PEDs tra uso e abuso: Tiroxina [T4] e Triiodotironina [T3].

Continua la disamina dei principali PEDs utilizzati e del confine che delimita l’uso dall’abuso. In questo terzo articolo della serie tratteremo due ormoni, o meglio un precursore poco attivo [T4] ed il suo derivato molto attivo [T3], che non rientrano pienamente nella categoria PEDs, ma che, volenti o nolenti, si sono diffusi da decenni nel mondo del BodyBuilding, in ambo i sessi. Inutile dire che l’abuso con questa classe di farmaci è alquanto facile e spesso praticato.

Tanto per ribadirlo, questo articolo non rappresenta ne un incitamento all’uso di farmaci fuori dalla prescrizione medica ne tantomeno un indicazione medica. Si tratta di divulgazione scientifica.

Introduzione agli ormoni tiroidei [T4 e T3]:

Gli ormoni tiroidei sono ormoni secreti dalla tiroide. La tiroide è una ghiandola endocrina situata nella parte anteriore del collo, direttamente sotto la laringe (pomo d’Adamo), ed ha un peso di circa 20g. I due principali ormoni tiroidei che secerne sono la Triiodotironina (T3) e la Tiroxina (T4). Quest’ultima ha soprattutto una attività da pro-ormone, poiché la maggior parte dei suoi effetti dipende dalla conversione in T3. Questa conversione da T4 a T3, chiamata anche deiodinazione dell’anello esterno, avviene principalmente al di fuori della tiroide, nei tessuti periferici. Complessivamente, ciò porta a una produzione giornaliera di circa 88mcg (113 nmol) di T4 e 28mcg (43 nmol) di T3 [2]. Circa un quinto della T3 deriva dalla tiroide, mentre gli altri quattro quinti sono prodotti dalla conversione extratiroidea di T4 in T3 [3].

Come nel caso degli steroidi anabolizzanti, gli ormoni tiroidei sono trasportati nel flusso sanguigno da proteine trasportatrici. La maggior parte è legata alla globulina legante la tiroxina (TBG), mentre la parte restante è legata alla transtiretina, all’albumina e ad alcune lipoproteine. Nel complesso, esse legano oltre il 99% degli ormoni tiroidei in circolazione. Si ritiene che la frazione non legata sia disponibile per i tessuti per l’assorbimento e sia responsabile dei suoi effetti [4]. Sebbene vi siano alcune riserve sulle prove a sostegno di questa tesi, non intendo addentrarmi in una discussione sull’ipotesi dell’ormone libero (se non ricordare che nella sua forma più rigorosa è sbagliata, ma le misurazioni dell’ormone tiroideo libero sono comunque utili).

Una volta che raggiunge i tessuti periferici e attraversa la membrana plasmatica di una cellula, esso esplica la sua attività. Nel caso del T4, deve prima essere convertito in T3, come già detto, in quanto il T4 può essere considerato un pro-ormone. Questa conversione avviene all’interno della cellula, o vicino alla membrana plasmatica (dopo di che si equilibra rapidamente con il plasma sanguigno), o vicino al nucleo della cellula, il sito d’azione [5].Il T3, invece, può continuare direttamente il suo viaggio entrando nel nucleo della cellula. Il nucleo cellulare è l’organello della cellula dove avviene la trascrizione dei geni. Proprio come gli steroidi anabolizzanti, gli ormoni tiroidei esercitano i loro effetti principalmente attraverso la modulazione della trascrizione genica. Lo fanno legandosi ai recettori degli ormoni tiroidei che si trovano principalmente all’interno del nucleo cellulare, legati al DNA.

Attività di legame T3-recettore.

Gli ormoni tiroidei agiscono su una vasta gamma di tessuti e hanno un’infinità di effetti, ma in questo articolo mi concentrerò sull’effetto che essi hanno sul metabolismo energetico e sul turnover delle proteine (muscolo scheletrico). Con tutta probabilità sono i due aspetti che più interessano le persone che leggono questo articolo per quanto riguarda la sua efficacia.

Effetto sul metabolismo energetico (Parte 1):

Quando è presente una quantità insufficiente di ormoni tiroidei, si parla di ipotiroidismo. Una delle caratteristiche dell’ipotiroidismo è l’aumento di peso. Al contrario, quando la quantità di ormoni tiroidei è eccessiva, si parla di ipertiroidismo. Una delle sue caratteristiche è la perdita di peso. Queste variazioni di peso sono probabilmente il risultato di cambiamenti nel tasso metabolico basale. È noto che gli ormoni tiroidei aumentano il dispendio energetico.

Sono stati proposti alcuni meccanismi che spiegano come gli ormoni tiroidei riescano a ottenere questo risultato. In questo articolo tratterò i tre più interessanti (o forse semplicemente quelli che si incontrano di più nella letteratura scientifica). I primi due meccanismi si basano sull’energia necessaria per mantenere i gradienti ionici all’interno della cellula. Ad esempio, le cellule mantengono una bassa concentrazione intracellulare di sodio e un’alta concentrazione intracellulare di potassio rispetto all’esterno della cellula. Il mantenimento di questa condizione è assicurato da pompe incorporate nella membrana plasmatica, che richiedono energia per funzionare. Esse pompano ioni sodio fuori dalla cellula e ioni potassio dentro la cellula. Queste pompe sono note come Na+/K+-ATPasi, o semplicemente pompe sodio-potassio. L’energia necessaria al funzionamento di queste pompe deriva dalla molecola portatrice di energia adenosina trifosfato (ATP). L’ATP è utilizzato da molti processi cellulari per alimentare il proprio fabbisogno energetico e l’energia contenuta in queste molecole deriva dai macronutrienti che mangiamo: carboidrati, acidi grassi e proteine (aminoacidi). Ed ora d’obbligo descrivere il modo principale in cui le cellule producono queste molecole di ATP attraverso un processo chiamato fosforilazione ossidativa.

Uno dei modi in cui gli ormoni tiroidei potrebbero aumentare il dispendio energetico è simile al modo in cui il famoso DNP ottiene questo risultato: “sabotando” la fosforilazione ossidativa.

Fosforilazione ossidativa: ottenere energia dal passaggio degli elettroni.

È inutile ribadire che è sempre un piacere per me trattare di biochimica in un articolo. Ritengo che questi principi di base tolgano un po’ di magia agli effetti dei farmaci, e forniscano quindi un quadro più chiaro di come funzionano le cose. Con un po’ di fortuna potrei anche, forse, interessare qualcuno di voi che sta leggendo questo articolo ad approfondire l’argomento. La biochimica e la biologia cellulare sono campi di studio estremamente interessanti.

Le cellule del vostro corpo svolgono continuamente ogni sorta di funzione per, essenzialmente, mantenervi in vita. Molti di questi processi consumano energia. Questa energia deriva, in ultima analisi, dagli alimenti che mangiamo. Carboidrati, grassi e proteine, persino l’alcol, hanno tutti energia immagazzinata nei loro legami chimici. È compito dell’organismo estrarre questa energia e trasformarla in qualcosa di utile. Come il motore della vostra auto non funziona con il petrolio grezzo, questi processi cellulari non funzionano direttamente con i macronutrienti. Al contrario, la maggior parte di questi processi richiede energia da una molecola chiamata adenosina trifosfato (ATP), proprio come il motore di un’automobile richiede specificamente la benzina.

Vediamo come funziona per una molecola di glucosio, un carboidrato. Quando una molecola di glucosio viene utilizzata da una cellula per produrre ATP, subisce prima un processo chiamato glicolisi. La glicolisi è un processo composto da varie fasi enzimatiche che scindono la molecola di glucosio in 2 molecole di piruvato e producono 2 molecole di ATP (oltre ad altre molecole). In poche parole:

glucosio -> 2 piruvato + 2 ATP

Tuttavia, un processo chiamato fosforilazione ossidativa estrarrà molta più energia, cioè molecole di ATP, dalle 2 molecole di piruvato risultanti.

La fosforilazione ossidativa è un processo che avviene nei mitocondri. Quindi è qui che il piruvato è diretto. I mitocondri sono organelli della cellula che si occupano principalmente della produzione di energia. Sono piccole fabbriche di energia di dimensioni microscopiche. Sono costituiti da una membrana esterna e da una membrana interna. Lo spazio tra la membrana esterna e quella interna è chiamato spazio intermembrana. Lo spazio incapsulato dalla membrana interna è chiamato matrice mitocondriale. La membrana interna è ripiegata in modo caratteristico. Queste pieghe sono chiamate cristae. L’aspetto è questo:

1) Crista, 2) membrana esterna, 3) spazio intermembrana e 4) matrice mitocondriale.

Quando il piruvato si trova all’interno della matrice mitocondriale, viene convertito in acetil-CoA e successivamente subisce una serie di reazioni che vengono chiamate collettivamente ciclo dell’acido citrico o ciclo di Krebs. Durante questo processo, tutta l’energia viene estratta da quella che in origine era una molecola di piruvato. Viene ossidata. Tuttavia, l’energia non si è ancora trasformata in ATP. Prima viene trasferita ai vettori energetici NAD e FAD (e al GTP, ma non ne parlerò). I vettori energetici NAD e FAD parteciperanno al processo chiamato fosforilazione ossidativa che segue il ciclo dell’acido citrico.

L’energia viene immagazzinata in coppie di elettroni che vengono donati a NAD e FAD. Questo processo riduce queste molecole, come viene chiamato, producendo rispettivamente NADH e FADH2. Successivamente, NADH e FADH2 cedono la coppia di elettroni a grandi complessi proteici incorporati nella membrana interna. Questa è la prima fase della fosforilazione ossidativa. Quando queste coppie di elettroni vengono cedute a tali complessi proteici, parte dell’energia in essi immagazzinata viene utilizzata per pompare un protone (H+) fuori dalla matrice mitocondriale nello spazio intermembrana. Si tratta di un aspetto estremamente cruciale, di cui si capirà presto il motivo.

Successivamente, le coppie di elettroni vengono trasferite un paio di volte da un complesso all’altro, staccando ogni volta un po’ dell’energia in esse contenuta e utilizzandola per pompare fuori un protone. A ogni passaggio, gli elettroni raggiungono uno stato energetico inferiore. (Non vengono trasferiti direttamente da un complesso all’altro, ci sono alcune proteine/molecole intermedie che li trasportano tra questi complessi proteici che pompano protoni). E ogni volta una parte dell’energia sottratta viene sfruttata per pompare fuori un protone. Se si utilizza una ruota idraulica, l’aspetto è simile a questo:

Immagine di Peter Bond

La destinazione finale degli elettroni è quella di combinarsi con l’idrogeno e l’ossigeno per formare H2O, ovvero l’acqua. Il processo di fosforilazione ossidativa ha stabilito un gradiente elettrochimico di protoni. La concentrazione di protoni nella matrice mitocondriale sarà inferiore rispetto allo spazio intermembrana. Questo gradiente contiene energia potenziale. Proprio come una ruota idraulica ruota con l’acqua che si muove in discesa, un macchinario molecolare chiamato ATP sintasi inizia a ruotare con i protoni che si muovono lungo il loro gradiente elettrochimico dallo spazio intermembrana alla matrice mitocondriale. Questa energia viene poi sfruttata per generare ATP combinando l’ADP con un gruppo fosfato inorganico. E voilà, l’intero processo di passaggio degli elettroni, di sottrazione di energia per pompare fuori i protoni e di successivo utilizzo del gradiente protonico stabilito per sintetizzare ATP, è chiamato fosforilazione ossidativa.

Per ricapitolare ciò che è stato trattato, e che non è poco:

  • Il glucosio viene scisso in due molecole di piruvato dalla glicolisi.
  • il piruvato viene trasportato nella matrice mitocondriale per essere convertito in acetil-CoA
  • L’acetil-CoA viene ossidato, trasferendo la sua energia nei vettori energetici NAD e FAD nelle loro forme ridotte NADH e FADH2, accettando una coppia di elettroni.
  • Queste molecole di NADH e FADH2 donano le loro coppie di elettroni a un grande complesso proteico incorporato nella membrana interna, che poi viene trasferito in continuazione fino a combinarsi con idrogeno e ossigeno per formare acqua. Con questi trasferimenti, parte dell’energia viene sfruttata per pompare protoni (H+) fuori dalla matrice mitocondriale. Si stabilisce così un gradiente elettrochimico: bassa concentrazione di protoni all’interno della matrice mitocondriale, alta concentrazione di protoni all’esterno della matrice mitocondriale.
  • Il flusso di protoni lungo il gradiente di concentrazione fornisce energia all’ATP sintasi per svolgere il suo lavoro e generare ATP.

Effetto sul metabolismo energetico (Parte 2):

Dopo questa dovuta parentesi, torniamo alle pompe sodio-potassio. Alcune prove suggeriscono che gli ormoni tiroidei aumentano la permeabilità della membrana plasmatica agli ioni sodio e potassio [6]. Ciò significa che una quantità maggiore di questi ioni fuoriesce lungo il gradiente di concentrazione. Pertanto, gli ioni potassio fuoriescono dalla cellula e gli ioni sodio vi entrano. Di conseguenza, le pompe sodio-potassio devono pompare maggiormente per mantenere le concentrazioni intracellulari desiderate di questi ioni e questo costa energia. Alcuni studi suggeriscono addirittura che tutti i tessuti dei mammiferi mostrano un aumento dell’attività della pompa sodio-potassio in risposta alla T3 [7].

Qualcosa di simile è stato suggerito per quanto riguarda gli ioni calcio nelle cellule muscolari [8]. Le cellule muscolari sono cellule piuttosto speciali sotto molti aspetti. Uno di questi è che contengono un organello chiamato reticolo sarcoplasmatico. Si tratta di una forma specializzata del reticolo endoplasmatico presente nelle cellule normali. Una delle caratteristiche che lo rendono speciale è che funziona come sito di stoccaggio degli ioni calcio. Questi ioni di calcio svolgono un ruolo fondamentale nella contrazione muscolare, poiché lo scarico di questi ioni di calcio dal reticolo sarcoplasmatico al resto della cellula porta alla contrazione muscolare. Quando la contrazione deve cessare, questi ioni vengono nuovamente pompati nel reticolo sarcoplasmatico. Anche questo processo, ovviamente, consuma energia. E qui viene il bello: si è visto che gli ormoni tiroidei regolano l’espressione di queste pompe del calcio in modelli animali. Inoltre, aumentano l’attività di un certo tipo di recettore nel tessuto muscolare che stimola lo scarico di questi ioni nel citosol [9]. Questo è un altro elemento che indica un potenziale aumento del dispendio energetico come risultato del mantenimento dell’accumulo di ioni calcio nel reticolo endoplasmatico.

Infine, ci sono buone prove che indicano che “sabota” la fosforilazione ossidativa. Come detto sopra, ma questa volta in breve, la fosforilazione ossidativa avviene in un organello cellulare chiamato mitocondrio. I macronutrienti che mangiamo vengono ulteriormente scomposti in componenti più piccoli e in questo processo viene rilasciata energia sotto forma di coppie di elettroni. Un complesso gioco molecolare nei mitocondri tra varie molecole e complessi proteici estrae l’energia da queste coppie di elettroni, utilizzandola essenzialmente per pompare protoni (H+). Questi protoni vengono pompati all’esterno del nucleo dei mitocondri, chiamato matrice mitocondriale, e nello spazio intermembrana – lo spazio tra la membrana mitocondriale interna e quella esterna (i mitocondri hanno due membrane, una che avvolge l’altra). Questo crea un gradiente protonico, con un’alta concentrazione di protoni nello spazio intermembrana e una concentrazione relativamente bassa nella matrice mitocondriale. Proprio come l’acqua che scorre dall’alto verso il basso, da cui possiamo estrarre energia con una turbina ad acqua, le cellule possono estrarre energia da questi protoni che scendono lungo il loro gradiente di concentrazione guidando questo flusso attraverso un fantastico macchinario proteico chiamato ATP sintasi. È questo che alimenta la sintesi di ATP.

Ok, torniamo al modo in cui gli ormoni tiroidei influiscono su questo aspetto: aumentano l’espressione delle proteine di disaccoppiamento [10, 11]. Si tratta di proteine incorporate nella membrana interna dei mitocondri che lasciano fuoriuscire i protoni lungo il loro gradiente di concentrazione. I protoni passano quindi dallo spazio intermembrana alla matrice mitocondriale, senza passare per l’ATP sintasi. In questo modo, l’energia viene rilasciata come calore anziché essere destinata alla produzione di ATP.

Gli ormoni tiroidei influenzano il turnover delle proteine:

Sembrerà strano, ma non è così raro sentire qualcuno che dice di assumere T3 in Bulk nel tentativo aumentare il turnover proteico. Ma è una buona idea? No. Mentre il turnover proteico aumenta, si verifica un contemporaneo aumento sia della sintesi proteica sia della degradazione proteica, quest’ultima supera il tasso di sintesi. Di conseguenza, si verifica una degradazione netta delle proteine.

In uno studio in cui i soggetti hanno ricevuto 150mcg di T3 al giorno per 7 giorni, la degradazione proteica è aumentata notevolmente [12]. L’escrezione di azoto (un indicatore della degradazione delle proteine) è aumentata del 45% e l’ossidazione della leucina del 74%. È stato riscontrato anche un piccolo aumento della sintesi proteica corporea, ma l’entità era inferiore all’aumento della degradazione proteica. Un altro studio, nel quale è stata usata una dose di 100mcg di T3 al giorno per 2 settimane, ha ottenuto risultati simili [13]. La sintesi proteica corporea a digiuno è aumentata del 9%, anche se in modo non statisticamente significativo, mentre la degradazione proteica e l’ossidazione della leucina hanno mostrato un aumento statisticamente significativo, rispettivamente del 12 e del 24%.

L’aspetto forse più interessante è che i ricercatori hanno anche prelevato biopsie muscolari dal muscolo gastrocnemio. Hanno misurato una serie di elementi, tra cui l’area della sezione trasversale (CSA) delle fibre muscolari. I risultati sono stati i seguenti:

Si tratta di una situazione piuttosto drastica per sole 2 settimane. (Si noti anche il cambiamento del tipo di fibra indotto da uno stato di ipertiroidismo).

In un altro studio, sei partecipanti hanno ricevuto 2mcg/kg di peso corporeo di T4 al giorno per 6 settimane, insieme a 1mcg/kg di peso corporeo di T3 al giorno per le ultime 2 settimane [14]. Questo (le prime 4 settimane) è un po’ più alto di un dosaggio completo di ormoni tiroidei. In effetti, il TSH è stato soppresso da 1,8 a 0,3 mIU/L e sia il T4 che il T3 sono aumentati in modo significativo. La successiva aggiunta di T3 ha reso i livelli di TSH non rilevabili e ha aumentato ulteriormente i livelli di T3. In questo studio non è stata misurata la cinetica delle proteine muscolari. È stata misurata la sintesi e la degradazione delle proteine nell’intero corpo nello stato di post-assorbimento. L’integrazione di ormoni tiroidei ha portato a un aumento di entrambi, ma con un aumento sostanziale della degradazione. Sarebbe ragionevole ipotizzare che questo rifletta anche ciò che accade nel tessuto muscolare.

Infine, vale la pena sottolineare un altro studio di lunga durata, con un dosaggio relativamente basso rispetto agli altri studi. Lovejoy et al. hanno somministrato T3 per 2 mesi a un piccolo gruppo di uomini [15]. Il dosaggio è iniziato con 75 mcg di T3 al giorno, ma è stato ridotto a 50 o 62,5 mcg al giorno quando i livelli di T3 nel siero superavano i 4,6 nmol/L. Cosa che, in effetti, si è verificata per 5 dei 7 uomini partecipanti. Il bilancio dell’azoto è risultato significativamente ridotto rispetto al basale nella seconda e terza settimana, ma in seguito tendeva a tornare verso lo zero. Questo fa pensare a un meccanismo di risparmio proteico che entra in funzione dopo le prime settimane. Inoltre, hanno riscontrato una diminuzione significativa della massa magra (-1,5 kg) e della massa grassa (-2,7 kg) dopo 6 settimane. Alla 9a settimana, la massa magra non è diminuita ulteriormente (-0,1 kg rispetto alla 6a settimana), mentre la massa grassa è sembrata continuare a diminuire (-0,6 kg), anche se non si tratta di una differenza statisticamente significativa rispetto alla 6a settimana. Non sono state riscontrate differenze statisticamente significative nelle misure del turnover proteico, ma questo è stato probabilmente il risultato delle ridotte dimensioni del campione: un errore statistico di tipo 2.

Conclusioni:

Gli agenti anabolizzanti, che essi siano SARM steroidei o non steroidei, possono annullare gli effetti catabolici degli ormoni tiroidei? Dai dati aneddotici ed empirici raccolti sul campo sembrerebbe molto probabile, in una certa misura, ma non ci sono dati clinici al riguardo. La variabile di picco nella questione è il dosaggio. Si è potuto osservare che gli atleti con maggiori vantaggi dalla somministrazione di T3 in regimi ipocalorici protratti li ottenevano con dosaggi nel range tra 25 e 50mcg/die massimo! Tale dosaggio, con riscontro per via esami ematici, permette all’atleta di mantenere livelli tiroidei da normo o ipercalorica, senza sforare il range di riferimento fisiologico, nonostante la forte restrizione alimentare. Ovviamente, questi atleti sono sottoposti ad una preparazione complessa comprendente l’uso di uno o più PEDs.

I dosaggi da 100-150mcg/die di T3 o 200mcg/die di T4 sono del tutto controproducenti, a meno che per il modesto aumento del dispendio energetico (poche centinaia di kcal, con un aumento del 10%-15% del tasso metabolico a riposo) siate disposti a ritrovarvi ipertiroidei e fortemente catabolici.

Oltretutto, in ipocalorica, il T4 subisce comunque una riduzione della conversione in T3. L’uso concomitante di GH può migliorare questa risposta.

In conclusione, ricordiamo gli effetti collaterali legati ad uno stato di ipertiroidismo:

  • accelerazione della frequenza cardiaca;
  • palpitazioni;
  • possibili aritmie;
  • forte calo di peso e perdita di massa muscolare;
  • insonnia;
  • ansia;
  • tremori;
  • sudorazione;
  • debolezza muscolare;
  • aumento del reverse T3 [legato ad abuso di farmaci contenenti T3 e/o T4].

Riflettete e traete le corrette conclusioni… la conoscenza per farlo ora non vi manca. Per la capacità beh, miracoli non ne faccio…

Gabriel Bellizzi

Riferimenti:

  1. Carlé, Allan, Anne Krejbjerg, and Peter Laurberg. “Epidemiology of nodular goitre. Influence of iodine intake.” Best practice & research Clinical endocrinology & metabolism 28.4 (2014): 465-479.
  2. Nicoloff, John T., et al. “Simultaneous measurement of thyroxine and triiodothyronine peripheral turnover kinetics in man.” The Journal of clinical investigation 51.3 (1972): 473-483.
  3. Bianco, Antonio C., et al. “Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases.” Endocrine reviews 23.1 (2002): 38-89.
  4. Mendel, Carl M. “The free hormone hypothesis: a physiologically based mathematical model.” Endocrine reviews 10.3 (1989): 232-274.
  5. Gereben, Balázs, et al. “Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling.” Endocrine reviews 29.7 (2008): 898-938.
  6. Silva, J. Enrique. “Thermogenic mechanisms and their hormonal regulation.” Physiological reviews 86.2 (2006): 435-464.
  7. Ismail-Beigi, Faramarz. “Thyroid hormone regulation of Na, K-ATPase expression.” Trends in Endocrinology & Metabolism 4.5 (1993): 152-155.
  8. Everts, M. E. “Effects of thyroid hormones on contractility and cation transport in skeletal muscle.” Acta Physiologica Scandinavica 156.3 (1996): 325-333.
  9. Mullur, Rashmi, Yan-Yun Liu, and Gregory A. Brent. “Thyroid hormone regulation of metabolism.” Physiological reviews 94.2 (2014): 355-382.
  10. Barbe, Pierre, et al. “Triiodothyronine‐mediated upregulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes.” The FASEB Journal 15.1 (2001): 13-15.
  11. de Lange, Pieter, et al. “Uncoupling protein-3 is a molecular determinant for the regulation of resting metabolic rate by thyroid hormone.” Endocrinology 142.8 (2001): 3414-3420.
  12. Gelfand, Robert A., et al. “Catabolic effects of thyroid hormone excess: the contribution of adrenergic activity to hypermetabolism and protein breakdown.” Metabolism 36.6 (1987): 562-569.
  13. Martin, WH 3rd, et al. “Mechanisms of impaired exercise capacity in short duration experimental hyperthyroidism.” The Journal of clinical investigation 88.6 (1991): 2047-2053.
  14. Tauveron, I. G. O. R., et al. “Response of leucine metabolism to hyperinsulinemia under amino acid replacement in experimental hyperthyroidism.” American Journal of Physiology-Endocrinology and Metabolism 269.3 (1995): E499-E507.
  15. Lovejoy, Jennifer C., et al. “A paradigm of experimentally induced mild hyperthyroidism: effects on nitrogen balance, body composition, and energy expenditure in healthy young men.” The Journal of Clinical Endocrinology & Metabolism 82.3 (1997): 765-770.

Adipotide – ascesa e caduta di un farmaco sperimentale.

Introduzione:

Come ben sappiamo, la maggior parte dei farmaci con potenziale sulla perdita di peso agiscono sul aumento della lipolisi e/o della termogenesi, ma anche sulla soppressione dell’appetito che può essere presente insieme alle prima citate reazioni iatrogene nella medesima molecola. Ma esiste un farmaco che si differenzia di molto dalle molecole classicamente utilizzate per la riduzione del peso/grasso. Questo farmaco non è molto conosciuto e fino a poco tempo fa era in fase di test su scimmie rhesus obese: si dice che “uccida” le cellule adipose. I ricercatori dell’Università del Texas pensavano che il farmaco potesse un giorno aiutare a combattere l’obesità negli esseri umani.

Infatti, basti pensare che nel giro di soli 20 anni (dal 1990 al 2010), si è verificato un drammatico aumento dell’obesità negli Stati Uniti e i tassi rimangono alti. Nel 2010, nessuno stato degli Stati Uniti aveva una prevalenza di obesità inferiore al 20%. Circa un adulto su tre e un bambino su sei sono obesi. L’obesità è oggi epidemica negli Stati Uniti e una delle principali cause di morte, attribuibile a malattie cardiache, cancro e diabete. L’Europa non se la passa sicuramente bene. Sulla base dell’indice di massa corporea, nel 2019 il 45% degli adulti europei era normopeso, mentre il 53% era in sovrappeso, con un 17% in condizione di obesità.

Nonostante gli sforzi significativi nell’ultimo decennio, pochissimi farmaci sono stati sviluppati con successo per il trattamento dei pazienti obesi. Attualmente, solo due farmaci approvati dalla Food and Drug Administration (FDA) per la perdita di peso sono disponibili negli Stati Uniti: il soppressore dell’appetito Fentermina e l’inibitore della digestione e assorbimento dei grassi Orlistat. L’Orlistat (Xenical) è un farmaco per la perdita di peso a lungo termine. Questo farmaco riduce la digestione e l’assorbimento dei grassi alimentari nello stomaco e nell’intestino. Altri tentativi di trattare l’obesità si sono concentrati prevalentemente su farmaci volti a sopprimere l’appetito o ad aumentare il metabolismo, ma questi sforzi sono stati ostacolati dai loro effetti collaterali. Sfortunatamente, per una persona nella media è comune riprendere peso indipendentemente dai metodi di trattamento dell’obesità applicati.

Un gruppo di ricercatori ha progettato un farmaco, il peptidomimetico ligando-diretto CKGGRAKDC-GG-D(KLAKLAK)2 (chiamato Adipotide), che è un peptide sintetico che innesca la morte del adipocita. Il farmaco agisce sul tessuto adiposo bianco. Il tessuto adiposo bianco è, per fare un esempio, il tipo di grasso malsano che si accumula sottocute e a livello viscerale.

