Evidenze base per la pianificazione della “Peak Week”

Breve introduzione all’argomento:

Nel giugno 2021 è stato pubblicato un eccellente lavoro di Guillermo Escalante, Scott W. Stevenson, Christopher Barakat, Alan A. Aragon e Brad J. Schoenfeld che analizza le comuni pratiche applicate dai bodybuilder nella settimana precedente la gara (Peak Week) esponendone la logica applicativa in base alle evidenze scientifiche in nostro possesso.[Peak week recommendations for bodybuilders: an evidence based approach | BMC Sports Science, Medicine and Rehabilitation | Full Text (biomedcentral.com)] Ho deciso quindi di scrivere un articolo dettagliato sulla settimana pre-contest, utilizzando come base lo studio sopra citato e aggiungendo la mia ricerca personale, al fine di spiegarne le modalità di gestione migliori che, senz’altro, potranno tornare utili tanto agli atleti quanto ai preparatori.

Punto di partenza:

Il Bodybuilding è uno sforzo competitivo per il miglioramento della composizione corporea la quale verrà giudicata con parametri che comprendono la combinazione delle dimensioni muscolari, la simmetria, la “condizione” (bassi livelli di grasso corporeo) e presentazione sul palco. Per avere successo, i concorrenti devono presentare la loro forma fisica migliore durante il giorno (o i giorni) della competizione. I bodybuilder impiegano tipicamente periodi di 8-22 o più settimane di preparazione in cui la dieta e i programmi di esercizio vengono modificati dalla off season nel tentativo di perdere la maggior percentuale di grasso corporeo e guadagnare o mantenere la massa muscolare scheletrica [1,2,3,4,5,6 ,7,8,9,10]. Negli ultimi giorni di preparazione, i concorrenti implementano interventi per “tirare” il loro corpo nel tentativo di massimizzare l’estetica nel giorno della gara [11,12,13,14]. Gli interventi spesso utilizzati includono l’alterazione dei loro regimi di esercizio e l’assunzione di macronutrienti, acqua ed elettroliti con gli obiettivi di:

1-massimizzare il contenuto di glicogeno muscolare come mezzo per migliorare la “pienezza” muscolare (cioè il volume);

2-ridurre al minimo l’acqua sottocutanea (nel tentativo di sembrare “asciutti” anziché “acquosi”, migliorando così l’estetica muscolatura) e

3-ridurre al minimo il gonfiore addominale per mantenere un girovita più piccolo e ottimizzare le proporzioni fisiche e l’estetica generale [11, 12, 14,15 ,16,17].

Sebbene i concorrenti possano utilizzare metodi naturali per raggiungere questi obiettivi, sappiamo benissimo che vi è un ampio uso segnalata di auto-prescrizione di farmaci per il miglioramento delle prestazioni/estetica [8, 18, 19, 20, 21].

Uno studio osservazionale ha raccolto informazioni sulle strategie nutrizionali della Peak Week e dei giorni di gara tra 81 bodybuilder natural (maschi= 59, femmine = 22) tramite un questionario di 34 elementi; l’indagine ha elencato le strategie di picco comunemente utilizzate e ha fornito spazio aggiuntivo per informazioni qualitative [11]. La stragrande maggioranza dei partecipanti (93,8%) ha riferito di aver utilizzato una strategia di picco la settimana prima della competizione (denominata appunto “Peak Week”), con la manipolazione di Carboidrati (CHO), Acqua e/o Sodio segnalata più comunemente [ 11]. L’obiettivo primario dichiarato della manipolazione dei CHO era massimizzare le concentrazioni di glicogeno muscolare utilizzando principi simili al carico dei CHO classico [11]. Inoltre, i concorrenti hanno manipolato l’assunzione di Acqua e/o Sodio nel tentativo di indurre un effetto diuretico/poliuria per eliminare l’acqua superflua.[11]

In un altro studio, i ricercatori hanno condotto interviste approfondite per identificare e descrivere diverse strategie dietetiche utilizzate da sette culturisti maschi natural durante la off season, la stagione, la Peak Week e il post-season [14]. Durante la Peak Week, sei partecipanti hanno riferito di aver utilizzato un regime di carico di carboidrati modificato per tentare di aumentare il contenuto di glicogeno. Inoltre, tutti i partecipanti hanno riferito di aver manipolato l’assunzione di acqua mentre tre hanno manipolato contemporaneamente l’assunzione di sodio nel tentativo di ridurre l’acqua corporea nella speranza di creare un aspetto più “asciutto”.[14]

Sebbene esistano molti protocolli delle Peak Week al fine di tentare il miglioramento dell’estetica, mancano ricerche sull’efficacia e la sicurezza dei metodi comunemente usati dai bodybuilder. Dal momento che lo studio in questione non tratta i bodybuilder supplementati farmacologicamente, aggiungerò delle note esplicative sui metodi aggiuntivi utilizzati da questi atleti.

Lo scopo di questo articolo è:

1-rivedere la letteratura attuale sui protocolli di picco più comunemente impiegati dai bodybuilder;

2-fornire raccomandazioni basate sull’evidenza per le strategie di picco pre-gara per concorrenti e preparatori.

Manipolazione dei Carboidrati:

La manipolazione dell’assunzione di Carboidrati è una popolare strategia di picco pre-gara diffusa tra i bodybuilder [11, 12, 14]. La strategia, generalmente adottata durante la settimana che precede la competizione, prevede la limitazione sostanziale dell’assunzione di Carboidrati per diversi giorni (spesso indicata come fase di esaurimento o scarica) seguita da un breve periodo di consumo elevato di Carboidrati, con l’obiettivo di ottenere una supercompensazione dei livelli di glicogeno quando i carboidrati sono “stoccati” [22]. I livelli di glicogeno muscolare a riposo con una dieta mista (normale) sono ~ 130mmol/kg di muscolo (peso umido) in individui allenati (un po’ più alti dei soggetti sedentari) [23], o circa 23g di glicogeno (unità di glucosio) per chilogrammo di tessuto muscolare. Il glicogeno muscolare è organizzato nella cellula in frazioni subcellulari [24] e immagazzinato come un complesso di glicogeno-glicogenina (“granulo”) [25] che crea un effetto osmotico il quale attira acqua nella cellula mentre il glicogeno viene immagazzinato [26, 27], aumentando così il volume delle cellule muscolari. Le prime ricerche hanno suggerito che ogni grammo di glicogeno muscolare immagazzinato è accompagnato da circa 3-4g di acqua intracellulare [28]. Questo è superiore al valore comunemente indicato di 2,7g di acqua per grammo di glicogeno, a volte arrotondato a 3g di acqua per grammo di glicogeno, derivato da studi sul fegato di ratto [29, 30]. Tuttavia, i livelli di glicogeno muscolare risultanti dopo il carico di glicogeno sono altamente variabili [31], forse a causa della complessità sottostante all’accumulo di glicogeno intramuscolare [25]. Allo stesso modo, mentre è chiaro che il carico di glicogeno può aumentare il contenuto di acqua intracellulare [31], lo spessore muscolare [15] e le stime della massa corporea magra (LBM) [32], l’entità relativa dell’idratazione intracellulare in grammi di acqua per grammo di glicogeno può variare così tanto da non essere statisticamente correlato con il contenuto di glicogeno.[30]

