscolare, anche all’interno dell’intervallo fisiologico. Infatti, il solo passaggio dalla fascia bassa del fisiologico (306ng/dL) alla fascia media (542ng/dL) ha comportato un aumento della massa magra di 2,8 kg.

  • Bhasin ha ripetuto lo stesso esperimento in uomini più anziani di età compresa tra 60 e 75 anni. I risultati erano molto simili; i grafici seguenti mostrano gli effetti dose-risposta negli uomini più anziani.
  • Un terzo studio di Shalendar Bhasin ha coinvolto un design simile. La secrezione naturale di Testosterone è stata soppressa utilizzando il Lupron in uomini sani di età compresa tra 18 e 50 anni. Agli uomini sono state quindi somministrate dosi di 50, 125, 300 o 600 mg/settimana di Testosterone Enatnato, con o senza un inibitore della 5α-reduttasi (un farmaco che blocca la conversione del Testosterone in Diidrotestosterone [DHT]). I risultati sono stati ancora una volta simili, con una maggiore massa magra all’aumentare dei livelli ematici di Testosterone.
  • Finkelstein et al. hanno somministrato la Goserelina a 198 uomini sani di età compresa tra 20 e 50 anni per sopprimere i loro livelli di Testosterone. Sono stati quindi assegnati in modo casuale a ricevere giornalmente un gel placebo, o 1,25g, 2,5g, 5g o 10g di un gel contenente Testosterone per 16 settimane. Altri 202 uomini sono stati sottoposti allo stesso protocollo, tranne per il fatto che hanno ricevuto anche un inibitore dell’Aromatasi (Anastrozolo) per sopprimere la conversione del Testosterone in Estradiolo. C’è stato un effetto dose-risposta delle diverse dosi di Testosterone sui livelli ematici del ormone in questione, che vanno da al di sotto dell’intervallo normale fisiologico per le dosi di 0 e 1,25g, fino all’estremità superiore dell’intervallo fisiologico per la dose di 10g. Le barre nere rappresentano il gruppo trattato con Anastrozolo, mentre le barre rosse rappresentano il gruppo non trattato con Anastrozolo.
Livelli di Testosterone nel sangue con diverse dosi di un gel contenente Testosterone, dopo la soppressione del Testosterone endogeno con Goserelina. Le barre rosse rappresentano un gruppo che ha ricevuto Anastrozolo, un inibitore dell’aromatasi, per ridurre la conversione del Testosterone in Estradiolo. Dati da Finkelstein et al., NEJM, 2013

I cambiamenti nella massa magra e nell’area muscolare della coscia hanno mostrato un po’ di effetto dose-risposta, anche se non così chiaro come gli quanto osservato negli articoli di Bhasin che hanno utilizzato somministrazione per iniezioni. Nessuna dose di Testosterone ha provocato una significativa perdita di massa magra, mentre la dose più alta ha portato al guadagno maggiore di questa, sebbene molte delle differenze non fossero statisticamente significative. I numeri uguali non indicano differenze statisticamente significative rispetto ad altre barre.

C’era un’enorme quantità di variazione nel modo in cui gli individui rispondevano al Testosterone, come si può vedere in questo grafico a dispersione.

Un terzo modo per esaminare se le variazioni in un intervallo fisiologico influiscono sui guadagni muscolari è vedere se portare il +stosterone al limite molto superiore dell’intervallo normale (come quello che si verifica negli studi sui contraccettivi maschili di Testosterone) influisce sulla massa magra. Herbst et al. ha studiato l’impatto del testosterone esogeno (100 mg di testosterone enathnato a settimana) su uomini sani con normali livelli di testosterone. I livelli di testosterone sono aumentati da 570 ng/dL a 734 ng/dL (il livello subito prima dell’iniezione successiva), con un picco di 1196 ng/dL (24 ore dopo l’iniezione). Pertanto, il livello di picco era al limite molto superiore del range di normalità e il minimo era nella parte superiore del normale. Massa magra aumentata di 2,5 kg. Nel complesso, questi tre corpi di prove (dati trasversali, dati sulla risposta alla dose e dati sui contraccettivi maschili) indicano che le variazioni all’interno dell’intervallo fisiologicamente normale influiscono sulla massa magra che si trasporta. Ora, qui c’è una differenza tra quanta massa magra porti e quanto guadagnerai da un programma di allenamento (ne parleremo più avanti), ma sembra esserci un effetto. Il che ci porta alla nostra prossima domanda…

Se i livelli di Testosterone sono bassi o al limite del limite basso, portare i livelli fino al livello medio o superiore aiuta a migliorare la condizione della massa muscolare?

Partendo dal precedente quesito, cosa succede se si prendono delle persone con bassi livelli di Testosterone e li si aumenta i livelli con iniezioni di Testosterone esogeno? Fortunatamente c’è la ricerca a darci una risposta.

  • Urban et al. hanno reclutato 6 uomini sani e anziani con un’età media di 67 anni. I loro livelli di Testosterone erano di 480ng/dL o meno e sono stati somministrati loro iniezioni di Testosterone per 4 settimane per raggiungere livelli simili a quelli degli uomini più giovani. Sia la forza muscolare che la sintesi proteica muscolare sono migliorate, suggerendo che aumentare i livelli all’interno dell’intervallo fisiologico può aiutare a migliorare le condizioni della massa e la forza muscolare. Una limitazione è che la massa muscolare non è stata direttamente misurata; sono state determinate solo la sintesi proteica muscolare e la forza.
  • Sullivan et al. hanno reclutato 71 uomini di età compresa tra 65 e 93 anni e li hanno assegnati in modo casuale a uno di 4 gruppi:

Esercizio a bassa resistenza (3 x 8 con 20% del 1-RM) + Placebo

Esercizio a bassa resistenza + 100 mg/settimana di Testosterone

Esercizio di resistenza ad alta intensità (3 x 8 all’80% del 1-RM) + Placebo

Esercizio di resistenza ad alta intensità + 100 mg/settimana di Testosterone

Le iniezioni di Testosterone hanno più che raddoppiato i livelli del ormone rispetto al placebo, portando i livelli alla fascia alta del normale (804 ng/dL contro 304 ng/dL). Anche i guadagni nell’area della sezione trasversale dei muscoli a metà coscia sono stati più del doppio con le iniezioni di Testosterone rispetto al placebo. I guadagni di forza erano molto più alti nella condizione di esercizio a bassa resistenza quando veniva somministrato Testosterone rispetto al placebo. Tuttavia, quando l’allenamento era ad alta intensità, non c’era più un beneficio significativo del Testosterone, indicando che il carico di allenamento aveva un impatto maggiore sulla forza rispetto al Testosterone in questo studio.

  • Bhasin et al. hanno trattato uomini ipogonadici (età 19 – 47 anni) con 100mg di Testosterone Enantato a settimana per 10 settimane. I livelli medi di Testosterone al basale sono aumentati da 72ng/dL (leggermente al di sopra dell’intervallo per una donna media) a 767ng/dL alla settimana 10. La massa magra è aumentata di 5kg, la dimensione del tricipite è aumentata del 12% e la dimensione del quadricipite è aumentata del 8%.
  • Bhasin et al. hanno reclutato uomini con infezione da HIV con bassi livelli di Testosterone e li hanno trattati con una crema topica di Testosterone per 12 settimane. I livelli di Testosterone sono migliorati da 258ng/dL a 367ng/dL. La massa magra è aumentata di 1,4kg.
  • In un altro studio del Dr. Bhasin, uomini con infezione da HIV con bassi livelli di Testosterone (<349 ng/dL) sono stati assegnati in modo casuale a uno dei 4 seguenti gruppi:
  • Placebo
  • Testosterone Enatnato (100 mg/settimana)
  • Allenamento di resistenza
  • Testosterone + allenamento di resistenza

Il trattamento con Testosterone ha aumentato i livelli ematici da una media di 201 – 205ng/dL a 311 – 337ng/dL. La massa magra è aumentata di 4kg nel gruppo solo Testosterone, 2kg nel gruppo solo allenamento e 1,6kg nel gruppo allenamento + Testosterone. Il volume muscolare della coscia è aumentato di 40cm³ nel gruppo solo Testosterone, 62cm³ nel gruppo solo allenamento e 44cm³ nel gruppo combinato. Non è chiaro il motivo per cui non vi è stato alcun effetto combinato nel gruppo allenamento + Testosterone.