Caratteristiche del Adipotide:

Più nello specifcio, sto parlando del Prohibitin-targeting peptide 1 (noto anche come prohibitin-TP01 e TP01; nome commerciale Adipotide), un peptidomimetico con sequenza CKGGRAKDC-GG-D(KLAKLAK)2. È un farmaco sperimentale proapoptotico[1] che ha dimostrato di causare una rapida perdita di peso nei topi[2] e nelle scimmie rhesus. [3] Il suo meccanismo d’azione è quello di colpire i vasi sanguigni specifici che riforniscono di sangue il tessuto adiposo, causare il restringimento dei vasi e l’apoptosi delle cellule adipose alimentate da quei vasi.[4] Il TP01 è progettato per legarsi a due recettori, il ANXA2 e quello della prohibitina, che sono specifici dei vasi sanguigni che riforniscono il tessuto adiposo bianco.[5]

Sequenza amminoacidica: Cys-Lys-Gly-Gly-Arg-Ala-Lys-Asp-Cys—Gly-Gly–(Lys-Leu-Ala-Lys-Leu-Ala-Lys)2
Formula Molecolare: C152H252N44O42
Peso Molecolare : 2611.41 g/mol

Studi sul Adipotide:

In precedenti ricerche precliniche, i topi obesi hanno perso circa il 30% del loro peso corporeo con questo peptidomimetico.[6] Scimmie di tre specie diverse hanno mostrato cambiamenti prevedibili e reversibili nella funzione del tubulo prossimale renale.[6] I livelli di grasso corporeo complessivo e addominale sono scesi, con effetti collaterali reversibili nel Peso, BMI e circonferenza addominale che hanno continuato a scendere per tre settimane dopo la fine del trattamento prima di iniziare lentamente a invertire il trend durante la quarta settimana del periodo di follow-up. Le scimmie negli studi non hanno mostrato segni di nausea o di evitamento del cibo. L’effetto renale era dose-dipendente, prevedibile e reversibile. Questa è una scoperta potenzialmente importante poiché gli effetti collaterali spiacevoli hanno limitato l’uso di farmaci approvati che riducono l’assorbimento dei grassi nell’intestino.

Nota: le barre nere sono in riferimento ai topi trattati con Adipotide.

Nel complesso, questi dati nei primati stabiliscono che l’Adipotide avrebbe potuto divenire un prototipo di una nuova classe di farmaci candidati che possono essere utili per trattare l’obesità negli esseri umani.


Comunque sia l’Adipotide risulta funziona prendendo di mira le cellule che si trovano nel tessuto adiposo bianco, come affermato da Steven Reinberg a USA Today. L’Adipotide uccide il grasso “interagendo con recettori specifici nei vasi sanguigni degli adipociti e innescando l’espressione di una proteina sintetica che fa morire le cellule. In seguito, quelle cellule morte vengono riassorbite dal corpo e metabolizzate.


Le scimmie trattate con questo peptide sono risultate più magre, almeno. In sole quattro settimane, le scimmie obese hanno perso l’11% del loro peso corporeo.[7] Le scimmie hanno anche perso il 27% del loro grasso addominale, come affermato da Tim Barribeau a io9. Attenzione però: le scimmie che erano già magre non hanno perso nemmeno un chilo, il che significa che la molecola potrebbe mirare solo al grasso extra, o subisce una riduzione nell’attività recettoriale (es. riduzione del numero e densità dei recettori target), senza intaccare la messa grassa essenziale alla sopravvivenza.


I test sono risultati senza dubbio promettenti per l’uso negli esseri umani. Di solito, i farmaci “bruciagrassi” sono testati sui topi. I ricercatori credono che questa ricerca sia particolarmente “rilevante perché è stata fatta con i primati”, ha affermato Jennifer Booton a Fox Business. Inoltre, le scimmie più grasse nello studio erano diventate corpulente grazie al loro stesso eccesso di cibo e alla mancanza di esercizio; proprio come molti umani obesi.

Come accennato in precedenza, uno studio su animali ha mostrato che l’Adipotide può portare a una significativa e rapida perdita di peso distruggendo l’apporto di sangue alle cellule adipose. Il farmaco in questione ha aiutato le scimmie rhesus obese a perdere in media l’11% del loro peso corporeo dopo quattro settimane di trattamento. Il farmaco, che funziona sulla base di un trattamento del cancro, mira alle proteine sulla superficie dei vasi sanguigni che alimentano gli adipociti bianchi e li distrugge rilasciando una molecola di sintesi che innesca un processo naturale di morte cellulare. I ricercatori guidati da scienziati dell’Università del Texas hanno prima studiato l’efficacia del nuovo farmaco su topi obesi che ha causato una diminuzione del 30% del loro peso corporeo. La prova successiva è stata effettuata su 15 scimmie in quanto le loro somiglianze con l’uomo li rendono un buon modello per prevedere la possibile efficacia e gli effetti collaterali di un farmaco nell’uomo, anche se sempre in maniera marginale. Dopo quattro settimane, i 10 primati che hanno ricevuto un’iniezione quotidiana di Adipotide hanno perso in media il 38,7% del loro grasso corporeo totale, rispetto al 14,8% degli altri cinque esemplari che sono stati trattati con placebo. Le scimmie trattate hanno anche perso il 27% del loro grasso addominale, come riportato dagli scienziati nella rivista Science Translational Medicine. [8] Anche l’indice di massa corporea (BMI) e la circonferenza addominale (giro vita) sono stati ridotti, mentre tutte e tre le misure erano invariate nelle scimmie del gruppo di controllo non trattate. Le scimmie macaco Rhesus sono state selezionate dalla colonia per lo studio in base alla loro condizione di obesità, contribuendo a fornire un modello di prova perfetto per l’obesità umana e di trattamento del diabete di tipo II.[4] Da notare, a proposito, è che il trattamento con Adipotide ha anche portato ad una migliore sensibilità all’insulina.[9]

A. Mostra la variazione del fabbisogno di insulina (area sotto la curva) per i gruppi trattati (rosso) e di controllo (blu). L’AUC è stata calcolata da un test IVGTT.
B. Mostra l’indice insulinogenico prima e dopo nei gruppi di trattamento (rosso) e di controllo (blu). I gruppi trattati mostrano una drastica riduzione della secrezione di insulina.
C. Variazione del consumo di cibo nei gruppi trattati (rosso) e di controllo (blu).

“Lo sviluppo di questo composto per uso umano fornirebbe un modo non chirurgico per ridurre effettivamente il tessuto adiposo bianco accumulato, in contrasto con gli attuali farmaci per la perdita di peso che tentano di controllare l’appetito o prevenire l’assorbimento del grasso alimentare”, ha affermato Renata Pasqualini, co-autore senior dello studio. I precedenti tentativi di trattare l’obesità si sono concentrati principalmente su farmaci volti a sopprimere l’appetito o a causare un aumento del metabolismo, ma questi sforzi sono stati ostacolati dai loro effetti collaterali. Il nuovo farmaco progettato dal gruppo MD Anderson include un agente che si lega a una proteina sulla superficie dei vasi sanguigni che supportano il grasso bianco e un peptide sintetico che innesca la morte delle cellule adipose, non appena il loro approvvigionamento di sangue cessa, le cellule adipose vengono riassorbite e metabolizzate. Il professor Wadih Arap, co-autore senior, ha affermato: “L’obesità è un importante fattore di rischio per lo sviluppo del cancro, più o meno l’equivalente dell’uso del tabacco, ed entrambi sono potenzialmente reversibili”.

Dallo studio su scimmie rhesus, la risonanza magnetica conferma che la perdita di peso deriva da una marcata diminuzione del volume del tessuto adiposo bianco. (A) La variazione percentuale del volume di grasso è stata determinata quantificando il volume con immagini di risonanza magnetica assiale T1-pesata. La variazione è rappresentata come variazione percentuale rispetto al basale (giorno 1) ed è significativamente diminuita alla fine del trattamento e alla fine del recupero (test di Mann-Whitney-Wilcoxon, P = 0,02 e P = 0,04, rispettivamente). Le barre di errore indicano il SEM (controllo, n = 3; trattato, n = 6). (B) Un modello a effetti misti dei dati nel tempo indica la significatività della diminuzione della percentuale di grasso per i gruppi trattati rispetto a quelli di controllo (P < 0,0001). (C) Immagini sagittali e assiali pesate in T1 rappresentative di uno degli animali trattati. L’intervallo del livello di finestra è indicato dalla barra colorata sulla destra. Le immagini assiali sono prese in corrispondenza della sezione trasversale indicata dalla linea bianca tratteggiata nell’immagine sagittale. Una diminuzione del contenuto di grasso è rappresentata da una diminuzione del livello della finestra (cioè dell’intensità della visualizzazione dell’immagine).

Come risultato delle sfide nello sviluppo di farmaci per la perdita di peso, attualmente c’è solo un farmaco per l’obesità approvato dalla FDA (e non solo) sul mercato, Alli, che riduce la digestione e l’assorbimento dei grassi alimentari. “Non ci può essere alcun dubbio sulla necessità di nuove strategie in merito”, ha detto Wadih Arap. “E questo rappresenta un salto di qualità in termini di una nuova strategia per il trattamento dell’obesità”. Pasqualini e il Dr. Wadih Arap, suo marito e anche un ricercatore del M.D. Anderson, sono stati in grado di sviluppare il farmaco per l’obesità dopo aver ideato una tecnica per “mappare” le varie reti di vasi sanguigni nel corpo umano. Durante più di un decennio di ricerca, hanno identificato i piccoli pezzi di proteina che si legano con le varie reti di vasi sanguigni nel corpo. In sostanza, quindi, hanno identificato lo “ZIP codes” per ciascuno di questi tipi di vasi sanguigni, e hanno sintetizzato agenti con “ZIP codes” per i vasi sanguigni delle cellule adipose che possono spegnerli. Il loro lavoro ha dimostrato che le diverse cellule hanno dei vasi sanguigni con “firme molecolari” distinte che i ricercatori paragonano ai codici postali. I ricercatori hanno teorizzato di poter privare i tumori del loro approvvigionamento di sangue combinando una terapia letale con una molecola che ha individuato il CAP dei vasi sanguinei in determinate cellule cancerose bloccandone il rifornimento di ossigeno e substrati energetici. Dopo aver identificato lo “ZIP codes” che pensavano potessero funzionare nel cancro alla prostata, si sono interrogati sulla possibilità di colpire i vasi che alimentano gli adipociti bianchi. [10]

Se iniettato su base giornaliera, i ricercatori ritengono che l’Adipodide potrebbe aiutare le persone a perdere il 40% del loro grasso corporeo in sole quattro settimane. Il team americano dietro il nuovo farmaco affermò che la loro formulazione fosse più sicura dei precedenti farmaci dietetici, che sono stati vietati per timori di sicurezza negli ultimi anni, poiché lavora direttamente sul corpo piuttosto che sul SNC.

Nonostante i riscontri positivi avuti su topi e scimmie, la ricerca sul Adipotide è stata interrotta nel 2019.[11] Tale decisione può essere riconducibile al potenziale effetto collaterale a carico dei reni, sebbene tale effetto fosse stato ridimensionato dalle dichiarazioni dei ricercatori per via della sua facile reversibilità.

Conclusioni:

Ora, sappiamo che l’Adipotide agisce sui vasi sanguinei degli adipociti bianchi causando una cessazione del flusso sanguineo e, di conseguenza, del rifornimento cellulare di ossigeno e substrati energetici: il risultato è l’apoptosi cellulare. Ma, come ho precedentemente riportato, sebbene la sua somministrazione in scimmie abbia portato ad una perdita del’11% del peso corporeo totale e il 27% della massa grassa addominale, la sua sperimentazione è stata praticamente interrotta nel 2019, nonostante l’espressione degli effetti collaterali fosse stata descritta come facilmente reversibile e non preoccupante (vedi funzione renale).

L’Adipotide non è un peptide sconosciuto agli atleti, soprattutto nella sottocultura del BodyBuilding. Sono circa 11 anni che se ne parla, anche se la discussione è sempre stata di nicchia rispetto ad altre molecole. Ed è proprio perchè se ne sa poco che bisogna fare dei dovuti chiarimenti.

Se si analizza con attenzione lo studio svolto su scimmie rhesus se ne può notare l’esatto significato dei dati, e su come questi potrebbero darci un idea su eventuali vantaggi e svantaggi di utilizzo.

Ad una coorte di scimmie (n = 15) sono stati somministrati tre livelli di dose di Adipotide (0,25, 0,43 e 0,75 mg/kg) al giorno per 28 giorni. Le scimmie rhesus magre che hanno ricevuto Adipotide (0,25 e 0,43 mg/kg) non hanno perso peso. Le scimmie del gruppo con la dose più alta hanno mantenuto il peso precedente allo studio o hanno mostrato una lieve perdita di peso.

Nelle scimmie sottoposte a necroscopia 24 ore dopo la dose finale di Adipotide, sono state osservate lesioni associate al rene che sono risultate dipendenti dalla dose; tali lesioni non erano presenti nel gruppo di controllo . Le lesioni osservate sono state classificate da minime a lievi nel gruppo a bassa dose, da minime a lievi nella maggior parte delle scimmie a dose media e da minime a moderate nel gruppo ad alta dose. Le lesioni primarie sono state classificate come degenerative/necrotiche (necrosi monocellulare) e reattive/rigenerative. Nelle scimmie sottoposte a necrosi alla fine del periodo di recupero, è stata osservata una degenerazione tubulare minima con poche cellule degenerate in una scimmia del gruppo a dose media e in due scimmie del gruppo ad alta dose. La rigenerazione tubulare e la necrosi tubulare (singola cellula con poche cellule necrotiche) erano minime in tutte le scimmie dopo il recupero. Pertanto, l’effetto collaterale principale dell’Adipotide è un danno renale relativamente lieve, prevedibile e reversibile e un’alterazione della funzione tubulare. L’accumulo anomalo di lipidi (compresa la steatosi epatica) non è stato osservato in nessuna delle scimmie che hanno ricevuto Adipotide.

E’ emerso, valutando dose-risposta ed effetti collaterali, che la dose ottimale era di 0.43mg/Kg peso per le scimmie rhesus, e non per l’uomo! La dose conservativa per l’uomo non è nota. Se dovessimo rapportare il dosaggio usato per le scimmie ad un dosaggio per l’uomo, utilizzando l’apposita formula, esso risulterebbe pari a circa 0.14mg/Kg per 28 giorni.

Valutazione antropometrica di scimmie rhesus obese trattate a dose fissa (0,43 mg/kg, sottocutaneo al giorno) di Adipotide. (Da A a C) La variazione percentuale media rispetto al basale del peso corporeo, della circonferenza addominale e dell’IMC è stata calcolata settimanalmente durante gli intervalli di trattamento (28 giorni) e di recupero (28 giorni) per ogni animale che ha ricevuto Adipotide o soluzione salina. Nel gruppo di trattamento, è stata osservata una marcata diminuzione (A) del peso corporeo medio (10,6%), (B) dell’IMC (10,0%) e (C) della circonferenza addominale (8,4%) rispetto alle misurazioni di base. Le barre di errore indicano il SEM (controllo, n = 5; trattato, n = 10). (Da D a F) Questi risultati erano statisticamente significativi (modello a effetti misti, P < 0,0001 per ogni variabile). Durante un periodo di recupero di 4 settimane, la diminuzione del peso corporeo, della circonferenza addominale e del BMI ha iniziato a invertirsi lentamente.

Va notato, inoltre, che l’effetto sensibile di perdita di grasso si è notato solo nelle scimmie in sovrappeso, mentre in quelle magre la differenza è stata irrisoria. Ciò significa che, se tale peptide venisse usato da un soggetto in sovrappeso o obeso l’effetto potrebbe essere decisamente più significativo sul totale della body fat presente alla fine della terapia rispetto all’inizio paragonato a, per esempio, un bodybuilder con il 10% di bf. Sto parlando del PARAGONE DEL TOTALE DELLA BODY FAT ALL’INIZIO E ALLA FINE DELLA TERAPIA INDIPENDENTEMENTE DALLA PERCENTUALE. in soldoni, è ovvio che uno con il 20% di bf avrà una perdita ponderale maggiore di uno con il 10%, partendo con più grasso… ecco, non mi sto riferendo a questo.

Questa differenza di risposta può essere spiegata attraverso meccanismi di controllo recettoriali che portano ad una sottoregolazione maggiore quanto più la percentuale di grasso e bassa.

Ovviamente non sto consigliando a nessuno di diventare una cavia da esperimenti, d’altronde non sappiamo praticamente nulla sugli effetti collaterali nell’uomo e sul loro grado anche qualora combaciassero in buona parte con quelli osservati nelle scimmie.

Gabriel Bellizzi

Riferimenti:

  1. “Prohibitin-targeting peptide 1”NCI Drug Dictionary. National Cancer Institutes. 2 February 2011.
  2. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (June 2004). “Reversal of obesity by targeted ablation of adipose tissue”. Nature Medicine. Nature Publishing Group. 10 (6): 625–32.
  3.  “Blood vessel mapping reveals four new ‘ZIP codes'”. medicalxpress. 24 October 2011. Retrieved 10 November 2011.
  4. Barnhart KF, Christianson DR, Hanley PW, Driessen WH, Bernacky BJ, Baze WB, et al. (November 2011). “A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys”Science Translational Medicine3 (108): 108ra112.
  5. Staquicini FI, Cardó-Vila M, Kolonin MG, Trepel M, Edwards JK, Nunes DN, et al. (November 2011). “Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients”Proceedings of the National Academy of Sciences of the United States of America
  6. Experts Applaud a Cancer Drug for Immediate Weight Loss | News Tonight.
  7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425411/
  8. PressTV – Experimental drug can help weight Loss.
  9. WTOP Mobile.
  10. Arrowhead Research Corp : The Wall Street Journal: Drug Offers Hope in Obesity Fight | 4-Traders.
  11.  “Prohibitin targeting peptide 1”Adis Insight. Springer Nature Switzerland AG.

GH e cadenza di somministrazione: giornaliera o a giorni alterni?

Introduzione:

In questi anni di divulgazione scientifica applicata allo Sport e in particolar modo al BodyBuilding, ho trattato il GH sotto l’aspetto delle modalità d’uso per specifico periodo di preparazione (“Bulk” o “Cut“), ho parlato della sua capacità soppressiva sulla secrezione di GH endogeno, del suo impatto sulla funzione tiroidea e sui limiti della lipolisi da esso indotta. Mancava però qualcosa. E questo “qualcosa” comprendeva una questione dibattuta nei forum da anni: iniezioni di GH “die” o “EOD”?

Come di mia consuetudine, mi servirò della letteratura scientifica ad oggi disponibile per trattare nel modo più accurato ed esaustivo, rimanendo pur sempre comprensibile da chi non avvezzo alla biochimica e all’endocrinologia, il tema annoso della cadenza di somministrazione del GH.

Iniziamo subito andando ad esaminare la “genesi del dibattito” …

La genesi del dibattito in uno studio:

Il trattamento dei bambini con bassa statura idiopatica mediante iniezioni giornaliere di GH umano (hGH) è seguito, dopo la sua sospensione, da una decelerazione della crescita con livelli sierici normali di GH e IGF-I.

Il studio ivi riportato [1] è stato progettato per capire e prevenire la decelerazione della crescita. I ricercatori hanno ipotizzato che questo fenomeno sia dovuto alla tolleranza a livello dell’organo bersaglio, che la tolleranza si sviluppi in risposta alla farmacocinetica non fisiologica dell’hGH iniettato quotidianamente, e che la terapia con hGH a giorni alterni lo prevenga.

Trentotto bambini prepuberi con bassa statura idiopatica, di età 3.3-9.0 anni, sono stati esaminati. Le loro altezze erano meno di -2 SD score, il tasso di crescita era superiore al 10 ° percentile per l’età, l’età ossea era inferiore al 75% dell’età cronologica, e la concentrazione sierica stimolata di GH era maggiore di 10 μg/litro.

I bambini sono stati abbinati per sesso, altezza e punteggio SD della velocità di crescita per ricevere hGH giornaliero o a giorni alterni alla stessa dose settimanale di 6 mg/m2 per un periodo di 2 anni. Le velocità di crescita medie del 1° e 2° anno erano rispettivamente 3.4 e 2.3 SD score per il gruppo di terapia giornaliera e 3.0 e 2.0 SD score per il gruppo a giorni alterni (P = NS).

Velocità di crescita dei bambini trattati con GH a giorni alterni (▨) o con un regime giornaliero di GH graphic prima, durante e 2 anni dopo l’interruzione della terapia. I valori sono la media ± SD. *, P < 0,05; **, P < 0,01.

Nei 6 mesi iniziali dopo la sospensione della terapia, la velocità di crescita è decelerata fino a un nadir di -3,9 SD score nel gruppo di terapia giornaliera, mentre è decelerata nel gruppo del giorno alternato a solo -0,2 SD score (P < 0,01).

Velocità di crescita pre-trattamento e cumulativa a 4 anni dei bambini trattati con GH a giorni alterni (▨) o con un regime giornaliero di GH graphic. I valori sono la media ± SD. *, P < 0.002.

Durante tutti i 2 anni di interruzione della terapia, quest’ultimo gruppo ha mantenuto tassi di crescita medi da -0,2 a -1,2 SD score, simili alle loro velocità di pretrattamento. Il gruppo giornaliero ha recuperato lentamente per riprendere il loro tasso medio di pretrattamento solo alla quarta valutazione semestrale fuori dalla terapia.

Avanzamento annuale della crescita ossea nei bambini trattati con GH a giorni alterni (▨) o con un regime giornaliero di GH graphic prima, durante e 2 anni dopo l’interruzione della terapia. I valori sono la media ± SD.

La velocità di crescita cumulativa a 4 anni (2 anni con e 2 anni senza terapia) del gruppo a giorni alterni era maggiore di quella del gruppo a terapia giornaliera (media, 0,9 contro 0,3 SD score; P < 0,002). Alla fine del periodo di terapia di 4 anni, la previsione di altezza da adulto del gruppo a giorni alterni era maggiore di quella del gruppo giornaliero di una media di 6,5 cm (P = 0,06).

Punteggio SD dell’altezza dei bambini trattati con GH a giorni alterni (▨) o con un regime giornaliero di GH graphic prima, durante e 2 anni dopo l’interruzione della terapia. I valori sono la media ± SD. *, P < 0,05; **, P < 0,01.

Caratteristiche cliniche di 20 pazienti che hanno ricevuto iniezioni giornaliere di hGH, rispetto a 18 pazienti che hanno ricevuto una terapia di GH a giorni alterni a una dose settimanale identica per metro quadrato di superficie corporea. 1= Test di stimolazione dell’Arginina.

Discussione oggettiva sui dati appresi:

Si tratta senza dubbio di uno studio molto approfondito e ben controllato, durato quattro anni e pubblicato sul The Journal of Clinical Endocrinology & Metabolism. Esso mostra chiaramente che le iniezioni di hGH a giorni alterni (EOD) sono molto più vantaggiose a lungo termine delle iniezioni quotidiane.

Le iniezioni quotidiane sembrano abbassare drasticamente la sensibilità del corpo alla propria secrezione di GH, e al GH esogeno. Lo studio comprendeva bambini con bassa statura idiopatica, ma i risultati possono essere estrapolati e trasposti, almeno in buona parte, a soggetti in fisiologia, e cioè non carenti di hGH e che possono utilizzare hGH esogeno periodicamente per Anti-Aging e Bodybuilding, per esempio.

Come abbiamo visto, i 38 bambini sono stati divisi in due gruppi:

  • Gruppo I: ha ricevuto iniezioni giornaliere di hGH;
  • Gruppo II: ha ricevuto iniezioni di hGH a giorni alterni.

È importante notare che il dosaggio settimanale totale di hGH era lo stesso per entrambi i gruppi. Entrambi i gruppi hanno ricevuto la terapia di hGH in modo contiguo per due anni. La loro crescita naturale è stata seguita per altri due anni dopo la fine della terapia hGH.

Sono stati tutti misurati a intervalli di tre mesi durante il periodo di quattro anni – due anni con la terapia di hGH e due anni dopo. Il GH sierico è stato misurato con un kit RIA a doppio anticorpo.

Durante la terapia con hGH, entrambi i gruppi hanno accelerato la loro crescita in modo sostanziale:

  • Gruppo I: ricevendo le iniezioni giornaliere di hGH nel primo e secondo anno la velocità di crescita era di 3.4 e 2.3 SD;
  • Gruppo II: ricevendo le iniezioni di hGH a giorni alterni aveva un tasso nella velocità di crescita di 3.0 e 2.0 SD per il primo e il secondo anno, rispettivamente.

Nel corso dei sei mesi iniziali dopo il termine della terapia, la velocità di crescita è decelerata ad un basso nadir pari a -3.9 SD di punteggio per il gruppo di terapia a somministrazione giornaliera, mentre è decelerato nel gruppo di terapia a giorni alterni di solo -0.2 SD di punteggio.

Durante i 2 anni seguenti la fine della terapia, quest’ultimo gruppo al quale sono state somministrate iniezioni EOD ha mantenuto tassi di crescita da -0.2 a -1.2 di punteggio SD, che è simile al loro punteggio SD prima del trattamento con hGH esogeno. Il gruppo giornaliero ha anch’esso mostrato un recuperato, seppur molto lentamente, alla quarta valutazione semestrale dopo la conclusione della terapia. La velocità di crescita cumulativa di 4 anni – 2 anni con e 2 anni senza terapia – del gruppo a giorni alterni era maggiore di quella del gruppo con terapia giornaliera: media, 0.9 contro 0.3 SD score.

Alla fine del periodo di terapia di 4 anni, la previsione dell’altezza adulta del gruppo a giorni alterni era maggiore di quella del gruppo giornaliero di una media di 6,5 cm – che è più di 2,5 in altezza.

Per dirlo il più semplicemente possibile, per tradurre ciò che può significare tutto ciò per un bodybuilder, l’uso giornaliero di hGH darà solo trascurabilmente migliori risultati a breve termine. Tuttavia, l’uso di hGH a giorni alterni darà risultati radicalmente migliori a lungo termine e un recupero molto migliore. Ciò significa che il corpo può tornare all’omeostasi molto più velocemente.

I due gruppi hanno ottenuto lo stesso dosaggio settimanale totale di hGH, così che il gruppo “EOD” è stato trattato con iniezioni che comprendevano il totale del giorno successivo (es. 4UI/die e 8UI/EOD), ovvero il doppio di UI del gruppo trattato ogni giorno, ma con un totale settimanale identico! I ricercatori hanno riportato che la dose era di minore importanza rispetto al programma delle iniezioni. La terapia di hGH quotidiana per 3 anni ha causato una crescita subnormale che persiste per 1,5 anni (molto male).

Può essere che il problema non sia legato tanto ai livelli di secrezione di hGH o IGF-1, ma piuttosto alla diminuita sensibilità del corpo ad esso. La parte interessante è che i livelli sierici di GH e i livelli sierici di IGF-I e IGF-binding protein sono rimasti inalterati, o relativamente mutati.

La secrezione endogena di GH del corpo riprende in pochi giorni, anche dopo una terapia di hGH a lungo termine.

L’ipotesi dei ricercatori è che la tolleranza può essere insita nella trasduzione del segnale del GH in organi bersaglio selettivi in risposta alla scomparsa del modello unico pulsatile di GH sierico durante la terapia con GH esogeno. Ciò è dovuto al fatto che il GH assunto tramite iniezioni SubQ (sottocutanea) non corrisponde alla pulsatilità di rilascio del GH del corpo.

Pulsatilità circadiana del GH negli uomini (in altro) e nelle donne (in basso).

La somministrazione giornaliera SubQ di GH si traduce in un profilo di GH sierico non fisiologico, con livelli di picco a 3-4 ore e un lento declino nel corso delle successive 12-24 ore. Questo modello può essere considerato come una somministrazione continua, piuttosto che i naturali impulsi di GH fisiologici del corpo con una frequenza di circa otto impulsi al giorno.

Farmacocinetica GH esogeno somministrato per via parenterale sottocutanea.

Supponendo che la sindrome da astinenza sia legata alla tolleranza che potrebbe essersi sviluppata verso l’hGH o l’IGF-I, si è cercato di prevenirla con un trattamento a giorni alterni. Inoltre, le dosi di hGH utilizzate in terapia spesso stimolano l’IGF-I a livelli sierici sovrafisiologici, suggerendo che i tessuti bersaglio del IGF-I possono ovviamente essere sovrastimolati rispetto al normale. Il meccanismo sembra, quindi, risiedere nell’azione del hGH e del IGF-I nei confronti di loro tessuti bersaglio. E’ stato dimostrata, fino a prova contraria, quindi, che la terapia a giorni alterni con hGH nei bambini con un asse GH-IGF-I intatto impedisce la sindrome da astinenza.

Legame GH-GHR (Recettore del GH) e seguenti pathways.