Una panoramica semplificata del metabolismo del glicogeno a riposo e durante l’esercizio. Il sarcolemma separa l’interno della cellula muscolare dal liquido interstiziale che circonda la cellula. A riposo (lato sinistro), il consumo di carboidrati stimola il rilascio di insulina dal pancreas. Le molecole di insulina si legano ai recettori dell’insulina incorporati nel sarcolemma. Quel legame innesca una cascata di risposte intracellulari che provocano il movimento dei trasportatori del glucosio GLUT4 dall’interno della cellula muscolare nel sarcolemma, consentendo al glucosio di spostarsi nella cellula. Una volta all’interno della cellula muscolare, le molecole di glucosio sono pronte per essere stoccate sotto forma di glicogeno. La glicogenina è un enzima che forma il centro delle particelle di glicogeno, consentendo la formazione iniziale di filamenti di glicogeno. Durante l’esercizio (lato destro), i trasportatori GLUT4 si spostano nel sarcolemma senza l’assistenza dell’Insulina, favorendo l’assorbimento del glucosio nella cellula. Contemporaneamente, la degradazione del glicogeno aumenta in risposta ai cambiamenti nella concentrazione dei metaboliti all’interno della cellula. Le molecole di glucosio dal sangue e quelle rilasciate dal glicogeno vengono ossidate per produrre le molecole di adenosina trifosfato (ATP) necessarie per sostenere la contrazione muscolare.

Sebbene la ricerca controllata sull’argomento sia limitata a ciò che è ottimale per i bodybuilder, le prove attuali sembrano indicare un potenziale beneficio della manipolazione dei carboidrati come strategia di picco. Una serie di casi esaminati da Bamman et al., i quali hanno esaminato sei bodybuilder maschi, ha fornito il supporto iniziale di un effetto benefico [1]. Secondo quanto riferito, i bodybuilder si sono impegnati in un protocollo di carico di carboidrati tre giorni prima della competizione (assunzione media di ~ 290g/giorno). Le misurazioni degli ultrasuoni effettuate 24-48 ore in questo periodo di carico di carboidrati hanno mostrato un aumento del 4,9% dello spessore del muscolo bicipite brachiale rispetto alle misurazioni ottenute sei settimane prima. Sebbene questi risultati sembrino suggerire che il protocollo di carico di carboidrati sia stato efficace nel migliorare in modo acuto la dimensione muscolare, va notato che il lungo intervallo tra le sessioni di test rende impossibile trarre conclusioni sulla causalità a questo proposito. Inoltre, gli autori dello studio non hanno valutato l’assunzione di carboidrati durante la fase di esaurimento dei carboidrati, offuscando ulteriormente gli effetti diretti del protocollo di carico. Pertanto, sebbene i risultati siano intriganti, il livello di prove a sostegno può essere considerato basso.

Le posizioni intracellulari del glicogeno nel muscolo-scheletrico. Immagine © Human Kinetics. I valori per la distribuzione del glicogeno provengono da Schweitzer et al (2017).

Un recente studio quasi sperimentale di de Moraes et al. [15] getta una luce più obiettiva sull’argomento. Ventiquattro bodybuilder dilettanti di alto livello sono stati divisi in base al fatto se avessero o meno manipolato i carboidrati come strategia di picco; il gruppo che ha manipolato i carboidrati ha impiegato una fase di esaurimento di tre giorni (che porta immediatamente al giorno del peso) seguita da una fase di carico di 24 ore (che porta al giorno della gara). Lo spessore muscolare è stato misurato sia al momento del peso che il giorno della gara. Inoltre, le foto dei concorrenti scattate in questi momenti sono state mostrate a un gruppo di giudici federati di bodybuilding, che hanno valutato soggettivamente il loro fisico; da notare, i giudici erano ciechi alle pratiche nutrizionali dei concorrenti. I risultati hanno mostrato un aumento del 3 % della dimensione muscolare della parte superiore delle braccia per coloro che hanno manipolato l’assunzione di carboidrati prima della competizione rispetto a nessun cambiamento in coloro che non lo hanno fatto. Inoltre, solo il gruppo che ha manipolato l’assunzione di carboidrati ha mostrato miglioramenti nelle misure estetiche soggettive, come determinato dall’ispezione visiva delle foto. Una potenziale limitazione dello studio è che i soggetti non sono stati sottoposti a test anti-doping prima della competizione; pertanto, non è noto se l’uso di steroidi anabolizzanti e/o altre sostanze sintetiche (ad es. synthol) possa aver influenzato i risultati. Gli studi futuri dovrebbero accertare tramite autovalutazione, poligrafo e/o analisi del sangue lo stato di libero/migliorato dei soggetti ed escludere o confrontare i risultati in base all’uso di steroidi da parte del soggetto nonché all’uso di altri farmaci che possono influenzare il bilancio idrico.

Recentemente, Schoenfeld ed Escalante hanno condotto un caso di studio in cui hanno seguito un bodybuilder natural di alto livello nel corso della sua preparazione al contest [33]. A partire dalla settimana prima della data della competizione, il concorrente ha ridotto notevolmente l’assunzione di carboidrati a < 50g/giorno per 3 giorni (domenica, lunedì, martedì) e poi ha eseguito una ricarica dei carboidrati a una quantità > 450g/giorno nei successivi 2 giorni (Mercoledì e giovedì). Simile alla ricerca precedente, la valutazione ecografica ha mostrato che la strategia di picco aumentava notevolmente lo spessore muscolare. In questo particolare caso di studio, gli aumenti sono stati del 5% negli arti superiori e del ~ 2 % negli arti inferiori; a causa delle limitate prove disponibili, è difficile fornire un motivo razionale per cui c’era una differenza tra i gruppi muscolari. Dati i risultati soggettivi riportati da de Moraes et al. [15], si può dedurre che questi risultati erano probabilmente significativi dal punto di vista della concorrenza.