  • Sattler e colleghi hanno somministrato a uomini anziani (età media 71 anni) 5 o 10g al giorno di Testosterone transdermico (formulazione per somministrazione sulla pelle). Gli uomini trattati avevano livelli ematici di Testosterone di 550ng/dL o meno (la concentrazione media era 385 nel gruppo 5g/die e 350 nel gruppo 10g/die). Le concentrazioni medie di Testosterone sono aumentate di 150ng/dl nel gruppo 5g/die (aumentando i livelli a circa 535ng/dl) e 500ng/dl nel gruppo 10g (aumentando i livelli a circa 850ng/dl). La massa corporea magra è aumentata di 1kg nel gruppo 5g/die e di 1,6kg nel gruppo 10g/die.
  • Basaria et al. hanno reclutato uomini con Testosterone basso (<350 ng/dL) a causa dell’abuso di oppiacei e hanno somministrato loro un 5g/die di gel contenente Testosterone. Il testosterone medio è aumentato da 243ng/dL a 790ng/dL. La massa magra aumentata di 1kg.
  • Storer et al. hanno reclutati uomini di età superiore ai 59 anni con livelli di Testosterone tra 100 e 400ng/dL. Agli uomini è stato somministrato 7,5g di un gel contenente Testosterone o un placebo al giorno per 3 anni. Il Testosterone ematico è aumentato da 307 ng/dL a 567 ng/dL nel gruppo gel. La massa corporea magra è aumentata di 0,7kg.
  • Brodsky e colleghi hanno osservato gli effetti della somministrazione di Testosterone negli uomini con livelli di questo ormone inferiori a 200 ng/dL. I livelli di Testosterone sono aumentati gradualmente da 106 ng/dL a 576 ng/dL in 4 mesi. E da 432 ng/dL in 6 mesi. Queste erano le concentrazioni più basse osservate prima di ogni iniezione. Le iniezioni sono state somministrate ogni 2 settimane; l’ultimo livello di Testosterone misurato è stato una settimana dopo l’ultima iniezione ed era di 1277ng/dL, appena al di sopra del range fisiologico. La massa magra è aumentata di 8,7kg. La sintesi proteica muscolare mista è aumentata del 56% e la sintesi proteica miofibrillare è aumentata del 46%. La sintesi proteica muscolare totale in tutto il corpo è aumentata del 71-87% (da circa 2,4 grammi all’ora a 4,3 grammi all’ora).
  • Snyder et al. hanno somministrato a uomini con Testosterone basso (a causa di una malattia) un cerotto cutaneo con Testosterone per 3 anni. I livelli di Testosterone sono aumentati da 78ng/dL a 407ng/dL. La massa magra è aumentata di 3,1kg.
  • Wang e colleghi hanno somministrato a uomini con bassi livelli di Testosterone un cerotto o uno dei due diversi gel (50mg o 100 mg/giorno) per 90 giorni. Il Testosterone è aumentato da 236 ng/dL a 417 ng/dL nel gruppo cerotto, da 236 ng/dL a 552 ng/dL nel gruppo del gel da 50mg e da 248 ng/dL a 791 ng/dL nel gruppo del gel da 100mg. La massa corporea magra è aumentata rispettivamente di 1,2 kg, 1,3 kg e 2,7 kg in questi gruppi.
  • In un altro studio di Wang, agli uomini con bassi livelli di Testosterone (<300 ng/dL) sono state somministrate varie dosi di gel di Testosterone per un massimo di 42 mesi. I livelli totali sono aumentati di circa 260 ng/dL e sono rimasti nell’intervallo medio-basso normale per la durata dello studio. La massa magra è aumentata di 2,9kg.
  • Tenover ha reclutato uomini di età compresa tra 57 e 76 anni, con livelli di Testosterone inferiori a 400 ng/dL, e ha iniettato loro 100 mg di Testosterone Enantato a settimana. I livelli ematici medi sono aumentati da 334 ng/dl a 568 ng/dl. La massa magra è aumentata di 1,8kg.
  • Snyder e colleghi hanno assegnato casualmente a uomini di età superiore ai 65 anni un cerotto di Testosterone o a un placebo. I livelli di Testosterone sono aumentati da 367 ng/dL a 625 ng/dL in 6 mesi. La massa magra è aumentata di 1,6 kg in 6 mesi.
  • Ferrando et al. hanno reclutato uomini di età pari o superiore a 60 anni e con livelli di Testosterone nel sangue inferiori a 480 ng/dL somministrando loro Testosterone Enatnato o un placebo su base settimanale per 6 mesi. Il livello medio basale di Testosterone era 363 ng/dL. Le iniezioni di Testosterone sono state regolate individualmente per cercare di mantenere un livello ematico tra 490 e 807 ng/dL, sebbene ciò non abbia avuto un successo totale e molti individui abbiano riscontrato livelli leggermente superiori a tale obiettivo. Il livello medio a 6 mesi era di 882 ng/dL. La massa magra è aumentata di 4,2 kg, mentre è diminuita di 2 kg nel gruppo placebo. Il volume muscolare delle gambe è aumentato di 488 ml, mentre è diminuito di 96 ml nel gruppo placebo. Il Testosterone ha anche determinato un aumento dell’equilibrio netto delle proteine ​​muscolari, a causa di una diminuzione del catabolismo delle proteine ​​muscolari.
  • Dias et al. hanno reclutato uomini di età compresa tra 65-82 anni e livelli di Testosterone <350 ng/dL assegnandoli in modo casuale a un placebo, Anastrozolo (un inibitore dell’Aromatasi) o un gel di Testosterone. Inibendo l’enzima Aromatasi, l’enzima che converte il Testosterone in Estradiolo, è possibile aumentare efficacemente i livelli di Testosterone, ed è una cosa largamente risaputa. L’Anastrozolo ha aumentato il Testosterone da 272 ng/dL a circa 500 ng/dL a 6 mesi; la massa magra è aumentata di 1,5kg. Il Testosterone somministrato attraverso il gel ha aumentato i livelli dell’ormone da 300 ng/dL a circa 650 ng/dL e la massa magra non ha raggiunto un aumento statisticamente significativo (0,9 kg).
  • Magnusson e colleghi hanno randomizzato soggetti diabetici di tipo 2 di età compresa tra 50 e 70 anni trattandoli con un Testosterone gel o un placebo per 6 mesi. I livelli di Testosterone sono aumentati da 205 ng/dL a 637 ng/dL e la massa magra è aumentata di 1,9 kg.
  • Ribeiro e Abucham hanno somministrato a uomini ipogonadici Clomifene Citrato, il quale causa un aumento del Testosterone endogeno legandosi ai recettori degli estrogeni ipotalamici. Legandosi ai recettori degli estrogeni, induce il cervello a percepire che non ci siano così tanti estrogeni nel corpo per garantire l’omeostasi. Questo porta ad un aumento di GnRH seguito da LH e FSH. L’LH (Ormone Luteinizzante), stimola le cellule di Leydig nei testicoli a sintetizzare più Testosterone. I livelli di Testosterone nei “responder” sono aumentati da 201 ng/dL a 435 ng/dL dopo 3 mesi e la massa magra è aumentata di 1 kg.
  • Liu et al. hanno reclutato uomini più anziani con bassi livelli di Testosterone e somministrato loro iniezioni di gonadotropina corionica umana (HCG). L’HCG, mimando l’LH, stimola i testicoli a sintetizzare Testosterone. Il Testosterone è aumentato da 320 ng/dL a circa 720 ng/dL e la massa magra è aumentata di 2 kg.
  • Bayram et al. hanno somministrato a uomini ipogonadici iniezioni di HCG. Il Testosterone è aumentato da 39 ng/dl (nell’intervallo) a 512 ng/dl, con un aumento di 473 ng/dl. La massa magra è aumentata di 2,8 kg.
  • In uno studio di Casaburi et al., uomini con BPCO e basso livello di Testosterone (≤400 ng/dL) sono stati assegnati in modo casuale a uno dei 4 gruppi:

-Placebo
-Testosterone Enantato (100 mg/week)
-Resistance Training
-Testosterone + Resistance Training

Le iniezioni di Testosterone hanno aumentato i livelli ematici da 302 ng/dL nel gruppo senza allenamento a 595 ng/dL e da 408 ng/dL a 656 ng/dL nel gruppo con allenamento. La massa magra è aumentata di 2,3 kg nel gruppo solo Testosterone, 0,2 kg nel gruppo solo resistance training e 3,29 kg nel gruppo Testosterone + resistance training. Va notato che l’allenamento è stato eseguito solo nella parte inferiore del corpo. Se si osservano i guadagni di massa magra delle gambe, erano 1,07kg nel gruppo solo Testosterone, 0,49 kg nel gruppo solo resistance training e 1,41 kg nel gruppo combinato.

Ecco un riassunto di tutti questi studi appena discussi, in cui i livelli bassi o al limite del livello di Testosterone sono stati aumentati in un intervallo fisiologico utilizzando iniezioni o sistemi di somministrazione transdermica. Puoi vedere che tutti hanno mostrato impatti positivi sulla massa magra. Alcuni hanno avuto aumenti relativamente piccoli del Testosterone (come circa 100-250 ng/dL) e hanno mostrato aumenti significativi della massa magra di circa 1-2 kg. In alcuni di questi studi, i soggetti si trovavano nella fascia più bassa del range di normalità (piuttosto che al di sotto del range di riferimento), e anche con quei soggetti, portare i livelli fino alla fascia medio-alta del range fisiologico ha avuto benefici positivamente apprezzabili.

E’ possibile vedere che i guadagni di massa magra con le iniezioni ( righe arancioni) tendono ad essere maggiori rispetto alla somministrazione transdermica ( righe grigie). Ciò è probabilmente legato al fatto che le iniezioni causano un picco iniziale di Testosterone che può essere all’estremità superiore dell’intervallo fisiologico, se non superare leggermente l’intervallo fisiologico.

Tipicamente, in questi studi, il Testosterone viene misurato 1-2 settimane dopo l’iniezione, rappresentando il minimo o il livello più basso di Testosterone. Pertanto, i livelli finali di Testosterone non rappresentano i livelli di picco raggiunti. Si può vedere questa differenza quando si guarda lo studio di Brodsky et al, dove il livello di picco, misurato 1 settimana dopo l’iniezione, era tre volte superiore al livello più basso, misurato 2 settimane dopo l’iniezione. Pertanto, tutti questi studi sulla terapia sostitutiva del Testosterone (TRT) dimostrano un beneficio nella massa magra dallo spostamento al di sotto dell’intervallo fisiologico, o dall’estremità inferiore dell’intervallo fisiologico, all’intervallo fisiologico medio o alto. Pertanto, sembra che anche il passaggio da una fascia bassa della gamma fisiologica a quella superiore abbia un vantaggio.

Testosterone più alto = Muscolo basale più alto, solo tassi di guadagno leggermente maggiori.

Nel complesso, i dati trasversali, gli studi dose-risposta, gli studi sui contraccettivi maschili e gli studi su TRT (compresi quelli in cui il Testosterone al basale era ancora normale) mostrano che le variazioni del Testosterone all’interno dell’intervallo fisiologico hanno un impatto sulla massa magra e muscolare. Questo significa che qualcuno con un livello di Testosterone più alto guadagnerà più velocemente di qualcuno con un livello più basso? Non proprio. Quando si guarda il corpo delle prove, il maggiore impatto del Testosterone sembra essere sul mantenimento di un certo livello di base della massa muscolare, piuttosto che sul tasso di guadagno muscolare. Ad esempio, i malati di cancro alla prostata sono spesso sottoposti a terapia di deprivazione di androgeni, in cui i loro livelli di Testosterone sono stati soppressi. In questo studio, il Testosterone medio era 45,7 ng/dL (all’interno dell’intervallo di una donna), rispetto a 430 ng/dL per i controlli. La sintesi proteica muscolare a riposo e a stomaco pieno era più bassa nei pazienti deprivati ​​di androgeni. Tuttavia, quando l’alimentazione è stata combinata con l’allenamento contro-resistenza, la risposta alla sintesi proteica muscolare non era statisticamente diversa dai controlli (sebbene la media grezza fosse ancora leggermente inferiore).

Tassi di sintesi proteica muscolare in soggetti di controllo rispetto a pazienti in terapia di deprivazione androgenica (ADT). La sintesi proteica muscolare è significativamente più bassa a riposo e anche dopo un pasto (FED). Tuttavia, dopo l’allenamento contro-resistenza, la sintesi proteica muscolare non è significativamente diversa dai controlli dopo un pasto (EX-FED).

Questo è supportato anche quando si confrontano i guadagni muscolari tra maschi e femmine. Gli uomini hanno 10 volte più Testosterone delle donne, con maggiori livelli di base di massa muscolare, ed è risaputo. Tuttavia, quando uomini e donne vengono sottoposti a programmi di allenamento contro-resistenza, mentre i guadagni muscolari assoluti sono maggiori negli uomini, i guadagni muscolari relativi (cioè i guadagni percentuali) sono per lo più simili.

Mentre il guadagno percentuale nello studio di cui sopra era leggermente favorito negli uomini, non lo era di molto. Tuttavia, il guadagno assoluto è stato quasi il doppio di quello negli uomini rispetto alle donne. Pertanto, un aumento del 15% della massa muscolare negli uomini sarà generalmente maggiore su base assoluta rispetto alle donne, poiché gli uomini hanno una linea di base più ampia.

Una terza linea di supporto a questo concetto viene dal famoso studio Bhasin del 1996 sugli steroidi anabolizzanti. In questo studio di 10 settimane, uomini normali sono stati assegnati in modo casuale a uno dei quattro gruppi:

  • Placebo senza allenamento
  • Testosterone senza allenamento
  • Placebo con allenamento contro-resistenza
  • Testosterone con allenamento contro-resistenza.