I ricercatori collegano l’analogia con un’altra sindrome di tolleranza e astinenza endocrina: “la terapia a giorni alterni con glucocorticosteroidi previene la tolleranza a quell’ormone in misura sostanziale. È interessante notare che la sindrome da astinenza da glucocorticoidi può verificarsi anche mentre l’asse ipotalamo-ipofisi-surrene è intatto, indicando che la tolleranza ai glucocorticoidi si è sviluppata a livello dell’organo bersaglio”.

Conclusioni:

Adesso sappiamo che le iniezioni giornaliere di GH abbassano drasticamente la sensibilità del corpo all’attività dell’ormone a livello dei tessuti bersaglio, sia durante l’uso di GH esogeno sia post utilizzo (bassa risposta ai propri impulsi di GH endogeno).

Come abbiamo potuto constatare, la desensibilizzazione si è verificata, a parità di dosaggio settimanale, in risposta alla somministrazione quotidiana, a differenza del protocollo EOD.

Lo stesso GH ha una breve emivita quando viene iniettato per via endovenosa, la via di somministrazione ottimale, ma l’iniezione IM o subQ porta a un rilascio lento e prolungato e a un’elevazione al di sopra dei livelli basali per 12-24 ore, che comporta una stimolazione cronica dei recettori. Questo porta a una drammatica desensibilizzazione del tessuto bersaglio che può persiste per un lungo periodi di tempo.

Per maggiori benefici, la somministrazione di hGH in ambito Bodybuilding, che sia per la crescita muscolare, la lipolisi e l’antiaging dovrebbe aderire al dosaggio a giorni alterni per massimizzare i risultati e prevenire la tolleranza nei recettori dei tessuti bersaglio. Il dosaggio EOD per ridurre la tolleranza – mantenendo una maggiore sensibilità sia all’HGH esogeno che alla produzione endogena del corpo – ha dimostrato di produrre risultati a lungo termine molto migliori rispetto alla somministrazione quotidiana.

Repetita iuvant: La somministrazione EOD mantiene una maggiore sensibilità sia all’HGH esogeno che alla produzione endogena dell’organismo post utilizzo rispetto alle iniezioni quotidiane, mentre il dosaggio settimanale rimane lo stesso.

Praticamente, il doppio dosaggio di HGH dovrebbe essere somministrato in un giorno con un intervallo di circa 8 ore. Ad esempio al mattino e alla sera e il giorno successivo dovrebbe essere omesso, e così via. Questa somministrazione previene la tolleranza nei recettori del GH e massimizza i risultati a lungo termine.
Si prega di notare che il dosaggio settimanale rimane lo stesso.

Un esempio di somministrazione “EOD” potrebbe essere il seguente:

L’hGH assunto per 12-16 settimane o più a 8 UI ogni due giorni, diviso in 4 UI a digiuno subito dopo il risveglio e altre 4 UI prese otto ore dopo. Questo approccio è abbastanza conservativo e può essere ottimale. La dose può essere ulteriormente suddivisa, se lo si desidera, per ridurre il totale delle UI iniettate in qualsiasi momento (es. 2UI appena sveglio – 2UI pre-workout – 2UI 4h dopo – 2UI prima di andare a dormire).

Ovviamente, si può estendere oltre i quattro mesi, e prendere più UI al giorno. L’approccio sopra esposto è di 8UI EOD, quindi è equivalente ad una assunzione giornaliera di 4UI, che è la media utilizzata dalla maggior parte degli utilizzatori di PEDs.

Bisogna però mettere da parte gli assolutismi, dal momento che lo studio in questione ha preso in considerazione l’altezza negli adolescenti, non la massa magra in culturisti adulti, o gli effetti Anti-Aging in adulti di mezza età, quindi è ancora una questione di sperimentazione sul campo ed estrapolazione se i risultati possono essere applicati a questi sottogruppi di utilizzatori. Comunque sia, è vero che i bodybuilder non sono bambini, né carenti di hGH idiopatico, ma la risposta sottoregolativa dei recettori del GH sono una possibilità. Vi ricordo che la “GH resistenza” esiste.

Poiché i dosaggi settimanali rimangono gli stessi, così come la durata dell’uso di hGH, il solo cambiamento del protocollo “die” a quello “EOD” varrebbe la pena di essere testato, dato che sembra statisticamente una pratica migliore rispetto al protocollo ordinario/giornaliero.

Vorrei concludere con il rendere noto che “l’ho usato tutti i giorni per mesi e mi sono tirato!” è una affermazione vuota di significato reale e realmente applicabile al discorso qui trattato: vantaggio di una somministrazione a giorni alterni di GH! Oltretutto, caro il mio bongo, dubito fortemente che tu stessi utilizzando solo GH, e che le altre molecole da te cosomministrate non abbiano avuto, a diverso grado, un impatto sulla massa grassa! Inoltre, dato ciò, non puoi affermare né uno svantaggio né una parità d’effetto delle due metodiche di cadenza nella somministrazione… a meno che tu non abbia testato tale pratica su un numero sufficiente di persone, dividendole in due gruppi trattati con una o l’altra modalità e, con la minore presenza possibile di bias, tu abbia potuto valutare oggettivamente i risultati…

Gabriel Bellizzi

Riferimenti:

1- https://academic.oup.com/jcem/article/87/8/3573/2846550?login=false

OPK-88004: nulla di nuovo sul fronte dei SARM non steroidei.

Introduzione:

OPK-88004 è un nuovo SARM non steroideo sviluppato dalla Transition Therapeutics, e che è stato acquistato dalla OKPO nel 2016.

Struttura molecolare del OPK-88004

Uno studio di recente pubblicazione svolto su questo SARM sembra aver mostrato che causa un aumento dose-dipendente della massa muscolare, che diminuisce la massa grassa e aumenta anche la quantità di Testosterone libero. Prima di eccitarvi troppo sull’ultimo punto, vediamo nel dettaglio lo studio.
Caratteristiche dello studio:

In questo studio controllato con placebo, randomizzato, in doppio cieco, 114 uomini, di età ≥19 anni, che avevano subito una prostatectomia radicale per un cancro alla prostata di basso grado e localizzato all’organo, PSA non rilevabile (<0,1 ng/mL) per ≥2 anni dopo la prostatectomia radicale e carenza di Testosterone sono stati randomizzati per gradi a placebo [0mg] o 1, 5, o 15mg/die di OPK-88004 per 12 settimane. I risultati includevano la recidiva del PSA, l’attività sessuale, il desiderio sessuale, la funzione erettile, la composizione corporea, la forza muscolare e le misure della funzione fisica, l’umore, la fatica e i marker ossei.

Risultati dello studio:

I partecipanti avevano un’età media di 67,5 anni e una grave disfunzione sessuale (punteggi medi della funzione erettile e del dominio del desiderio sessuale 7,3 e 14,6, rispettivamente). Nessun partecipante ha avuto recidive di PSA o eritrocitosi. OPK-88004 è stato associato a un aumento correlato alla dose della massa magra [non specificatamente muscolare] (P <0,001) e appendicolare (P <0,001) e a una diminuzione significativamente maggiore della percentuale di grasso corporeo (P <0,001) e della fosfatasi alcalina nel siero (P <0,001) rispetto al placebo. I cambiamenti nell’attività sessuale, il desiderio sessuale, la funzione erettile, l’umore, l’affaticamento, le prestazioni fisiche e i marker ossei non differiscono tra i gruppi (P = 0,73).

Risultati dei test per valutare il miglioramento delle prestazioni fisiche.
Variabili ormonali riscontrate durante lo studio.

Conclusioni sul OPK-88004:

La somministrazione di OPK-88004 è stata sicura e non è stata associata alla recidiva del PSA in uomini con deficit di androgeni che erano stati sottoposti a prostatectomia radicale per cancro alla prostata confinato all’organo. OPK-88004 ha aumentato la massa corporea magra e diminuito la massa grassa, ma non ha migliorato i sintomi sessuali o le prestazioni fisiche.

In conseguenza dei dati estrapolati dallo studio ivi esposto, e nonostante i dati di sicurezza a breve termine siano rassicuranti, questo SARM non steroideo mostra i difetti dei suoi predecessori:

  • Nonostante vi sia un aumento del Testosterone libero che potrebbe interessare maggiormente il pubblico rispetto al Testosterone totale, non bisogna dimenticarsi del fatto che gli Androgeni possono interagire con le attività cellulari anche attraverso interazioni non genomiche (non mediate direttamente dal recettore androgeno), le quali avvengono anche con l’ormone legato all’albumina (trasportatore ematico che lega l’ormone sessuale; pari circa al 55-35% del Testosterone). Inoltre, anche SARM non steroidei “datati” come l’Ostarina hanno mostrato le medesime caratteristiche sui livelli di Testosterone.
  • La diminuzione dell’Estradiolo (E2) può causare, in misura dipendente dall’entità del calo e dalla sensibilità individuale, molteplici problemi come depressione, letargia, affaticabilità, ansia, o disfuzione erettile (o difficolta a raggiungere l’erezione e/o a mantenerla) e riduzione della libido.
  • Problemi legati ai precedenti sono riscontrabili dalla riduzione del DHT, in maniera sempre dipendente dall’entità del calo e dalla sensibilità individuale. A tal proposito si veda la Testosterone:Estradiolo ratio o la più approfondita DHT:Estradiolo ratio.
  • Non è un caso che il trattamento con il suddetto SARM non abbia portato ad un aumento della funzione sessuale.
  • La mancanza di miglioramento nelle prestazioni fisiche e dei marker ossei, non lo rende molto allettante.
  • L’unico punto interessante rimane la riduzione della massa grassa, essendo l’aumento della massa magra estremamente generico e non inducibile a specifiche miotrofiche. Nonostante ciò, i possibili svantaggi superano di netto il suddetto vantaggio che, oltretutto, è riscontrabile in maniera accentuata in un “vecchio” SARM non steroideo, L’Andarina (S4).

Ora, come si può vedere, analizzando con logica tutti i dati in nostro possesso, possiamo valutare concretamente questo nuovo SARM non steroideo e rilegarlo in una posizione di basso interesse sia per uso terapeutico che “off-label”. Ma la ricerca effettuata non è letteralmente da buttare. I dati raccolti devono spingere la ricerca a migliorare queste molecole, sviluppando nuovi SARM che migliorino non solo il trofismo muscolo-scheletrico ma che portino ad una ottimale funzione sessuale e delle prestazioni psicofisiche.

Gabriel Bellizzi

Riferimenti:

https://doi.org/10.1210/clinem/dgab361

Indolo-3-Carbinolo (I3C) e 3,3′-Diindolylmethano (DIM): un potenziale aiuto per il controllo estrogenico?

Introduzione:

Chi mi conosce sa come io prenda con estrema cautela qualsiasi affermazione sensazionalistica nei confronti di derivati erboristici et similari, ma non solo. Ogni qual volta mi capita di leggere qualche studio o serie di dati aneddotici sono solito indagare tutto lo scindibile riguardante l’oggetto che si ritiene causa primaria di un dato evento migliorativo nella composizione corporea e/o nelle prestazioni. Non di rado le mie ricerche mi hanno portato a conclusioni nettamente negative che liquidavano le affermazioni fatte da taluni come “placebo” o “non riconducibili alla molecola in questione. Mi capitò nei primi anni di ricerca con la Carnitina e il suo presunto effetto nel miglioramento del trasporto degli acidi grassi nel mitocondrio (cosa strettamente regolata e non sovraesprimibile con integrazione della medesima), o con il Tribulus Terrestris, la Maca e altri presunti “Testo-booster”. La lista è lunga.

E’ solo di recente che la mia attenzione è stata attirata verso due molecole, un precursore e il suo derivato, contenute in significative concentrazioni (in particolare riferimento al precursore) nelle crucifere (Broccoli, Cavoli ecc…), le quali presentano una interessante, sebbene contenuta, letteratura che ne sottolinea il potenziale di azioni biochimiche tra le quali spicca quella sul metabolismo degli estrogeni. Sto parlando del Indolo-3-Carbinolo (I3C) e del suo derivato 3,3′-Diindolylmethano (DIM).

E’ mia intenzione, quindi, esporre le loro caratteristiche e la possibile portata attualmente ipotizzata dalla loro assunzione.

I3C e DIM- loro caratteristiche molecolari e attività biochimica:

L’Indolo-3-Carbinolo (C9H9NO) è prodotto dalla scomposizione del Glucosinolato Glucobrassicina, che può essere trovato a livelli relativamente alti nelle verdure crocifere come Broccoli, Cavoli, Cavolfiori, Cavolini di Bruxelle ecc… .[1] È disponibile anche sotto forma di integratore alimentare.[2] L’Indolo-3-Carbinolo è oggetto di continua ricerca biomedica sui suoi possibili effetti anticancerogeni,[3] antiossidanti e anti-aterogeni.[4] La ricerca sull’Indolo-3-Carbinolo è stata condotta principalmente utilizzando animali da laboratorio e cellule coltivate in vitro.[5] Sono stati riportati studi umani limitati e per ora inconcludenti. Una recente review della letteratura sulla ricerca biomedica ha rilevato che “l’evidenza di un’associazione inversa tra l’assunzione di verdure crocifere e il cancro al seno o alla prostata negli esseri umani è limitata e incoerente” e “sono necessari studi controllati randomizzati più ampi” per determinare se l’Indolo-3-Carbinolo supplementare ha benefici per la salute.[6]

Lo studio dei meccanismi attraverso i quali il consumo di Indolo-3-carbinolo potrebbe influenzare l’incidenza del cancro si concentra sulla sua capacità di alterare il metabolismo degli estrogeni e altri effetti cellulari. Sono stati condotti studi controllati su animali come ratti, topi e trote arcobaleno, introducendo vari livelli controllati di agenti cancerogeni e livelli di Indolo-3-Carbinolo nella loro dieta quotidiana. I risultati hanno mostrato diminuzioni dose-correlate della suscettibilità al tumore dovute all’Indolo-3-Carbinolo (indotto dalla diminuzione del legame aflatossina-DNA). La prima prova diretta dell’attività anti-iniziale pura di un anticancerogeno naturale (indolo-3-carbinolo) presente nella dieta umana è stata rivendicata da Dashwood et al. nel 1989.[7]

L’Indolo-3-Carbinolo (I3C) agisce principalmente attraverso il suo principale metabolita, il Diindolylmethano (DIM) (può comprendere fino a un terzo dei derivati del I3C[8]) e alcuni altri metaboliti che possono essere prodotti spontaneamente dall’instabile I3C (come l’indolo {3,2-b}carbazolo,[9] un costituente minore[8]). La formazione precisa di questi metaboliti implica la catalizzazione del I3C per formare indoli reattivi che poi si combinano tra loro per “costruire” una molecola più grande ma stabile, essendo il DIM il risultato della formazione di due di questi indoli.[8]

Il Diindolylmethano (DIM), come già accennato, è il principale metabolita derivato dall’acido farmaceuticamente attivo dell’Indolo-3-Carbinolo (I3C) il quale si trova in molte verdure Brassica attraverso il composto madre glucobrassicina.[10][11][12] La glucobrassicina ingerita viene catalizzata tramite l’enzima Mirosinasi (contenuto nei vegetali) convertendo in Indolo-3-Carbinolo, il quale viene rapidamente metabolizzato sia in DIM che in vari altri metaboliti nello stomaco umano tramite reazioni di condensazione acido-mediate.[8][13]

Le fonti di glucosinolati (in generale) sono elencate di seguito, con qualsiasi fonte che citi il Diindolylmethano o il suo precursore (Indole-3-Carbinolo) specificatamente menzionata in grassetto:

  • Cavoletti di Bruxelles, 104mg per 44 g (mezza tazza)[14];
  • Crescione da giardino, 98mg per 25g (mezza tazza)[14];
  • Senape, 79mg per 28g (mezza tazza, tritata)[14];
  • Rapa, 60mg per 65g (mezza tazza, cubetti)[14]
  • Cavolo Verza, 35mg per 45g (mezza tazza, tritato)[14]
  • Cavolo riccio, 67mg per 67g (1 tazza, tritato)[14];
  • Crescione, 32mg per 34g (1 tazza, tritato)[14];
  • Cavolo rapa, 31mg per 67g (mezza tazza, tritato)[14];
  • Cavolo rosso, 29mg per 45g (mezza tazza, tritato)[14];
  • Broccoli, 27mg per 44g (mezza tazza, tritati)[14];
  • Rafano, 24mg per 15g (cucchiaio)[14];
  • Cavolfiore, 22mg per 50g (mezza tazza tritata)[14];
  • Bok Choy, 19mg per 35g (mezza tazza, tritato)[14].

Poiché la glucobrassicina si degrada in I3C per azione dell’enzima Mirosinasi contenuto nella pianta, la disattivazione di questo enzima mediante trattamento termico (cottura) può ridurre la biodisponibilità orale di qualsiasi glucosinolato incluso DIM.[15][16] Tuttavia, una certa biodisponibilità viene conservata a causa dell’espressione della Mirosinasi anche nell’intestino umano.[17]

Tioglucosidasi (Mirosinasi)

L’ebollizione[18] e il microonde (750-900 watt)[19][20] sembrano i maggiori sospettati per la riduzione della biodisponibilità del glucosinolato; il primo a causa dell’eccesso di acqua che assorbe i composti bioattivi solubili in acqua dal cibo. In questo senso, i metodi di cottura che utilizzano meno acqua trattengono più glucosinolati rispetto a quelli che utilizzano molta acqua.[21]

È stato dimostrato che il DIM attiva la segnalazione del Fattore Nucleare Kappa-Beta (NF-kB), l’attivazione della caspasi, l’attivazione del citocromo P450 (in particolare CYP1A1, CYP1A2 e CYP19), la riparazione del DNA, il recettore degli idrocarburi arilici (AHR) e varie protein chinasi.[22][23][24]

Fattore Nucleare Kappa-Beta

L’Indolo-3-Carbinolo alimentare o integrativo, tramite il metabolita DIM, si ritiene che possa aumentare il peso del fegato come riflesso di un aumento generale della produzione dell’enzima P450;[25] questa risposta organica sembra essere dose dipendente tra basse concentrazioni nella dieta (250 ppm ) fino a quelli molto elevati (5.000 ppm) con la 2-idrossilazione degli estrogeni in aumento in relazione al peso complessivo del fegato.[25]

Uno studio che utilizzava Indole-3-Carbinol ha rilevato che le iniezioni giornaliere di 5mg nell’intestino sono state in grado di attenuare l’aumento previsto di grasso corporeo associato a una dieta ricca di grassi/calorie.[26]

Se si rapporta questa dose utilizzata in topi da laboratorio in una adatta per un essere umano adulto di 80kg si arriverebbe a circa 30mg al giorno. Se fosse somministrato per via orale probabilmente si avrebbe bisogno di una dose teoricamente più alta per ipotizzarne una qualche efficacia in tal senso.

È stato notato che il recettore degli idrocarburi arilici (AhR) ha un ruolo in alcune cellule immunitarie e nelle cellule natural killer (NK) l’attivazione di questo recettore (osservata con 10µM di 3,3′-diindolilmetano[27]) può aumentare la produzione di IFN-γ e funzione effettrice, aumentando così la loro inibizione della crescita delle cellule tumorali.[27]

Cellule Natural Killer (NK)

È stato notato che il 3,3′-Diindolylmethano (DIM) attiva sia il sottoinsieme alfa del recettore degli estrogeni (ERα)[28] che il sottoinsieme beta (ERβ),[29][30] con promozione da parte della molecola della crescita cellulare tramite ERα[ 28] non essendo un ligando diretto[31] mentre anche l’aumento della segnalazione tramite ERβ (15μM) sembra essere mediato indirettamente.[29][30] L’attivazione di ERα può dipendere dal tipo di cellula, poiché concentrazioni simili (10-15 μM; la concentrazione più bassa proposta per essere raggiunta tramite una dieta ricca di crocifere[32]) hanno mostrato efficacia nell’agire su questo recettore nel cancro al seno MCF7 e T47D cellule [28] ma non cellule MDA-MB-231 o HeLa,[29] o può essere dovuto alla sensibilità, poiché anche nelle cellule reattive concentrazioni più elevate (50μM) non riescono a causare una risposta.[28] È noto che l’attivazione indiretta è mediata prevalentemente dall’attivazione di PKA[29][31] che poi attiva MAPK e CREB.[31]

Recettore degli Estrogeni alfa (ERα), noto anche come NR3A1 (sottofamiglia del recettore nucleare 3, gruppo A, membro 1).

La maggiore concentrazione di DIM sembra indurre geni sensibili ad AhR nelle cellule del cancro al seno (CYP1A1 e CYP1B1[28-21]) suggerendo un diverso meccanismo dipendente dalla concentrazione. L’attivazione dell’AhR di per sé induce la produzione di alcuni di questi enzimi di fase I[33] che è un meccanismo di estrogenicità (attraverso l’aumento dell’attività dell’Aromatasi) osservato con pochi estrogeni ambientali[34] ma a causa della minore affinità del DIM verso l’AhR rispetto alla selezionare degli estrogeni ambientali (PCB, diossine e PAH) la combinazione dei due può comportare una minore estrogenicità relativa rispetto ai soli estrogeni ambientali.[35][36][37]

Il DIM è stato implicato nella modifica degli estrogeni preesistenti in altri metaboliti. Il processo di 2-idrossilazione, probabilmente secondario all’attivazione di AhR,[38] può aumentare il rapporto tra 2-idrossiestrone e 16α-idrossiestrone, che si pensa sia un profilo meno estrogenico dato dagli estrogeni.[39] I processi di 4-idrossilazione e 16-idrossilazione non sembrano significativamente influenzati.[40] È stato osservato che l’Indolo-3-Carbinolo induce la formazione di 2-idrossiestrone secondario ad un aumento del processo di 2-idrossilazione[41] e l’integrazione orale di DIM (108mg) nelle donne con anamnesi di carcinoma mammario in fase iniziale aumenta l’incremento delle vie urinarie. concentrazioni di 2-idrossiestrone (insieme a un aumento non significativo del rapporto tra 2-idrossiestrone e 16α-idrossiestrone.[42] Nei ratti trattati con I3C nella dieta per un periodo di tempo prolungato 200-1.000ppm sembravano essere efficaci nell’aumentare la 2-idrossilazione dell’Estradiolo con l’efficacia raggiunta quasi al doppio di circa 600-1.000ppm (17,6-36,3mg/kg),[32] traducendosi in circa 3-6mg/kg in un essere umano adulto.

2-Idrossiestrone 

Le iniezioni di DIM nei ratti per due settimane prima dell’irradiazione corporea totale hanno fatto notare miglioramenti dose-dipendenti della sopravvivenza (fino al 60% da 75 mg/kg), e mentre 7,5mg/kg erano inefficaci se somministrati in questo periodo di tempo mentre una singola dose un giorno prima della irradiazione è sembrato conferire il 55% di sopravvivenza.[43] Si pensava che questo effetto protettivo fosse dovuto all’attivazione dell’atassia-teleangectasia mutata (ATM), un enzima riparatore che aumenta l’attività in risposta al danno genetico,[44] osservato con DIM 300nM ritenuto secondario all’inibizione di PP2A (MRE11 e BRCA1 anche richiesto);[43] PP2A normalmente si complessa con ATM mantenendolo in uno stato inattivo e la sua inibizione consente ad ATM di diventare iperattivo in risposta al danno genetico.[48]

Nel tessuto normale, il DIM (300nM) può attivare la via di riparazione genetica ATM in risposta al danno da irradiazione in modo dipendente da BRCA1 (uno dei suoi bersagli[43]) senza aumentare la sopravvivenza delle cellule del cancro al seno (MDA-MB-231[43]); ci sono alterazioni note in questo percorso in alcuni tumori al seno in cui BRCA1 è ridotto mentre l’ATM stesso sembra essere iperattivo ed è stato notato che l’integrazione orale di 300mg di DIM aumenta i livelli di mRNA di BRCA1 dopo 4-6 settimane di integrazione (misurata nei globuli bianchi) nelle donne che avevano una mutazione a bassa attività.[49] Alcuni studi sugli animali (usando DIM o il suo precursore I3C) che trovano effetti antitumorali sulle cellule del cancro al seno notano che questi cambiamenti si verificano insieme all’aumento della 2-idrossilazione dell’Estradiolo,[50] che sembra essere dose-dipendente fino a dosi orali molto grandi (5.000ppm nei topi o oltre 10g/kg rispetto al peso corporeo).[50]

Idrossilazione dell’Estradiolo

Nei ratti, l’ingestione orale di Indolo-3-Carbinolo (I3C) per una settimana prima dell’induzione del cancro mammario tramite DMBA ha ridotto significativamente l’incidenza (70-90%) e la molteplicità (91-96%) rispetto al controllo cancerogeno,[50] dimostrando efficacia anche sul cancerogeno ad azione diretta N-Nitroso-N-metilurea ma in misura minore (riduzione del 65% della molteplicità).[50] Anche la crescita tumorale spontanea piuttosto che indotta da tossine sembra essere appena dimezzata in uno studio (della durata di 250 giorni) in ratti alimentati con 64-128mg/kg di I3C nella dieta (l’assunzione stimata rispetto al peso corporeo è di 4,8-9,6g/kg) rispetto al controllo, con anche la molteplicità in qualche modo ridotta.[50]

Nei ratti predisposti al cancro dell’endometrio (ratti Donryu) trattati con livelli dietetici di Indolo-3-Carbinolo (I3C; 200-1.000ppm) e valutati per un periodo sperimentale prolungato, i tassi di neoplasie spontanee nell’utero dopo 660 giorni erano significativamente più alti nei controlli (38%) piuttosto che negli esemplari trattati a bassa dose di I3C (25%) con 600-1.000ppm con prestazioni uguali (14-16%);[32] questo effetto è stato osservato insieme all’aumento della 2-idrossilazione dell’Estradiolo.[32]

È stato notato che il DIM antagonizza gli effetti del Diidrotestosterone (DHT) nelle cellule del cancro prostatico (LNCaP e PC-3) di oltre il 50% a una concentrazione di 1μM in modo dipendente dal Recettore degli Androgeni, sembrava essere un antagonista diretto al recettore con affinità simile a Casodex (Bicalutamide).[51] Gli effetti antitumorali del DIM a livello della cellula prostatica non sembrano essere completamente dipendenti da questo recettore sebbene non siano dipendenti da p53 (cellule DU145[42]) e possono indurre l’arresto cellulare in un modo dipendente dall’induzione di p27 (Kip1 ) tramite Sp1 (10μM),[52] due proteine che tendono ad avere una minore attività nelle cellule della prostata androgeno-indipendenti.[53] Questa era l’attivazione di p38 a valle[52] nota che si verifica con DIM anche in altre cellule tumorali.[53]

Bicalutamide

Conclusioni sul uso di I3C o DIM per il controllo estrogenico:

Nel tessuto mammario, ma anche in altri tessuti come quello adiposo, il CYP19 (Aromatasi) catalizza le fasi finali della conversione degli androgeni (Testosterone o Androstenedione) in estrogeni (rispettivamente 17β-Estradiolo o Estrone). Ora sappiamo che il I3C, maggiormente per via della sua conversione in DIM, riduce l’espressione di CYP19 nelle cellule mammarie non tumorali e tumorigeniche estrogeno-responsive (ER+), mentre l’espressione di CYP19 è aumentata nelle cellule mammarie tumorigeniche estrogeno-indipendenti (ER-) trattate con I3C/DIM [54]. Tale effetto potrebbe verificarsi a livello sistemico il che potrebbe comportare un uso di integratori di I3C o DIM come mezzo di controllo estrogenico in quei soggetti nei quali il CYP19 viene espresso in maniera maggiore anche in situazioni di terapia ormonale sostitutiva (vedi TRT).

Ruolo dell’Aromatasi nella sintesi degli Estrogeni.