Quando si considera la totalità della ricerca attuale, l’evidenza suggerisce che la manipolazione dei carboidrati è una valida strategia di picco per aumentare il volume della massa muscolare il giorno della gara; tuttavia, l’evidenza dovrebbe essere considerata preliminare data la relativa scarsità di studi pubblicati sull’argomento. Inoltre, la strategia può portare a un aumento dei sintomi gastrointestinali come dolore addominale, bruciore di stomaco, stitichezza e diarrea [15], che a loro volta possono influenzare negativamente la capacità di eseguire in modo ottimale la preparazione al giorno della gara e il contest stesso. Pertanto, i concorrenti dovrebbero sperimentare la strategia con almeno 2-4 settimane di anticipo per determinarne gli effetti a livello individuale e apportare le modifiche necessarie secondo necessità.

Manipolazione di acqua e sodio:

Acqua e sodio sono frequentemente manipolati dai bodybuilder, indipendentemente o contemporaneamente, impiegando una varietà di strategie che comportano il “carico” e la limitazione di entrambi [11], con l’obiettivo di ridurre al minimo l’acqua sottocutanea per massimizzare la definizione del muscolo scheletrico sottostante [8, 11, 12 , 14, 19, 20]. È noto che diversi bodybuilder si auto-prescrivono diuretici farmaceutici per facilitare il processo [8, 19,20,21, 34, 35]. I bodybuilder possono anche impiegare queste strategie per scendere a classi di peso inferiori, il che può fornire un vantaggio competitivo se il concorrente è in grado di recuperare parte del peso sotto forma di volume intramiocellulare (“riempimento” tramite glicogeno e/o stoccaggio di trigliceridi intramiocellulari) prima della competizione. Sebbene l’acqua e il sodio siano due componenti dietetici separati, è fondamentale comprendere che la manipolazione di una variabile influenza l’altra; quindi, esamineremo insieme queste due variabili.

In un’indagine precedentemente citata sulle strategie delle Peak Week e dei giorni di gara utilizzate dai bodybuilder natural, la manipolazione dell’acqua è stata la seconda strategia più popolare implementata (dietro la manipolazione dei carboidrati) [11]. I ricercatori hanno riferito che i concorrenti hanno implementato il carico dell’acqua (65,4%), la restrizione dell’acqua (32,1%) o entrambi (25%) per ottenere un aspetto “asciutto”. La quantità di acqua consumata durante la fase di carico variava da 4 a 12L al giorno ed era tipicamente seguita da restrizioni idriche di 10-24 ore prima della competizione. Oltre alla manipolazione dell’acqua, i ricercatori hanno anche riferito che i concorrenti utilizzavano la restrizione di sodio (13,6 %), il carico di sodio (18,5 %), o entrambi (6,2 %) senza un ordine temporale coerente per il regime di carico/restrizione del sodio (un errore limitante); tuttavia, la manipolazione del sodio veniva generalmente praticata tre o quattro giorni prima della competizione. È stato segnalato anche l’uso del tè al dente di leone per le sue presunte proprietà diuretiche.

Nello studio precedentemente discusso di Mitchell et al. [14], i ricercatori hanno riferito che il 100% dei partecipanti (n = 7) ha utilizzato la pratica del carico e del taglio dell’acqua durante la Peak Week. Questa strategia prevedeva di bere >10L di acqua al giorno all’inizio della settimana e quindi di ridurre l’assunzione ogni giorno successivo prima della competizione. La teoria alla base di questa pratica era quella di consumare quantità superflue di acqua per aumentare naturalmente l’escrezione di liquidi nel tentativo di espellere preferenzialmente l’acqua sottocutanea; tuttavia, i partecipanti hanno riferito che i risultati di questa strategia erano in gran parte non significativi [14]. Dei sette partecipanti che hanno manipolato l’acqua durante la Peak Week, tre (42,8%) hanno anche manipolato il sodio per aiutare a rimuovere l’acqua sottocutanea [14]. Hanno riferito di aumentare notevolmente l’assunzione di sodio per i primi tre giorni della Peak Week, seguita da una completa restrizione dell’assunzione di sale per i tre giorni prima della competizione; tuttavia, i risultati sono stati incoerenti e i partecipanti hanno dichiarato che non avrebbero manipolato il sodio in futuro [14]. Si noti che la decisione unanime dei partecipanti di abbandonare queste strategie di manipolazione dell’acqua e del sodio suggerisce che probabilmente non le avevano né eseguite né perfezionate in precedenza (ad esempio, come prova o durante la Peak Week per un’altra competizione).

Altre ricerche supportano i risultati degli studi di cui sopra. Probert et al. ha condotto un sondaggio su 382 bodybuilder competitivi insieme a interviste personali di 30 dei partecipanti e ha riferito che i bodybuilder si sono spesso impegnati in pratiche di deplezione del sodio e disidratazione nei giorni precedenti la competizione [12]. Sebbene i partecipanti abbiano riconosciuto i rischi di queste strategie, le hanno minimizzate come pratiche temporanee ma necessarie [12]. In effetti, i casi clinici documentano condizioni potenzialmente pericolose per la vita dovute a pratiche estreme di manipolazione dell’acqua e del sodio [19, 20]. In un caso, un bodybuilder maschio di 35 anni si è presentato al pronto soccorso dopo essersi sentito debole, stordito e aver avvertito crampi muscolari dolorosi mentre posava durante una gara di bodybuilding; i test hanno rivelato onde T di picco sull’elettrocardiogramma (ECG), iperkaliemia (alti livelli di potassio), iponatriemia (bassi livelli di sodio nel sangue), intossicazione da acqua e rabdomiolisi [20]. Il bodybuilder ha riferito di aver bevuto 12 litri di acqua al giorno per sette giorni prima della competizione insieme a 100 mg al giorno di Spironolattone (un diuretico da prescrizione risparmiatore di potassio) e scarico del sale per due giorni prima della competizione; è stato curato, stabilizzato e dimesso con successo [20]. In un altro caso, un bodybuilder professionista di 26 anni è stato trasportato al pronto soccorso il giorno dopo una gara a causa di palpitazioni cardiache e incapacità di stare in piedi a causa della difficoltà nel muovere le estremità [19]. Ha riferito l’assunzione orale di 2 × 80mg di Furosemide (un diuretico da prescrizione) 48 e 24 ore prima della competizione con l’obiettivo di migliorare la definizione muscolare; ha perso 5-6 kg di peso corporeo a causa della nicturia [19]. I test hanno rivelato ipokaliemia grave (bassi livelli di potassio; al contrario dell’iperkaliemia nel caso di studio discusso in precedenza probabilmente dovuto all’uso di un diuretico dell’ansa rispetto a un diuretico risparmiatore di potassio), iperglicemia (livelli elevati di glucosio nel sangue), iperlattatemia (alti livelli di lattato nel sangue) e tachicardia sinusale con onde U pronunciate all’ECG compatibili con ipokaliemia [19]. Sebbene l’ipokaliemia sia una condizione potenzialmente pericolosa per la vita, il bodybuilder è stato trattato con successo e dimesso la mattina successiva [19].