Il testosterone è stato somministrato in dosi sovrafisiologiche (600 mg/settimana). I livelli di testosterone sono stati elevati a 2828 – 3244 ng/dL con le iniezioni, rispetto ai livelli normali di 453 – 667 ng/dL nel gruppo placebo. L’iniezione di testosterone, senza allenamento, ha comportato un aumento della massa magra di 3,2 kg. Il solo allenamento ha comportato un aumento della massa magra di 2 kg. Quando l’allenamento è stato combinato con l’iniezione di testosterone, l’aumento di massa magra è stato di 6,1 kg. La dimensione del muscolo quadricipite è aumentata in modo simile nel gruppo testosterone + nessun allenamento e nel gruppo solo allenamento, mentre i guadagni sono stati raddoppiati nel gruppo testosterone + allenamento.

La cosa interessante qui è che, quando guardi questi dati, puoi vedere che c’era principalmente un effetto additivo, piuttosto che sinergico, del testosterone e dell’allenamento. La FFM è aumentata di 3,2 kg con il solo testosterone. È aumentato di 2 kg solo con l’allenamento. Quando sommi queste due quantità, ottieni 3,2 + 2 = 5,2 kg, che è ragionevolmente vicino al guadagno di 6,1 kg osservato nel gruppo combinato. In altre parole, solo circa 0,9 kg potrebbero essere spiegati da un effetto sinergico tra testosterone e allenamento. Puoi anche vedere un effetto simile per l’aumento delle dimensioni del quadricipite. Il cambiamento nella dimensione del quadricipite era più o meno lo stesso nei gruppi solo testosterone e solo allenamento, ed era per lo più additivo nel gruppo combinato. Ancora una volta, solo una piccola parte del cambiamento nella dimensione del quadricipite potrebbe essere spiegata da un effetto sinergico tra testosterone e allenamento.

Questo è simile ai dati osservati quando osserviamo uomini e donne. I maggiori livelli di testosterone negli uomini non aumentano molto il tasso di guadagno rispetto alle donne; è solo che dà agli uomini una linea di base più alta per cominciare, e quindi i guadagni assoluti sono maggiori. Se ci fosse un forte effetto sinergico tra testosterone e allenamento, allora i guadagni relativi negli uomini sarebbero significativamente maggiori rispetto alle donne, ma ovviamente non è così.

Una quarta evidenza viene dallo studio di Casaburi e colleghi sugli uomini con BPCO, di cui si è brevemente accennato in precedenza. In questo studio è stato eseguito solo l’allenamento delle gambe. I guadagni di massa magra delle gambe nel gruppo combinato allenamento+testosterone erano 1,41 kg, che è vicino alla somma dei guadagni sperimentati dal gruppo solo testosterone (1,07 kg) e il gruppo solo allenamento (0,49 kg). Questo suggerisce ancora una volta che gli effetti del testosterone e dell’allenamento di resistenza sono per lo più additivi e non sinergici.

Pertanto, i tuoi livelli di testosterone influenzano la quantità di muscoli che porti in giro, indipendentemente dal fatto che ti alleni o meno. Quindi, quando inizi ad allenarti, la tua reattività all’allenamento è per lo più simile indipendentemente dal fatto che tu abbia livelli di testosterone bassi o alti. Potrebbe essere un po’ meno con un testosterone più basso, ma l’impatto maggiore è sulla tua linea di base.

Ad esempio, supponiamo che tu abbia una massa magra di base di 50 kg e che tu abbia un livello di testosterone nella fascia bassa (diciamo circa 300 ng/dL). Guadagni il 10% in 6 mesi, ovvero 5 kg.

Ora, prendi la stessa situazione, ma la persona ha un testosterone di base a 600 ng/dL. La tua massa magra di base ora potrebbe essere di 52 kg. Guadagni ancora il 10% in 6 mesi, ovvero 5,2 kg. Pertanto, il guadagno relativo è simile. Tuttavia, il punto di partenza e il guadagno assoluto sono maggiori a causa del testosterone più alto.

Consideriamo un altro esempio. Diciamo che una persona segue un qualche tipo di sostituzione del testosterone, aumentando il testosterone da 250 ng/dL a 500 o 600 ng/dL. Quella persona inizialmente sperimenterà alcuni guadagni relativi superiori al normale, mentre si muove verso la sua nuova linea di base per il suo nuovo livello di testosterone. Ti sembrerà di guadagnare da “principiante”. Tuttavia, una volta che quella persona ha raggiunto la sua nuova linea di base, i suoi guadagni relativi saranno simili a quando aveva un testosterone più basso.

Quantificare l’impatto delle variazioni del Testosterone fisiologico sulla massa magra
Quindi sappiamo che le variazioni del testosterone fisiologico influiscono sulla quantità di muscoli che hai. Ma quanto? Se passi da 300 ng/dL a 600 ng/dL, quanta massa magra in più puoi aspettarti di avere?

Per rispondere a questa domanda, torniamo agli studi dose-risposta di Shalendar Bhasin di cui abbiamo discusso in precedenza. Possiamo prendere i dati dai tre studi ed eseguire una regressione su di essi per vedere come cambia la massa magra al variare dei livelli di testosterone all’interno dell’intervallo fisiologico.

Ecco la linea di regressione per i dati di Bhasin et al. 2001, 2005 e 2012. Ho usato solo punti dati in cui il testosterone si trovava all’interno di un intervallo fisiologico o appena al di fuori di esso (da 176 ng/dL a 1345 ng/dL). Sono 11 punti dati. Per ogni aumento di 100 ng/dL di testosterone, la massa magra aumenta di 0,6 kg. L’R al quadrato per la vestibilità del modello era 0,85, il che è molto buono.

Variazione della massa magra in relazione al cambiamento del Testosterone rispetto al basale, entro un intervallo di variazione da -340 ng/dL a +691 ng/dL. Pendenza della linea = 0,006, il che significa un ulteriore 0,6 kg in FFM per ogni aumento di 100ng/dL del Testosterone. R-Quadrato = 0,85. Dati di Bhasin et al. 2001, 2005 e 2012.

Il valore di 0,6 kg di FFM per ogni aumento di 100 ng/dL è in accordo con uno studio dose-risposta di Huang e colleghi su donne isterectomizzate. Hanno anche scoperto che la FFM aumenta di 0,6 kg per ogni aumento di 100 ng/dL di testosterone.

Possiamo anche eseguire una regressione sui dati che ho discusso in precedenza da Finkelstein e colleghi, in cui i livelli di testosterone sono stati soppressi e quindi ai soggetti sono state somministrate diverse dosi di un gel di testosterone. Sebbene i numeri effettivi della massa magra non siano stati riportati da questo studio, possiamo stimarli dai valori di base riportati e dalle variazioni percentuali. Per ogni aumento di 100 ng/dL di testosterone, la massa magra aumenta di 0,3 kg. L’R al quadrato per la vestibilità del modello è 0,70, il che è buono.

Cambiamento nella massa magra in relazione al cambiamento nel Testosterone dal basale. Pendenza della linea = 0,003, il che significa un ulteriore 0,3 kg in FFM per ogni aumento di 100ng/dL del Testosterone. R-Quadrato = 0,70. Dati da Finkelstein et al. 2013.

Mentre potremmo anche provare a eseguire una regressione su alcuni degli studi discussi in cui i livelli di testosterone erano bassi e portati in un intervallo normale fisiologico, il problema con questi è che tutti usavano diversi metodi di somministrazione per il testosterone (iniezione vs gel vs. . patch), che possono avere dinamiche diverse in termini di come vengono modificati i livelli ematici. Inoltre, il problema con il tentativo di aggregare diversi studi di iniezione è che variano nel tempo in cui misurano il testosterone e variano anche in termini di frequenza delle iniezioni. Puoi avere una misurazione del testosterone molto diversa se misuri 1 settimana dopo un’iniezione, rispetto a 2 settimane.

Tuttavia, possiamo dare un’occhiata a studi in cui è stato somministrato un farmaco che ha stimolato la produzione naturale di testosterone; tali studi possono imitare meglio il modo in cui la massa magra risponde alle variazioni dei livelli di testosterone endogeno. Dias et al. dato agli uomini Anastrozolo, un inibitore dell’Aromatasi. Inibendo l’Aromatasi, l’enzima che converte il Testosterone in Estrogeno, puoi aumentare efficacemente i livelli di Testosterone. In teoria, questi livelli di Testosterone sarebbero relativamente stabili, poiché rappresenterebbero livelli di testosterone endogeno piuttosto che testosterone esogeno da iniezione o somministrazione transdermica. L’Anastrozolo ha aumentato il testosterone da 272 ng/dL a circa 500 ng/dL a 6 mesi e la massa magra è aumentata di 1,5 kg. Sono circa 0,6 kg di FFM per ogni aumento di 100 ng/dL, il che è in accordo con le nostre analisi precedenti. Ribeiro e Abucham hanno somministrato agli uomini ipogonadici Clomifene Citrato, che aumenta il Testosterone endogeno (i livelli all’interno del corpo, rispetto a quello esogeno come da un’iniezione o da una crema) legandosi ai recettori degli ipotalamici degli Estrogeni. Legandosi ai recettori degli estrogeni, induce il cervello a pensare che non ci siano così tanti estrogeni nel corpo. Questo porta il cervello a pompare più ormone Luteinizzante (LH), che poi stimola i testicoli a produrre più testosterone. I livelli di testosterone nei soggetti responsivi sono aumentati da 201 ng/dL a 435 ng/dL dopo 3 mesi e la massa magra è aumentata di 1 kg. Sono 0,4 kg per ogni aumento di 100 ng/dL di testosterone. Liu et al. iniettato HCG in uomini che avevano bassi livelli di testosterone al limite; L’HCG è un ormone che stimola i testicoli a produrre più testosterone. Il testosterone è aumentato da 320 ng/dL a circa 720 ng/dL, un aumento di 400 ng/dL. Massa magra aumentata di 2 kg. Sono 0,5 kg di massa magra per ogni 100 ng/dL di aumento del testosterone, che è ancora una volta in accordo con il range che abbiamo stabilito. Infine, Bayram et al. uomini ipogonadici iniettati con HCG. Il testosterone è aumentato da 39 ng/dL a 512 ng/dL, un aumento di 473 ng/dL. Massa magra aumentata di 2,8 kg. Sono 0,6 kg per ogni aumento di 100 ng/dL. Pertanto, questi 4 studi suggeriscono un aumento di 0,5 – 0,6 kg di massa magra per ogni aumento di 100 ng/dL di testosterone, che è in accordo con le regressioni di Bhasin e Huang.

Mettendo insieme tutto questo, i dati suggeriscono che la massa magra aumenterà di 0,7 – 1,3 libbre (0,3 – 0,6 kg) per ogni aumento di 100 ng/dL dei livelli ematici di testosterone all’interno dell’intervallo fisiologico. Quindi, se passassi da 300 ng/dL a 600 ng/dL, questo sarebbe 0,9 – 1,8 kg o circa 2,1 – 4 libbre.