Come abbiamo visto, gli enzimi metabolizzanti di fase I, CYP1A1, CYP1A2 e CYP1B1, sono stati coinvolti nel metabolismo ossidativo degli estrogeni. Il 17β-Estradiolo può essere convertito in 2-idrossiestradiolo (2HE2) e 4-idrossiestradiolo (4HE2) rispettivamente da CYP1A1/2 e CYP1B1. 2HE2 e 4HE2 sono ulteriormente metabolizzati a 2- e 4-metossimetaboliti dall’enzima di fase II, catecol-O-metiltransferasi (COMT) [55]. Il 2HE2 è un agente non cancerogeno con un potenziale estrogenico più debole del 17β-estradiolo, mentre il 4-HE2 può essere convertito in radicali liberi che possono formare addotti del DNA e promuovere la carcinogenesi [56-57]. In diverse linee cellulari di cancro al seno, è stato dimostrato che I3C e DIM, in particolare, sovraregolano l’espressione di CYP1A1, CYP1A2 e CYP1B1 a livello di trascritto (mRNA) ma non a livello di proteina [58]. Inoltre, gli estrogeni endogeni 17β-Estradiolo ed Estrone possono essere metabolizzati irreversibilmente a 16a-idrossiestrone (16HE1) [59]. A differenza del 2-idrossiestrone (2HE1), il 16HE1 è altamente estrogenico ed è stato scoperto che stimola la proliferazione di diverse linee cellulari tumorali sensibili agli estrogeni [60-61]. È stato ipotizzato che spostare il metabolismo del 17β-Estradiolo verso 2HE1 e lontano da 16HE1, potrebbe ridurre il rischio di tumori sensibili agli estrogeni, come il cancro al seno [62]. Negli studi clinici controllati, l’integrazione orale con I3C o DIM ha costantemente aumentato le concentrazioni urinarie di 2HE1 oi rapporti urinari 2HE1:16HE1 nelle donne [63-64]. Tuttavia, ampi studi caso-controllo e prospettici di coorte non sono riusciti a trovare associazioni significative tra i rapporti urinari 2HE1:16HE1 e il rischio di cancro al seno e all’endometrio [65-66].

16a-idrossiestrone (16HE1)

Gli estrogeni endogeni, compreso il 17β-Estradiolo, esercitano i loro effetti estrogenici legandosi a specifici recettori nucleari chiamati Recettori per gli Estrogeni (ER). All’interno del nucleo, gli ER attivati dagli estrogeni possono legarsi a specifiche sequenze di DNA, note come Elementi di Risposta agli Estrogeni (ERE), nei promotori dei geni che rispondono agli estrogeni. I complessi estrogeno-ER legati all’ERE agiscono come fattori di trascrizione reclutando proteine coattivatrici e fattori di rimodellamento della cromatina nei promotori, innescando così la trascrizione dei geni bersaglio [67]. Come sappiamo, esistono due principali sottotipi di ER, ERα ed ERβ, codificati rispettivamente da due geni separati ESR1 e ESR2. Il ERα è il principale driver dell’effetto proliferativo degli estrogeni, mentre l’espressione del ERβ è stata inversamente associata alla tumorigenesi della ghiandola mammaria [68]. Livelli elevati di ERα promuovono la proliferazione cellulare nel seno e nell’utero, aumentando probabilmente il rischio di sviluppare tumori sensibili agli estrogeni [69].

Nelle cellule del cancro al seno umano sensibili agli estrogeni fatte interagire con il 17β-Estradiolo, è stato scoperto che l’I3C inibisce la trascrizione dei geni sensibili agli estrogeni senza legarsi né al ERβ né al ERα [70-71]. In effetti, è stato dimostrato che il legame di I3C ad AhR innesca la degradazione dipendente dal proteasoma di ERα [72]. La perdita del ERα indotta da I3C ha portato alla sotto-regolazione dei prodotti genici che rispondono al ERα come il fattore di trascrizione GATA3. Poiché GATA3 regola la trascrizione del gene codificante ERα ESR1, l’I3C ha impedito la sintesi di nuove trascrizioni e proteine ​​ERα, sopprimendo infine la via di segnalazione ERα. L’interruzione dell’anello cross-regolatorio GATA3/ERα da parte del I3C ha infine arrestato la proliferazione cellulare ERα-dipendente [73]. I prodotti di condensazione acida del I3C che legano e attivano AhR possono anche inibire la trascrizione dei geni sensibili agli estrogeni competendo per i co-attivatori o aumentando la degradazione del ERα [74]. Il trattamento con I3C ha anche influenzato l’espressione di altri geni ERα-responsivi, compresi quelli che codificano per il Recettore del Fattore di Crescita Insulino-Simile-1 (IGFR1) e il substrato del recettore dell’Insulina-1 (IRS-1), coinvolti nella proliferazione cellulare e deregolati nel cancro al seno ( Figura seguente) [75].

Recettore del Fattore di Crescita Insulino-Simile-1 (IGFR1)

In base alle informazioni riportate in letteratura, sebbene limitate, possiamo ipotizzare che una supplementazione di I3C o DIM possa essere funzionale ad un controllo estrogenico in soggetti trattati con terapia sostitutiva del Testosterone (TRT) che presentano superiori espressioni dell’enzima Aromatasi legate a fattori non controllabili attraverso la semplice dieta e l’allenamento (vedi riduzione della massa grassa). Parliamo quindi di condizioni di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile (cioè non quantificabile con l’intervallo di riferimento standard ma solo con analisi dei sintomi legati ad una aumentata attività estrogenica). La sua efficacia di controllo estrogenico potrebbe però non essere sufficiente in contesti di uso di dosi sovrafisiologiche di AAS aromatizzabili, specie se queste superano i 180mg di Testosterone (netto) a settimana [dati raccolti aneddoticamente].

L’I3C è disponibile come prodotto da banco senza prescrizione medica anche in Italia, da solo o in combinazione con altre molecole. Il dosaggio varia tra 200 mg/die e 800 mg/die [76]. L’integrazione di I3C ha aumentato le concentrazioni urinarie di 2HE1 negli adulti a dosi da 300 a 400 mg/die [77]. Dosi di I3C di 200 mg/die o 400 mg/die hanno migliorato la regressione della neoplasia intraepiteliale cervicale (CIN) in uno studio clinico preliminare [78]. L’I3C in dosi fino a 400 mg/die è stato usato per trattare la papillomatosi respiratoria ricorrente (vedi Trattamento della malattia) [79-80]. In caso di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile, il dosaggio di 400mg/die ha portato benefici apprezzabili, sebbene con risposte soggettive, nel giro di 7-14 giorni di somministrazione continua [dati raccolti aneddoticamente].

Il DIM è anch’esso disponibile senza prescrizione medica come integratore alimentare da banco, nonostante sia più difficile da trovare, da solo o in combinazione con altre molecole. In un piccolo studio clinico, l’integrazione di DIM alla dose di 108mg/die per 30 giorni ha aumentato l’escrezione urinaria di 2HE1 nelle donne in postmenopausa con anamnesi di cancro al seno [81]. Dosaggi di 100-200mg/die si sono dimostrati discretamente efficaci in caso di lieve iperestrogenemia o alterata estrogenemia soggetto-sensibile in individui in terapia sostitutiva del Testosterone [dati raccolti aneddoticamente].

Leggeri aumenti delle concentrazioni sieriche dell’enzima epatico, alanina aminotransferasi (ALT) sono stati osservati in due donne che hanno assunto dosi non specificate di integratori di I3C per quattro settimane [64]. Una persona ha riportato un’eruzione cutanea durante l’assunzione di 375 mg/die di I3C [82]. Alte dosi di I3C (800 mg/die) sono state associate a sintomi di squilibrio e tremore, che si sono risolti quando la dose è stata ridotta [83]. In uno studio di fase I in donne ad alto rischio di cancro al seno, 5 partecipanti su 20 hanno manifestato sintomi gastrointestinali con dosi singole ≥600 mg, sebbene altri non abbiano avuto effetti avversi con dosi singole fino a 1.200mg [84]. Non sono stati segnalati effetti avversi con il consumo giornaliero di 400mg di I3C per quattro settimane [84]. In alcuni modelli animali, è stato scoperto che l’integrazione di I3C migliora lo sviluppo del cancro indotto dal cancerogeno quando somministrato cronicamente dopo il cancerogeno [85-86]. Quando somministrato prima o contemporaneamente al cancerogeno, l’I3C orale ha inibito la tumorigenesi in modelli animali di tumori della ghiandola mammaria [87-88], dell’utero [89], dello stomaco [90], del colon [91-92], del polmone [93] e fegato [94-95]. Sebbene non siano noti gli effetti a lungo termine dell’integrazione di I3C sul rischio di cancro nell’uomo, i risultati contraddittori degli studi sugli animali hanno portato diversi esperti a mettere in guardia contro l’uso diffuso di integratori di I3C e DIM negli esseri umani fino a quando i loro potenziali rischi e benefici non saranno meglio compresi [86-96-97]. La sicurezza degli integratori contenenti I3C o DIM durante la gravidanza o l’allattamento non è stata stabilita [98].

Non sono state segnalate interazioni farmacologiche con l’integrazione di I3C o DIM nell’uomo. Tuttavia, l’evidenza preliminare che I3C e DIM possono aumentare l’attività del CYP1A2 [99-100] suggerisce che l’integrazione con I3C o DIM può ridurre le concentrazioni sieriche dei farmaci metabolizzati dal CYP1A2 [101]. Sia I3C che DIM aumentano modestamente l’attività del CYP3A4 nei ratti quando somministrati cronicamente [102]. Questa osservazione aumenta il potenziale di interazioni farmacologiche avverse nell’uomo poiché il CYP3A4 è coinvolto nel metabolismo di circa il 60% dei farmaci terapeutici. L’ambiente acido dello stomaco consente alle molecole I3C di condensare e generare un numero di oligomeri I3C biologicamente attivi. I farmaci che bloccano la produzione di acidi dello stomaco, come gli antiacidi, gli antagonisti del recettore dell’istamina2 (H2) e gli inibitori della pompa protonica, probabilmente impedirebbero la generazione di DIM e ICZ. Tuttavia, non è noto se questi farmaci limitino le attività biologiche attribuite all’I3C e ai suoi derivati ​​[98].

Si esorta il lettore ad avere cautela nell’uso delle summenzionate molecole. A causa del loro effetto sui livelli di Estrogeni (ricordo che gli estrogeni hanno, tra le altre cose, un impatto significativo sulla funzione cerebrale, metabolismo osseo e comportamento/attività sessuale).[103][104] Prima di procedere con il trattamento assicurarsi, per via di analisi specifiche e consulto di specialisti, che i livelli estrogenici e/o la loro attività tissutale necessitino di un controllo per via di trattamento con molecole esogene.

Gabriel Bellizzi

Riferimenti:

  1. https://www.chemblink.com/products/700-06-1.htm
  2. https://www.chemblink.com/products/700-06-1.htm
  3. Sarubin-Fragakis, A.; Thomson, C.; American Dietetic Association (2007). The Health Professional’s Guide to Popular Dietary Supplements. American Dietetic Association. p. 312. ISBN 9780880913638.
  4. Park, N. I.; Kim, J. K.; Park, W. T.; Cho, J. W.; Lim, Y. P.; Park, S. U. (2010). “An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes”. Molecular Biology Reports38(8): 4947–4953. 
  5. “indole-3-methanol (CHEBI:24814)”Chemical Entities of Biological Interest (ChEBI). European Bioinformatics Institute. Retrieved 2016-03-25.
  6. Tilton, S. C.; Hendricks, J. D.; Orner, G. A.; Pereira, C. B.; Bailey, G. S.; Williams, D. E. (2007). “Gene expression analysis during tumor enhancement by the dietary phytochemical, 3,3′-diindolylmethane, in rainbow trout”Carcinogenesis28 (7): 1589–1598.
  7. Higdon, J.; Delage, B.; Williams, D.; Dashwood, R. (2007). “Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis”Pharmacological Research55 (3): 224–236. 
  8. Dashwood, R. H.; Arbogast, D. N.; Fong, A. T.; Pereira, C.; Hendricks, J. D.; Bailey, G. S. (1989). “Quantitative inter-relationships between aflatoxin B1 carcinogen dose, indole-3-carbinol anti-carcinogen dose, target organ DNA adduction and final tumor response”. Carcinogenesis10 (1): 175–181. 
  9. Grose KR, Bjeldanes LF. Oligomerization of indole-3-carbinol in aqueous acidChem Res Toxicol. (1992)
  10. Riby JE1, et al. The major cyclic trimeric product of indole-3-carbinol is a strong agonist of the estrogen receptor signaling pathwayBiochemistry. (2000)
  11. Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivativesCell Cycle. (2005)
  12. Pappa G, et al. Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitroCarcinogenesis. (2007)
  13. Bradfield CA, Bjeldanes LF. Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolismJ Toxicol Environ Health. (1987)
  14. De Kruif CA, et al. Structure elucidation of acid reaction products of indole-3-carbinol: detection in vivo and enzyme induction in vitroChem Biol Interact. (1991)
  15. McNaughton SA, Marks GC. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetablesBr J Nutr. (2003)
  16. Shapiro TA, et al. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humansCancer Epidemiol Biomarkers Prev. (2001)
  17. Conaway CC, et al. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoliNutr Cancer. (2000)
  18. Shapiro TA, et al. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetablesCancer Epidemiol Biomarkers Prev. (1998)
  19. Rouzaud G, Young SA, Duncan AJ. Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteersCancer Epidemiol Biomarkers Prev. (2004)
  20. Verkerk R, Dekker M. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatmentsJ Agric Food Chem. (2004)
  21. Rungapamestry V, et al. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durationsJ Agric Food Chem. (2006)
  22. Song L, Thornalley PJ. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetablesFood Chem Toxicol. (2007)
  23. Weng JR, et al. Indole-3-carbinol as a chemopreventive and anti-cancer agentCancer Lett. (2008)
  24.  Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin.
  25. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Diindolylmethanes Differentially Induce Cytochrome P450 1A1, 1B1, and 19 in H295R Human Adrenocortical Carcinoma.
  26.  Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice.
  27. Chang HP, et al. Antiobesity activities of indole-3-carbinol in high-fat-diet-induced obese miceNutrition. (2011)
  28. Shin JH1, et al. Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptorProc Natl Acad Sci U S A. (2013)
  29. Marques M, et al. Low levels of 3,3′-diindolylmethane activate estrogen receptor α and induce proliferation of breast cancer cells in the absence of estradiolBMC Cancer. (2014)
  30. Selective Activation of Estrogen Receptor-β Target Genes by 3,3′-Diindolylmethane.
  31. Lo R, Matthews J. A new class of estrogen receptor beta-selective activatorsMol Interv. (2010)
  32. Leong H1, et al. Potent ligand-independent estrogen receptor activation by 3,3′-diindolylmethane is mediated by cross talk between the protein kinase A and mitogen-activated protein kinase signaling pathwaysMol Endocrinol. (2004)
  33. Leong H1, Firestone GL, Bjeldanes LF. Cytostatic effects of 3,3′-diindolylmethane in human endometrial cancer cells result from an estrogen receptor-mediated increase in transforming growth factor-alpha expressionCarcinogenesis. (2001)
  34. Sanderson JT, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and diindolylmethanes differentially induce cytochrome P450 1A1, 1B1, and 19 in H295R human adrenocortical carcinoma cellsToxicol Sci. (2001)
  35. Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms.
  36. Okino ST, et al. Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer preventionCancer Prev Res (Phila). (2009)
  37. Parkin DR, et al. Inhibitory effects of a dietary phytochemical 3,3′-diindolylmethane on the phenobarbital-induced hepatic CYP mRNA expression and CYP-catalyzed reactions in female ratsFood Chem Toxicol. (2008)
  38. Wattenberg LW, Loub WD. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indolesCancer Res. (1978)
  39. Jellinck PH1, et al. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylationBiochem Pharmacol. (1993)
  40. Estrogenic and antiestrogenic activities of 16α- and 2-hydroxy metabolites of 17β-estradiol in MCF-7 and T47D human breast cancer cells.
  41. Sepkovic DW, et al. Catechol estrogen production in rat microsomes after treatment with indole-3-carbinol, ascorbigen, or beta-naphthaflavone: a comparison of stable isotope dilution gas chromatography-mass spectrometry and radiometric methodsSteroids. (1994)
  42. Bradlow HL, et al. 2-hydroxyestrone: the ‘good’ estrogenJ Endocrinol. (1996)
  43. Dalessandri KM1, et al. Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancerNutr Cancer. (2004)
  44. Fan S1, et al. DIM (3,3′-diindolylmethane) confers protection against ionizing radiation by a unique mechanismProc Natl Acad Sci U S A. (2013)
  45. Kitagawa R1, Kastan MB. The ATM-dependent DNA damage signaling pathwayCold Spring Harb Symp Quant Biol. (2005)
  46. Goodarzi AA1, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2AEMBO J. (2004)
  47. Kotsopoulos J1, et al. BRCA1 mRNA levels following a 4-6-week intervention with oral 3,3′-diindolylmethaneBr J Cancer. (2014)
  48. Grubbs CJ1, et al. Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinolAnticancer Res. (1995)
  49. Le HT, et al. Plant-derived 3,3′-Diindolylmethane is a strong androgen antagonist in human prostate cancer cellsJ Biol Chem. (2003)
  50. Vivar OI1, et al. 3,3′-Diindolylmethane induces a G(1) arrest in human prostate cancer cells irrespective of androgen receptor and p53 statusBiochem Pharmacol. (2009)
  51. Karan D1, et al. Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cellsCarcinogenesis. (2002)
  52. Xue L1, Firestone GL, Bjeldanes LF. DIM stimulates IFNgamma gene expression in human breast cancer cells via the specific activation of JNK and p38 pathwaysOncogene. (2005)
  53. Saw CL, et al. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanatesBiopharm Drug Dispos. (2011)
  54. Belous AR, Hachey DL, Dawling S, Roodi N, Parl FF. Cytochrome P450 1B1-mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer Res. 2007;67(2):812-817.
  55. Jefcoate CR, Liehr JG, Santen RJ, et al. Tissue-specific synthesis and oxidative metabolism of estrogens. J Natl Cancer Inst Monogr. 2000(27):95-112.
  56. Kwon YJ, Baek HS, Ye DJ, Shin S, Kim D, Chun YJ. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/beta-catenin signaling via Sp1 upregulation. PLoS One. 2016;11(3):e0151598.  
  57. Park SA, Lee MH, Na HK, Surh YJ. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression. Oncotarget. 2016;8(1):164-178. 
  58. Szaefer H, Licznerska B, Krajka-Kuzniak V, Bartoszek A, Baer-Dubowska W. Modulation of CYP1A1, CYP1A2 and CYP1B1 expression by cabbage juices and indoles in human breast cell lines. Nutr Cancer. 2012;64(6):879-888.
  59. Ziegler RG, Fuhrman BJ, Moore SC, Matthews CE. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids. 2015;99(Pt A):67-75. 
  60. Telang NT, Suto A, Wong GY, Osborne MP, Bradlow HL. Induction by estrogen metabolite 16 alpha-hydroxyestrone of genotoxic damage and aberrant proliferation in mouse mammary epithelial cells. J Natl Cancer Inst. 1992;84(8):634-638.  
  61. Yuan F, Chen DZ, Liu K, Sepkovic DW, Bradlow HL, Auborn K. Anti-estrogenic activities of indole-3-carbinol in cervical cells: implication for prevention of cervical cancer. Anticancer Res. 1999;19(3A):1673-1680.  
  62.  Bradlow HL, Telang NT, Sepkovic DW, Osborne MP. 2-Hydroxyestrone: the ‘good’ estrogen. J Endocrinol. 1996;150 Suppl:S259-265.
  63. Bradlow HL, Michnovicz JJ, Halper M, Miller DG, Wong GY, Osborne MP. Long-term responses of women to indole-3-carbinol or a high fiber diet. Cancer Epidemiol Biomarkers Prev. 1994;3(7):591-595. 
  64. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP. Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl. 1997;28-29:111-116.
  65. Arslan AA, Shore RE, Afanasyeva Y, Koenig KL, Toniolo P, Zeleniuch-Jacquotte A. Circulating estrogen metabolites and risk for breast cancer in premenopausal women. Cancer Epidemiol Biomarkers Prev. 2009;18(8):2273-2279.
  66. Zeleniuch-Jacquotte A, Shore RE, Afanasyeva Y, et al. Postmenopausal circulating levels of 2- and 16alpha-hydroxyestrone and risk of endometrial cancer. Br J Cancer. 2011;105(9):1458-1464.
  67. Liehr JG. Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev. 2000;21(1):40-54. 
  68. Ashok BT, Chen Y, Liu X, Bradlow HL, Mittelman A, Tiwari RK. Abrogation of estrogen-mediated cellular and biochemical effects by indole-3-carbinol. Nutr Cancer. 2001;41(1-2):180-187. 
  69. Meng Q, Yuan F, Goldberg ID, Rosen EM, Auborn K, Fan S. Indole-3-carbinol is a negative regulator of estrogen receptor-alpha signaling in human tumor cells. J Nutr. 2000;130(12):2927-2931.  
  70. Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL. Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell. 2010;21(7):1166-1177.  
  71. Chen I, McDougal A, Wang F, Safe S. Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane. Carcinogenesis. 1998;19(9):1631-1639. 
  72. Marconett CN, Singhal AK, Sundar SN, Firestone GL. Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol. 2012;363(1-2):74-84. 
  73. Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci. 2003;24(3):139-145.  (PubMed)
  74. Mao CG, Tao ZZ, Chen Z, Chen C, Chen SM, Wan LJ. Indole-3-carbinol inhibits nasopharyngeal carcinoma cell growth in vivo and in vitro through inhibition of the PI3K/Akt pathway. Exp Ther Med. 2014;8(1):207-212.  (PubMed)
  75. Leem SH, Li XJ, Park MH, Park BH, Kim SM. Genome-wide transcriptome analysis reveals inactivation of Wnt/beta-catenin by 3,3′-diindolylmethane inhibiting proliferation of colon cancer cells. Int J Oncol. 2015;47(3):918-926.  (PubMed)
  76. Hendler SS, Rorvik DM. PDR for Nutritional Supplements. 2nd ed: Thomson Reuters; 2008.
  77. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP. Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl. 1997;28-29:111-116. 
  78.  Bell MC, Crowley-Nowick P, Bradlow HL, et al. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol. 2000;78(2):123-129. 
  79. Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810-815. 
  80. Rosen CA, Bryson PC. Indole-3-carbinol for recurrent respiratory papillomatosis: long-term results. J Voice. 2004;18(2):248-253. 
  81. Dalessandri KM, Firestone GL, Fitch MD, Bradlow HL, Bjeldanes LF. Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. Nutr Cancer. 2004;50(2):161-167.  (PubMed)
  82. McAlindon TE, Gulin J, Chen T, Klug T, Lahita R, Nuite M. Indole-3-carbinol in women with SLE: effect on estrogen metabolism and disease activity. Lupus. 2001;10(11):779-783. 
  83. Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810-815.
  84. Reed GA, Arneson DW, Putnam WC, et al. Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3′-diindolylmethane. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2477-2481.
  85. Kim DJ, Han BS, Ahn B, et al. Enhancement by indole-3-carbinol of liver and thyroid gland neoplastic development in a rat medium-term multiorgan carcinogenesis model. Carcinogenesis. 1997;18(2):377-381.
  86. Stoner G, Casto B, Ralston S, Roebuck B, Pereira C, Bailey G. Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indole-3-carbinol. Carcinogenesis. 2002;23(2):265-272. 
  87. Grubbs CJ, Steele VE, Casebolt T, et al. Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res. 1995;15(3):709-716.  
  88. Bradlow HL, Michnovicz J, Telang NT, Osborne MP. Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis. 1991;12(9):1571-1574. 
  89. Kojima T, Tanaka T, Mori H. Chemoprevention of spontaneous endometrial cancer in female Donryu rats by dietary indole-3-carbinol. Cancer Res. 1994;54(6):1446-1449.  
  90. Wattenberg LW, Loub WD. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res. 1978;38(5):1410-1413. 
  91. Wargovich MJ, Chen CD, Jimenez A, et al. Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat. Cancer Epidemiol Biomarkers Prev. 1996;5(5):355-360.  
  92. Guo D, Schut HA, Davis CD, Snyderwine EG, Bailey GS, Dashwood RH. Protection by chlorophyllin and indole-3-carbinol against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis. 1995;16(12):2931-2937. 
  93. Morse MA, LaGreca SD, Amin SG, Chung FL. Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res. 1990;50(9):2613-2617.
  94. Dashwood RH, Arbogast DN, Fong AT, Hendricks JD, Bailey GS. Mechanisms of anti-carcinogenesis by indole-3-carbinol: detailed in vivo DNA binding dose-response studies after dietary administration with aflatoxin B1. Carcinogenesis. 1988;9(3):427-432. 
  95. Oganesian A, Hendricks JD, Williams DE. Long term dietary indole-3-carbinol inhibits diethylnitrosamine-initiated hepatocarcinogenesis in the infant mouse model. Cancer Lett. 1997;118(1):87-94. 
  96. Dashwood RH. Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact. 1998;110(1-2):1-5. 
  97. Lee BM, Park KK. Beneficial and adverse effects of chemopreventive agents. Mutat Res. 2003;523-524:265-278.
  98. Hendler SS, Rorvik DM. PDR for Nutritional Supplements. 2nd ed: Thomson Reuters; 2008.
  99. He YH, Friesen MD, Ruch RJ, Schut HA. Indole-3-carbinol as a chemopreventive agent in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) carcinogenesis: inhibition of PhIP-DNA adduct formation, acceleration of PhIP metabolism, and induction of cytochrome P450 in female F344 rats. Food Chem Toxicol. 2000;38(1):15-23. 
  100. Lake BG, Tredger JM, Renwick AB, Barton PT, Price RJ. 3,3′-Diindolylmethane induces CYP1A2 in cultured precision-cut human liver slices. Xenobiotica. 1998;28(8):803-811. 
  101. Natural Medicines. Professional monograph: Indole-3-carbinol/Interactions with drugs; 2016.
  102. Leibelt DA, Hedstrom OR, Fischer KA, Pereira CB, Williams DE. Evaluation of chronic dietary exposure to indole-3-carbinol and absorption-enhanced 3,3′-diindolylmethane in Sprague-Dawley rats. Toxicol Sci. 2003;74(1):10-21.
  103. Culmsee, C.; Vedder, H.; Ravati, A.; Junker, V.; Otto, D.; Ahlemeyer, B.; Krieg, J.-C.; Krieglstein, J. (1999). “Neuroprotection by Estrogens in a Mouse Model of Focal Cerebral Ischemia and in Cultured Neurons: Evidence for a Receptor-Independent Antioxidative Mechanism”Journal of Cerebral Blood Flow & Metabolism19 (11): 1263–1269. 
  104. “Estrogen’s Influence on the Brain”. Society for Neuroscience.

DS20060511: oltre il limite delle Biguanidi [et simili].

Introduzione:

Chi non conosce, nel 2021, dopo quasi un secolo di ricerca, la Metformina ed i suoi effetti sul miglioramento della sensibilità all’Insulina, con conseguente miglioramento del uptake cellulare di glucosio ? E dei vantaggi che esso può apportare ai Bodybuilder in fase di “Refeed”, magari dopo periodi medio-lunghi a bassi CHO e con una capacità di gestirli non proprio ottimale?

La stessa cosa interessa anche la Berberina, la quale possiede vie farmacodinamiche molto simili alla Metformina. Entrambe le molecole, però, hanno un limite, e questo limite è comune a tutte le Biguanidi oggi in uso clinico o quelle appartenenti ai GDA (come la Berberina): la mancanza di selettività tissutale. Esse, infatti, migliorano sia l’IS del miocita che dell’adipocita, oltre ad attivare l’AMPK con alterazione del mTOR.

Nota: per chi non lo sapesse, le Biguanidi sono una categoria di farmaci ipoglicemizzanti orali di indicazione specifica contro il diabete di tipo II. A differenza di altri farmaci antidiabetici, come ad esempio le sulfaniluree, non determinano un aumento di rilascio di Insulina per cui non causano generalmente ipoglicemia. In questa sede mi riferirò con il termine “Biguanidi” a quelle molecole con tali caratteristiche, sia farmaceutiche (vedi Metformina) che appartenenti al panorama da banco denominato GDA (vedi Berberina).

Ora, potremmo anche dire che in un soggetto con una buona massa contrattile e una massa grassa tendenzialmente bassa questo “difetto” non causa particolari problemi nel complesso della preparazione. Ma c’è da considerare che una selettività miocitaria garantirebbe una ripartizione calorica ottimale in un contesto, per esempio, ipercalorico riducendo gli “approvvigionamenti” degli adipociti e prolungando sensibilmente la soglia temporale durante la quale l’atleta in questione potrebbe crescere in modo qualitativamente soddisfacente. Un pò come quando si ipotizzava sulla applicazione di molecole con teorica attività di riduzione dello stoccaggio degli Acidi Grassi. Discorsi ed effetti diversi, ma il fine è uno: aumentare il tempo di durata della “soglia di crescita qualitativa”.