Nonostante le varie strategie riportate dai bodybuilder per manipolare l’acqua e il sodio allo scopo di sembrare “pieni e asciutti”, le prove attuali non indicano che queste pratiche siano specificamente efficaci e/o sicure. Inoltre, sebbene diverse strategie di manipolazione dell’acqua e del sodio siano state pubblicate da un certo numero di preparatori di bodybuilding che hanno lavorato con bodybuilder di grande successo [16, 17, 36], né l’efficacia né la sicurezza di queste diverse metodologie sono state valutate scientificamente. Quindi, i principi fisiologici della regolazione dei fluidi corporei devono essere considerati quando si tenta di formulare strategie per promuovere un aspetto “pieno e asciutto”, e queste strategie possono essere discordanti con quelle attualmente utilizzate dai bodybuilder e/o suggerite dai loro preparatori.

Il contenuto di acqua corporea totale (TBW) rappresenta circa il 60 % del peso corporeo medio di una persona ed è costituito da acqua intracellulare (ICW) (~ 67 %) e acqua extracellulare (ECW) (~ 33 %). L’ECW è ulteriormente compartimentato nel fluido interstiziale che circonda le cellule (~ 25 %) e il plasma sanguigno (~ 8 %) [37, 38]. Quindi, dal punto di vista di un bodybuilder, ridurre al minimo il fluido interstiziale extracellulare che circonda i miociti, in particolare l’acqua sottocutanea, preservando o aumentando l’ICW intramiocellulare rappresenta lo scenario ideale per un aspetto “pieno e asciutto”, cioè, per cui l’aspetto della muscolarità è massimizzato . Sebbene questo concetto possa sembrare un compito semplice da realizzare manipolando solo l’acqua e il sodio, potrebbero essere necessarie altre strategie incentrate sull’ottimizzazione del volume intramiocellulare (cioè quelle mirate al glicogeno intramiocellulare, ai trigliceridi e al contenuto di potassio) insieme alla manipolazione dell’acqua. e sodio per migliorare l’aspetto della muscolosità.

Compartimenti dei fluidi corporei. Nell’uomo adulto “medio”, i domini del fluido intracellulare (ICF) e del fluido extracellulare (ECF) sono costituiti da circa il 57 e il 43% dell’acqua corporea totale (TBW). Il compartimento ECF è ulteriormente suddiviso in liquido interstiziale (ISF)/linfa, plasma, tessuto osseo e connettivo, tessuto adiposo e acqua transcellulare. Il muscolo scheletrico predomina l’ICF. Le percentuali sono percento di TBW. GR, globuli rossi.

Durante la normale omeostasi fluido-elettrolitica, il compartimento extracellulare contiene la maggior parte del sodio (Na+), cloruro (Cl-) e bicarbonato (HCO3-), mentre il compartimento intracellulare contiene la maggior parte dell’acqua, potassio (K+) e fosfato ( PO43−) [39]. Sebbene entrambi i compartimenti contengano tutti i suddetti composti, la quantità di ciascuno varia tra i compartimenti in modo tale che la concentrazione totale di soluti (osmolarità) sia la stessa [39]. I meccanismi omeostatici controllano l’equilibrio idrico ed elettrolitico per garantire che la TBW e l’osmolarità corporea totale (TBO) rimangano equilibrate e l’acqua si ridistribuisca tra i compartimenti intracellulari ed extracellulari in modo tale che l’osmolarità dei fluidi corporei si avvicini alla TBO [37]. Infatti, Costill et al. hanno studiato le perdite muscolari di acqua ed elettroliti mentre i partecipanti pedalavano in una camera ambientale calda per perdere il 2,2 (% (fase 1), il 4,1 % (fase 2) e il 5,8 % (fase 3) del loro peso corporeo in un periodo stimato di 5,5 ore [40] . Quando i partecipanti hanno perso il 2,2% del loro peso corporeo entro la prima  ~ 1,5 h nella fase 1, il 30% dell’acqua persa era ICW mentre il 70% era ECW [40]. Tuttavia, il rapporto tra ICW ed ECW perso è diventato 52 % ICW/48 % ECW allo stadio 2 (~ 3.5 h mark) e 50 % ICW/50 % ECW allo stadio 3 (~ 5.5 h mark) [40]. Gli autori hanno affermato che la grande perdita di ICW nel muscolo allo stadio 1 può essere spiegata dalla significativa perdita di contenuto di glicogeno muscolare (che contiene acqua) dalla pre-disidratazione a 115 mmol/kg fino a 76 mmol/kg; tuttavia, i livelli di contenuto di glicogeno muscolare sono scesi a una velocità molto inferiore a 73 mmol/kg allo stadio 2 e 61 mmol/kg allo stadio 3 quando il rapporto o ICW:ECW si è stabilizzato [40]. Pertanto, il rapporto tra la perdita ECW e ICW sembra rimanere vicino a 1:1 poiché i livelli di glicogeno si stabilizzano nel tempo e vengono raggiunti livelli più elevati di disidratazione. Pertanto, sembra che la ritenzione del glicogeno muscolare, evitando l’esercizio che si basa fortemente sull’uso del glicogeno, possa essere importante se i metodi di perdita di acqua devono effettuare una perdita favorevole di ECW rispetto a ICW (ECW > ICW) in modo tale che la dimensione muscolare venga mantenuta mentre l’ECW interstiziale viene preferibilmente perso, migliorando l’aspetto della “definizione” muscolare. Allo stesso modo, l’immagazzinamento e la ritenzione del glicogeno muscolare dipendono fortemente dalla disponibilità di potassio (un catione intracellulare primario – vedi sopra) [41,42,43,44,45,46], quindi sembra che garantire un’adeguata assunzione di potassio durante le procedure di carico di carboidrati e disidratazione sia fondamentale per ottimizzare l’aspetto scenico.

È importante sottolineare che se le alterazioni dell’osmolarità plasmatica (attraverso i cambiamenti nell’acqua corporea totale e degli elettroliti) raggiungono una soglia fisiologica, allora una complessa rete neuroendocrina in tutto il corpo, nel cervello, vasi sanguigni, reni e ghiandole endocrine, risponderà per stabilizzarlo [47] . L’osmolarità plasmatica è influenzata dalle variazioni (aumento o diminuzione) della concentrazione di soluti (cioè sodio) nel sangue nonché dalle variazioni del volume del fluido; il volume del fluido è influenzato dall’acqua corporea totale (TBW) [48]. L’osmolarità plasmatica può aumentare per un’eccessiva perdita di acqua o per un aumento significativo dell’assunzione di sodio; al contrario, l’osmolarità plasmatica può diminuire con un consumo insufficiente di elettroliti o un’eccessiva assunzione di acqua [49]. L’osmolarità plasmatica e la pressione sanguigna sono regolate in modo tale che l’aumento dell’osmolarità plasmatica si traduca in una diminuzione della pressione sanguigna e viceversa [49]. Inoltre, le variazioni della pressione sanguigna mediate dallo spostamento dell’osmolarità plasmatica sono contrastate dai barocettori arteriosi e renali [50].