Ora, tieni presente che ci sono dei limiti a questa analisi. In primo luogo, si basa su medie; i risultati individuali possono essere diversi. Ad esempio, come accennato in precedenza, Finkelstein et al. hanno mostrato un’ampia variazione nel modo in cui i soggetti hanno risposto a diversi livelli di testosterone. In secondo luogo, si basa su analisi tra soggetti; ciò che accade all’interno delle persone può essere diverso da ciò che si osserva tra le persone. Terzo, parte di esso si basa su iniezioni di testosterone esogeno. Il problema è che, con le iniezioni, i livelli medi di testosterone nel sangue saranno superiori a quelli misurati. Questo perché, quando inietti il ​​testosterone, ottieni un grande picco nei livelli ematici e poi decade lentamente nell’arco di 1-2 settimane. I ricercatori di solito misurano il testosterone alla depressione del decadimento dopo l’iniezione, di solito 1-2 settimane dopo. Questa limitazione diventa evidente quando si osservano alcuni dei dati dose-risposta di Bhasin. Ad esempio, nello studio Bhasin 2001, gli uomini che hanno ricevuto 125 mg di testosterone iniettato hanno guadagnato 3,4 kg di massa magra, ma il livello di testosterone nel sangue misurato di 542 ng/dL era simile al livello di base naturale dei soggetti prima che avessero il loro testosterone livelli soppressi. Pertanto, i loro livelli medi di testosterone erano probabilmente molto più alti di 542 ng/dL.

Sebbene questo sia certamente un grosso limite nell’analisi, va anche ricordato che, con la regressione, stiamo valutando principalmente le differenze nella massa magra tra diversi livelli di testosterone, piuttosto che la relazione con un particolare livello assoluto. In altre parole, stiamo osservando come la massa magra cambia per un cambiamento di 100 ng/dl nel testosterone, piuttosto che come la massa magra si riferisce, ad esempio, a un livello ematico di 500 ng/dl. Quindi, anche se i livelli di testosterone sono dovuti a iniezioni esogene, e anche se i livelli medi sono molto più alti di quelli misurati alla depressione, il rapporto tra i livelli non dovrebbe cambiare drasticamente. Va anche notato che il rapporto di 0,6 kg/100 ng/dL riscontrato negli studi Bhasin ha retto nelle donne a cui sono state somministrate dosi molto più basse. Tuttavia, è ancora una limitazione che deve essere considerata.

Una cosa interessante da notare è che le variazioni all’interno di un intervallo fisiologico possono avere un impatto maggiore rispetto alle variazioni al di fuori dell’intervallo fisiologico. In altre parole, la massa magra non aumenta in modo lineare con l’aumento dei livelli di testosterone. Quando superi l’intervallo fisiologico, la pendenza della relazione diminuisce e il testosterone non ha lo stesso impatto. Ciò diventa evidente quando guardiamo di nuovo alla nostra regressione dei tre studi Bhasin, ma questa volta includiamo i dati che sono ben al di sopra dell’intervallo normale fisiologico.

Puoi vedere che la curva si adatta meglio ai dati rispetto alla linea retta. La pendenza per la linea retta è 0,002, il che significa che la massa magra è aumentata di 0,2 kg per ogni 100 ng/dL di testosterone, che è inferiore agli 0,6 kg che abbiamo osservato con gli stessi dati in precedenza. Anche l’adattamento del modello non è altrettanto buono (R-quadrato = 0,77). Questo perché i livelli estremamente elevati di testosterone attenuano la relazione. Ogni aumento di 100 ng/dL di testosterone non ha un effetto così forte a intervalli soprafisiologici rispetto al normale intervallo fisiologico. Questo è supportato anche quando diamo un’occhiata allo studio Bhasin del 1996 sul testosterone ad alte dosi che ho menzionato prima. Il testosterone nel sangue è aumentato di circa 2326 ng/dL nel gruppo con solo testosterone e la massa magra è aumentata di 3,2 kg. Questo è un aumento di 0,13 kg per ogni aumento di 100 ng/dL di testosterone, che non è lontano dall’aumento di 0,2 kg menzionato in precedenza quando abbiamo incluso alte dosi di testosterone.

E le donne?

Le donne hanno livelli di Testosterone molto più bassi rispetto agli uomini e ci sono dati limitati per stabilire intervalli di riferimento sulle donne. Uno dei problemi è che alcuni test di laboratorio tradizionali per il Testosterone, come i radioimmunodosaggi (RIA), non sono abbastanza sensibili da misurare con precisione il Testosterone nelle donne. Misurazioni accurate del testosterone nelle donne richiedono tecniche sensibili come la cromatografia liquida-spettrometria di massa tandem (LC-MS/MS). Esistono alcuni dati che stabiliscono intervalli di riferimento utilizzando questa tecnica. Ecco i dati di Haring e colleghi che mostrano i percentili più bassi e più alti per le donne in premenopausa di età compresa tra 20 e 49 anni (si noti che sto mescolando alcuni dei dati di distribuzione effettivi per ottenere il 25° e il 75° percentile, con i loro modelli di regressione quantile per ottenere il 2,5° e 97,5° percentile, ma per i nostri scopi va benissimo).

Simile agli uomini, il testosterone diminuisce con l’età.

Testosterone misurato da GC-MS / MS in 985 donne. Dati da Haring et al., J Clin Endocrinol Metab, 2012. 1 nmol/L = 0,0347 ng/dL

È stato anche riscontrato che le donne che assumevano contraccettivi orali o terapia ormonale sostitutiva avevano in media livelli di testosterone più bassi, sebbene l’intervallo percentile superiore fosse più alto. Il 25° percentile per queste donne era 10 ng/dL (vs 13) e il 75° percentile era 56 ng/dL (vs 47).

Testosterone per età nelle donne, confrontando le donne trattate con contraccettivi orali o HRT a quelle che non lo sono. Dati da Haring et al., J Clin Endocrinol Metab, 2012. 1 nmol/L = 0,0347 ng/dL

Rari et al. non ha riscontrato alcuna relazione tra testosterone totale e massa magra nelle donne anziane (età 67-94 anni), ma ha osservato una relazione significativa tra testosterone libero e massa magra (il testosterone libero è la forma che non è legata ad alcuna proteina, da qui il termine “libero”).

Possiamo anche esaminare i dati in cui alle donne con bassi livelli di testosterone è stato somministrato testosterone esogeno. Anche in questo caso, i dati sono limitati, ma ci sono alcuni studi.

Cambiamento nella massa magra con diverse dosi di Testosterone nelle donne in menopausa isterectomizzate. Dati da Huang et al, Menopausa, 2014. Solo la dose di 25mg ha determinato un aumento statisticamente significativo. La massa magra è aumentata di 0,6kg per ogni aumento di 100ng/dL del Testosterone, che è al di fuori del normale intervallo fisiologico per le donne (13 – 56 ng/dL).

Questi dati suggeriscono che è necessario aumentare i livelli ematici di testosterone ben al di fuori di un intervallo normale fisiologico (verso la fascia molto bassa di un maschio) nelle donne in post-menopausa per ottenere aumenti misurabili della massa magra e della funzione sessuale. Nel complesso, questi dati indicano che le variazioni del testosterone nelle donne, all’interno del normale range fisiologico, hanno un impatto misurabile molto piccolo, se non nullo, sul muscolo. Ciò non sorprende se consideriamo l’aumento di 0,3 – 0,6 kg per ogni aumento di 100 ng/dL di testosterone di cui abbiamo discusso. L’intervallo normale per le femmine va da 13 a 56 ng/dL, un intervallo di soli 43 ng/dL. Ciò equivale solo a un quarto di chilogrammo (mezza libbra) o meno nelle donne.

Tiriamo le somme

Quando esaminiamo l’intero corpo di prove, è chiaro che le variazioni nei livelli fisiologici di Testosterone influiscono sulla quantità di muscoli che il soggetto ha, ma avranno un impatto minimo sui guadagni relativi (%). Riassumendo: I dati trasversali, gli studi dose-risposta e gli studi TRT supportano tutti variazioni all’interno dell’intervallo normale in quanto hanno un impatto sulla massa magra e sui muscoli-scheletrici. Le variazioni nei livelli ematici di Testosterone influiscono sul livello “base” dei muscoli, ma hanno un impatto minimo sui guadagni relativi (%). Quindi, avere livelli di Testosterone più alti significa avere un livello base più alto di massa muscolare. Mentre i guadagni relativi saranno per lo più simili, i guadagni assoluti saranno più alti a causa della linea di base più elevata. Gli impatti del Testosterone e dell’allenamento contro-resistenza sulla massa magra e sui muscoli-scheletrici sono principalmente additivi piuttosto che sinergici. La massa magra al basale aumenta di circa 0,7 – 1,3 libbre o 0,3 – 0,6 kg per ogni aumento di 100 ng/dL del Testosterone fisiologico; questo si basa su medie e dati tra soggetti, quindi i risultati individuali possono variare considerevolmente. Ci sono anche limitazioni a questa analisi, come il fatto che parte di essa si basa su dati dose-risposta provenienti da iniezioni, che potrebbero non riflettere accuratamente i cambiamenti nei livelli endogeni. L’impatto del Testosterone sulla FFM è attenuato a livelli sovrafisiologici (>1500 ng/dL); La FFM di base aumenta di circa 0,1-0,2 kg per ogni 100 ng/dL per quei livelli. Le variazioni del Testosterone nelle donne, all’interno del normale range fisiologico, hanno un impatto minimo o nullo sul muscolo-scheletrico. Quindi, sì, i soggetti di sesso maschile con un livello di Testosterone più alto hanno un vantaggio in termini assoluti sulla massa muscolare. Questi dati indicano anche che gli uomini che invecchiano, con livelli di Testosterone al limite o bassi, possono ottenere un beneficio nella costruzione muscolare da terapie progettate per aumentare i livelli di Testosterone in range fisiologici, sia da fonti esogene (come iniezioni o gel) sia da fonti che stimolano la produzione di Testosterone (come il Clomifene). , HCG o inibitori dell’Aromatasi), anche se si allenano già con i pesi.

Però, attenzione a fare comparazioni fuori luogo: la fisiologia e quello che può manifestare non è paragonabile alle sue alterazioni fuori range… nel bene e nel male…

Gabriel Bellizzi

Riferimenti:

Indolo-3-Carbinolo (I3C) e 3,3′-Diindolylmethano (DIM): un potenziale aiuto per il controllo estrogenico?

Introduzione:

Chi mi conosce sa come io prenda con estrema cautela qualsiasi affermazione sensazionalistica nei confronti di derivati erboristici et similari, ma non solo. Ogni qual volta mi capita di leggere qualche studio o serie di dati aneddotici sono solito indagare tutto lo scindibile riguardante l’oggetto che si ritiene causa primaria di un dato evento migliorativo nella composizione corporea e/o nelle prestazioni. Non di rado le mie ricerche mi hanno portato a conclusioni nettamente negative che liquidavano le affermazioni fatte da taluni come “placebo” o “non riconducibili alla molecola in questione. Mi capitò nei primi anni di ricerca con la Carnitina e il suo presunto effetto nel miglioramento del trasporto degli acidi grassi nel mitocondrio (cosa strettamente regolata e non sovraesprimibile con integrazione della medesima), o con il Tribulus Terrestris, la Maca e altri presunti “Testo-booster”. La lista è lunga.