Per “soglia di crescita qualitativa” intendo la possibilità di proseguire con la programmazione in ipercalorica ottenendo maggiori aumenti ipertrofici del muscolo-scheletrico piuttosto che del tessuto adiposo.

“Ma Gabriel! E l’interferenza con l’mTOR osservata con la Metformina ed altre molecole che stimolano l’attività del AMPK non è forse una limitazione ben più importante???!!!” Calma, piccola zecca interattiva, ne parlerò a tempo debito, come parlerò del fatto che è la dose a determinare se l’alterazione risulterà significativa o meno…. Proseguiamo…

In questo articolo tratterò della nuova molecola sperimentale denominata DS20060511, riporterò quanto è a nostra conoscenza ad oggi e quali sono le sue caratteristiche e possibili applicazioni che, tra l’altro, ho già accennato in questa introduzione…

Il principio della scoperta:

La riduzione dell’assorbimento del glucosio nel muscolo scheletrico è un’importante anomalia fisiopatologica nel diabete di tipo II ed è causata dalla alterazione della funzionalità di traslocazione dei GLUT4 sulla superfice cellulare del miocita nel tessuto muscolo-scheletrico.

Il trasportatore del glucosio di tipo 4 (GLUT-4), noto anche come famiglia di trasportatori di soluti 2, membro 4 del trasportatore di glucosio facilitato, è una proteina codificata, nell’uomo, dal gene SLC2A4. Il GLUT4 è il trasportatore del glucosio regolato dall’insulina, ma non solo, che si trova principalmente nei tessuti adiposo e nel muscolo striato (scheletrico e cardiaco). La prima prova di questa distinta proteina di trasporto del glucosio è stata fornita da David James nel 1988. Il gene che codifica per il GLUT4 è stato clonato e mappato nel 1989.

Struttura molecolare del GLUT-4

Il GLUT4 è il trasportatore che limita la velocità di assorbimento del glucosio e svolge un ruolo cruciale nel mantenimento dell’omeostasi del glucosio [1, 2]. I soggetti con diabete di tipo II mostrano un ridotto assorbimento di glucosio da parte del muscolo scheletrico a causa della ridotta traslocazione di GLUT4 nella superficie delle cellule del muscolo scheletrico[3]. È stato riportato che i topi diabetici con sovraespressione di GLUT4 mostrano livelli di glucosio plasmatico marcatamente ridotti sia a digiuno che in condizioni postprandiali [4,5,6].

Sebbene il GLUT4 sia immagazzinato in vescicole di stoccaggio intracellulari in condizioni basali, l’Insulina, e l’attività di contrazione del muscolo, induce la traslocazione di GLUT4 sulla superficie cellulare, facilitando l’assorbimento del glucosio [7,8]. L’Insulina attiva Akt tramite il substrato del recettore dell’Insulina (IRS)s-fosfoinositide 3-chinasi (PI3K) [9,10] e l’Akt attivato fosforila e di conseguenza inibisce le proteine ​​Akt substrato di 160 kDa (AS160) e membro della famiglia del dominio TBC1 1 (TBC1D1) , entrambi sono proteine ​​attivanti Rab GTPasi (GAP); ciò si traduce nell’attivazione delle proteine ​​Rab e nella traslocazione di GLUT4 sulla superficie della membrana cellulare [11]. È stato riportato che il substrato 1 (Rac1) della tossina botulinica C3 correlato a RAS, un’altra molecola a valle di PI3K, promuove la traslocazione di GLUT4 indipendentemente dalla via Akt-AS160/TBC1D1-Rab. Rac1 stimola la riorganizzazione della polimerizzazione dell’actina corticale, che consente l’inserimento delle vescicole contenenti GLUT4 nella membrana cellulare[12,13]. È noto che lInsulina regola la traslocazione di GLUT4 sia attraverso la via di Akt-AS160-Rab che attraverso la via di polimerizzazione di Rac1-actina[14,15]. Nei soggetti con diabete di tipo II, entrambe le vie di segnalazione dell’Insulina sono compromesse nel muscolo scheletrico, con conseguente riduzione dell’assorbimento del glucosio indotto dall’Insulina in questo tessuto.

Schema della traslocazione indotta dall’Insulina del GLUT4 dal citosol alla membrana cellulare. Il legame dell’Insulina ai suoi recettori avvia una cascata di trasduzione del segnale, che si traduce nell’attivazione di Akt. Akt agisce sul GLUT4 contenuto nelle vescicole nel citosol per facilitarne la fusione con la membrana cellulare. Quando più molecole GLUT4 sono presenti nella membrana, più la velocità di assorbimento del glucosio è elevata.

Come già accennato, la contrazione durante l’esercizio è un altro importante potenziatore della traslocazione di GLUT4 nel muscolo scheletrico[16]. All’aumentata richiesta di glucosio durante l’esercizio nel muscolo scheletrico, il GLUT4 si trasloca sulla superficie cellulare per promuovere l’apporto di glucosio al muscolo scheletrico[17,18]. L’esercizio aumenta il rapporto AMP/ATP causato dal consumo di ATP, portando all’attivazione della chinasi attivata dall’AMP (AMPK). Nonostante l’evidenza riportata di una contrazione che induce la fosforilazione di TBC1D1 mediante l’attivazione di AMPK[19] o di un aumento dell’assorbimento del glucosio nel muscolo scheletrico mediante attivazione farmacologica di AMPK da parte di AICAR[20], il significato dell’AMPK nell’assorbimento del glucosio stimolato dall’esercizio in vivo rimane controverso [21,22]. Recentemente, l’induzione da parte di Rac1 della produzione NADPH ossidasi 2-dipendente di specie reattive dell’ossigeno è stata implicata nell’assorbimento del glucosio durante l’esercizio, attraverso la regolazione della traslocazione di GLUT4 [23,24]. La contrazione del muscolo scheletrico non ha indotto la fosforilazione di IRS1 o PI3K[25]. La captazione del glucosio indotta dalla contrazione o la traslocazione di GLUT4 nel muscolo scheletrico non è stata inibita dalla Wortmannina, un inibitore di PI3K [26,27]. Inoltre, la combinazione di Insulina e contrazione del muscolo scheletrico ha causato un ulteriore aumento della traslocazione di GLUT4 e dell’assorbimento di glucosio rispetto alla sola Insulina [27]. Questi dati suggeriscono che la contrazione del muscolo scheletrico stimola la traslocazione di GLUT4 indipendentemente dall’Insulina.

Wortmannina

Nei soggetti con diabete di tipo II, i campioni bioptici del muscolo scheletrico ottenuti durante un clamp insulinico euglicemico hanno mostrato un’alterata segnalazione dell’Insulina, osservata come riduzione della fosforilazione di IRS1 e dell’attività di PI3K, nel muscolo scheletrico[28], mentre non è stato osservato alcun effetto sulla fosforilazione/attività di Akt [29]. Altri studi hanno dimostrato una riduzione della traslocazione di GLUT4 e dell’assorbimento di glucosio in soggetti con diabete di tipo II [23,28]. Inoltre, è stato riportato che la ridotta traslocazione di GLUT4 nei soggetti con diabete di tipo II è stata migliorata dall’esercizio fisico [30,31]. Questi risultati suggeriscono che l’induzione della traslocazione di GLUT4 nel muscolo scheletrico potrebbe essere un potenziale bersaglio terapeutico nei pazienti con diabete di tipo II.

Recentemente, i ricercatori dell’azienda farmaceutica giapponese Daiichi Sankyo hanno dimostrato che il derivato xantenico DS20060511 induce la traslocazione di GLUT4 specifica del muscolo scheletrico, indipendentemente dall’azioni dell’Insulina. Hanno utilizzato miotubi L6 che esprimono GLUT4 marcato con myc (L6-GLUT4myc) per esaminare la libreria di composti chimici in loro possesso e misurare la traslocazione di GLUT4 sulla superficie cellulare mediante dosaggio immunologico anti-myc quantitativo. Gli effetti del composto sull’assorbimento del glucosio e sul metabolismo del glucosio in tutto il corpo sono stati esaminati in una serie di esperimenti in vitro e in vivo. Il meccanismo d’azione del composto è stato esplorato studiando le vie di segnalazione note coinvolte nella traslocazione di GLUT4 indotta dall’Insulina e dall’esercizio fisico. Infine, abbiamo valutato il potenziale terapeutico del composto in un modello murino obeso e insulino-resistente con diabete di tipo II.

Molecola di Xantene, base strutturale dei derivati xantenici.

Nota: I derivati xantenici sono modificazioni molecolari dello Xantene (9H-xantene, 10H-9-ossaantracene), un composto organico con la formula CH2[C6H4]2O. È un solido giallo solubile nei comuni solventi organici. Lo stesso xantene è un composto oscuro, ma molti dei suoi derivati sono coloranti utili.

Il DS20060511, è un induttore specifico per la traslocazione di GLUT4 nelle cellule muscolo-scheletriche:

I ricercatori, come detto pocanzi, hanno esaminato la loro libreria chimica, composta da oltre 100.000 composti, utilizzando miotubi L6-GLUT4myc, per identificare i composti che avrebbero indotto la traslocazione di GLUT4 sulla superficie cellulare. Sono stati identificati due composti completamente diversi ed entrambi hanno superato il test per escludere composti che avrebbero esercitato effetti tossici, come l’inibizione della catena respiratoria. Ulteriori test in vitro hanno rivelato che uno dei due composti ha influenzato la via Akt, così che alla fine hanno selezionato l’altro, un composto xantenico originale, come composto con il potenziale effetto di indurre la traslocazione di GLUT4. L’ottimizzazione della struttura molecolare ha infine prodotto il composto xantenico più potente, DS20060511 (vedi immagine seguente). Il trattamento con DS20060511 ha aumentato la traslocazione di GLUT4 nei miotubi differenziati L6-GLUT4myc in modo concentrazione-dipendente, come nel caso del trattamento con Insulina. Tuttavia, mentre il trattamento con Insulina ha anche aumentato la traslocazione di GLUT4 negli adipociti differenziati 3T3-L1-GLUT4myc, il trattamento con DS20060511 non ha avuto quasi alcun effetto sulla traslocazione di GLUT4 in questi adipociti, suggerendo che l’induzione della traslocazione di GLUT4 da parte di DS20060511 è specifica per le cellule del tessuto muscolo-scheletrico. Coerentemente con questi dati, il trattamento con DS20060511 ha aumentato significativamente l’assorbimento di 2-DG in modo concentrazione-dipendente nei miotubi L6-GLUT4myc, come nel caso del trattamento con Insulina. Ancora una volta, mentre è stato dimostrato che l’Insulina aumenta l’assorbimento di 2-DG negli adipociti differenziati 3T3-L1-GLUT4myc, DS20060511 non ha mostrato tale effetto negli adipociti. Questi dati suggeriscono che il composto xantenico DS20060511 promuove l’assorbimento del glucosio mediante l’attivazione specifica della traslocazione di GLUT4 nelle cellule muscolo-scheletriche.

a Struttura chimica del DS20060511. b, c Induzione concentrazione-dipendente della traslocazione di GLUT4 da parte del DS20060511 e Insulina nei miotubi L6-GLUT4myc (b) e negli adipociti 3T3-L1-GLUT4myc (c). d, e Captazione di 2-DG valutata nei miotubi L6-GLUT4myc (d) e negli adipociti 3T3-L1-GLUT4myc (e). I valori mostrati sono mezzi  ± SEM, n = 3. **P < 0,01, ***P < 0,001 rispetto al controllo mediante ANOVA unidirezionale seguito dal test di Dunnett.

Il trattamento con DS20060511, riduzione dei livelli di glucosio ematico e aumento potenziato dell’assorbimento di glucosio per via della traslocazione di GLUT4 nel muscolo scheletrico in vivo:

Per studiare gli effetti del DS20060511 sulla dinamica del glucosio in vivo, il composto è stato somministrato a topi normali. Nei topi che avevano continuato ad accedere al cibo, la sola somministrazione orale di DS20060511 in modo modesto, ma statisticamente significativo, ha ridotto i livelli di glucosio nel sangue, mentre nei topi che avevano negato l’accesso al cibo durante la notte, il composto non ha esercitato alcun effetto sui livelli di glucosio nel sangue. Quando è stato somministrato prima del carico orale di glucosio nel test di tolleranza al glucosio orale (GTT), il DS20060511 ha prodotto una soppressione dose-dipendente dell’aumento dei livelli di glucosio nel sangue dopo un carico orale di glucosio. La secrezione di Insulina durante il GTT orale è stata ridotta in modo piuttosto significativo in tutti i gruppi trattati con DS20060511, suggerendo che il trattamento con DS20060511 riduce i livelli di glucosio nel sangue indipendentemente dalla secrezione di Insulina. Il trattamento con DS20060511 ha prodotto un aumento significativo dell’assorbimento di [3H]-2-DG nei muscoli soleo e gastrocnemio, ma non nel cuore o nel tessuto adiposo bianco (WAT) durante il GTT intraperitoneale. L’analisi Western blot ha rivelato un aumento dei livelli di espressione della proteina GLUT4 nella frazione della membrana plasmatica dei muscoli scheletrici nel gruppo trattato con DS2006511 come osservato in un gruppo trattato con Insulina. Questi dati suggeriscono che il trattamento con DS20060511 riduce i livelli di glucosio nel sangue aumentando l’assorbimento del glucosio nel muscolo scheletrico inducendo la traslocazione di GLUT4 in vivo.

a, b Livelli di glucosio nel sangue dopo il trattamento con DS20060511 (30 mg kg-1) in topi C57BL/6 che avevano ricevuto un accesso continuo al cibo (a) e topi a cui era stato negato l’accesso al cibo durante la notte (b) (n = 8) . I valori mostrati sono mezzi ± SEM. **P < 0.01 vs. 0 min di ANOVA unidirezionale seguito dal test di Dunnett. c Livelli di glicemia e Insulina plasmatica durante GTT orale nei topi C57BL/6 (n = 5–6). I topi hanno ricevuto la somministrazione orale di veicolo o DS20060511 alla dose indicata, 15 min prima della somministrazione di glucosio (1,5 g kg-1). I valori mostrati sono mezzi ± SEM. *P < 0.05, **P < 0.01 rispetto al veicolo per ANOVA unidirezionale seguito dal test di Williams. d Captazione di [3H]-2-DG nel muscolo soleo, nel muscolo gastrocnemio (Gastro.), nel cuore e nel tessuto adiposo bianco (WAT) a 60 min durante il GTT intraperitoneale nei topi C57BL/6 (n = 3). I topi hanno ricevuto la somministrazione orale del veicolo o DS20060511 (30 mg kg-1), 15 min prima della somministrazione di glucosio (1 g kg-1 glucosio contenente [3H]-2-DG). I valori mostrati sono mezzi ± SEM. *P < 0.05, **P < 0.01 rispetto al veicolo in base al t-test. e Livelli proteici di GLUT4 e Na,K-ATPaseα nella frazione di membrana plasmatica del muscolo tricipite surale asportato dai topi C57BL/6 (n = 2) trattati con DS20060511 (10 mg kg-1), Insulina (5 U kg− 1), o salina come veicolo, attraverso la vena cava inferiore 10 min dopo il trattamento.

Valutazione farmacocinetica del DS20060511 nei topi:

In topi normali sono state esaminate le variazioni della concentrazione plasmatica e della distribuzione del DS20060511 in possibili organi/tessuti bersaglio. I livelli di esposizione sistemica al DS20060511 dopo sua somministrazione orale erano dose dipendenti e le concentrazioni massime a 30 min dopo la somministrazione di 1, 10 e 30 mg kg-1 erano rispettivamente di 0,6, 16,5 e 71,4 μM. La misurazione delle concentrazioni di DS20060511 nei tessuti a 75 min dopo la somministrazione orale (30 mg kg-1) ha rivelato concentrazioni quasi comparabili tra il muscolo scheletrico, il WAT e il cuore. Coerentemente con il suo profilo farmacocinetico stabile, la stabilità metabolica del composto nella frazione microsomiale del fegato era elevata (89% e 79% del composto rimanente dopo 1 h di incubazione con la frazione microsomiale del fegato umano e di topo, rispettivamente).

L’effetto ipoglicemizzante del DS20060511 dipende dal GLUT4:

Per confermare che l’effetto ipoglicemizzante del DS20060511 è mediato dal GLUT4, la molecola è stata somministrata a topi GLUT4KO. L’espressione della proteina GLUT4 non era rilevabile nel muscolo scheletrico, nel cuore e nel WAT dei topi GLUT4KO. Mentre il trattamento con DS20060511 ha causato una significativa diminuzione dei livelli di glucosio nel sangue e di Insulina plasmatica nei topi wild-type (WT) durante GTT orale, questi effetti sono stati completamente aboliti nei topi GLUT4KO. Il trattamento con DS20060511 ha aumentato significativamente l’assorbimento di 2-DG da parte dei muscoli soleo ed estensore lungo delle dita (EDL) dei topi WT, mentre non è stato osservato un tale aumento dell’assorbimento muscolare nei muscoli isolati dei topi GLUT4KO trattati con DS20060511 . Questi dati confermano che l’effetto ipoglicemizzante del DS20060511 è mediato da GLUT4 nel muscolo scheletrico.

a Livelli di glicemia e insulina plasmatica durante GTT orale in topi wild-type (WT, n = 5) e GLUT4 knockout (KO, n = 6). I topi hanno ricevuto la somministrazione orale del veicolo o DS20060511 (30 mg kg-1), 15 min prima della somministrazione di glucosio (1,5 g kg-1). I valori mostrati sono mezzi ± SEM. *P < 0.05, **P < 0.01 rispetto al veicolo in base al t-test. b Captazione di [3H]-2-DG stimolata da DS20060511 nei muscoli soleo e EDL isolati asportati da topi WT (n = 6) e KO (n = 6). I valori mostrati sono mezzi ± SEM. **P < 0,01 rispetto al veicolo secondo il t-test.

Il trattamento con DS20060511 induce la traslocazione di GLUT4 senza attivazione delle vie IR-IRS1-PI3K-Akt-AS160 e -PI3K-Rac1:

La traslocazione di GLUT4 indotta dall’Insulina è attivata da (1) la via IR-IRS1-PI3K-Akt-AS16032 e (2) la via IR-IRS1-PI3K-Rac115 nel muscolo scheletrico. L’Insulina lega l’IR, che si traduce nell’attivazione di IRS1, PI3K e Akt. Akt attivato inibisce la proteina di attivazione della Rab GTPasi (GAP) AS160, che si traduce nell’attivazione delle proteine ​​Rab e nella traslocazione di GLUT4 alla membrana plasmatica[33]. D’altra parte, Rac1 è attivato da PI3K e promuove il rimodellamento dell’actina, con conseguente traslocazione di GLUT4[12]. E’ stato esaminato se il trattamento con DS20060511 aumenta la traslocazione di GLUT4 nel muscolo scheletrico attraverso questi percorsi. Sebbene la subunità IRβ e IRS1 siano state fosforilate nei muscoli scheletrici dei topi trattati con Insulina, non è stata osservata tale fosforilazione di queste proteine ​​dopo il trattamento con DS20060511. Allo stesso modo, mentre il trattamento con Insulina ha indotto la fosforilazione di Akt e AS160, il trattamento con DS20060511 non ha avuto tale effetto. Successivamente è stata eseguita la microscopia di immunofluorescenza per indagare se il DS20060511 potesse promuovere la polimerizzazione dell’actina. Sebbene sia stata osservata una forte colorazione di GLUT4 sulla superficie cellulare dopo il trattamento sia con Insulina che con DS20060511, la polimerizzazione dell’actina è stata osservata solo dopo il trattamento con Insulina nei miotubi differenziati L6-GLUT4myc. Inoltre, sebbene la traslocazione di GLUT4 sia stata indotta sia dall’Insulina che dal trattamento con DS20060511, la latrunculina B, un inibitore della polimerizzazione dell’actina, ha soppresso solo la traslocazione di GLUT4 indotta dall’Insulina, ma non quella indotta dal trattamento con DS20060511. Il co-trattamento di DS20060511 e Insulina ha comportato un aumento additivo della traslocazione di GLUT4 nei miotubi L6-GLUT4myc, anche alla concentrazione di Insulina alla quale la traslocazione di GLUT4 da parte della sola Insulina era saturata. Coerentemente con questi dati, anche l’assorbimento di 2-DG indotto dall’Insulina è stato ulteriormente aumentato dal trattamento concomitante con DS20060511 nei muscoli scheletrici isolati. In effetti, i livelli di glucosio nel sangue sono stati ridotti in misura maggiore dopo il trattamento combinato con DS20060511 più Insulina rispetto a quello dopo il solo trattamento con Insulina nei topi trattati con streptozotocina (STZ). Questi dati suggeriscono che l’attivazione né della via IR-IRS1-PI3K-Akt-AS160 né della via IR-IRS1-PI3K-Rac1 è coinvolta nella traslocazione di GLUT 4 indotta dal trattamento con DS20060511.

a, b Fosforilazione di IRβ, IRS1, Akt (Ser473) e AS160 del muscolo tricipite surale asportato da topi C57BL/6 (n = 2) trattati con DS20060511 (10 mg kg-1), Insulina (5 U kg-1 ), o soluzione salina come veicolo, attraverso la vena cava inferiore 10 min dopo il trattamento. c Immunocolorazione in fluorescenza della superficie cellulare GLUT4 e delle fibre intracellulari di actina in miotubi L6-GLUT4myc trattati con 30μM di DS20060511 o 100μnM di Insulina. Le frecce indicano la caratteristica struttura arruffata dell’actina polimerizzata e della superficie associata all’actina GLUT4. d Attività di traslocazione GLUT4 dell’Insulina 30μM DS20060511 o 100μnM in presenza dell’inibitore della polimerizzazione dell’actina, Latrunculin B, alle concentrazioni indicate. I valori mostrati sono mezzi  ± SEM, n = 3. e Traslocazione GLUT4 stimolata dall’Insulina concentrazione-dipendente in miotubi L6-GLUT4myc con o senza 30 μM DS20060511 (n = 3). f Captazione di 2-DG stimolata da DS20060511 concentrazione-dipendente con Insulina 100 nM in muscoli isolati da topi C57BL/6 (n = 3). I valori mostrati sono mezzi ± SEM. ***P < 0,001 di ANOVA unidirezionale seguito dal test di Tukey. g Livelli di glucosio nel sangue durante ITT in topi C57BL/6 trattati con STZ (n = 6–7). Il veicolo o la dose indicata di DS20060511 è stata somministrata per via orale contemporaneamente all’iniezione intraperitoneale di Insulina 0,1 U kg-1. I valori mostrati sono mezzi ± SEM. *P < 0.05 vs. veicolo per ANOVA unidirezionale seguito dal test di Dunnett. c Barra della scala in tutti i pannelli, 5 μm. Le macchie non ritagliate per a e b possono essere trovate nella figura seguente.

Il trattamento con DS20060511 aumenta l’ossidazione del glucosio durante l’esercizio fisico:

Poiché l’esercizio fisico, come l’Insulina, è ben noto per migliorare la traslocazione di GLUT4 e aumentare l’assorbimento di glucosio nel muscolo scheletrico[34], i ricercatori hanno successivamente studiato l’effetto del trattamento con DS20060511 sulla capacità di resistenza all’esercizio fisico e l’ossidazione del substrato energetico durante l’esercizio mediante calorimetria. Durante l’esercizio graduale sul tapis roulant, il VO2 è aumentato gradualmente in entrambi i gruppi trattati con il veicolo e DS20060511 e anche la capacità di resistenza all’esercizio era paragonabile tra i due gruppi. Dopo un po’ di tempo dall’inizio della corsa, il gruppo trattato con DS20060511 ha iniziato a mostrare un rapporto di scambio respiratorio (RER) relativamente più elevato rispetto al gruppo trattato con veicolo; inoltre, l’ossidazione stimata del glucosio durante il test era significativamente più alta nei topi trattati con DS20060511 rispetto ai topi trattati con veicolo, mentre l’ossidazione dei grassi era significativamente inferiore. Pertanto, il DS20060511 ha aumentato l’ossidazione del glucosio durante l’esercizio. I livelli di glucosio nel sangue sono diminuiti significativamente dopo l’esercizio nei topi trattati con DS20060511, ma non sono scesi al range di ipoglicemia. I livelli di lattato nel sangue erano comparabili tra i due gruppi.

a–c Rapporto di scambio respiratorio (RER), ossidazione stimata del glucosio e ossidazione dei grassi durante la corsa su tapis roulant graduale nei topi C57BL/6 (n = 7). Il veicolo o DS20060511 (30 mg kg−1) è stato somministrato per via orale 15 min prima di iniziare a correre. Il tapis roulant è partito dalla velocità di 10 m min−1 e aumentato di 2 m min−1 ogni 3 min. I valori mostrati sono mezzi ± SEM. *P < 0.05 vs. veicolo dal t-test.

Mancanza di effetto sulla fosforilazione dell’AMPK con Il trattamento di DS20060511:

Sulla base della scoperta che il DS20060511 ha aumentato l’utilizzo del glucosio nel muscolo scheletrico durante l’esercizio, i suoi effetti combinati con quelli della contrazione muscolare sono stati ulteriormente valutati utilizzando campioni di muscolo scheletrico isolati. L’assorbimento di 2-DG è stato aumentato in misura maggiore dopo l’elettrostimolazione muscolare combinata con il trattamento DS20060511 rispetto a quello dopo l’elettrostimolazione muscolare senza il trattamento DS20060511. Sebbene recenti scoperte suggeriscano che l’AMPK non svolga alcun ruolo nella traslocazione di GLUT4 e nell’assorbimento di glucosio nel muscolo osservato durante l’esercizio[16,22], l’attivazione di AMPK mediante stimolazione elettrica[21], nonché da AICAR[20], potrebbe aumentare l’assorbimento di glucosio nel muscolo scheletrico isolato. E’ stata esaminata la fosforilazione di AMPK dopo il trattamento con DS20060511 mediante western blotting nel muscolo scheletrico isolato. Sebbene il livello di fosforilazione dell’AMPK sia stato elevato dalla stimolazione muscolare elettrica, non è stato osservato alcun cambiamento di questo tipo dopo il trattamento con DS20060511. Il livello di fosforilazione dell’AMPK nel muscolo scheletrico è rimasto invariato dopo il trattamento con DS20060511 rispetto a quello prima del trattamento in vivo, anche in condizioni di non esercizio. Questi dati suggeriscono che l’aumento dell’assorbimento di glucosio indotto da DS20060511 è indipendente dall’attivazione dell’AMPK.

a Captazione di 2-DG stimolata da DS20060511 dipendente dalla concentrazione con contrazione muscolare (stimolazione elettrica 5 Hz) in muscoli isolati da topi C57BL/6 (n = 3). ***P < 0,001 di ANOVA unidirezionale seguito dal test di Tukey. b La contrazione muscolare (stimolazione elettrica 5 Hz) ha indotto la fosforilazione di AMPK (Thr172) con o senza 10 μM DS20060511 in muscoli isolati da topi C57BL/6. c Livelli di fosforilazione di AMPKα dei muscoli Triceps surae asportati da topi C57BL/6 (n = 2) trattati con DS20060511 (10 mg kg-1) o soluzione salina come veicolo attraverso la vena cava inferiore 10 min dopo il trattamento.

Il trattamento con DS20060511 diminuisce la glicemia in maniera eNOS-indipendente:

È stato dimostrato che il Nitroprussiato di sodio (SNP), un donatore di Ossido Nitrico (NO), aumenta l’assorbimento di glucosio nel muscolo scheletrico e che questo aumento non è inibito dall’inibitore PI3K, Wortmannin[35]. Inoltre, l’assorbimento del glucosio indotto dall’esercizio da parte del muscolo scheletrico non è stato soppresso dall’inibitore di NO NG-monometil-L-arginina (L-NMMA)[35]. Questi dati suggeriscono che il NO induce l’assorbimento del glucosio da parte del muscolo scheletrico attraverso un meccanismo che è distinto sia dall’Insulina che dalle vie di segnalazione dell’esercizio. L’Ossido Nitrico sintasi endoteliale, che è un importante enzima che genera NO, è espresso nel muscolo scheletrico. È stato riportato che l’assorbimento del glucosio è compromesso nei muscoli scheletrici isolati di topi eNOSKO[36]. Per studiare il meccanismo alla base dell’aumento dell’assorbimento di glucosio da parte del muscolo scheletrico indotto da DS20060511, è stato somministrato DS20060511 a topi eNOSKO. Il trattamento con DS20060511 ha ridotto significativamente i livelli di glucosio nel sangue sia nei topi WT che eNOSKO durante GTT orale. Sebbene i livelli di glucosio nel sangue siano stati ridotti dal trattamento con Insulina, i livelli di glucosio nel sangue sono stati ridotti ulteriormente dopo il trattamento con DS20060511, sia nei topi WT che eNOSKO, allo stesso modo. Questi dati suggeriscono che l’effetto ipoglicemizzante di DS20060511 è esercitato in modo eNOS-indipendente.

a, b Livelli di glucosio nel sangue durante GTT orale in topi wild-type (WT, n = 5) ed eNOS-knockout (KO, n = 5–6). I topi hanno ricevuto il veicolo o DS20060511 (10 mg kg-1) per via orale 15 min prima della somministrazione di glucosio (3,0 g kg-1). c, d Livelli di glucosio nel sangue durante ITT nei topi WT (n = 4) e KO (n = 5). Veicolo o DS20060511 (30 mg kg-1) è stato somministrato per via orale contemporaneamente all’iniezione intraperitoneale di insulina 0,5 U kg-1. I valori mostrati sono mezzi ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 rispetto al veicolo in base al t-test.