Durante la disidratazione, come potrebbe essere impiegato durante la Peak Week, l’osmolarità plasmatica aumenta, la pressione sanguigna diminuisce ed i barocettori renali nell’apparato iuxtaglomerulare (JGA) rilasciano l’ormone Renina; a sua volta, questo attiva il sistema Renina-Angiotensina-Aldosterone (RAAS) [51]. Quando viene attivato il RAAS, viene avviato il processo di mantenimento dell’omeostasi dei fluidi, elettroliti e pressione sanguigna [51] e alla fine rilascia l’ormone Aldosterone dalle ghiandole surrenali per perfezionare ulteriormente l’omeostasi [52, 53]. I barocettori nell’aorta e nelle arterie carotidi rilevano anche una diminuzione della pressione sanguigna e segnalano il rilascio dell’Ormone Antidiuretico (ADH, noto anche come Vasopressina) dalla ghiandola pituitaria per conservare l’acqua, aumentare il volume del sangue e aumentare la pressione sanguigna [48]. Al contrario, se la pressione sanguigna aumenta a causa dell’aumento del volume sanguigno arterioso, gli atri cardiaci percepiscono un allungamento e rilasciano l’ormone Fattore Natriuretico Atriale (ANF) per aumentare l’escrezione di sodio, inibire la vasocostrizione renale, attenuare la secrezione di Renina e infine diminuire il volume sanguigno e la pressione sanguigna [54].

Collettivamente, se l’acqua e il sodio non vengono manipolati e programmati con cura, questi meccanismi fisiologici che lavorano per mantenere il corpo in omeostasi potrebbero non produrre l’effetto desiderato di ridurre selettivamente il fluido nello spazio extracellulare/sottocutaneo. Sebbene questi meccanismi siano in atto per mantenere il corpo in equilibrio, non tutti gli ormoni rilasciati hanno un effetto immediato sul corpo quando l’osmolarità plasmatica è alterata. Ad esempio, uno studio ha mostrato un effetto ritardato dell’ADH quando i ricercatori hanno esaminato gli effetti del carico d’acqua sulla perdita di peso acuta negli atleti di sport da combattimento confrontando una strategia di carico d’acqua per tre giorni in cui il gruppo sperimentale ha consumato 100ml/kg/giorno di acqua rispetto ad un gruppo di controllo che ha consumato 40ml/kg/giorno di acqua [55]. Durante il successivo giorno di disidratazione con entrambi i gruppi che consumavano 15ml/kg/giorno di acqua, i livelli di ADH nel gruppo di carico idrico sono aumentati da ~ 2,3pmol/L a ~ 3,8pmol/L alla 13a ora e ~ 5pmol/L a la 24a ora di restrizione dei liquidi, momento in cui le perdite di massa corporea hanno superato quelle del gruppo di controllo dello 0,6 % (~ 2,5 vs. 3,1 % rispetto al basale) [55]. Pertanto, nonostante l’aumento della produzione totale di liquidi da 3 giorni di carico idrico combinato con un giorno di drastica restrizione dei liquidi, i livelli di ADH stavano ancora salendo oltre le 24 ore di disidratazione [55]. In un altro studio, i ricercatori hanno ridotto l’assunzione di sodio a livelli estremamente bassi (10meq/giorno) per ~ 6 giorni in 16 uomini sani e hanno misurato i livelli di RAAS, Aldosterone plasmatico, sodio urinario e sodio sierico a 24 ore, 48 ore e ~ 6 giorni dopo l’intervento [53]. Sebbene i livelli sierici di sodio siano rimasti abbastanza coerenti tra 137,6 e 139meq/l per il periodo di ~ 6 giorni, i ricercatori hanno riferito che l’attivazione del RAAS era evidente entro 24 ore e diminuiva la produzione di sodio nelle urine da 217meq/24 ore fino a 105meq/24 ore [53]. Inoltre, ci sono volute 48 ore per osservare un forte aumento dei livelli di Aldosterone plasmatico per ridurre ulteriormente la produzione di sodio nelle urine a 59meq/24 ore e altri  ~ 4 giorni affinché la produzione di sodio nelle urine si stabilizzasse a 9,9meq/24 ore [53]. Quindi, c’è un ritardo temporale nello stabilire l’omeostasi di fluidi ed elettroliti durante il quale la manipolazione di acqua e sodio può essere implementata per indurre la diuresi prima che i meccanismi omeostatici protettivi si manifestino completamente per arrestare la perdita di acqua.

Mentre i bodybuilder manipolano spesso l’acqua e/o il sodio alterandone l’assunzione [8, 11, 12, 14, 19, 20], può essere presa in considerazione anche un’altra strategia praticabile per aumentare la diuresi. La letteratura sull’atrofia da disuso e gli adattamenti cardiovascolari all’assenza di gravità durante il volo spaziale [56] rivela una strategia precedentemente descritta [36] che i culturisti possono impiegare per promuovere la diuresi durante le ~ 24 ore prima della competizione. Riposare e/o dormire con una posizione di “inclinazione a testa in giù” (HDT) (tipicamente da − 4 a -6˚ per cui l’intera superficie durante il sonno è inclinata verso il basso [57, 58] simula l’aumento del ritorno venoso cardiaco (e la perdita di pressione ortostatica) che si verifica durante la microgravità. Ciò si traduce in diuresi e risposte cardiovascolari simili a quelle osservate acutamente durante il volo spaziale [57,59], mediate in parte da un aumento del Peptide Natriuretico Atriale (rilasciato dal cuore) e da una riduzione della Renina plasmatica [60,61] Mauran et al., ad esempio, hanno dimostrato che queste risposte ormonali e la diuresi e la natriuresi associate ritornano ai valori di base entro 24 ore [62], provocando una perdita di peso corporeo di circa 1,0-1,3 kg senza variazioni della frequenza cardiaca a riposo o del sangue [58, 60, 61] Brevi periodi di HDT più grave fino a -30 % evocano aumenti graduali della pressione venosa centrale oltre quelli di -6 % HDT [63], sebbene le risposte diuretiche all’angolo HDT siano inferiori a −T6 % non sembra siano stati studiati. Brevi (≤ 2 h) periodi di HDT fino a -40˚ sembrano ben tollerati [64, 65], ma una HDT prolungata ad angoli -12 % aumenta significativamente la pressione intracranica e intraoculare [66]. Inoltre, chi soffre di reflusso gastrico dovrebbe essere consapevole che l’HDT potrebbe in teoria peggiorare la sintomatologia, dato che sollevare la testa sopra il livello del letto (l’opposto dell’HDT) è un rimedio efficace [67,68,69,70]. Questo probabilmente non è un problema per coloro che normalmente non soffrono di reflusso gastrico [71]. Pertanto, i bodybuilder potrebbero plausibilmente impiegare l’HDT durante il riposo e il sonno durante le 12-24 ore prima della competizione per incoraggiare ulteriormente la diuresi se necessario.