E’ solo di recente che la mia attenzione è stata attirata verso due molecole, un precursore e il suo derivato, contenute in significative concentrazioni (in particolare riferimento al precursore) nelle crucifere (Broccoli, Cavoli ecc…), le quali presentano una interessante, sebbene contenuta, letteratura che ne sottolinea il potenziale di azioni biochimiche tra le quali spicca quella sul metabolismo degli estrogeni. Sto parlando del Indolo-3-Carbinolo (I3C) e del suo derivato 3,3′-Diindolylmethano (DIM).

E’ mia intenzione, quindi, esporre le loro caratteristiche e la possibile portata attualmente ipotizzata dalla loro assunzione.

I3C e DIM- loro caratteristiche molecolari e attività biochimica:

L’Indolo-3-Carbinolo (C9H9NO) è prodotto dalla scomposizione del Glucosinolato Glucobrassicina, che può essere trovato a livelli relativamente alti nelle verdure crocifere come Broccoli, Cavoli, Cavolfiori, Cavolini di Bruxelle ecc… .[1] È disponibile anche sotto forma di integratore alimentare.[2] L’Indolo-3-Carbinolo è oggetto di continua ricerca biomedica sui suoi possibili effetti anticancerogeni,[3] antiossidanti e anti-aterogeni.[4] La ricerca sull’Indolo-3-Carbinolo è stata condotta principalmente utilizzando animali da laboratorio e cellule coltivate in vitro.[5] Sono stati riportati studi umani limitati e per ora inconcludenti. Una recente review della letteratura sulla ricerca biomedica ha rilevato che “l’evidenza di un’associazione inversa tra l’assunzione di verdure crocifere e il cancro al seno o alla prostata negli esseri umani è limitata e incoerente” e “sono necessari studi controllati randomizzati più ampi” per determinare se l’Indolo-3-Carbinolo supplementare ha benefici per la salute.[6]

Lo studio dei meccanismi attraverso i quali il consumo di Indolo-3-carbinolo potrebbe influenzare l’incidenza del cancro si concentra sulla sua capacità di alterare il metabolismo degli estrogeni e altri effetti cellulari. Sono stati condotti studi controllati su animali come ratti, topi e trote arcobaleno, introducendo vari livelli controllati di agenti cancerogeni e livelli di Indolo-3-Carbinolo nella loro dieta quotidiana. I risultati hanno mostrato diminuzioni dose-correlate della suscettibilità al tumore dovute all’Indolo-3-Carbinolo (indotto dalla diminuzione del legame aflatossina-DNA). La prima prova diretta dell’attività anti-iniziale pura di un anticancerogeno naturale (indolo-3-carbinolo) presente nella dieta umana è stata rivendicata da Dashwood et al. nel 1989.[7]

L’Indolo-3-Carbinolo (I3C) agisce principalmente attraverso il suo principale metabolita, il Diindolylmethano (DIM) (può comprendere fino a un terzo dei derivati del I3C[8]) e alcuni altri metaboliti che possono essere prodotti spontaneamente dall’instabile I3C (come l’indolo {3,2-b}carbazolo,[9] un costituente minore[8]). La formazione precisa di questi metaboliti implica la catalizzazione del I3C per formare indoli reattivi che poi si combinano tra loro per “costruire” una molecola più grande ma stabile, essendo il DIM il risultato della formazione di due di questi indoli.[8]

Il Diindolylmethano (DIM), come già accennato, è il principale metabolita derivato dall’acido farmaceuticamente attivo dell’Indolo-3-Carbinolo (I3C) il quale si trova in molte verdure Brassica attraverso il composto madre glucobrassicina.[10][11][12] La glucobrassicina ingerita viene catalizzata tramite l’enzima Mirosinasi (contenuto nei vegetali) convertendo in Indolo-3-Carbinolo, il quale viene rapidamente metabolizzato sia in DIM che in vari altri metaboliti nello stomaco umano tramite reazioni di condensazione acido-mediate.[8][13]

Le fonti di glucosinolati (in generale) sono elencate di seguito, con qualsiasi fonte che citi il Diindolylmethano o il suo precursore (Indole-3-Carbinolo) specificatamente menzionata in grassetto:

  • Cavoletti di Bruxelles, 104mg per 44 g (mezza tazza)[14];
  • Crescione da giardino, 98mg per 25g (mezza tazza)[14];
  • Senape, 79mg per 28g (mezza tazza, tritata)[14];
  • Rapa, 60mg per 65g (mezza tazza, cubetti)[14]
  • Cavolo Verza, 35mg per 45g (mezza tazza, tritato)[14]
  • Cavolo riccio, 67mg per 67g (1 tazza, tritato)[14];
  • Crescione, 32mg per 34g (1 tazza, tritato)[14];
  • Cavolo rapa, 31mg per 67g (mezza tazza, tritato)[14];
  • Cavolo rosso, 29mg per 45g (mezza tazza, tritato)[14];
  • Broccoli, 27mg per 44g (mezza tazza, tritati)[14];
  • Rafano, 24mg per 15g (cucchiaio)[14];
  • Cavolfiore, 22mg per 50g (mezza tazza tritata)[14];
  • Bok Choy, 19mg per 35g (mezza tazza, tritato)[14].

Poiché la glucobrassicina si degrada in I3C per azione dell’enzima Mirosinasi contenuto nella pianta, la disattivazione di questo enzima mediante trattamento termico (cottura) può ridurre la biodisponibilità orale di qualsiasi glucosinolato incluso DIM.[15][16] Tuttavia, una certa biodisponibilità viene conservata a causa dell’espressione della Mirosinasi anche nell’intestino umano.[17]

Tioglucosidasi (Mirosinasi)

L’ebollizione[18] e il microonde (750-900 watt)[19][20] sembrano i maggiori sospettati per la riduzione della biodisponibilità del glucosinolato; il primo a causa dell’eccesso di acqua che assorbe i composti bioattivi solubili in acqua dal cibo. In questo senso, i metodi di cottura che utilizzano meno acqua trattengono più glucosinolati rispetto a quelli che utilizzano molta acqua.[21]

È stato dimostrato che il DIM attiva la segnalazione del Fattore Nucleare Kappa-Beta (NF-kB), l’attivazione della caspasi, l’attivazione del citocromo P450 (in particolare CYP1A1, CYP1A2 e CYP19), la riparazione del DNA, il recettore degli idrocarburi arilici (AHR) e varie protein chinasi.[22][23][24]

Fattore Nucleare Kappa-Beta

L’Indolo-3-Carbinolo alimentare o integrativo, tramite il metabolita DIM, si ritiene che possa aumentare il peso del fegato come riflesso di un aumento generale della produzione dell’enzima P450;[25] questa risposta organica sembra essere dose dipendente tra basse concentrazioni nella dieta (250 ppm ) fino a quelli molto elevati (5.000 ppm) con la 2-idrossilazione degli estrogeni in aumento in relazione al peso complessivo del fegato.[25]

Uno studio che utilizzava Indole-3-Carbinol ha rilevato che le iniezioni giornaliere di 5mg nell’intestino sono state in grado di attenuare l’aumento previsto di grasso corporeo associato a una dieta ricca di grassi/calorie.[26]

Se si rapporta questa dose utilizzata in topi da laboratorio in una adatta per un essere umano adulto di 80kg si arriverebbe a circa 30mg al giorno. Se fosse somministrato per via orale probabilmente si avrebbe bisogno di una dose teoricamente più alta per ipotizzarne una qualche efficacia in tal senso.

È stato notato che il recettore degli idrocarburi arilici (AhR) ha un ruolo in alcune cellule immunitarie e nelle cellule natural killer (NK) l’attivazione di questo recettore (osservata con 10µM di 3,3′-diindolilmetano[27]) può aumentare la produzione di IFN-γ e funzione effettrice, aumentando così la loro inibizione della crescita delle cellule tumorali.[27]

Cellule Natural Killer (NK)

È stato notato che il 3,3′-Diindolylmethano (DIM) attiva sia il sottoinsieme alfa del recettore degli estrogeni (ERα)[28] che il sottoinsieme beta (ERβ),[29][30] con promozione da parte della molecola della crescita cellulare tramite ERα[ 28] non essendo un ligando diretto[31] mentre anche l’aumento della segnalazione tramite ERβ (15μM) sembra essere mediato indirettamente.[29][30] L’attivazione di ERα può dipendere dal tipo di cellula, poiché concentrazioni simili (10-15 μM; la concentrazione più bassa proposta per essere raggiunta tramite una dieta ricca di crocifere[32]) hanno mostrato efficacia nell’agire su questo recettore nel cancro al seno MCF7 e T47D cellule [28] ma non cellule MDA-MB-231 o HeLa,[29] o può essere dovuto alla sensibilità, poiché anche nelle cellule reattive concentrazioni più elevate (50μM) non riescono a causare una risposta.[28] È noto che l’attivazione indiretta è mediata prevalentemente dall’attivazione di PKA[29][31] che poi attiva MAPK e CREB.[31]

Recettore degli Estrogeni alfa (ERα), noto anche come NR3A1 (sottofamiglia del recettore nucleare 3, gruppo A, membro 1).

La maggiore concentrazione di DIM sembra indurre geni sensibili ad AhR nelle cellule del cancro al seno (CYP1A1 e CYP1B1[28-21]) suggerendo un diverso meccanismo dipendente dalla concentrazione. L’attivazione dell’AhR di per sé induce la produzione di alcuni di questi enzimi di fase I[33] che è un meccanismo di estrogenicità (attraverso l’aumento dell’attività dell’Aromatasi) osservato con pochi estrogeni ambientali[34] ma a causa della minore affinità del DIM verso l’AhR rispetto alla selezionare degli estrogeni ambientali (PCB, diossine e PAH) la combinazione dei due può comportare una minore estrogenicità relativa rispetto ai soli estrogeni ambientali.[35][36][37]

Il DIM è stato implicato nella modifica degli estrogeni preesistenti in altri metaboliti. Il processo di 2-idrossilazione, probabilmente secondario all’attivazione di AhR,[38] può aumentare il rapporto tra 2-idrossiestrone e 16α-idrossiestrone, che si pensa sia un profilo meno estrogenico dato dagli estrogeni.[39] I processi di 4-idrossilazione e 16-idrossilazione non sembrano significativamente influenzati.[40] È stato osservato che l’Indolo-3-Carbinolo induce la formazione di 2-idrossiestrone secondario ad un aumento del processo di 2-idrossilazione[41] e l’integrazione orale di DIM (108mg) nelle donne con anamnesi di carcinoma mammario in fase iniziale aumenta l’incremento delle vie urinarie. concentrazioni di 2-idrossiestrone (insieme a un aumento non significativo del rapporto tra 2-idrossiestrone e 16α-idrossiestrone.[42] Nei ratti trattati con I3C nella dieta per un periodo di tempo prolungato 200-1.000ppm sembravano essere efficaci nell’aumentare la 2-idrossilazione dell’Estradiolo con l’efficacia raggiunta quasi al doppio di circa 600-1.000ppm (17,6-36,3mg/kg),[32] traducendosi in circa 3-6mg/kg in un essere umano adulto.