Il trattamento acuto e cronico con DS20060511 migliora l’intolleranza al glucosio nei topi diabetici obesi:

Per indagare se il trattamento con DS20060511 può attenuare l’intolleranza al glucosio nei topi con obesità indotta dalla dieta e resistenza all’Insulina, i ricercatori hanno condotto GTT orale in topi alimentati con dieta ricca di grassi (HFD) dopo il trattamento con DS20060511. Il trattamento con DS20060511 ha ridotto significativamente i livelli di glucosio nel sangue nei topi nutriti con HFD agli stessi livelli di quelli osservati nei topi alimentati con dieta normale durante il GTT orale. I livelli plasmatici di Insulina erano piuttosto diminuiti nei topi nutriti con HFD trattati con DS20060511. La soppressione dell’assorbimento di 2-DG indotto dall’Insulina nel muscolo scheletrico isolato da topi alimentati con HFD è stata completamente ripristinata dal trattamento con DS20060511. Questi dati suggeriscono che il trattamento acuto con DS20060511 migliora l’intolleranza al glucosio nei topi con obesità indotta dalla dieta e resistenza all’Insulina. Successivamente, è stato studiato l’effetto del trattamento cronico con DS20060511 in topi diabetici geneticamente obesi (db/db). I livelli di glucosio nel sangue sono diminuiti significativamente dal primo al 28° giorno di trattamento con DS20060511 nei topi db/db. Coerentemente con questi dati, anche il valore dell’emoglobina glicata (HbA1c) è stato significativamente ridotto dopo il trattamento cronico con DS20060511. Non ci sono state differenze statisticamente significative nel peso corporeo, nell’assunzione di cibo, nel livello di glucosio nel sangue a digiuno o nei livelli di Insulina plasmatica a digiuno tra i topi db/db trattati con DS20060511 e quelli trattati con il veicolo. Non sono stati inoltre rilevati cambiamenti significativi nei pesi dei tessuti di muscolo, cuore, WAT e fegato, o nel contenuto di glicogeno del muscolo, del cuore e del fegato. Questi dati suggeriscono che il trattamento con DS20060511 sia acuto che cronico migliora il diabete ripristinando l’assorbimento alterato del glucosio da parte del muscolo scheletrico.

a Livelli di glucosio nel sangue e di Insulina plasmatica durante un GTT orale in topi alimentati con dieta normale (NC) e ad alto contenuto di grassi (HFD) (n = 5). Veicolo o DS20060511 (30 mg kg-1) è stato somministrato per via orale 15 min prima della somministrazione orale di glucosio (1,5 g kg-1). I valori mostrati sono mezzi ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 rispetto al veicolo HFD secondo il t-test. b Effetti dell’Insulina 10 μM DS20060511 e 100 nM sull’assorbimento di 2-DG nei muscoli isolati da topi alimentati con NC (n = 6) e con HFD (n = 5). I valori mostrati sono mezzi ± SEM. **P < 0.01 per ANOVA unidirezionale seguito dal test di Tukey. c, d Cambiamenti nei livelli di glucosio nel sangue e AUC il giorno 1 e il giorno 28 durante la rialimentazione (n = 6) in topi db/db trattati cronicamente con DS20060511 (10 mg kg-1 giorno-1). I valori mostrati sono mezzi ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 rispetto al veicolo in base al t-test. e Modifica dei livelli di HbA1c nei topi db/db (n = 6) a 4 settimane. I valori mostrati sono mezzi ± SEM. *P < 0.05 vs. veicolo dal t-test.

Discussioni conclusive:

Come abbiamo visto, è stata passata al vaglio la libreria chimica in possesso dei ricercatori i quali hanno utilizzato miotubi L6-GLUT4myc per lo studio di un nuovo farmaco per il trattamento del diabete di tipo II scoprendo il composto xantenico DS20060511. Il DS20060511 ha aumentato la traslocazione di GLUT4 nei miotubi differenziati L6-GLUT4myc, ma non negli adipociti differenziati 3T3-L1-GLUT4myc, suggerendo che agisca principalmente nei muscoli scheletrici. Coerentemente, in vivo, il DS20060511 ha indotto l’assorbimento di 2-DG nei muscoli soleo e gastrocnemio, ma non nel cuore o nel tessuto adiposo. L’Insulina favorisce l’assorbimento del glucosio nel tessuto adiposo e nel muscolo scheletrico, che inevitabilmente, in condizioni metabolicamente alterate e ipercaloriche, porta all’obesità. Tuttavia, il DS20060511 migliora l’assorbimento del glucosio solo nel muscolo scheletrico e riduce la secrezione di Insulina sopprimendo l’aumento dei livelli di glucosio nel sangue dopo il carico di glucosio, sopprimendo così lo sviluppo dell’obesità; quindi, il composto sembra anche offrire una promessa come farmaco per la prevenzione dell’obesità. Il DS20060511 ha ridotto i livelli di glucosio nel sangue nei topi diabetici obesi, senza causare iperfagia, aumento di peso corporeo o ipoglicemia e senza aumentare la secrezione di Insulina. Inoltre, il DS20060511 non sembra abbassare il livello di glucosio nel sangue a digiuno, indicando il rischio relativamente basso di ipoglicemia associato all’uso di questo composto. Queste caratteristiche potrebbero essere preferibili a un farmaco sicuro ed efficace per il trattamento del diabete di tipo II.

Voglio ricordare che con la sigla “2-DG” ci si riferisce ad un analogo del glucosio tracciabile (vedi immagine a sinistra).

L’effetto ipoglicemizzante del DS20060511 è stato completamente abolito nei topi GLUT4KO, indicando che il DS20060511 aumenta l’assorbimento del glucosio in modo GLUT4-dipendente. È interessante notare che il DS20060511 non è riuscito ad attivare la segnalazione dell’Insulina a monte, inclusa la fosforilazione di AS160 e il rimodellamento dell’actina o il percorso AMPK, che sono anche noti per aumentare la traslocazione di GLUT4 nel muscolo scheletrico. Inoltre, quando somministrato in combinazione con Insulina, il DS20060511 ha ulteriormente migliorato l’assorbimento del glucosio nel muscolo scheletrico sia nei topi normali che in quelli resistenti all’Insulina e ha ulteriormente ridotto i livelli di glucosio nel sangue in un modello murino di diabete di tipo I indotto da STZ. Il DS20060511 ha anche potenziato l’ossidazione del glucosio in tutto il corpo durante l’esercizio fisico, associata a un aumento dell’assorbimento e dell’utilizzo del glucosio nel muscolo scheletrico[16]. Pertanto, il DS20060511 può agire come un agente antidiabetico con un meccanismo d’azione completamente nuovo in pazienti con azioni alterate dell’Insulina nel muscolo scheletrico e in quelli con diabete di tipo I o II che ricevono Insulina e/o terapia fisica.

Alcuni composti sono stati anche segnalati in precedenza per indurre la traslocazione di GLUT4. È stato riportato che nuovi composti della Piridazina inducono fortemente la traslocazione di GLUT4 nei miotubi L6 e mostrano un significativo effetto ipoglicemizzante in un modello murino di diabete grave[37]. È noto che i disaccoppianti protonici, come il 2,4-dinitrofenolo, inducono la traslocazione di GLUT4 in accordo con un rapido calo dei livelli intracellulari di ATP[38]. Tuttavia, a differenza del DS20060511, questi composti promuovono la traslocazione di GLUT4 attraverso la via PI3K o AMPK. È stato riportato che la piccola molecola donatrice di NO NCX 4016 induce la traslocazione di GLUT4 negli adipociti 3T3-L1, ma non nelle cellule del muscolo scheletrico[39]. Questi risultati suggeriscono che un potenziatore della traslocazione di GLUT4 specifico del muscolo scheletrico come il DS20060511 non è mai stato segnalato in precedenza.

Il movimento del GLUT4 negli adipociti. Il tessuto adiposo è costituito da adipociti. Negli adipociti, il GLUT4 si trova nella membrana cellulare e nel citosol. La traslocazione di GLUT4 dalle vescicole citosoliche alla membrana cellulare porta ad un elevato assorbimento di glucosio, mentre l’endocitosi riporta il GLUT4 al citosol. (1): Nelle cellule non stimolate, le porzioni di membrana contenenti GLUT4 sono internalizzate in modo endocitosi per generare vescicole contenenti GLUT4. Le vescicole GLUT4 sono internalizzate negli endosomi precoci (o ordinati). Possono entrare nel corpo endoplasmatico di recupero e seguire la via retrograda verso la rete trans-Golgi e il compartimento intermedio del reticolo endoplasmatico-Golgi o altri compartimenti della membrana donatrice. (2): Le vescicole GLUT4 derivate dalle strutture della membrana del donatore sono fissate da un laccio contenente un dominio UBX per la proteina GLUT4 (TUG). (3): Durante la stimolazione del segnale dell’Insulina, le vescicole GLUT4 vengono rilasciate e caricate sul motore dei microtubuli per essere trasferite alla membrana plasmatica. La continua presenza di Insulina porta al movimento diretto di queste vescicole verso la membrana plasmatica. (4): Le vescicole GLUT4 sono legate alla proteina motoria chinesina e ad altre proteine. Quando ciò si verifica, si forma un complesso SNARE ternario stabile. (5): Il complesso SNARE ternario stabile è ancorato alla membrana bersaglio. (6): Le vescicole ancorate si affidano a SNARE per spostarsi e fondersi con la membrana bersaglio. Fonte immagine: Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11(3): 76-98 [PMID: 33274014 DOI: 10.4331/wjbc.v11.i3.76]

Perché il DS2006051 agisce selettivamente sul muscolo scheletrico? La molecola bersaglio del DS2006051 può essere espressa selettivamente nel muscolo scheletrico. La quantità di GLUT4 sulla superficie cellulare è determinata dall’equilibrio tra esocitosi dalle vescicole di stoccaggio intracellulare ed endocitosi dalla membrana cellulare. Il DS2006051 può promuovere l’esocitosi o sopprimere l’endocitosi di GLUT4 tramite l’attivazione della molecola bersaglio. Per studiare il bersaglio selettivo di DS20060511 nel muscolo scheletrico e nei miotubi L6, sono stati adottati tre diversi approcci: legame del composto radiomarcato, purificazione di perline immobilizzate con composto e fotoreticolazione UV di un composto al bersaglio. I composti radiomarcati o modificati chimicamente avevano la capacità di reagire con campioni preparati da tessuto muscolare scheletrico o miotubi L6-GLUT4myc, come lisati, microsomi o cellule viventi. Dopo l’arricchimento e la purificazione abbinati per ciascun approccio, i campioni sono stati analizzati mediante LC-MS/MS. Sfortunatamente, i ricercatori non sono riusciti a identificare nessuna molecola bersaglio specifica che si legasse al DS20060511 con un’alta affinità. Sono necessarie ulteriori indagini per identificare il bersaglio molecolare del DS20060511 e anche la via di segnalazione coinvolta, come la produzione di specie reattive dell’ossigeno associate a Rac1 o NADPH ossidasi 2.

In conclusione, è stato identificato un nuovo composto xantenico, il DS20060511, ed è stato dimostrato che il trattamento con DS20060511 induceva la traslocazione di GLUT4 indipendentemente dalla segnalazione canonica dell’Insulina e dall’attività dell’AMPK, per migliorare l’assorbimento del glucosio da parte del muscolo scheletrico. Inoltre, il trattamento con DS20060511 ha anche migliorato l’intolleranza al glucosio nei topi diabetici obesi. Sebbene non siano stati in grado di identificare la specifica molecola bersaglio del DS20060511 sulla cellula muscolare scheletrica, ulteriori studi con il composto aiuterebbero a sviluppare un nuovo farmaco per il diabete di tipo II.

Le caratteristiche del DS20060511 lo rendono una molecola di particolare interesse per i bodybuilder. La sua selettività per il tessuto muscolo scheletrico e la mancata attivazione dell’AMPK offrono due significativi vantaggi che le molecole con attività di miglioramento del insulino-resistenza (Biguanidi et simili) oggi disponibili non danno:

  • Punto 1: la selettività della molecola per il tessuto muscolo-scheletrico e il miglioramento in tale sede dell’uptake del Glucosio da parte del miocita garantisce una ripartizione calorica a sensibile svantaggio del tessuto adiposo (quindi dell’adipocita) in un contesto ipercalorico, prolungando in modo indeterminato (almeno secondo i dati attuali) il periodo di vantaggio che l’atleta può sperimentare in un regime di questo tipo, prima che il peggioramento dei parametri del IR portino ad un aumento significativo della massa grassa e una riduzione dei guadagni muscolari sia in rapporto alla precedente che in termini assoluti;
  • Punto 2: la capacità del DS20060511 di bypassare l’attivazione/stimolo del AMPK permette di non sottoregolare/bloccare l’attività del mTOR e della sua attività sull’ipertrofia muscolare. Questo vantaggio è unico nel suo genere dal momento che, per esempio, sia la Metformina che la Berberina, due molecole largamente utilizzate per il miglioramento del IR, interagiscono per via delle PPAR-α nello stimolo dell’attività del AMPK la quale sottoregola/blocca mTOR.

Riguardo all’ultimo punto, c’è da dire che, da quanto osservato empiricamente ed emerso clinicamente, l’interazione negativa di Metformina e Berberina sul mTOR risulta significativa in modo dosaggio-dipendente. Si ipotizza, ma questa è una semplice ipotesi osservazionale, che l’uso di dosaggi non superiori a 500-750mg/die totali di entrambe le molecole non alteri crescita e/o recupero muscolare. Ricordiamoci inoltre che sia la Metformina che la Berberina (compreso anche l’ALA) sembrano avere potenziali inibitori sugli enzimi implicati nella lipogenesi ed esterificazione degli acidi grassi liberi negli adipociti, ma questa è un altra storia.

È interessante notare che alcuni studi dell’ultimo decennio suggeriscono che la Metformina può inibire direttamente l’azione della Leucina sul mTOR. Non solo questo sarebbe, ovviamente, un fattore negativo per la crescita muscolare, ma ipoteticamente l’effetto inibitorio della Metformina sul mTOR potrebbe avere un effetto maggiore in quanto è correlato alla riduzione del rischio di tumori mortali nei diabetici.

E’ a proposito molto interessante quanto postulato dal Dr. Melnik dell’Università di Osnabrück in Germania: “la Metformina può essere un diretto concorrente della Leucina per il legame e l’attività del mTORC1”.

Il medico ha notato nel suo articolo che la dose giornaliera abituale nei diabetici di Metformina (2g) è nell’ordine dei 2g di Leucina derivati dal consumo giornaliero di 100g di carne o formaggio. Poiché le due molecole sono simili per struttura e dimensioni, possono competere per gli stessi siti nell’attivazione del mTOR. Di conseguenza, possiamo affermare, con un buon margine di ragione, che è una questione “dose-risposta dipendente”, come accennato in precedenza, in rapporto all’attività potenziale di alterazione del mTOR sia diretta (legame attivazione leucina-simile) che indiretta (via AMPK).

Per quanto riguarda la questione della potenziale sotto-regolazione sui AR da parte della Metformina, i dati attuali provengono principalmente da studi di linee cellulari in vitro, in donne con PCOS, e da studi sui pazienti con cancro alla Prostata che però non danno comunque dati chiari sul grado di riduzione dei AR a livello del muscolo-scheletrico, di conseguenza si può speculare ancora ampiamente su quali possano essere gli effetti in vivo nell’uomo sulla crescita del tessuto muscolo-scheletrico durante il trattamento con Metformina. Rimango, al momento, dell’idea che sia fondamentalmente una questione di “soglia di efficacia” in rapporto agli “effetti indesiderati”, e la cosa, però, non è così semplice da calibrare come sembra viste le diversità nelle risposte individuali.

Ma, tornando a parlare del DS20060511, potrebbe avere un potenziale anche in un regime ipocalorico? Si, ovviamente, anche se presumibilmente il calo della Leptina sarà più rapido per via della “carestia glucidica adipocitaria indotta”. Sicuramente risulterebbe un vantaggio nei refeed sia pre-contest che quelli di “routine” settimanale. La superiorità rispetto a quanto oggi utilizzato con tali finalità rimane.

Per il momento, non ci resta che attendere nuovi studi sul DS20060511, possibilmente sull’uomo.

Gabriel Bellizzi

Riferimenti:

  1. Kahn, B. B., Rossetti, L., Lodish, H. F. & Charron, M. J. Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats. J. Clin. Invest. 87, 2197–2206 (1991).
  2. Wallberg-Henriksson, H. & Zierath, J. R. GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice (review). Mol. Membr. Biol. 18, 205–211 (2001).
  3. Ryder, J. W. et al. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes 49, 647–654 (2000).
  4. Liu, M. L. et al. Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proc. Natl Acad. Sci. USA 90, 11346–11350 (1993).
  5. Gibbs, E. M. et al. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J. Clin. Invest. 95, 1512–1518 (1995).
  6. Ren, J. M. et al. Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J. Clin. Invest. 95, 429–432 (1995).
  7. Huang, S. & Czech, M. P. The GLUT4 glucose transporter. Cell. Metab. 5, 237–252 (2007).
  8. Bryant, N. J., Govers, R. & James, D. E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell. Biol. 3, 267–277 (2002).
  9. Kubota, T., Kubota, N. & Kadowaki, T. Imbalanced insulin actions in obesity and type 2 diabetes: key mouse models of insulin signaling pathway. Cell. Metab. 25, 797–810 (2017).
  10. Kubota, N. et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell. Metab. 8, 49–64 (2008).
  11. Bhuin, T. & Roy, J. K. Rab proteins: the key regulators of intracellular vesicle transport. Exp. Cell. Res. 328, 1–19 (2014).
  12. Chiu, T. T., Jensen, T. E., Sylow, L., Richter, E. A. & Klip, A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell. Signal. 23, 1546–1554 (2011).
  13. Khayat, Z. A., Tong, P., Yaworsky, K., Bloch, R. J. & Klip, A. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J. Cell. Sci. 113, 279–290 (2000).
  14. Sano, H. et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J. Biol. Chem. 278, 14599–14602 (2003).
  15. JeBailey, L. et al. Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 56, 394–403 (2007).
  16. Sylow, L., Kleinert, M., Richter, E. A. & Jensen, T. E. Exercise-stimulated glucose uptake—regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 13, 133–148 (2017).
  17. Hirshman, M. F., Wallberg-Henriksson, H., Wardzala, L. J., Horton, E. D. & Horton, E. S. Acute exercise increases the number of plasma membrane glucose transporters in rat skeletal muscle. FEBS Lett. 238, 235–239 (1988).
  18. Goodyear, L. J., Hirshman, M. F. & Horton, E. S. Exercise-induced translocation of skeletal muscle glucose transporters. Am. J. Physiol. 261, E795–E799 (1991).
  19. Vichaiwong, K. et al. Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle. Biochem. J. 431, 311–320 (2010).
  20. Merrill, G. F., Kurth, E. J., Hardie, D. G. & Winder, W. W. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273, E1107–E1112 (1997).
  21. Sylow, L. et al. Rac1 and AMPK account for the majority of muscle glucose uptake stimulated by ex vivo contraction but not in vivo exercise. Diabetes 66, 1548–1559 (2017).
  22. McConell, G. K. It’s well and truly time to stop stating that AMPK regulates glucose uptake and fat oxidation during exercise. Am. J. Physiol. Endocrinol. Metab. 318, E564–E567 (2020).
  23. Henríquez-Olguin, C. et al. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat. Commun. 10, 4623 (2019).
  24. Sylow, L. et al. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J. Physiol. 594, 4997–5008 (2016).
  25. Goodyear, L. J., Giorgino, F., Balon, T. W., Condorelli, G. & Smith, R. J. Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am. J. Physiol. 268, E987–E995 (1995).
  26. Yeh, J. I., Gulve, E. A., Rameh, L. & Birnbaum, M. J. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J. Biol. Chem. 270, 2107–2111 (1995).
  27. Lund, S., Holman, G. D., Schmitz, O. & Pedersen, O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc. Natl Acad. Sci. USA 92, 5817–5821 (1995).
  28. Krook, A. et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes 49, 284–292 (2000).
  29. Kim, Y. B., Nikoulina, S. E., Ciaraldi, T. P., Henry, R. R. & Kahn, B. B. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J. Clin. Invest. 104, 733–741 (1999).
  30. Kennedy, J. W. et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 48, 1192–1197 (1999).
  31. Martin, I. K., Katz, A. & Wahren, J. Splanchnic and muscle metabolism during exercise in NIDDM patients. Am. J. Physiol. 269, E583–E590 (1995).
  32. Kramer, H. F. et al. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55, 2067–2076 (2006).
  33. Jaldin-Fincati, J. R., Pavarotti, M., Frendo-Cumbo, S., Bilan, P. J. & Klip, A. Update on GLUT4 vesicle traffic: a cornerstone of insulin action. Trends Endocrinol. Metab. 28, 597–611 (2017).
  34. Richter, E. A. & Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 93, 993–1017 (2013).
  35. Higaki, Y., Hirshman, M. F., Fujii, N. & Goodyear, L. J. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 50, 241–247 (2001).
  36. Duplain, H. et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104, 342–345 (2001).
  37. 37.Tsuji, T. et al. Discovery of novel pyridazine derivatives as glucose transporter type 4 (GLUT4) translocation activators. Bioorg. Med. Chem. Lett. 29, 1785–1790 (2019).
  38. 38.Klip, A., Schertzer, J. D., Bilan, P. J., Thong, F. & Antonescu, C. Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise. Acta Physiol. (Oxf.). 196, 27–35 (2009).
  39. Kaddai, V. et al. The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 295, E162–E169 (2008).

Limiti nello stimolo massimo della lipolisi da somministrazione di GH esogeno.

Introduzione alla questione:

Il più delle volte risulta inutile ribadire banalità largamente conosciute, ma in questo caso era d’obbligo sottolinearne il fatto dal momento che tornerà utile anche al fine di comprendere come la maggior parte dei (presunti) preparatori agisca quando si parla di PEDs.

Il GH, in modo particolare, è avvolto da dicerie di ogni genere. Dalle convinzioni sul momento in cui “inizia a funzionare” e la leggenda (fuori da ogni base fisiologica e attività espressiva iper-indotta iatrogenamente) del “assottiglia la pelle”. Ma la cosa di cui vorrei parlare riguarda i dosaggi. Nell’agonismo se ne sentono e vedono di tutti i tipi, dosaggi mostruosi da 10-20UI/die portatori di neuropatie croniche e probabili stati diabetici subclinici o patologici. La cosa triste è che tali dosaggi vengono indicati come “funzionali” solo perchè danno l’effetto ricercato che spesso e volentieri si confonde con quello indotto dallo svariato numero di farmaci cosomministrati e dalla additività tra questi. In poche parole: l’effetto lo avrebbero raggiunto comunque e nello stesso arco temporale utilizzando 1/10 della dose somministrata.

Si, mi dispiace infrangere le vostre fantasie ma il GH ha un limite nello stimolo massimo della lipolisi molto sottile…

GH e suo limite di dosaggio per il massimo stimolo lipolitico:

In effetti è stato calcolato un tetto massimo alla lipolisi indotta da una singola somministrazione di GH, ed è molto più bassa di quanto la maggior parte delle persone pensi.

Come riportato nello studio “Pharmacokinetics and acute lipolytic actions of growth hormone. Impact of age, body composition, binding proteins, and other hormonesvedere” nel quale si è valutata la farmacocinetica e l’azione lipolitica acuta del GH, si verificano significativi effetti dose-risposta confrontando l’area incrementale sotto la curva sia degli acidi grassi liberi che del 3-idrossi-butirrato nel sangue dopo la somministrazione di 0, 1 , e 3mcg/kg di GH, mentre non si osservano differenze tra le risposte dopo 3 e 6mcg/kg di GH.[1]

Questi dosaggi sono stati somministrati per via endovenosa.

1mg di Somatropina corrisponde a 3UI (Unità Internazionali) della medesima, come si può anche leggere nelle informazioni riferite al Norditropin presenti di seguito.[2]

Quindi, questo significa che per un soggetto di 100kg, la lipolisi è stimolata al massimo con circa 300mcg di Somatropina somministrata endovena, che equivale a 0,9UI di GH di grado farmaceutico IV (endovena).

Occorre quindi calcolare la dose sottocutanea corrispondente in base ai dati di confronto data dalla biodisponibilità e bioattività che abbiamo sugli esseri umani a cui è stato somministrato hGH.

Ovviamente i dosaggi somministrati endovena non sono rappresentativi di quali sarebbero i dosaggi ideali tramite il metodo di somministrazione molto più realistico e tollerabile quale è quello sottocutaneo. In uno studio, la disponibilità media stimata di hGH iniettato per via sottocutanea ha dimostrato di essere del 63% di quella di hGH somministrato per via endovenosa. dopo aver corretto le differenze nella dose di GH. [3] Un altro studio ha mostrato che la disponibilità di hGH iniettato per via sottocutanea è circa il 70% di quella di hGH somministrato per via endovenosa.[4]

Quindi, per un uomo di 100kg, i benefici della perdita di grasso sarebbero massimizzati per ogni somministrazione iniettando circa 1,35UI di GH (arrotondabili a massimo 2UI). Esiste infatti un periodo di refrattarietà durante il quale le cellule non danno risposta ad altro impulso lipolitico dato dal GH esogeno.

Conclusioni pratiche:

Di conseguenza, la risposta massima dello stimolo della lipolisi per somministrazione si aggira intorno a circa 1.5-2UI (3-4UI/die totali) in un individuo di 100Kg. Questo rispecchia in parte quanto osservato aneddoticamente ed annotato empiricamente con la somministrazione giornaliera di GH ad un dosaggio di 4UI/die divise in due somministrazioni uguali durante periodi di “Cut” in molti atleti di diverse categorie. Ciò vuole anche dire, però, che la maggior parte dei soggetti potrebbero avere risposte ottimali con la somministrazione di appena 2UI/die di GH. Parlo, ovviamente, di GH di grado farmaceutico, cioè equivalente al mcg al contenuto riportato in etichetta, non così abbondante nel mercato nero.

Le risposte temporali alla riduzione del grasso corporeo per azione del GH non sono dovute al dosaggio ma alla percentuale di grasso di partenza e alla distanza tra questo ed il punto percentuale prefissato da raggiungere oltre che dalla additività con altre molecole aventi effetti lipolitici e/o termogenici: più è breve e meno tempo di somministrazione sarà necessario. Ovviamente, i tempi di risposta sono maggiori rispetto ad atleti non trattati, mi pare ovvio e scontato. E, lo ripeto, vanno anche considerate nella somma dell’effetto le altre molecole co-somministrate e aventi attività lipolitica (diretta o indiretta) e/o termogenica.

Ma questo vale anche per le donne? Di questo me ne occuperò in un altro articolo ma vi anticipo già che in termini assoluti il dosaggio non ha variabili significative ma circostanze gestionali diverse.

Gabriel Bellizzi

Riferimenti:

1- https://www.ncbi.nlm.nih.gov/pubmed/12213188

2- https://www.novonordisk.com.au/content/dam/australia/affiliate/www-novonordisk-au/Health%20Care%20Professionals/Documents/Norppi16a_Mktg%20version.pdf

3- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014216/

4- https://www.ncbi.nlm.nih.gov/pubmed/8949572

Dal “morbo del caribù” alla “Protein Starvation” – storia e metamorfosi della “Carne e Acqua” –

DISCLAIMER: Il presente articolo NON intende in alcun modo consigliare il regime alimentare ivi presentato. Si tratta di semplice divulgazione scientifica e non ha nessun valore medico e/o prescrittivo.