Un’altra considerazione quando si manipola l’assunzione di acqua e sodio è il ruolo importante che svolgono nell’assorbimento dei carboidrati. I cotrasportatori sodio-glucosio dipendenti (SGLT) sono proteine ​​presenti nell’intestino tenue che consentono il trasporto del glucosio attraverso la membrana cellulare; una forte evidenza suggerisce che la consegna del trasporto di carboidrati è limitata dalla capacità di trasporto SGLT1 [72,73,74,75]. Poiché il carico di carboidrati sembra avere potenziali benefici per i bodybuilder di apparire “pieni”, è importante la disponibilità di sodio per il co-trasporto del glucosio attraverso le membrane cellulari. È interessante notare che lo studio di de Moraes et al. hanno riferito che il carico di carboidrati ha indotto vari sintomi gastrointestinali nei bodybuilder agonisti [15]. Sebbene l’assunzione di sodio non sia stata riportata in questo studio, alcuni dei sintomi potrebbero essere stati dovuti alla mancanza di sodio nella dieta poiché i bodybuilder hanno riferito di ridurre al minimo l’assunzione di sodio mentre si avvicinano al giorno della gara [11, 14, 20]. Inoltre, poiché ogni grammo di glicogeno attira  ~ 3–4g di acqua nel muscolo [31] e questo è un processo dipendente dal potassio (vedi sopra), una mancanza di acqua e di potassio può anche ridurre l’efficacia del raggiungimento di un aspetto “pieno”.

Gestione del glucosio tramite cotrasportatore sodio-glucosio dipendenti (SGLT)1 e SGLT2. Nell’intestino tenue, il glucosio alimentare viene assorbito principalmente da SGLT1 sulla membrana del bordo a spazzola. SGLT1 ha un’elevata affinità (costante di Michaelis-Menten [Km] = 0,4 mmol/L) per il glucosio e trasporta sodio e glucosio con una stechiometria 2:1. Nel rene, il glucosio filtrato dal glomerulo renale viene riassorbito da SGLT2 e SGLT1 espressi rispettivamente nella membrana luminale dei segmenti (S)1 e S2 e nel segmento S3 dei tubuli prossimali. L’affinità di SGLT2 per il glucosio è inferiore (Km = 2 mmol/L) e il trasporto di sodio e glucosio da parte di SGLT2 avviene con una stechiometria 1:1. GLUT, trasportatore del glucosio.

Contrariamente al tipico obiettivo di ridurre l’acqua corporea (extracellulare, sottocutanea), il disturbo psicologico/stress emotivo può causare ritenzione di liquidi corporei [76] attraverso l’azione delle catecolamine (in particolare della Dopamina) [77,78,79] e degli ormoni surrenalici includendo sia il Cortisolo [80] che l’Aldosterone [81]. La ritenzione idrica durante condizioni sperimentali di stress che richiedono competizione è soggetta a variabilità interindividuale, forse dovuta in parte a differenze genetiche [82]. In casi estremi, situazioni emotivamente stressanti possono evocare polidipsia e alterare l’omeostasi dei fluidi in modo tale che aumenti fino a 9 kg (~ 20 libbre) di massa corporea possono accumularsi in appena 48 ore [78, 79]. Pertanto, c’è supporto per l’osservazione empirica comune che lo stress psicologico possa contrastare i tentativi del bodybuilder agonista di ridurre l’acqua corporea, specialmente nei casi estremi di ansia pre-gara. Gli autori raccomandano di eseguire una prova pratica della strategia della Peak Week  ~ 2–4 settimane prima della competizione effettiva, in parte per ridurre l’ansia e assicurare al concorrente che la strategia della Peak Week è sia gestibile che efficace. Sebbene ciò vada oltre lo scopo di questo articolo, la gestione dello stress è riconosciuta come un aspetto importante della psicologia dello sport [83, 84] ed è molto probabile che sia importante per i concorrenti che trovano gli ultimi giorni prima della competizione così stressanti da influenzare negativamente il loro aspetto sul palco.

Sulla base di questi principi dell’equilibrio idrico-elettrolitico e delle attuali prove disponibili, sembra che la manipolazione dell’acqua e del sodio debba essere attentamente considerata, pianificata e praticata insieme alla manipolazione dei carboidrati se devono essere utilizzate. Sebbene sembrino esserci alcuni potenziali benefici nell’implementazione di queste strategie per migliorare la forma fisica il giorno della competizione, possono verificarsi effetti potenzialmente dannosi se queste variabili vengono calcolate in modo errato e/o con un cronometraggio errato che può causare ai bodybuilder di perdere il loro picco e/o incorrere in problemi di salute; quindi, lasciare queste variabili a se stesse potrebbe essere un’opzione migliore per alcuni concorrenti. Poiché è stato riferito che i bodybuilder considerano la manipolazione del sodio e dell’acqua come pratiche temporanee ma necessarie minimizzando i potenziali rischi coinvolti, è necessario prestare attenzione poiché sono state segnalate misure estreme che hanno portato a condizioni potenzialmente letali [12, 19, 20]. Le sezioni sulle applicazioni pratiche di questo articolo delineeranno ulteriormente come queste variabili possono essere manipolate in modo sicuro sulla base delle prove attualmente disponibili.

Grassi alimentari:

Oltre al glicogeno, le cellule muscolari immagazzinano anche energia sotto forma di Trigliceridi Intramuscolari (IMT). Infatti, nelle cellule muscolari viene immagazzinata quasi la stessa quantità di energia immagazzinata nell’IMT rispetto al glicogeno [85]. Tuttavia, i depositi di IMT variano considerevolmente negli esseri umani, in parte in funzione dello stato di allenamento, del tipo di fibra muscolare, della sensibilità all’Insulina, del sesso e della dieta [85]. L’IMT possono ammontare a ~ 1 % del peso muscolare [86, 87], ma poiché il grasso è meno denso del muscolo scheletrico [88], il volume di IMT in una cellula muscolare completamente “caricata di grasso” potrebbe superare il 2% del volume muscolare [89, 90]. Nei ratti (17), un singolo esercizio può ridurre il contenuto di IMT muscolare del 30% e tre giorni di una dieta ricca di grassi possono aumentare la conservazione dell’IMT di circa il 60% rispetto al basale [91]. Negli esseri umani, il reintegro alimentare di IMT può essere più lento quando anche il ripristino del glicogeno è una priorità [89, 92, 93, 94]. Tuttavia, le riserve di IMT sono aumentate dall’assunzione di grassi nella dieta [91, 95] e ridotte durante l’esercizio di contro-resistenza [96] e di endurance [85].