2-Idrossiestrone 

Le iniezioni di DIM nei ratti per due settimane prima dell’irradiazione corporea totale hanno fatto notare miglioramenti dose-dipendenti della sopravvivenza (fino al 60% da 75 mg/kg), e mentre 7,5mg/kg erano inefficaci se somministrati in questo periodo di tempo mentre una singola dose un giorno prima della irradiazione è sembrato conferire il 55% di sopravvivenza.[43] Si pensava che questo effetto protettivo fosse dovuto all’attivazione dell’atassia-teleangectasia mutata (ATM), un enzima riparatore che aumenta l’attività in risposta al danno genetico,[44] osservato con DIM 300nM ritenuto secondario all’inibizione di PP2A (MRE11 e BRCA1 anche richiesto);[43] PP2A normalmente si complessa con ATM mantenendolo in uno stato inattivo e la sua inibizione consente ad ATM di diventare iperattivo in risposta al danno genetico.[48]

Nel tessuto normale, il DIM (300nM) può attivare la via di riparazione genetica ATM in risposta al danno da irradiazione in modo dipendente da BRCA1 (uno dei suoi bersagli[43]) senza aumentare la sopravvivenza delle cellule del cancro al seno (MDA-MB-231[43]); ci sono alterazioni note in questo percorso in alcuni tumori al seno in cui BRCA1 è ridotto mentre l’ATM stesso sembra essere iperattivo ed è stato notato che l’integrazione orale di 300mg di DIM aumenta i livelli di mRNA di BRCA1 dopo 4-6 settimane di integrazione (misurata nei globuli bianchi) nelle donne che avevano una mutazione a bassa attività.[49] Alcuni studi sugli animali (usando DIM o il suo precursore I3C) che trovano effetti antitumorali sulle cellule del cancro al seno notano che questi cambiamenti si verificano insieme all’aumento della 2-idrossilazione dell’Estradiolo,[50] che sembra essere dose-dipendente fino a dosi orali molto grandi (5.000ppm nei topi o oltre 10g/kg rispetto al peso corporeo).[50]

Idrossilazione dell’Estradiolo

Nei ratti, l’ingestione orale di Indolo-3-Carbinolo (I3C) per una settimana prima dell’induzione del cancro mammario tramite DMBA ha ridotto significativamente l’incidenza (70-90%) e la molteplicità (91-96%) rispetto al controllo cancerogeno,[50] dimostrando efficacia anche sul cancerogeno ad azione diretta N-Nitroso-N-metilurea ma in misura minore (riduzione del 65% della molteplicità).[50] Anche la crescita tumorale spontanea piuttosto che indotta da tossine sembra essere appena dimezzata in uno studio (della durata di 250 giorni) in ratti alimentati con 64-128mg/kg di I3C nella dieta (l’assunzione stimata rispetto al peso corporeo è di 4,8-9,6g/kg) rispetto al controllo, con anche la molteplicità in qualche modo ridotta.[50]

Nei ratti predisposti al cancro dell’endometrio (ratti Donryu) trattati con livelli dietetici di Indolo-3-Carbinolo (I3C; 200-1.000ppm) e valutati per un periodo sperimentale prolungato, i tassi di neoplasie spontanee nell’utero dopo 660 giorni erano significativamente più alti nei controlli (38%) piuttosto che negli esemplari trattati a bassa dose di I3C (25%) con 600-1.000ppm con prestazioni uguali (14-16%);[32] questo effetto è stato osservato insieme all’aumento della 2-idrossilazione dell’Estradiolo.[32]

È stato notato che il DIM antagonizza gli effetti del Diidrotestosterone (DHT) nelle cellule del cancro prostatico (LNCaP e PC-3) di oltre il 50% a una concentrazione di 1μM in modo dipendente dal Recettore degli Androgeni, sembrava essere un antagonista diretto al recettore con affinità simile a Casodex (Bicalutamide).[51] Gli effetti antitumorali del DIM a livello della cellula prostatica non sembrano essere completamente dipendenti da questo recettore sebbene non siano dipendenti da p53 (cellule DU145[42]) e possono indurre l’arresto cellulare in un modo dipendente dall’induzione di p27 (Kip1 ) tramite Sp1 (10μM),[52] due proteine che tendono ad avere una minore attività nelle cellule della prostata androgeno-indipendenti.[53] Questa era l’attivazione di p38 a valle[52] nota che si verifica con DIM anche in altre cellule tumorali.[53]

Bicalutamide

Conclusioni sul uso di I3C o DIM per il controllo estrogenico:

Nel tessuto mammario, ma anche in altri tessuti come quello adiposo, il CYP19 (Aromatasi) catalizza le fasi finali della conversione degli androgeni (Testosterone o Androstenedione) in estrogeni (rispettivamente 17β-Estradiolo o Estrone). Ora sappiamo che il I3C, maggiormente per via della sua conversione in DIM, riduce l’espressione di CYP19 nelle cellule mammarie non tumorali e tumorigeniche estrogeno-responsive (ER+), mentre l’espressione di CYP19 è aumentata nelle cellule mammarie tumorigeniche estrogeno-indipendenti (ER-) trattate con I3C/DIM [54]. Tale effetto potrebbe verificarsi a livello sistemico il che potrebbe comportare un uso di integratori di I3C o DIM come mezzo di controllo estrogenico in quei soggetti nei quali il CYP19 viene espresso in maniera maggiore anche in situazioni di terapia ormonale sostitutiva (vedi TRT).

Ruolo dell’Aromatasi nella sintesi degli Estrogeni.

Come abbiamo visto, gli enzimi metabolizzanti di fase I, CYP1A1, CYP1A2 e CYP1B1, sono stati coinvolti nel metabolismo ossidativo degli estrogeni. Il 17β-Estradiolo può essere convertito in 2-idrossiestradiolo (2HE2) e 4-idrossiestradiolo (4HE2) rispettivamente da CYP1A1/2 e CYP1B1. 2HE2 e 4HE2 sono ulteriormente metabolizzati a 2- e 4-metossimetaboliti dall’enzima di fase II, catecol-O-metiltransferasi (COMT) [55]. Il 2HE2 è un agente non cancerogeno con un potenziale estrogenico più debole del 17β-estradiolo, mentre il 4-HE2 può essere convertito in radicali liberi che possono formare addotti del DNA e promuovere la carcinogenesi [56-57]. In diverse linee cellulari di cancro al seno, è stato dimostrato che I3C e DIM, in particolare, sovraregolano l’espressione di CYP1A1, CYP1A2 e CYP1B1 a livello di trascritto (mRNA) ma non a livello di proteina [58]. Inoltre, gli estrogeni endogeni 17β-Estradiolo ed Estrone possono essere metabolizzati irreversibilmente a 16a-idrossiestrone (16HE1) [59]. A differenza del 2-idrossiestrone (2HE1), il 16HE1 è altamente estrogenico ed è stato scoperto che stimola la proliferazione di diverse linee cellulari tumorali sensibili agli estrogeni [60-61]. È stato ipotizzato che spostare il metabolismo del 17β-Estradiolo verso 2HE1 e lontano da 16HE1, potrebbe ridurre il rischio di tumori sensibili agli estrogeni, come il cancro al seno [62]. Negli studi clinici controllati, l’integrazione orale con I3C o DIM ha costantemente aumentato le concentrazioni urinarie di 2HE1 oi rapporti urinari 2HE1:16HE1 nelle donne [63-64]. Tuttavia, ampi studi caso-controllo e prospettici di coorte non sono riusciti a trovare associazioni significative tra i rapporti urinari 2HE1:16HE1 e il rischio di cancro al seno e all’endometrio [65-66].

16a-idrossiestrone (16HE1)

Gli estrogeni endogeni, compreso il 17β-Estradiolo, esercitano i loro effetti estrogenici legandosi a specifici recettori nucleari chiamati Recettori per gli Estrogeni (ER). All’interno del nucleo, gli ER attivati dagli estrogeni possono legarsi a specifiche sequenze di DNA, note come Elementi di Risposta agli Estrogeni (ERE), nei promotori dei geni che rispondono agli estrogeni. I complessi estrogeno-ER legati all’ERE agiscono come fattori di trascrizione reclutando proteine coattivatrici e fattori di rimodellamento della cromatina nei promotori, innescando così la trascrizione dei geni bersaglio [67]. Come sappiamo, esistono due principali sottotipi di ER, ERα ed ERβ, codificati rispettivamente da due geni separati ESR1 e ESR2. Il ERα è il principale driver dell’effetto proliferativo degli estrogeni, mentre l’espressione del ERβ è stata inversamente associata alla tumorigenesi della ghiandola mammaria [68]. Livelli elevati di ERα promuovono la proliferazione cellulare nel seno e nell’utero, aumentando probabilmente il rischio di sviluppare tumori sensibili agli estrogeni [69].

Nelle cellule del cancro al seno umano sensibili agli estrogeni fatte interagire con il 17β-Estradiolo, è stato scoperto che l’I3C inibisce la trascrizione dei geni sensibili agli estrogeni senza legarsi né al ERβ né al ERα [70-71]. In effetti, è stato dimostrato che il legame di I3C ad AhR innesca la degradazione dipendente dal proteasoma di ERα [72]. La perdita del ERα indotta da I3C ha portato alla sotto-regolazione dei prodotti genici che rispondono al ERα come il fattore di trascrizione GATA3. Poiché GATA3 regola la trascrizione del gene codificante ERα ESR1, l’I3C ha impedito la sintesi di nuove trascrizioni e proteine ​​ERα, sopprimendo infine la via di segnalazione ERα. L’interruzione dell’anello cross-regolatorio GATA3/ERα da parte del I3C ha infine arrestato la proliferazione cellulare ERα-dipendente [73]. I prodotti di condensazione acida del I3C che legano e attivano AhR possono anche inibire la trascrizione dei geni sensibili agli estrogeni competendo per i co-attivatori o aumentando la degradazione del ERα [74]. Il trattamento con I3C ha anche influenzato l’espressione di altri geni ERα-responsivi, compresi quelli che codificano per il Recettore del Fattore di Crescita Insulino-Simile-1 (IGFR1) e il substrato del recettore dell’Insulina-1 (IRS-1), coinvolti nella proliferazione cellulare e deregolati nel cancro al seno ( Figura seguente) [75].