Introduzione:

Le mode alimentari che hanno caratterizzato gli ultimi sessant’anni delle preparazioni ai contest di Bodybuilding mostrano pratiche gestionali dietetiche dal similare al totalmente opposto. Si è passati dalle “low fat” alle “higt fat” con un alternanza quasi ciclica e sempre più dipendente dalla “leggenda da spogliatoio” che non dalla ricerca scientifica. Oggi, per lo meno buona parte di noi, sa che la chiave principale della perdita di peso/grasso è il deficit calorico. L’ipotesi dell’Insulina e quella secondo la quale “una caloria non è una caloria” sono state bocciate dal metodo scientifico e dalla pratica ormai da tempo. E allora perchè dedicare un articolo ad una metodologia alimentare estrema com’è la “Carne e Acqua” se alla fine, semplicemente, basta un deficit calorico di qualsiasi tipo e con un adeguato apporto proteico per raggiungere l’agognato obbiettivo? Beh, i motivi sono principalmente 2:

1- Lo sviluppo e le caratteristiche che tale pratica ha avuto nel mondo del Culturismo agonistico, ma non solo, nel tempo;

2- La sua capacità di essere adattabile e, seppur con una sostenibilità limitata, applicabile su un discreto numero di soggetti pur presentando tagli calorici molto drastici per un numero di giorni variabili durante la settimana.

Essendo, nel mio piccolo, un ricercatore anche in campo nutrizionale, ho osservato e analizzato l’applicazione di questa pratica nelle sue diverse varianti su diversi bodybuilder (sia “Natural” che “Doped”), maturando una valutazione sufficientemente oggettiva e arrivando a “crearne” due nuove versioni.

Ma non dilunghiamoci oltre, per il momento, e partiamo dal principio…

Esiste una letteratura sulla dieta “Carne e Acqua”?

Nello specifico, la risposta è no sebbene esista una discreta letteratura su una condizione alimentare estrema osservata nelle spedizioni artiche o in altre condizioni al limite della sopravvivenza dove l’unica fonte di cibo facilmente reperibile era selvaggina dalle carni estremamente magre: si tratta del “Protein poisoning“, letteralmente “avvelenamento da proteine”.

L’avvelenamento da proteine (chiamato anche colloquialmente come rabbit starvationmorbo del caribou, o fat starvation) è una forma acuta di malnutrizione causata da una dieta carente di grassi, in cui quasi tutte le calorie consumate provengono da carni magre.[1][2 ] Il concetto è solitamente discusso nel contesto delle ipotesi paleoantropologiche sulla dieta degli antichi esseri umani, specialmente durante l’ultimo massimo glaciale e alle alte latitudini.[3][4]

Il termine “rabbit starvation” deriva dal fatto che la carne di coniglio è molto magra, con quasi la totalità delle calorie da essa provenienti apportate dalle proteine e una percentuale di grasso molto bassa. Di conseguenza, è un alimento che, se imperante nella dieta, causerebbe il così detto “avvelenamento da proteine”.[4] D’altra parte, si è osservato che alcuni animali che vivono in ambienti terrestri rigidi e freddi si presentano molto magri.[3]

In Storia Romana di Appiano, Volume I, Libro VI: Le guerre in Spagna, capitolo IX, pagina 223, l’autore osserva e descrive che una moltitudine di soldati romani morivano di dissenteria grave dopo aver mangiato quasi esclusivamente conigli, mentre assediavano la città di Intercatia nel 150 A.C. :

… strano terrore nell’accampamento romano. I soldati erano malati per la veglia e la mancanza di sonno, e per il cibo inconsueto che il paese offriva. Non avevano vino, né sale, né aceto, né olio, ma vivevano di grano e orzo, e quantità di carne di cervo e di coniglio bollite senza sale, causando la dissenteria, dalla quale molti morirono. [5]

Soldati romani consumano il rancio.

Si dice che l’esploratore Vilhjalmur Stefansson abbia vissuto per anni esclusivamente di carne di selvaggina e pesce, senza effetti negativi. Lo stesso vale per il suo compagno esploratore Karsten Anderson. Come parte della sua promozione della dieta a base di carne modellata sulla cucina Inuit, e per dimostrarne gli effetti, a New York City a partire dal febbraio 1928, Stefansson e Anderson “vissero e mangiarono nel reparto metabolismo del Russell Sage Institute of Pathology del Bellevue Hospital. , New York” per un anno, con le loro prestazioni metaboliche osservate da vicino, tutto questo in parte finanziato dall’Institute of American Meat Packers.[6] I ricercatori che speravano di replicare l’esperienza di Stefansson con la “rabbit starvation” sul campo lo hanno esortato a ridurre a zero l’assunzione di grassi nella sua dieta a base di carne. Lo ha fatto, e ha sperimentato un’insorgenza di diarrea molto più rapida rispetto a quanto osservato nel campo. Con l’aggiunta di grasso, Stefansson si è ripreso, sebbene con un periodo seguente di stitichezza di 10 giorni. Lo studio ha riferito di non aver trovato letteratura medica precedente che esaminasse gli effetti delle diete a base di sola carne, che sembrano essere sostenibili, o sulla “rabbit starvation”, che è fatale.

Stefansson scrisse:

I gruppi che dipendono dagli animali grassi sono i più fortunati nello stile di vita della caccia, perché non soffrono mai di fat starvation. Questo problema è peggiore, per quanto riguarda il Nord America, tra quegli indiani delle foreste che dipendono a volte dai conigli, l’animale più magro del Nord, e che sviluppano l’estrema fame di grasso nota come rabbit starvation. I mangiatori di conigli, se non assumono grasso da un’altra fonte – castoro, alce, pesce – svilupperanno diarrea in circa una settimana, con mal di testa, stanchezza e vago disagio. Se ci sono abbastanza conigli, la gente mangia fino a dilatare lo stomaco; ma non importa quanto mangiano si sentono insoddisfatti. Alcuni pensano che un uomo morirà prima se mangia continuamente carne senza grasso piuttosto che se non mangia nulla, ma questa è una credenza sulla quale nel Nord non sono state raccolte prove sufficienti per una conferma in merito. Le morti per rabbit starvation o per il consumo di altra carne magra sono rare; poiché tutti ne comprendono il principio, e vengono naturalmente prese tutte le misure preventive possibili.[7]

Vilhjalmur Stefansson durate una delle sue spedizioni artiche.

Nella prefazione del libro di Alden Todd “Abbandonati: la storia della spedizione artica Greely, 1881-1884” sempre lo stesso Stefansson sostiene che sia stato il cannibalismo dei compagni già morti a provocare il decesso di buona parte dell’equipaggio come conseguenza di questa inquietante e inusuale rabbit starvation.
Charles Darwin nel “Viaggio del Beagle” descrisse esperienze simili relative alla fame da grassi, pur valutando che i gauchos argentini mangiavano per mesi esclusivamente chili di carne di manzo ogni giorno apparentemente senza problema alcuno. In questo ultimo caso, la risposta alla tolleranza dei gauchos è con tutta probabilità da attribuirsi alla percentuale di grasso presente nella carne di manzo che, anche quando il taglio è magro, risulta essere di circa 5g per ogni 100g di carne.

Un opuscolo sulla sopravvivenza artica dell’epoca della seconda guerra mondiale emesso dal comando di controllo di volo delle forze aeree dell’esercito degli Stati Uniti includeva questo enfatico avvertimento:

A causa dell’importanza dei grassi, in nessuna condizione limitarsi a una dieta a base di carne di coniglio solo perché si verifica essere abbondante nella regione in cui sei costretto a stanziare. Una dieta continua di coniglio produrrà la rabbit starvation – la diarrea inizierà in circa una settimana e se la dieta viene continuata POTREBBE RISULTARE LA MORTE.[8]

In Into the Wild (1996), Jon Krakauer ha ipotizzato che Chris McCandless, un avventuriero americano del XX secolo, potrebbe aver sofferto di rabbit starvation.

Chris McCandless

La revisione dell’assunzione di riferimento dietetico statunitense e canadese per le proteine menziona la “rabbit starvation”, ma ha concluso che non c’erano prove sufficienti fino al 2005 per stabilire un livello di assunzione superiore tollerabile, ovvero un limite massimo per la quantità di proteine che può essere consumata in sicurezza.[9 ] Secondo quanto riferito, gli esseri umani moderni sono in grado di ricavare solo il 20% del loro fabbisogno energetico dalle proteine.[10] Per i cacciatori-raccoglitori artici, tuttavia, la quantità può aumentare stagionalmente fino al 45%.[11] In realtà, specie negli atleti, si è osservata un ampia capacità di adattamento alla quota proteica senza ripercussioni negative sul medio termine (circa 4g/Kg). Secondo Bilsborough e Mann (2006), l’assunzione di proteine è principalmente limitata dal ciclo dell’urea. Suggeriscono, quindi, un limite di 2,5 g/kg.[10] L’errore di fondo, è quello di confondere una possibilità di adattamento funzionale (quota proteica aumentata) con la mancanza di lipidi, totale o marcata, nella dieta.

Quindi, è chiaro che la letteratura scientifica non ci fornisce moltissime informazioni in merito a questo argomento. E, a proposito di ciò, esiste uno studio [12] su di un singolo caso di decesso per rabbit starvation riportato anche dal fanatico della “Paleo Dieta” Loren Cordain il quale peraltro ritiene [1], similmente a Bilsborough e Mann, che a fronte di un carico proteico eccessivo il fegato non sia in grado di produrre enzimi sufficienti per la sintesi dell’urea.
Oltre un certo limite variabile, infatti, l’organismo va in iperammonemia e iperaminoacidemia.[13]
Il tratto gastro-intestinale potrebbe assorbire in teoria non oltre 1,3 – 10 gr di aminoacidi ogni ora [14], anche se il dato ci appare superato di gran lunga all’atto pratico. Lo stesso autore d’altronde nella ricerca citata sottolinea come il 75% delle comunità di cacciatori–raccoglitori ricavi da fonti animali fino al 73% (98% gli Eskimos) del proprio nutrimento. Il limite di tolleranza sarebbe raggiunto sempre secondo Cordain quando l’apporto proteico equivale a circa il 40% dell’introduzione calorica complessiva, secondo Billsborought quando si aggira sul 35%.

La “Carne e Acqua” ed il Bodybuilding:

Se vogliamo parlare di dieta “Carne e Acqua” nel Bodybuilding non possiamo esimerci dal citare Rheo Blair.

Rheo H. Blair è stato il primo uomo riconosciuto come un “mago della nutrizione” quando si trattava di dieta e integratori per il Bodybuilding. Ha regolarmente eseguito degli ottimi lavori di trasformazione fisica su centinaia di bodybuilder inferiori alla media dei competitor. Durante gli anni ’50, ’60 e ’70, abbondavano le testimonianze sulle incredibili trasformazioni fisiche che Blair aveva compiuto su centinaia di “casi senza speranza”. Si diceva trasformasse regolarmente i deboli di 97 libbre in uomini robusti con le sue speciali formule proteiche e la vigorosa routine di allenamento con i pesi basata sul volume. Anche i bodybuilder avanzati riportavano risultati simili dal sistema Blair. In un articolo del numero di maggio 1967 della rivista Iron Man, un bodybuilder scrisse:

“Dopo aver seguito il programma di Rheo per sole tre settimane, ho ottenuto più guadagni di quelli che ho avuto negli ultimi sei anni. Ho messo quasi mezzo pollice sulle mie braccia. E dopo due mesi ho messo su quasi 20 libbre di muscoli puri.”

Sotto la guida di Blair, Jim Park passò dall’essere uno sconosciuto bodybuilder con un fisico nella media ad essere Mr. America… in meno di quattro mesi! Non si esclude l’uso di AAS che, già negli anni 50, pur essendo di nicchia e non ancora dilaganti, erano presenti. Ovviamente, come vuole il politically correct, viene, e venne, affermato che questa straordinaria trasformazione era stata realizzata senza farmaci! Adducendo al fatto che, dal momento che il tutto accadeva negli anni ’50, cioè prima che l’uso degli AAS diventasse così diffuso nel bodybuilding, la probabilità d’uso non era possibile. Personalmente, lo trovo poco importante e banale come discussione. C’erano AAS disponibili all’epoca? Si (es. Methyltestosterone, Mesterolone e Testoterone Propionato). Avrebbe potuto averne accesso? Possibile. E’ importante? Non per chi valuta l’atleta e non il suo “sgabuzzino”.

Sebbene avesse la reputazione di essere un eccentrico, tutti i grandi bodybuilder degli anni ’50, ’60 e ’70 (Arnold, Frank Zane, Dave Draper, Larry Scott, ecc.) hanno seguito i consigli di Blair e sono entrati nella loro forma migliore. Uno dei segreti di Blair era la sua speciale formula proteica. La famosa polvere proteica di Blair si basava sui rapporti di aminoacidi nel latte materno. Era anni in anticipo sui tempi. Sfortunatamente, Blair è morto prematuramente nei primi anni ’80 e molti dei suoi “segreti” sul bodybuilding sono morti con lui… inclusa la formula esatta della sua polvere proteica.

Rheo Blair

Ma la sua “arma” nelle preparazioni alimentari, soprattutto nella preparazione alla gara, era l’uso elevato di proteine con un esclusione marcata di Carboidrati e Grassi.

Come abbiamo visto in precedenza, mentre Vilhjamur Stefannsson ha reso popolare la dieta a base di carne degli Inuit all’inizio del 1900, una dieta a base di carne per atleti sembra essere un nuovo sviluppo dietetico, anche se così non è. Facendo eco alla meravigliosa “serie niente di nuovo sotto il sole” prodotta da Chaos and Pain (sicuramente non sicura per il lavoro!), abbiamo precedenti per la dieta “Carne e Acqua” anche con Rheo H. Blair e, in un certo qual modo, con Vince Gironda, diete dimagranti a breve termine utilizzate dai bodybuilder prima di una competizione.

A parte Vince Gironda, Rheo H. Blair è, a mio avviso, uno dei personaggi più affascinanti del bodybuilding degli anni ’50 e ’60. Fondamentali nella divulgazione degli integratori proteici, le polveri proteiche a base di latte e le compresse vitaminiche di Blair hanno acquisito uno status quasi mitico tra la comunità del sollevamento pesi. Blair contava tra i suoi clienti bodybuilder, atleti, celebrità e individui comuni. Il suo continuo interesse per la nutrizione fu senza dubbio la ragione del suo successo. Fu questo interesse che portò al suo esperimento “carne e acqua”, una dieta simile alla “dieta di massima definizione” di Gironda. Come raccontato da Steve Davis, che ha subito un drastico cambiamento nella dieta a base di carne e acqua, Blair ha voluto stabilire se una dieta di questo genere fosse preferenziale rispetto alla dieta a base di carne e uova promossa da Gironda, quest’ultima soprannominata “maximum definition diet”. Preparandosi per un servizio fotografico, Davis, allora aspirante bodybuilder, si è dimostrato una cavia ideale.

Al momento ho prove che i bodybuilder usassero la dieta a base di carne e acqua di Blair alla fine degli anni ’60 e all’inizio degli anni ’70. Il primo, Steve Davis, ha usato la dieta per coronare un’incredibile perdita di peso. Come raccontato da Old School Bodybuilding, Davis era inizialmente un powerlifter che voleva cimentarsi nel bodybuilding. Sotto la guida di Vince Gironda e Rheo H. Blair, ha subito una notevole perdita di peso che comprendeva quasi 100 libbre (circa 45,35Kg).

Parlando con Dennis Weis in Raw Muscularity, Davis ha raccontato le sue esperienze non così felici sul programma alimentare a base di carne e acqua:

Per raggiungere la forma in queste foto mi sono reso conto che avrei dovuto perdere quel minuscolo strato di tessuto adiposo per affinare davvero il mio corpo alla condizione di un Larry Scott o di un Gable Boudreaux…

A questo punto del programma Rheo ha detto: “Steve, vogliamo aiutarti a ottenere un po’ di magrezza in più per il tuo corpo e c’è un programma dietetico che possiamo usare per farlo. Vivere solo di carne e acqua…

Rheo mi ha spiegato che, per potermi preparare appositamente per il servizio fotografico, solo per due o cinque giorni al massimo avrei dovuto vivere di nient’altro che carne più un integratore di proteine ​​della carne …

Ho continuato questo tipo di programma per un periodo fino a dodici giorni. E questa è la parte triste della storia. Sono diventato così fisicamente esausto, così teso, così tassato e tirato che dopo che Rheo aveva scattato le foto ero sul punto di crollare.

Steve Davis prima e dopo essere diventato un atleta di Blair.

Ora, ciò che è importante sottolineare della testimonianza di Davis è che ha intrapreso una dieta a base di carne che era estremamente povera di calorie per prepararsi ad un servizio fotografico nel breve termine.

Passando ora a Heart of Steel, una meravigliosa biografia di Dan Lurie, troviamo menzione di innumerevoli altri bodybuilder che usarono la dieta di Blair, incluso il rivale di Arnold in Pumping Iron, Lou Ferrigno. Parlando all’inizio degli anni ’70, un tempo in cui Lou Ferrigno era ancora un imponente bodybuilder piuttosto che “l’incredibile Hulk”, Lurie commentò che:

Lui (Lou Ferrigno) è stato quindi sottoposto a una dieta speciale “carne e acqua” per ridurre il suo peso, per ottenere un aspetto “strappato”, da competizione. I bodybuilder che volevano preservare i muscoli mentre perdevano grasso usavano spesso la dieta a base di carne e acqua a quei tempi, e aveva funzionato a meraviglia per campioni come Vince Gironda, e per gli atleti seguiti da Rheo H. Blair e altri risalenti agli anni ’50.

Era una dieta che prevedeva carne di ogni tipo, poche verdure e acqua, il che la rendeva ricca di proteine, moderatamente grassa e con pochissimi carboidrati. E Lou ha fatto grandi progressi con questo piano.

Lou Ferrigno vincitore del Mr. Universo 1974.

Quindi Davis era in buona compagnia durante l’età dell’oro del Bodybuilding. Su questo punto sono probabilmente necessarie spendere alcune parole. La riduzione del grasso corporeo per le competizioni o i servizi fotografici è stata spesso eseguita in modo semplice: ridurre gli amidi (quindi le calorie dai carboidrati) e aumentare l’attività fisica (maggiore dispendio calorico). Non è avvenuto fino agli anni ’80 che gli atleti hanno iniziato a contare le calorie in modo ossessivo. Non che contare le calorie sia sbagliato, ma l’eccesso porta sempre a ripercussioni negative. Dalla metà del secolo, si può quindi osservare una adesione nel pre-contest molto evidente alla dieta “carne e acqua”, era semplice ed efficace. Inoltre ha avuto il sostegno di alcuni dei migliori allenatori e atleti di questo sport. Anche quella “statua vivente” quale fu Serge Nubret, in preparazione alla gara seguiva un regime “Carne e Acqua” basato su carne, pesce e amminoacidi.

Serge Nubret

Vi sono taluni che pensano che la “dieta carnivora” per gli atleti sia nata negli ultimi decenni insieme a regimi ortoressici e inutilmente restrittivi come la “Paleo Dieta”, ma come abbiamo visto non è così. Non sono estraneo alle diete restrittive – ho osservato e seguito molti soggetti sotto regime chetogenico per quasi sei anni – ma il concetto di “dieta carnivora” mi è sempre parso intrinsecamente fallimentare se non adeguatamente contestualizzato e, in definitiva, inserito in un piano di preparazione culturistica. Non sono affatto favorevole all’applicazione di questo modo di mangiare sul lungo termine, poiché risulterebbe controproducente su più aspetti della salute umana. Ma la dieta “carne e acqua”, come quella di Blair, dà a questa metodica alimentare una giusta e limitata dimensione nell’ambito della preparazione alla gara di Bodybuilding.

Attualmente, il maggior sostenitore della dieta carnivora come stile di vita è Shawn Baker, ex medico ortopedico americano.(15) Egli cita fantomatiche testimonianze di coloro che seguono la dieta carnivora come prova (non provata) che può curare la depressione, l’ansia, l’artrite, l’obesità, il diabete e altro.[15][16] Ovviamente, nessuna ricerca ha analizzato gli effetti della dieta carnivora e dimostrato quanto precedentemente asserito. Inoltre, nel 2017 la licenza medica di Baker è stata revocata dal New Mexico Medical Board a causa delle preoccupazioni sulla sua competenza.[17]

E’ chiaro, quindi, che il concetto applicativo di Blair e Baker differiscono significativamente nella loro applicazione. Baker, da quanto egli stesso fa trasparire, vede la dieta carnivora come una dieta a vita, il che significa che può essere utilizzata per anni senza problemi (secondo lui). Blair e Gironda, invece, con intelligenza preferivano un uso a breve termine. Gironda, ad esempio, aveva di logica un approccio alimentare ciclico con i suoi clienti a seconda dei loro obiettivi. Quindi, si sta parlando fondamentalmente di una forma commerciale venduta al grande pubblico (la dieta carnivora di Baker) e di una strategica per il miglioramento della composizione corporea rivolta ad atleti in preparazione ad un contest di Bodybuilding.

La mia ricerca applicata:

Dal 2016 ho iniziato a raccogliere dati sulla pratica alimentare “carne e acqua” valutandone gli effetti su diversi culturisti, sia agonisti in preparazione alla gara che amatori nella fase “Cut”.

La prima cosa che annotai, e che era del tutto presumibile già partendo dai dati preliminari in mio possesso, era che la “carne e acqua” risultava tollerabile in un numero ristretto di persone. ma questo era direttamente proporzionale al numero di giorni nei quali l’atleta rimaneva alimentato totalmente con carni magre. Classificai tre principali modalità di applicazione:

  • Modalità Estrema: si trattava di seguire un regime alimentare basato su carni magre e integratori di fibre (anche se non sempre) e integratori multi vitaminici-minerali per un periodo determinato totalmente sulla resistenza del soggetto sottoposto e dalla valutazione della forma fisica;
  • Modalità Metabolica: su stampo della famosissima dieta di Mauro di Pasquale, “La Dieta Metabolica”, l’atleta segue un regime “carne e acqua” per 5-6 giorni a settimana per poi “ricaricare” con Carboidrati e Grassi per 1-2 giorni a settimana;
  • Modalità Ciclica: simile alla precedente, essa tiene strettamente conto delle risposte psicofisiche dell’atleta alternando periodi a “carne e acqua” con giorni di refeed.

La più problematica e meno sostenibile risulta essere, e per ovvie ragioni, la “Modalità Estrema”. Se dovessimo elencare i principali problemi questi sarebbero:

  • Deficit nutrizionali;
  • Aumento del Cortisolo in risposta al deficit calorico e alle richieste metaboliche per la gestione del carico amminoacidico.
  • Risposta fisiologica e non determinante nella negativizzazione della composizione corporea nel breve termine.

    Ricordiamoci inoltre che la transaminazione al fine di convertire le proteine in urea e indurre la sintesi degli aminoacidi derivati in glucosio è un processo dal costo metabolico molto elevato.
    E’ un processo aerobico che ha il proprio limite nella disponibilità di ossigeno del fegato. La capacità complessiva del sistema si attesta comunque sulla produzione di 250g circa. E’ vero anche che la conversione metabolica degli amminoacidi in Glucosio, per via della sua richiesta energetica, è soggettivamente limitato e dipendente dagli adattamenti metabolici in atto o all’uso di determinati farmaci.

    Via della gluconeogenesi con molecole ed enzimi chiave. Molti passaggi sono opposti a quelli che si osservano nella glicolisi.

    Al deficit calorico diretto va sommato, oltre a quanto sopra, quello causato dalla termogenesi indotta dal cibo che nel caso delle Proteine si aggira tra il 10 ed il 35% (22,5% in media) delle calorie ingerite.

    Questo aspetto risulta positivo, almeno in parte, ma insieme ad esso, in una “carne e acqua” estrema, va considerato l’enorme deficit nutrizionale che, nonostante la possibilità di sopperire a ciò sul piano vitaminico, minerale e di fibre, colpisce duramente la richieste fisiologiche di una quantità sufficiente di Grassi. Inoltre, la privazione eccessivamente prolungata del consumo glucidico peggiora per circostanze adattative il metabolismo glucidico ed i vantaggi ad esso legati (vedi, per esempio, la qualità della prestazione, la capacità di utilizzo del substrato energetico una volta reintrodotto ecc… ).

    L’aumento del Cortisolo, e so già che alcuni limitati si scandalizzeranno, è la preoccupazione minore in quanto trattasi di un adattamento fisiologico che può diventare un problema nel cronico. Stesso discorso vale per lo squilibrio della bilancia acido-base dell’organismo e conseguente catabolismo muscolare. Ciò si verifica solo in sistemi organici gravemente compromessi, come quelli osservati all’inizio del XX secolo nelle aree del Canada dove per molti mesi non ci si nutriva se non di coniglio e qualche radice.

    Comunque sia, gli atleti che optavano per la versione più “bruta” della “carne e acqua” arrivavano ben presto ad un esaurimento fisico e mentale con forte nervosismo e calo della performance sportiva. Non mi dilungherò a parlare dei volumi che, e questo lo dovreste sapere più o meno tutti, venivano rapidamente supercompensati con i refeed.

    Le più tollerabili tra le versioni elencate erano la “Metabolica” e la “Ciclica”. Quest’ultima, la migliore in assoluto tra le tre versioni, viene retta anche da alcuni “Natutral” che, al fine di tagliare le calorie totali della settimana tenevano due giorni in cui il loro consumo calorico era molto ridotto, e per fare ciò usavano in quei giorni una “carne e acqua”.

    Personalmente, sperimentai una mia prima versione di dieta “carne e acqua ibridata” nell’estate del 2016. Si trattava di ciclicizzare 3 giorni in regime simil-Chetogenico (versione dieta Atkins Modificata) seguiti da 1 giorno di refeed seguito a sua volta da 3 giorni a “carne e acqua” per poi ripetere la sequenza per tutta la durata della programmazione. All’epoca la ribattezzai con il “pacchianissimo” nome di “Roller Coaster“.

    Ripartizione macro-calorica nelle fasi della “Roller Coaster”

    L’anno successivo, siamo quindi nel 2017, modificai il sopra citato schema rendendolo pianificabile sui canonici 7 giorni settimanali. Si trattava quindi di 3 giorni in regime simil-Chetogenico (versione dieta Atkins Modificata) seguito da 1 giorno di refeed seguito a sua volta da 2 giorni a “carne e acqua” e successivamente un altro giorno di refeed. Questa volta la ribattezzai “Keto Starvation”.

    Ripartizione macro-calorica nelle fasi della “Keto Starvation””

    Quest’ultimo schema applicativo risultò essere ben tollerato e con pochi disagi se non gli iniziali annessi a tutti i regimi low-carb (mal di testa, spossatezza, feci molli) che tendono a scomparire dopo poche settimane.

    Da questa versione ne è nata una recente e decisamente più “drastica”. Infatti, la “Protein Starvation” consiste in un piano settimanale nel quale vi sono 3 giorni iniziali a “carne e acqua” seguiti da 1 giorno di refeed glucidico/low fat, successivamente vi sono altri 2 giorni a “carne e acqua” e 1 giorno di refee glucidico/lipidico.

    Ripartizione macro-calorica nelle fasi della “Protein Starvation””

    Questo schema è poco tollerato dalla maggior parte delle persone ma ha mostrato effetti su periodi di tempo di 8 settimane statisticamente significativi rispetto a quanto ottenuto negli stessi soggetti con il regime più “soft”. Ed è ovvio che non si tratta di una pratica propriamente da “Natural”.

    Importante da ricordare è che vi è un integrazione d’obbligo in questa pratica alimentare:

    • Multivitaminico Multiminerale;
    • Potassio;
    • Magnesio;
    • Calcio;
    • Ferro;
    • EPA+DHA;
    • Zinco;
    • Fibra o in alternativa shirataki di Konjac.