Sebbene il carico dei grassi sia una strategia nota nell’ambiente del Bodybuilding da molti anni [97, 98], a mia conoscenza la strategia non è stata studiata direttamente nel contesto della Peak Week del bodybuilding (p. es., in combinazione con altre strategie dietetiche come la supercompensazione del glicogeno) . Nello studio sui roditori menzionato sopra [91], tre giorni di dieta ricca di grassi seguiti da tre giorni di dieta ricca di carboidrati (CHO) hanno determinato una supercompensazione sia dei IMT che del glicogeno; tuttavia, e c’era da aspettarselo, 6 giorni di soli CHO elevati hanno prodotto l’effetto di carico di glicogeno previsto, ma non sono riusciti a elevare i livelli di IMT al di sopra del basale. Negli esseri umani, le diete ad alto contenuto di CHO/a basso contenuto di grassi possono effettivamente far precipitare le riserve di IMT [92,93,94], forse perché i IMT vengono utilizzati preferenzialmente per coprire i costi energetici della riparazione cellulare post-esercizio e dell’assemblaggio di glicogeno-glicogenina [94, 99]. Considerando che un bodybuilder di grandi dimensioni (ad es. un uomo di categoria pesi massimi) può trasportare oltre 60kg di muscoli [100, 101], aumentare le riserve di IMT da uno stato relativamente “esaurito” a uno “carico” potrebbe concepibilmente aumentare il volume muscolare di > 1 % [85 ]; ipoteticamente, questo si traduce nell’aggiunta di ≥ 0,6kg di massa magra. Quindi, il carico di grasso sembra essere una strategia promettente da utilizzare in combinazione con il carico dei CHO durante la Peak Week per i bodybuilder, e quindi merita studi futuri in un ambiente controllato.

Proteine alimentari:

Insieme all’assunzione di carboidrati e grassi durante la Peak Week, l’ottimizzazione dell’assunzione di proteine ​​merita di essere trattata, poiché è una componente importante e indispensabile della dieta. La dose dietetica raccomandata negli Stati Uniti (RDA) per le proteine ​​per gli adulti è di 0,8g/kg [102] ed è rimasta invariata dal ~ 1980, nonostante la continua esposizione della sua inadeguatezza. In un invito a rivalutare e rivedere la RDA, Layman [103] ha sostenuto che il fabbisogno proteico è inversamente proporzionale all’assunzione di energia. Quest’ultimo punto si applica alle persone a dieta in generale, ma ha un significato speciale per gli atleti in condizioni ipocaloriche prolungate, incarnate dai bodybuilder agonisti nel pre-gara. Alla luce di prove crescenti, un’assunzione giornaliera di 1,2-1,6g/kg è stata proposta come ottimale per la popolazione generale che mira a ottimizzare la salute e la longevità all’interno di uno stile di vita fisicamente attivo [104]. Verso l’estremità più atletica dello spettro, nella meta-analisi più completa del suo genere, Morton et al. [105] hanno scoperto che un apporto proteico di ~ 1,6g/kg (IC al 95 % superiore di 2,2 g/kg) massimizzava l’ipertrofia muscolare e la forza negli atleti di resistenza amatori non a dieta. In uno studio più rappresentativo dei bodybuilder, Bandegan et al. [106] hanno valutato la sintesi proteica dell’intero corpo tramite il metodo degli indicatori dell’ossidazione degli aminoacidi (IAAO) e hanno determinato un fabbisogno medio stimato di 1,7g/kg/giorno con un intervallo di confidenza superiore del 95% di 2,2 g/kg/giorno vicino al loro massimo muscolare raggiungibile. In un protocollo simile utilizzando il metodo IAAO, Mazzulla et al. [107] hanno stimato che il fabbisogno proteico degli uomini allenati contro-resistenza è di 2,0-2,38g/kg.

In una review sistematica di Helms et al. [108] è stato riferito che 2,3-3,1g/kg di massa magra (FFM) erano appropriati per soggetti allenati contro-resistenza in condizioni ipocaloriche. Tuttavia, dei sei studi inclusi nella review, solo due hanno coinvolto atleti competitivi altamente allenati e solo uno studio ha esaminato i bodybuilder agonisti. Quest’ultimo studio è stato condotto da Mäestu et al. [109], che hanno monitorato la composizione corporea e il profilo ormonale di bodybuilder di livello nazionale e internazionale durante le ultime 11 settimane di preparazione al contest. I concorrenti hanno dichiarato che non stavano utilizzando steroidi da un minimo di due anni prima dello studio. L’assunzione di proteine era di 2,68g/kg (2,97 g/kg FFM) al basale e 2,48 g/kg (2,66 g/kg FFM) al punto di valutazione finale (3 giorni prima della gara).

Chappell et al. [2] hanno riportato che nei bodybuilder di alto livello natural, l’assunzione di proteine di fine preparazione di uomini e donne che si sono posizionati tra i primi 5 è stata rispettivamente di 3,3g/kg e 2,8g/kg. La composizione corporea non è stata riportata in questo studio. Sulla base dei tipici intervalli percentuali di grasso corporeo alla fine della preparazione, l’aggiunta del 4-6% all’assunzione degli uomini e del 13-15% all’assunzione delle donne fornirebbe una stima dei grammi di proteine consumati per kg di FFM. Un caso studio di Kistler et al. [3] su un campione di bodybuilder natural di alto livello ha riportato un apporto proteico di 3,4g/kg (3,6 g/kg FFM). Sebbene la natura descrittiva di questi studi precluda la capacità di trarre conclusioni sul fatto che il livello di assunzione osservato fosse benefico, neutro o dannoso da un punto di vista fisico, sembrano convergere su un dosaggio proteico simile nella fase finale del periodo pre-gara.