Recettore del Fattore di Crescita Insulino-Simile-1 (IGFR1)

In base alle informazioni riportate in letteratura, sebbene limitate, possiamo ipotizzare che una supplementazione di I3C o DIM possa essere funzionale ad un controllo estrogenico in soggetti trattati con terapia sostitutiva del Testosterone (TRT) che presentano superiori espressioni dell’enzima Aromatasi legate a fattori non controllabili attraverso la semplice dieta e l’allenamento (vedi riduzione della massa grassa). Parliamo quindi di condizioni di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile (cioè non quantificabile con l’intervallo di riferimento standard ma solo con analisi dei sintomi legati ad una aumentata attività estrogenica). La sua efficacia di controllo estrogenico potrebbe però non essere sufficiente in contesti di uso di dosi sovrafisiologiche di AAS aromatizzabili, specie se queste superano i 180mg di Testosterone (netto) a settimana [dati raccolti aneddoticamente].

L’I3C è disponibile come prodotto da banco senza prescrizione medica anche in Italia, da solo o in combinazione con altre molecole. Il dosaggio varia tra 200 mg/die e 800 mg/die [76]. L’integrazione di I3C ha aumentato le concentrazioni urinarie di 2HE1 negli adulti a dosi da 300 a 400 mg/die [77]. Dosi di I3C di 200 mg/die o 400 mg/die hanno migliorato la regressione della neoplasia intraepiteliale cervicale (CIN) in uno studio clinico preliminare [78]. L’I3C in dosi fino a 400 mg/die è stato usato per trattare la papillomatosi respiratoria ricorrente (vedi Trattamento della malattia) [79-80]. In caso di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile, il dosaggio di 400mg/die ha portato benefici apprezzabili, sebbene con risposte soggettive, nel giro di 7-14 giorni di somministrazione continua [dati raccolti aneddoticamente].

Il DIM è anch’esso disponibile senza prescrizione medica come integratore alimentare da banco, nonostante sia più difficile da trovare, da solo o in combinazione con altre molecole. In un piccolo studio clinico, l’integrazione di DIM alla dose di 108mg/die per 30 giorni ha aumentato l’escrezione urinaria di 2HE1 nelle donne in postmenopausa con anamnesi di cancro al seno [81]. Dosaggi di 100-200mg/die si sono dimostrati discretamente efficaci in caso di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile in individui in terapia sostitutiva del Testosterone [dati raccolti aneddoticamente].

Leggeri aumenti delle concentrazioni sieriche dell’enzima epatico, alanina aminotransferasi (ALT) sono stati osservati in due donne che hanno assunto dosi non specificate di integratori di I3C per quattro settimane [64]. Una persona ha riportato un’eruzione cutanea durante l’assunzione di 375 mg/die di I3C [82]. Alte dosi di I3C (800 mg/die) sono state associate a sintomi di squilibrio e tremore, che si sono risolti quando la dose è stata ridotta [83]. In uno studio di fase I in donne ad alto rischio di cancro al seno, 5 partecipanti su 20 hanno manifestato sintomi gastrointestinali con dosi singole ≥600 mg, sebbene altri non abbiano avuto effetti avversi con dosi singole fino a 1.200mg [84]. Non sono stati segnalati effetti avversi con il consumo giornaliero di 400mg di I3C per quattro settimane [84]. In alcuni modelli animali, è stato scoperto che l’integrazione di I3C migliora lo sviluppo del cancro indotto dal cancerogeno quando somministrato cronicamente dopo il cancerogeno [85-86]. Quando somministrato prima o contemporaneamente al cancerogeno, l’I3C orale ha inibito la tumorigenesi in modelli animali di tumori della ghiandola mammaria [87-88], dell’utero [89], dello stomaco [90], del colon [91-92], del polmone [93] e fegato [94-95]. Sebbene non siano noti gli effetti a lungo termine dell’integrazione di I3C sul rischio di cancro nell’uomo, i risultati contraddittori degli studi sugli animali hanno portato diversi esperti a mettere in guardia contro l’uso diffuso di integratori di I3C e DIM negli esseri umani fino a quando i loro potenziali rischi e benefici non saranno meglio compresi [86-96-97]. La sicurezza degli integratori contenenti I3C o DIM durante la gravidanza o l’allattamento non è stata stabilita [98].

Non sono state segnalate interazioni farmacologiche con l’integrazione di I3C o DIM nell’uomo. Tuttavia, l’evidenza preliminare che I3C e DIM possono aumentare l’attività del CYP1A2 [99-100] suggerisce che l’integrazione con I3C o DIM può ridurre le concentrazioni sieriche dei farmaci metabolizzati dal CYP1A2 [101]. Sia I3C che DIM aumentano modestamente l’attività del CYP3A4 nei ratti quando somministrati cronicamente [102]. Questa osservazione aumenta il potenziale di interazioni farmacologiche avverse nell’uomo poiché il CYP3A4 è coinvolto nel metabolismo di circa il 60% dei farmaci terapeutici. L’ambiente acido dello stomaco consente alle molecole I3C di condensare e generare un numero di oligomeri I3C biologicamente attivi. I farmaci che bloccano la produzione di acidi dello stomaco, come gli antiacidi, gli antagonisti del recettore dell’istamina2 (H2) e gli inibitori della pompa protonica, probabilmente impedirebbero la generazione di DIM e ICZ. Tuttavia, non è noto se questi farmaci limitino le attività biologiche attribuite all’I3C e ai suoi derivati ​​[98].

Si esorta il lettore ad avere cautela nell’uso delle summenzionate molecole. A causa del loro effetto sui livelli di Estrogeni (ricordo che gli estrogeni hanno, tra le altre cose, un impatto significativo sulla funzione cerebrale, metabolismo osseo e comportamento/attività sessuale).[103][104] Prima di procedere con il trattamento assicurarsi, per via di analisi specifiche e consulto di specialisti, che i livelli estrogenici e/o la loro attività tissutale necessitino di un controllo per via di trattamento con molecole esogene.

Gabriel Bellizzi

Riferimenti:

  1. https://www.chemblink.com/products/700-06-1.htm
  2. https://www.chemblink.com/products/700-06-1.htm
  3. Sarubin-Fragakis, A.; Thomson, C.; American Dietetic Association (2007). The Health Professional’s Guide to Popular Dietary Supplements. American Dietetic Association. p. 312. ISBN 9780880913638.
  4. Park, N. I.; Kim, J. K.; Park, W. T.; Cho, J. W.; Lim, Y. P.; Park, S. U. (2010). “An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes”. Molecular Biology Reports38(8): 4947–4953. 
  5. “indole-3-methanol (CHEBI:24814)”Chemical Entities of Biological Interest (ChEBI). European Bioinformatics Institute. Retrieved 2016-03-25.
  6. Tilton, S. C.; Hendricks, J. D.; Orner, G. A.; Pereira, C. B.; Bailey, G. S.; Williams, D. E. (2007). “Gene expression analysis during tumor enhancement by the dietary phytochemical, 3,3′-diindolylmethane, in rainbow trout”Carcinogenesis28 (7): 1589–1598.
  7. Higdon, J.; Delage, B.; Williams, D.; Dashwood, R. (2007). “Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis”Pharmacological Research55 (3): 224–236. 
  8. Dashwood, R. H.; Arbogast, D. N.; Fong, A. T.; Pereira, C.; Hendricks, J. D.; Bailey, G. S. (1989). “Quantitative inter-relationships between aflatoxin B1 carcinogen dose, indole-3-carbinol anti-carcinogen dose, target organ DNA adduction and final tumor response”. Carcinogenesis10 (1): 175–181. 
  9. Grose KR, Bjeldanes LF. Oligomerization of indole-3-carbinol in aqueous acidChem Res Toxicol. (1992)
  10. Riby JE1, et al. The major cyclic trimeric product of indole-3-carbinol is a strong agonist of the estrogen receptor signaling pathwayBiochemistry. (2000)
  11. Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivativesCell Cycle. (2005)
  12. Pappa G, et al. Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitroCarcinogenesis. (2007)
  13. Bradfield CA, Bjeldanes LF. Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolismJ Toxicol Environ Health. (1987)
  14. De Kruif CA, et al. Structure elucidation of acid reaction products of indole-3-carbinol: detection in vivo and enzyme induction in vitroChem Biol Interact. (1991)
  15. McNaughton SA, Marks GC. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetablesBr J Nutr. (2003)
  16. Shapiro TA, et al. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humansCancer Epidemiol Biomarkers Prev. (2001)
  17. Conaway CC, et al. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoliNutr Cancer. (2000)
  18. Shapiro TA, et al. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetablesCancer Epidemiol Biomarkers Prev. (1998)
  19. Rouzaud G, Young SA, Duncan AJ. Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteersCancer Epidemiol Biomarkers Prev. (2004)
  20. Verkerk R, Dekker M. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatmentsJ Agric Food Chem. (2004)
  21. Rungapamestry V, et al. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durationsJ Agric Food Chem. (2006)
  22. Song L, Thornalley PJ. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetablesFood Chem Toxicol. (2007)
  23. Weng JR, et al. Indole-3-carbinol as a chemopreventive and anti-cancer agentCancer Lett. (2008)
  24.  Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin.
  25. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Diindolylmethanes Differentially Induce Cytochrome P450 1A1, 1B1, and 19 in H295R Human Adrenocortical Carcinoma.
  26.  Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice.
  27. Chang HP, et al. Antiobesity activities of indole-3-carbinol in high-fat-diet-induced obese miceNutrition. (2011)
  28. Shin JH1, et al. Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptorProc Natl Acad Sci U S A. (2013)
  29. Marques M, et al. Low levels of 3,3′-diindolylmethane activate estrogen receptor α and induce proliferation of breast cancer cells in the absence of estradiolBMC Cancer. (2014)
  30. Selective Activation of Estrogen Receptor-β Target Genes by 3,3′-Diindolylmethane.
  31. Lo R, Matthews J. A new class of estrogen receptor beta-selective activatorsMol Interv. (2010)
  32. Leong H1, et al. Potent ligand-independent estrogen receptor activation by 3,3′-diindolylmethane is mediated by cross talk between the protein kinase A and mitogen-activated protein kinase signaling pathwaysMol Endocrinol. (2004)
  33. Leong H1, Firestone GL, Bjeldanes LF. Cytostatic effects of 3,3′-diindolylmethane in human endometrial cancer cells result from an estrogen receptor-mediated increase in transforming growth factor-alpha expressionCarcinogenesis. (2001)
  34. Sanderson JT, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and diindolylmethanes differentially induce cytochrome P450 1A1, 1B1, and 19 in H295R human adrenocortical carcinoma cellsToxicol Sci. (2001)
  35. Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms.
  36. Okino ST, et al. Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer preventionCancer Prev Res (Phila). (2009)
  37. Parkin DR, et al. Inhibitory effects of a dietary phytochemical 3,3′-diindolylmethane on the phenobarbital-induced hepatic CYP mRNA expression and CYP-catalyzed reactions in female ratsFood Chem Toxicol. (2008)
  38. Wattenberg LW, Loub WD. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indolesCancer Res. (1978)
  39. Jellinck PH1, et al. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylationBiochem Pharmacol. (1993)
  40. Estrogenic and antiestrogenic activities of 16α- and 2-hydroxy metabolites of 17β-estradiol in MCF-7 and T47D human breast cancer cells.
  41. Sepkovic DW, et al. Catechol estrogen production in rat microsomes after treatment with indole-3-carbinol, ascorbigen, or beta-naphthaflavone: a comparison of stable isotope dilution gas chromatography-mass spectrometry and radiometric methodsSteroids. (1994)
  42. Bradlow HL, et al. 2-hydroxyestrone: the ‘good’ estrogenJ Endocrinol. (1996)
  43. Dalessandri KM1, et al. Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancerNutr Cancer. (2004)
  44. Fan S1, et al. DIM (3,3′-diindolylmethane) confers protection against ionizing radiation by a unique mechanismProc Natl Acad Sci U S A. (2013)
  45. Kitagawa R1, Kastan MB. The ATM-dependent DNA damage signaling pathwayCold Spring Harb Symp Quant Biol. (2005)
  46. Goodarzi AA1, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2AEMBO J. (2004)
  47. Kotsopoulos J1, et al. BRCA1 mRNA levels following a 4-6-week intervention with oral 3,3′-diindolylmethaneBr J Cancer. (2014)
  48. Grubbs CJ1, et al. Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinolAnticancer Res. (1995)
  49. Le HT, et al. Plant-derived 3,3′-Diindolylmethane is a strong androgen antagonist in human prostate cancer cellsJ Biol Chem. (2003)
  50. Vivar OI1, et al. 3,3′-Diindolylmethane induces a G(1) arrest in human prostate cancer cells irrespective of androgen receptor and p53 statusBiochem Pharmacol. (2009)
  51. Karan D1, et al. Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cellsCarcinogenesis. (2002)
  52. Xue L1, Firestone GL, Bjeldanes LF. DIM stimulates IFNgamma gene expression in human breast cancer cells via the specific activation of JNK and p38 pathwaysOncogene. (2005)
  53. Saw CL, et al. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanatesBiopharm Drug Dispos. (2011)
  54. Belous AR, Hachey DL, Dawling S, Roodi N, Parl FF. Cytochrome P450 1B1-mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer Res. 2007;67(2):812-817.
  55. Jefcoate CR, Liehr JG, Santen RJ, et al. Tissue-specific synthesis and oxidative metabolism of estrogens. J Natl Cancer Inst Monogr. 2000(27):95-112.
  56. Kwon YJ, Baek HS, Ye DJ, Shin S, Kim D, Chun YJ. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/beta-catenin signaling via Sp1 upregulation. PLoS One. 2016;11(3):e0151598.  
  57. Park SA, Lee MH, Na HK, Surh YJ. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression. Oncotarget. 2016;8(1):164-178. 
  58. Szaefer H, Licznerska B, Krajka-Kuzniak V, Bartoszek A, Baer-Dubowska W. Modulation of CYP1A1, CYP1A2 and CYP1B1 expression by cabbage juices and indoles in human breast cell lines. Nutr Cancer. 2012;64(6):879-888.
  59. Ziegler RG, Fuhrman BJ, Moore SC, Matthews CE. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids. 2015;99(Pt A):67-75. 
  60. Telang NT, Suto A, Wong GY, Osborne MP, Bradlow HL. Induction by estrogen metabolite 16 alpha-hydroxyestrone of genotoxic damage and aberrant proliferation in mouse mammary epithelial cells. J Natl Cancer Inst. 1992;84(8):634-638.  
  61. Yuan F, Chen DZ, Liu K, Sepkovic DW, Bradlow HL, Auborn K. Anti-estrogenic activities of indole-3-carbinol in cervical cells: implication for prevention of cervical cancer. Anticancer Res. 1999;19(3A):1673-1680.  
  62.  Bradlow HL, Telang NT, Sepkovic DW, Osborne MP. 2-Hydroxyestrone: the ‘good’ estrogen. J Endocrinol. 1996;150 Suppl:S259-265.
  63. Bradlow HL, Michnovicz JJ, Halper M, Miller DG, Wong GY, Osborne MP. Long-term responses of women to indole-3-carbinol or a high fiber diet. Cancer Epidemiol Biomarkers Prev. 1994;3(7):591-595. 
  64. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP. Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl. 1997;28-29:111-116.
  65. Arslan AA, Shore RE, Afanasyeva Y, Koenig KL, Toniolo P, Zeleniuch-Jacquotte A. Circulating estrogen metabolites and risk for breast cancer in premenopausal women. Cancer Epidemiol Biomarkers Prev. 2009;18(8):2273-2279.
  66. Zeleniuch-Jacquotte A, Shore RE, Afanasyeva Y, et al. Postmenopausal circulating levels of 2- and 16alpha-hydroxyestrone and risk of endometrial cancer. Br J Cancer. 2011;105(9):1458-1464.
  67. Liehr JG. Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev. 2000;21(1):40-54. 
  68. Ashok BT, Chen Y, Liu X, Bradlow HL, Mittelman A, Tiwari RK. Abrogation of estrogen-mediated cellular and biochemical effects by indole-3-carbinol. Nutr Cancer. 2001;41(1-2):180-187. 
  69. Meng Q, Yuan F, Goldberg ID, Rosen EM, Auborn K, Fan S. Indole-3-carbinol is a negative regulator of estrogen receptor-alpha signaling in human tumor cells. J Nutr. 2000;130(12):2927-2931.  
  70. Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL. Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell. 2010;21(7):1166-1177.  
  71. Chen I, McDougal A, Wang F, Safe S. Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane. Carcinogenesis. 1998;19(9):1631-1639. 
  72. Marconett CN, Singhal AK, Sundar SN, Firestone GL. Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol. 2012;363(1-2):74-84. 
  73. Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci. 2003;24(3):139-145.  (PubMed)
  74. Mao CG, Tao ZZ, Chen Z, Chen C, Chen SM, Wan LJ. Indole-3-carbinol inhibits nasopharyngeal carcinoma cell growth in vivo and in vitro through inhibition of the PI3K/Akt pathway. Exp Ther Med. 2014;8(1):207-212.  (PubMed)
  75. Leem SH, Li XJ, Park MH, Park BH, Kim SM. Genome-wide transcriptome analysis reveals inactivation of Wnt/beta-catenin by 3,3′-diindolylmethane inhibiting proliferation of colon cancer cells. Int J Oncol. 2015;47(3):918-926.  (PubMed)
  76. Hendler SS, Rorvik DM. PDR for Nutritional Supplements. 2nd ed: Thomson Reuters; 2008.
  77. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP. Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl. 1997;28-29:111-116. 
  78.  Bell MC, Crowley-Nowick P, Bradlow HL, et al. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol. 2000;78(2):123-129. 
  79. Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810-815. 
  80. Rosen CA, Bryson PC. Indole-3-carbinol for recurrent respiratory papillomatosis: long-term results. J Voice. 2004;18(2):248-253. 
  81. Dalessandri KM, Firestone GL, Fitch MD, Bradlow HL, Bjeldanes LF. Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. Nutr Cancer. 2004;50(2):161-167.  (PubMed)
  82. McAlindon TE, Gulin J, Chen T, Klug T, Lahita R, Nuite M. Indole-3-carbinol in women with SLE: effect on estrogen metabolism and disease activity. Lupus. 2001;10(11):779-783. 
  83. Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810-815.
  84. Reed GA, Arneson DW, Putnam WC, et al. Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3′-diindolylmethane. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2477-2481.
  85. Kim DJ, Han BS, Ahn B, et al. Enhancement by indole-3-carbinol of liver and thyroid gland neoplastic development in a rat medium-term multiorgan carcinogenesis model. Carcinogenesis. 1997;18(2):377-381.
  86. Stoner G, Casto B, Ralston S, Roebuck B, Pereira C, Bailey G. Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indole-3-carbinol. Carcinogenesis. 2002;23(2):265-272. 
  87. Grubbs CJ, Steele VE, Casebolt T, et al. Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res. 1995;15(3):709-716.  
  88. Bradlow HL, Michnovicz J, Telang NT, Osborne MP. Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis. 1991;12(9):1571-1574. 
  89. Kojima T, Tanaka T, Mori H. Chemoprevention of spontaneous endometrial cancer in female Donryu rats by dietary indole-3-carbinol. Cancer Res. 1994;54(6):1446-1449.  
  90. Wattenberg LW, Loub WD. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res. 1978;38(5):1410-1413. 
  91. Wargovich MJ, Chen CD, Jimenez A, et al. Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat. Cancer Epidemiol Biomarkers Prev. 1996;5(5):355-360.  
  92. Guo D, Schut HA, Davis CD, Snyderwine EG, Bailey GS, Dashwood RH. Protection by chlorophyllin and indole-3-carbinol against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis. 1995;16(12):2931-2937. 
  93. Morse MA, LaGreca SD, Amin SG, Chung FL. Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res. 1990;50(9):2613-2617.
  94. Dashwood RH, Arbogast DN, Fong AT, Hendricks JD, Bailey GS. Mechanisms of anti-carcinogenesis by indole-3-carbinol: detailed in vivo DNA binding dose-response studies after dietary administration with aflatoxin B1. Carcinogenesis. 1988;9(3):427-432. 
  95. Oganesian A, Hendricks JD, Williams DE. Long term dietary indole-3-carbinol inhibits diethylnitrosamine-initiated hepatocarcinogenesis in the infant mouse model. Cancer Lett. 1997;118(1):87-94. 
  96. Dashwood RH. Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact. 1998;110(1-2):1-5. 
  97. Lee BM, Park KK. Beneficial and adverse effects of chemopreventive agents. Mutat Res. 2003;523-524:265-278.
  98. Hendler SS, Rorvik DM. PDR for Nutritional Supplements. 2nd ed: Thomson Reuters; 2008.
  99. He YH, Friesen MD, Ruch RJ, Schut HA. Indole-3-carbinol as a chemopreventive agent in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) carcinogenesis: inhibition of PhIP-DNA adduct formation, acceleration of PhIP metabolism, and induction of cytochrome P450 in female F344 rats. Food Chem Toxicol. 2000;38(1):15-23. 
  100. Lake BG, Tredger JM, Renwick AB, Barton PT, Price RJ. 3,3′-Diindolylmethane induces CYP1A2 in cultured precision-cut human liver slices. Xenobiotica. 1998;28(8):803-811. 
  101. Natural Medicines. Professional monograph: Indole-3-carbinol/Interactions with drugs; 2016.
  102. Leibelt DA, Hedstrom OR, Fischer KA, Pereira CB, Williams DE. Evaluation of chronic dietary exposure to indole-3-carbinol and absorption-enhanced 3,3′-diindolylmethane in Sprague-Dawley rats. Toxicol Sci. 2003;74(1):10-21.
  103. Culmsee, C.; Vedder, H.; Ravati, A.; Junker, V.; Otto, D.; Ahlemeyer, B.; Krieg, J.-C.; Krieglstein, J. (1999). “Neuroprotection by Estrogens in a Mouse Model of Focal Cerebral Ischemia and in Cultured Neurons: Evidence for a Receptor-Independent Antioxidative Mechanism”Journal of Cerebral Blood Flow & Metabolism19 (11): 1263–1269. 
  104. “Estrogen’s Influence on the Brain”. Society for Neuroscience.