    Supplementazione addizionale:

    • Metformina: l’uso della Metformina trova la sua ragione d’essere in una “carne e acqua” per via del suo effetto su l’attività metabolica cellulare via PPAR e AMPK, con conseguente miglioramento del metabolismo energetico sia glucidico che lipidico che, sebbene ci si trovi in un regime low-carb, ipoteticamente dovrebbe indurre delle “forzature di sistema” tali da spingere l’organismo ad attingere maggiormente dai depositi adiposi e dal surplus amminoacidico come substrati di sostentamento per via della “precarietà” dei livelli di glucosio ematico. Inoltre, la Metformina riduce le concentrazioni di glucosio plasmatico a digiuno riducendo i tassi di produzione epatica di glucosio a partire dagli amminoacidi [18][19], il suo effetto sui contributi relativi della glicogenolisi epatica e della gluconeogenesi rimane comunque controverso. Alcuni studi concludono che la Metformina agisca principalmente riducendo i tassi di gluconeogenesi [20]; altri, che agisce riducendo i tassi di glicogenolisi epatica [21][22]. Comunque sia, come già precedentemente accennato, il corpo può ricavare solo 1000 calorie al giorno attraverso la gluconeogenesi in una dieta di sole proteine dal momento che il fegato è in grado di produrre solo 250g di glucosio dalle proteine, e non importa quante proteine si mangiano. Con l’aggiunta di 750mg/die di Metformina si ipotizza, almeno da considerazioni fatte per via di rapporti sui cambiamenti glicemici, per quello che valgono, che la produzione di glucosio scenda a circa 180g al giorno, al limite del mantenimento dei tessuti glucosio dipendenti.
    Metformina

    Nota: l’uso della Metformina può dare dissenteria e problemi gastrointestinali.

    Sfortunatamente, nei piani “carne e acqua” prolungati, il fegato inizierà a non riuscire a convertire l’ammoniaca in urea (non abbastanza ATP), quindi l’ammoniaca rientrerà nel flusso sanguigno. Questo inizierà a dare problemi al sistema nervoso.

    Mi sembra scontato aggiungere che la dove viene applicata una supplementazione farmacologica strategica e contestualizzata il piano da i suoi migliori risultati. Per esempio, oltre a quanto detto prima per la Metformina, l’uso del 7-Keto-DHEA, o di altro inibitore della 11 βHSD-1, riduce la risposta cortisolemica. Alcuni riducono l’assorbimento lipidico dei pasti con fonti non accuratamente pesate e che possono contenere una quantità di grassi più elevata delle fonti comunemente consumate.

    Azione del 7-Keto-DHEA sull’attività dell’enziama 11 β-HSD-1

    Vi ricordo, e sto parlando all’idiota che sta sempre dietro lo schermo leggendo ma non capendo una emerita ciola, che estremizzare questo tipo di dieta già di suo estrema scimmiottando quanto sofferto dagli esploratori del secolo scorso beh, gli effetti non sono affatto piacevoli e comprendono nausea e affaticamento iniziali, seguiti da diarrea continua e infine, nei casi cronici, la morte.[4]

    Conclusione:

    Cosa si può imparare dalla dieta “carne e acqua”?

    Lo ripeto affinché sia chiaro a tutti: la dieta “carne e acqua” trova il suo motivo d’esistere per brevi periodi di tempo (vedi pre-contest), e ancora meglio se nello schema alimentare i giorni di “starvation” vengono intervallati da refeed glucidici e misti!

    Come ben si comprende, sembra che la dieta “carne e acqua” abbia funzionato per un certo numero di culturisti, un punto che sottolinea la necessità di adattare il piano alimentare alle capacità adattative del soggetto. Ma questo, ad oggi, lo abbiamo ben capito, di qualsiasi piano alimentare o allenante si tratti.

    Consiglio la “carne e acqua” o la mia “Protein Starvation”? Non la consiglio da un punto di vista etico e professionale dal momento che per seguire tali regimi il soggetto interessato deve per forza di cose essere attentamente seguito da un professionista onde evitare che si ritrovi collassato sul cesso a causa di una pesante disidratazione da dissenteria. Non consiglio in nessun modo di seguire la “dieta carnivora” come stile di vita promossa da Shawn Baker, una follia!

    Per il resto, affidatevi a personale qualificato prima di intraprendere qualsiasi percorso alimentare.

    Gabriel Bellizzi

    Riferimenti:

    1. Cordain, L.; Miller, J. B.; Eaton, S. B.; Mann, N.; Holt, S. H.; Speth, J. D. (March 2000). “Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets”The American Journal of Clinical Nutrition71 (3): 682–692.
    2. Hosfield, Rob (2016-10-02). “Walking in a Winter Wonderland? Strategies for Early and Middle Pleistocene Survival in Midlatitude Europe”Current Anthropology57 (5): 653–682. 
    3. Jump up to:a b Hardy, Bruce L. (2010-03-01). “Climatic variability and plant food distribution in Pleistocene Europe: Implications for Neanderthal diet and subsistence”Quaternary Science Reviews29 (5): 662–679. 
    4. Jump up to:a b c Fiorenza, Luca; Benazzi, Stefano; Henry, Amanda G.; Salazar‐García, Domingo C.; Blasco, Ruth; Picin, Andrea; Wroe, Stephen; Kullmer, Ottmar (2015). “To meat or not to meat? New perspectives on Neanderthal ecology”American Journal of Physical Anthropology156 (S59): 43–71. 
    5. “Appian’s Roman History, Vol. I-III.”, Edited and translated by Brian McGing. Loeb Classical Library 2. Cambridge, MA: Harvard University Press, 1912.
    6. McClellan WS, Du Bois EF (February 13, 1930). “Clinical Calorimetry: XLV. Prolonged Meat Diets With A Study Of Kidney Function And Ketosis” (PDF). J. Biol. Chem87 (3): 651–668. 
    7. “Not by Bread Alone”, Vilhjalmur Stefansson, Publisher, Macmillan, 1946
    8.  Jungle, Desert, and Arctic Emergencies Booklet. Flight Control Command Safety Education Division of the United States Army Air Forces. 1 January 1941. p. 116,119. Retrieved 27 July 2020.
    9. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids, Institute of Medicine. National Academy Press, 2005
    10. Jump up to:a b Bilsborough, S; Mann, N (April 2006). “A review of issues of dietary protein intake in humans”. International Journal of Sport Nutrition and Exercise Metabolism16 (2): 129–52. 
    11. Lahtinen, Maria; Clinnick, David; Mannermaa, Kristiina; Salonen, J. Sakari; Viranta, Suvi (December 2021). “Excess protein enabled dog domestication during severe Ice Age winters”Scientific Reports11 (1): 7. 
    12. Lieb CW THE EFFECTS ON HUMAN BEING OF A TWELVE MONTHS EXCLUSIVELY MEAT DIET jama 1929; 93:20-2
    13. Rudman et al MAXIMAL RATES OF EXCRETION AND SYNTESIS OF UREA IN NORMAL AND CIRRHOTICS SUBJECTS J Clin Invest 1973; 52:2241-9
    14. Bilsborought S, Mann N. A REVIEW OF ISSUE OF DIETARY PROTEIN INTAKE IN HUMANS Int J Sport Nutr Exerc Metab, 2000 Apr; 16(2): 129-52
    15. Shawn Baker MD – The Carnivore Diet (shawn-baker.com)
    16. Carnivore Diet Success Stories | MeatRX
    17. B O A R D A C T I O N S (state.nm.us)
    18. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334:574–579. [PubMed] [Google Scholar]
    19. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Rev. 1998;6:89–131. [Google Scholar]
    20. Stumvoll M, Nurjhan N, Periello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–554. [PubMed] [Google Scholar]
    21. Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81:4059–4067. [PubMed] [Google Scholar]
    22. Christiansen MP, Linfoot PA, Neese RA, Hellerstein M. Metformin: effects upon postabsorptive intrahepatic carbohydrate fluxes. Diabetes. 1997;46 Suppl. 1:244A. [Google Scholar]

    Alpinia officinarum, dieta ipercalorica e accumulo di grasso.

    Introduzione:

    Non è la prima volta che attraverso un articolo o un post tratto di molecole con un ipotetico potenziale sulla riduzione dell’accumulo di grasso in contesto di una dieta ipercalorico. Questa volta vorrei parlare degli studi effettuati sulla Alpinia officinarum e pubblicati sul Journal of Medicinal Food tra il 2010 ed il 2012.[1][2] Sono studi su animali, quindi di puro interesse speculativo e non applicabili con validità comprovata sull’uomo, ma rimangono sempre dei lavori di discreto interesse nella ricerca di agenti anti-obesogeni.

    Cos’è l’Alpinia officinarum?

    L’Alpinia officinarum ( galanga minore) è una pianta appartenente alla famiglia delle Zingiberaceae [3], nativa della Cina, in particolare delle coste del sud-est (Isola di Hainan), sebbene sia comunque presente anche in India e in tutto il Sud-Est asiatico. La pianta è imparentata con lo zenzero e la curcuma ed è un parente stretto della galanga maggiore o Alpinia galangal. Sia Alpinia officinarum che Alpinia galangal hanno una lunga storia di uso medicinale e culinario in oriente.

    Sebbene la composizione di entrambe le piante sia molto simile, si trova spesso l’Alpinia officinarum nelle medicine tradizionali asiatiche e l’Alpinia galangal più spesso come spezia.

    Per qualunque fine siano usate, le parti più interessanti di entrambe le piante sono le radici.

    Dettagli dello studio del 2010

    I ricercatori della Zhejiang Chinese Medical University si sono procurati le radici essiccate di Alpinia officinarum e le hanno trasformate in un estratto alcolico. Hanno messo gli estratti ottenuti nel cibo dei ratti da laboratorio per 6 settimane.

    I ricercatori hanno diviso i ratti in 4 gruppi. Il primo gruppo ricevette cibo standard. Questo era il gruppo di controllo. Un secondo gruppo ricevette cibo con zuccheri e grassi extra [HFD]. Quei ratti, come ci si potrebbe aspettare, sono ingrassati. Un terzo gruppo venne nutrito con mangime con zuccheri e grassi extra costituiti dal 3% di estratto [AOE], un quarto gruppo venne nutrito con zucchero e una dieta ricca di grassi costituita dal 5% di estratto. L’estratto ha mostrato di bloccare quasi completamente l’aumento della massa grassa nei ratti trattati.

    L’alimentazione iper-glucidica e iper-lipidica aveva causato, come d’ovvia intuizione, un peggioramento dei livelli di colesterolo, ma l’estratto di Alpinia officinarum ha praticamente eliminato questo peggioramento [vedi la figura sopra].

    I ricercatori hanno affermato che questo studio potrebbe avere importanti implicazioni perché è il primo rapporto che riporti gli effetti anti-obesogeni e di miglioramento della lipidemia ematica dell’estratto di Alpinia officinarum nei ratti nutriti con una dieta ricca di grassi.

    Tuttavia, i ricercatori erano perfettamente consapevoli della necessità di ulteriori studi per indagare quali composti nell’estratto di Alpinia officinarum sono responsabili degli effetti osservati, nonché i meccanismi molecolari responsabili dell’attività anti-obesità e ipolipemizzante.

    Se calcolassimo la dose per l’uomo da quella usata per i ratti trattati, si ottengono quantità molto elevate, pari a oltre i 10g al giorno. Tale dosaggio non è né sicuro né necessario.

    Dettagli dello studio del 2012

    Nel 2012, i ricercatori del Korea Food Research Institute hanno effettuato uno studio simile al precedente, ma con un dosaggio somministrato ai ratti meno elevato.

    I ricercatori hanno somministrato attraverso il cibo una quantità di estratto di Alpinia officinarum pari a 5g per chilo. Come i ricercatori dello studio cinese, i coreani hanno usato un estratto autoprodotto a base alcolica 1:4 (wt/wt).

    Se dovessimo rapportare il dosaggio utilizzato al dosaggio umana, esso sarebbe di circa 3-4g di estratto al giorno. È ancora un dosaggio abbastanza alto, ma decisamente inferiore a quello somministrato agli animali da laboratorio nello studio cinese.

    Il design sperimentale dei ricercatori coreani assomigliava a quello dei loro colleghi cinesi. Infatti, i ricercatori hanno somministrato ad un gruppo di topi mangime standard [C], ad un altro gruppo mangime in cui era stato aggiunto zucchero e grasso extra [HFD], e ad un terzo gruppo di animali è stato somministrato cibo ipercalorico più l’estratto di Alpinia officinarum [HFD + AOE].

    L’estratto ha inibito l’aumento di peso corporeo degli animali trattati durante le 8 settimane dell’esperimento.

    Quando i ricercatori hanno studiato i depositi di grasso dei topi dopo 8 settimane, hanno osservato che Alpinia officinarum aveva ridotto la loro crescita.

    Quando i ricercatori hanno effettuato test con cellule adipose in vitro, hanno scoperto che l’estratto di Alpinia officinarum ne bloccava la crescita.

    A detta dei ricercatori, la Galangina, un importante flavonolo presente nell’Alpinia officinarum, potrebbe essere responsabile di questo effetto.

    Nel tessuto adiposo dei topi trattati, l’Alpinia officinarum aveva causato una parziale disattivazione di recettori attivati da proliferatori perossisomiali come la PPAR-γ, che ostacolava la crescita delle cellule adipose. Nel fegato dei topi, invece, l’Alpinia officinarum aveva causato l’attivazione del PPAR-α, che nei roditori svolge un ruolo importante nell’ossidazione degli acidi grassi.

    Conclusione

    Come agffermato dagli stessi ricercatori, la prima citata Galangina, può inibire l’adipogenesi durante la differenziazione degli adipociti e può essere efficace nel migliorare lo stato di obesità.

    Se la Galangina è davvero il principio attivo cardine nella Alpinia officinarum, non dovrebbe essere difficile testarlo in un numero discreto di soggetti con un dosaggio rivisto e più sicuro. Ma la momento, in mancanza di dati sull’uomo, possiamo solo ipotizzare la sua efficacia nell’uomo.

    Gabriel Bellizzi

    Riferimenti:

    1- https://www.ergo-log.com/10.1089/jmf.2009.1235

    2- https://doi.org/10.1089/jmf.2012.2286

    3- Alpinia officinarum, su The Plant List

    Rauwolscina (α-yohimbina).

    Introduzione:

    Come si potrà facilmente capire dalle prime righe di questo articolo, la Rauwolscina è una molecola molto simile nella sua struttura alla Yohimbina e probabilmente condivide simili effetti; ipoteticamente potrebbe essere più potente, ma esistono prove limitate.

    Dal momento che mi è capitato molto spesso di ricevere domande su questa forma di Yohimbina, ho deciso di scrivere alcune righe in merio trattando gli effetti maggiormente ricercati dall’utilizzatore medio dell’alcaloide in questione.

    Rauwolscina: caratteristiche proprie e similitudini con la Yohimbina

    La Rauwolscina, nota anche come Isoyohimbina, α-yohimbina e Corynanthidina, è un alcaloide presente in varie specie del genere Rauvolfia e Pausinystalia (precedentemente noto come Corynanthe).[1] È uno stereoisomero della Yohimbina. [1] la Rauwolscina è uno stimolante del sistema nervoso centrale, un anestetico locale e possiede un certo potenziale afrodisiaco.[1] La Rauwolscina agisce prevalentemente come antagonista del recettore α2-adrenergico.[2][3] È stato anche dimostrato che agisce come agonista parziale del recettore 5-HT1A e antagonista del recettore 5-HT2A e 5-HT2B. [4] [5] [6]

    la Rauwolscina, o {3H}Rauwolscina, come già accennato, è un antagonista dei recettori adrenergici alfa-1 e alfa-2 (con una maggiore selettività per quest’ultimo).[7] La Yohimbina condivide il medesimo meccanismo d’azione recettoriale.

    Come ormai risaputo, la Yohimbina agisce sul sistema dei recettori adrenergici delle cellule adipose, che regolano la termogenesi. Le subunità beta dei recettori adrenergici (bersagli, per esempio, dell’Efedrina) possono essere viste come stimolanti per la perdita di grasso poiché aumentano l’attività dell’enzima adenil ciclasi e successivamente dei livelli di cAMP (principalmente attraverso le subunità b1 e b2; con la b3 che è meno attiva negli umani).[8][9] Le subunità alfa sono soppressive del metabolismo lipidico, e attraverso la loro attivazione si riduce l’attività dell’adenil ciclasi e si riducono i livelli di cAMP (in particolare per opera degli alfa-2). La Yohimbina, come la Rauwolscina, è un antagonista selettivo del recettore alfa-2 adrenergico (inattivatore), che inibisce l’attivazione del set di recettori soppressivi e preserva l’attività dell’adenil ciclasi e gli effetti mediati dai recettori beta.[10]

    Osservando le interazioni della Yohimbina a livello del recettore, la molecola è risultata essere un antagonista alfa2-adrenergico selettivo con un’affinità 44 volte maggiore per la subunità alfa2 rispetto alla subunità alfa1 quando testata su ratti anoccigei e dotti deferenti; questo differisce dal relativo composto Corinantino e Rauwolscina che sono selettivi per il recettore alfa1 (33 volte) e per lo più non selettivi (3,3 volte); rispettivamente.[11] Questi valori sono stati derivati ​​da sperimentazioni in vitro e un secondo test nel quale è stato osservato il legame competitivo in campioni di cervello notando che la selettività era ridotta da 45 a 5,7. Quando si osserva il recettore alfa2 stesso, la Yohimbina sembra avere ulteriore selettività per la subunità alfa2C piuttosto che per la A o la B; nell’intervallo di 4-15 volte la selettività,[12] mentre la Rauwolscina sembra essere non selettiva tra queste tre subunità.[13][12] La Rauwolscina sembra essere efficace a livello del recettore quanto la Yohimbina,[14] con la Coynantina che presenta la minore entità di efficacia.[11]

    Oltre a ciò, la stessa Yohimbina può potenzialmente indurre la perdita di grasso per via indiretta attraverso il rilascio di Adrenalina; l’Adrenalina stessa è un attivatore dei recettori beta-adrenergici.[15] Tuttavia, questo aumento di Adrenalina può svanire con il tempo raggiungendo l’irrilevanza statistica 2 settimane dopo l’inizio dell’ingestione giornaliera.[16] L’aumento degli acidi grassi liberi plasmatici e la densità dei recettori alfa2-adrenergici rimangono simili in entrambi i momenti, suggerendo che la Yohimbina perde selettivamente il picco di Adrenalina ma non gli effetti diretti sulla sovra-regolazione della lipolisi recettore-dipendente.

    La Yohimbina è stata inizialmente studiata per il suo ruolo nella riduzione degli accumuli adiposi localizzati grazie al suo utilizzo come crema topica (potendo scegliere dove applicare la Yohimbina)[17][18] ma anche secondariamente al suo utilizzo per ridurre l’adipe nelle cosce delle donne, poiché livelli elevati di Estrogeni aumentano l’attività del recettore alfa2-adrenergico.[19] A causa dell’aumento dell’attività alfa2-adrenergica nel tessuto adiposo sito nelle cosce delle donne, si pensava che l’antagonismo di questi recettori riducesse l’adiposità in modo selettivo; i risultati con la soluzione topica sono ad oggi vaghi, con uno studio con esito positivo [18] e l’altro nel quale si sono notati benefici sia con la Forskolina (da Coleus Forskohlii) che con l’Aminofillina ma non con la Yohimbina. [17]

    La chetogenesi, o la produzione di corpi chetonici, è potenziata dalla presenza di Noradrenalina in condizioni normali. Il blocco dei recettori alfa adrenergici, tramite l’antagonismo della Yohimbina (e della Rauwolscina) sul recettore alfa-2 adrenergico, aumenta gli effetti chetogenici della Noradrenalina. [20]

    Uno studio nel quale si è osservato un aumento della ossidazione lipidica (aumento dei biomarcatori di NEFA e glicerolo) ha anche notato che questo aumento è stato soppresso durante lo stato di alimentazione.[21] È stato ipotizzato che questa interazione con lo stato di digiuno così come gli effetti apparentemente additivi/sinergici della Yohimbina e l’esercizio sulla lipolisi[21] potrebbero portare a tempistiche di assunzione ideale della Yohimbina prima dell’esercizio mattutino.[22] Se abbinata al cibo in modo acuto, la Yohimbina può effettivamente aumentare il rilascio di Insulina indotto dal glucosio attraverso lo stimolo delle cellule pancreatiche[23][24] ma non si verifica a digiuno dopo il consumo orale di 0,2g/kg.[25][21]

    Se il meccanismo avviene tramite la stimolazione del rilascio di Insulina che riduce la lipolisi, è teorico che un pasto privo di carboidrati e a basso contenuto proteico (per ridurre la stimolazione indotta dagli amminoacidi) potrebbe essere simile allo stato di digiuno; questo non è stato però studiato.

    Uno studio è stato condotto con la somministrazione di Yohimbina a giocatori di calcio d’élite che assumevano 10mg della molecola due volte al giorno (20 mg in totale) per un periodo di 21 giorni. Durante lo studio si è osservato che, in seguito al controllo della dieta, la percentuale di grasso era diminuita dallo 9,3 +/- 1,1% allo 7,1 +/- 2,2% (valutato tramite calibro), mentre nel gruppo placebo è stato registrato un aumento non significativo.[26] La dose di 0,2mg/kg di Yohimbina in uomini altrimenti sani sembra aumentare gli effetti sul miglioramento del metabolismo lipidico e della beta-ossidazione della Noradrenalina endogena e sembra essere più efficace durante i periodi di esercizio e attenuarsi se somministrati dei beta-bloccanti;[21] un altro studio ha rilevato che questa attenuazione deve essere misurata al 70%.[25] Tuttavia, almeno uno studio ha rilevato risultati nulli, in quanto la Yohimbina non ha fatto diminuire il peso nei volontari sani.[27]

    La {3H} Rauwolscina è meno potente della Yohimbina nel proteggere dagli aumenti della pressione sanguigna indotti dall’Adrenalina (entrambi meno potenti della Corinantina e più potenti della 3-epi-alfa-yohimbina), questo effetto sembra correlato alla loro affinità per gli alfa -2 adrenorecettori.[28]

    Come la Yohimbina, la Rauwolscina è un agonista dei recettori 5-HT1a/b e induce effetti simili alla Serotonina. Mentre la Yohimbina ha più affinità per tale recettore, la Rauwolscina ha un valore IC50 più basso (il che significa che può saturare più recettori alla stessa dose) e può essere considerata leggermente più potente nell’attività serotoninergica.[29][30]

    Non mi dilungherò oltre, dal momento che gli argomenti trattati fino a questo momento sono di maggiore interesse per la valutazione di supplementi contenenti Rauwolscina e del loro possibile utilizzo.

    Conclusione:

    Ora, sappiamo che le caratteristiche di entrambe le forme di Yohimbina sono pressoché identiche sebbene la selettività recettoriale della Rauwolscina sembri minore di quella della Yohimbina. La caratteristica che sembra spostare l’interesse sulla Rauwolscina è la sua più lunga emivita ( Yohimbine 0.25-2.5h; Rauwolscina 0.5-5h ipotetiche). Se però valutiamo quest’aspetto alla luce della sua bassa selettività e alto potenziale di saturazione recettoriale, viene facile intuire che ciò possa influire negativamente sulla percentuale di emersione di effetti collaterali tipici dell’alcaloide (tremori, insonnia, emicrania, tachicardia, ecc…). Con molta probabilità il dosaggio “ideale” con un certo margine di “sicurezza” può essere attestato a 0.1mg/Kg/die.

    Gabriel Bellizzi

    Riferimenti:

    1.  KOHLI JD, DE NN (June 1956). “Pharmacological action of rauwolscine”. Nature177 (4521): 1182. doi:10.1038/1771182a0PMID 13334509.
    2.  Perry BD, U’Prichard DC (December 1981). “[3H]rauwolscine (alpha-yohimbine): a specific antagonist radioligand for brain alpha 2-adrenergic receptors”. European Journal of Pharmacology76 (4): 461–4. doi:10.1016/0014-2999(81)90123-0PMID 6276200.
    3.  Kou Qin; Pooja R. Sethi; Nevin A. Lambert (August 2008). “Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins”The FASEB Journal22 (8): 2920–2927. doi:10.1096/fj.08-105775PMC 2493464PMID 18434433.
    4.  Arthur JM, Casañas SJ, Raymond JR (June 1993). “Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptors”. Biochemical Pharmacology45 (11): 2337–41. doi:10.1016/0006-2952(93)90208-EPMID 8517875.
    5.  Kaumann AJ (June 1983). “Yohimbine and rauwolscine inhibit 5-hydroxytryptamine-induced contraction of large coronary arteries of calf through blockade of 5 HT2 receptors”. Naunyn-Schmiedeberg’s Archives of Pharmacology323 (2): 149–54. doi:10.1007/BF00634263PMID 6136920.
    6.  Wainscott DB, Sasso DA, Kursar JD, Baez M, Lucaites VL, Nelson DL (January 1998). “[3H]Rauwolscine: an antagonist radioligand for the cloned human 5-hydroxytryptamine2b (5-HT2B) receptor”Naunyn-Schmiedeberg’s Archives of Pharmacology357 (1): 17–24. doi:10.1007/PL00005133PMID 9459568. Archived from the original on 2001-09-11.
    7. J C Doxey, et al. Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthineNaunyn Schmiedebergs Arch Pharmacol. (1984)
    8. Carmen GY, Víctor SM. Signalling mechanisms regulating lipolysisCell Signal. (2006)
    9. ^ Liu CY, Boyer JL, Mills SE. Acute effects of beta-adrenergic agonists on porcine adipocyte metabolism in vitroJ Anim Sci. (1989)
    10. ^ Lafontan M, et al. Alpha-2 adrenoceptors in lipolysis: alpha 2 antagonists and lipid-mobilizing strategiesAm J Clin Nutr. (1992)
    11. a b c Doxey JC, et al. Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthineNaunyn Schmiedebergs Arch Pharmacol. (1984)
    12. a b Lalchandani SG, et al. Yohimbine dimers exhibiting selectivity for the human alpha 2C-adrenoceptor subtypeJ Pharmacol Exp Ther. (2002)
    13. ^ MacDonald E, Kobilka BK, Scheinin M. Gene targeting–homing in on alpha 2-adrenoceptor-subtype functionTrends Pharmacol Sci. (1997)
    14. ^ Tan S, Curtis-Prior PB. Comparative effects of RX 781094, mianserin, yohimbine, rauwolscine and prazosin in reversing clonidine inhibition of MIX-stimulated lipolysis in hamster isolated white fat cellsPharmacol Res Commun. (1984)
    15. Reiner S, et al. Differential signaling of the endogenous agonists at the beta2-adrenergic receptorJ Biol Chem. (2010)
    16. Galitzky J, et al. Pharmacodynamic effects of chronic yohimbine treatment in healthy volunteersEur J Clin Pharmacol. (1990)
    17. Greenway FL, Bray GA, Heber D. Topical fat reductionObes Res. (1995)
    18. a b Greenway FL, Bray GA. Regional fat loss from the thigh in obese women after adrenergic modulationClin Ther. (1987)
    19. ^ Pedersen SB, et al. Estrogen controls lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distributionJ Clin Endocrinol Metab. (2004)
    20. ^ Keller U, Weiss M, Stauffacher W. Contribution of alpha- and beta-receptors to ketogenic and lipolytic effects of norepinephrine in humansDiabetes. (1989)
    21. a b c d Galitzky J, et al. Alpha 2-antagonist compounds and lipid mobilization: evidence for a lipid mobilizing effect of oral yohimbine in healthy male volunteersEur J Clin Invest. (1988)
    22. ^ McCarty MF. Pre-exercise administration of yohimbine may enhance the efficacy of exercise training as a fat loss strategy by boosting lipolysisMed Hypotheses. (2002)
    23. ^ Ito K, et al. Adrenoceptor antagonists, but not guanethidine, reduce glucopenia-induced glucagon secretion from perfused rat pancreasDiabetes Res Clin Pract. (1995)
    24. ^ Ribes G, et al. Involvement of a central nervous pathway in yohimbine-induced insulin secretionEur J Pharmacol. (1989)
    25. Berlan M, et al. Plasma catecholamine levels and lipid mobilization induced by yohimbine in obese and non-obese womenInt J Obes. (1991)
    26. Ostojic SM. Yohimbine: the effects on body composition and exercise performance in soccer playersRes Sports Med. (2006)
    27. Sax L. Yohimbine does not affect fat distribution in menInt J Obes. (1991)
    28. Rockhold RW, Gross F. Yohimbine diastereoisomers: cardiovascular effects after central and peripheral application in the ratNaunyn Schmiedebergs Arch Pharmacol. (1981)
    29. Arthur JM, Casañas SJ, Raymond JR. Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptorsBiochem Pharmacol. (1993)
    30. [3H.