Una possibile considerazione per il dosaggio delle proteine ​​durante la Peak Week è se mantenere l’assunzione di proteine ​​statica o modificarla durante le fasi di esaurimento e carico dei carboidrati. Sebbene attualmente non esistano prove concrete su ciò che è ottimale per la nostra conoscenza, lo studio di de Moraes et al. [15] che ha riportato un aumento del volume muscolare e un miglioramento dell’aspetto fisico come risultato di un protocollo di carico di carboidrati fornisce alcune prove che i bodybuilder alterano il loro apporto proteico durante la Peak Week. In questo studio, il protocollo di esaurimento/carico prevedeva tre giorni di dieta a basso contenuto di carboidrati (1,1g/kg) e ad alto contenuto proteico (3,2g/kg) seguiti da un solo giorno di dieta ad alto contenuto di carboidrati (9,0g/kg) e dieta ipoproteica (0,6g/kg). Sembra probabile che si sarebbero verificati aumenti simili del volume muscolare se le proteine ​​fossero state mantenute statiche. Tuttavia, nonostante il ridotto apporto proteico (46,6g nel giorno durante il carico di carboidrati rispetto ai 252,4g nei giorni di scarica dei carboidrati), il disagio gastrointestinale era ancora significativamente maggiore rispetto al gruppo di controllo senza carico di carboidrati. Ciò indica la possibilità che mantenere alta l’assunzione di proteine ​​durante il giorno di carico avrebbe ulteriormente peggiorato i sintomi gastrointestinali, potenzialmente a causa di un’eccessiva assunzione di cibo. Un’alternativa sarebbe quella di mantenere le proteine ​​statiche, ma ridurre il carico di carboidrati (che in questo caso era ~714g), tenendo più di 1 giorno per il carico di carboidrati. Questo sembra un approccio più pratico (vedi sopra), in modo tale che un apporto totale di carboidrati ancora maggiore possa essere consumato ma con meno rischio di problemi gastrointestinali.

Una strategia potenzialmente praticabile per alterare l’assunzione di proteine ​​durante la Peak Week è mantenere l’assunzione di proteine ​​relativamente alta a ~ 2,5–3,5g/kg/giorno durante i primi ~ 3 giorni di esaurimento del glicogeno di una strategia di supercompensazione del glicogeno, seguita da una apporto proteico di ~ 1,6g/kg/giorno durante una dieta ricca di carboidrati per 1-3 giorni (vedi sopra), terminando almeno 24 ore prima della competizione programmata. Successivamente, potrebbe essere impiegata una strategia per indurre la diuresi e (ulteriormente) aumentare le riserve di IMT durante il giorno precedente la competizione seguendo una dieta ricca di proteine ​​e povera di carboidrati (riccha di grassi) per un breve periodo (~12-24 h). Come discusso in precedenza, quando si caricano i carboidrati utilizzando un approccio a basso contenuto di grassi, i livelli di IMT possono diminuire, ma livelli elevati di glicogeno persistono per diversi giorni senza contrazioni impegnative che riducono il glicogeno (ad esempio, esercizio contro-resistenza o eccessiva attività fisica). Alti livelli di glicogeno intramuscolare e dell’acqua intracellulare associata impedirebbero quindi la perdita di ICW che tipicamente accompagna la diuresi. Aumentare l’assunzione di proteine ​​consumate il giorno prima del contest, o semplicemente consumare proteine ​​ad alti livelli tipicamente impiegati dai bodybuilder pre-gara (~ 3,0-3,5g/kg/giorno; vedi sopra) e recentemente dimostrato di essere generalmente sicuro per periodi più lunghi [ 110], incoraggerà una maggiore deaminazione ossidativa degli amminoacidi e l’ureagenesi [111] che si avvicinano ai tassi massimi osservati in individui sani [112, 113]. La clearance dell’urea ematica a sua volta richiede un gradiente osmotico durante la sua escrezione renale, causando così diuresi [114, 115]. Inoltre, il ritorno a una dieta a basso contenuto di carboidrati (ad esempio, una simile a quella utilizzata all’inizio della settimana per il carico di grassi in preparazione al carico di carboidrati) promuoverebbe anche la perdita di acqua corporea [116, 117]. Pertanto, aumentare o mantenere un’assunzione elevata di proteine ​​mentre si riduce l’assunzione di carboidrati e contemporaneamente aumenta l’assunzione di grassi durante il giorno prima della competizione, annullerebbe i guadagni indesiderati di acqua extracellulare/sottocutanea sperimentati durante il carico di carboidrati [118]. Sarebbe inoltre complementare ad altre misure strategiche progettate per indurre la diuresi come la manipolazione dell’assunzione di acqua/sodio/potassio, l’integrazione alimentare e il posizionamento del corpo (ad es. HDT) che offrirebbe anche una seconda opportunità per il carico dei grassi durante la Peak Week. Nell’incertezza sull’efficacia della modifica di de Moraes et al. e altri protocolli può essere mitigata solo per tentativi ed errori, come verrà ulteriormente discusso nella sezione delle applicazioni pratiche, e giustificano ulteriori indagini scientifiche.

Supplementazione alimentare:

Il consumo di integratori è comune tra i bodybuilder ed è spesso manipolato durante le loro fasi preparatorie (cioè off-season e pre-gara) [2, 3, 5]. Sebbene sia ben noto che i bodybuilder utilizzino integratori come proteine in polvere, polimeri del glucosio, stimolanti pre-allenamento, sostanze adattogene/nootrope, creatina, vitamine/minerali, omega-3, termogenici, diuretici erboristici e molto altro [2, 7], c’è una scarsità di dati su come questi integratori influenzino il processo di picco dell’atleta per migliorare la propria condizione fisica. Quindi, discuteremo i potenziali benefici dell’utilizzo di integratori alimentari (cioè polveri di proteine / carboidrati, acidi grassi), creatina ed erbe durante la settimana di punta.

Integratori alimentari che forniscono un substrato energetico come proteine ​​e carboidrati sono stati regolarmente segnalati da altri ricercatori che esaminano i bodybuilder [2, 3, 5]. Chappell et al. [2] hanno esaminato cinquantuno (35 uomini e 16 donne) bodybuilder natural e hanno scoperto che ~ 75 % degli uomini e ~ 89 % delle donne sono stati integrati con polveri proteiche. L’integrazione di carboidrati era meno popolare, con solo il  ~37 % dei concorrenti uomini e nessuna concorrente donna che ne segnalava l’uso. I bodybuilder possono utilizzare questi integratori alimentari come mezzo per manipolare e consumare quantità specifiche di macronutrienti. Come accennato in precedenza nelle sezioni carboidrati e acqua/sodio, i bodybuilder cercano di massimizzare il glicogeno muscolare e il suo effetto osmotico associato come mezzo per aumentare il volume muscolare totale. Pertanto, è comune integrare con varie polveri di carboidrati (ad esempio Destrosio, Ciclo-Destrine altamente ramificata, ecc.). Le caratteristiche dei carboidrati come l’osmolalità, il tasso di clearance gastrica e l’indice glicemico sono alcune delle variabili fisiche che gli atleti dovrebbero prendere in considerazione poiché possono variare significativamente tra le fonti e possono influire sui sintomi gastrointestinali (ad es. gonfiore, crampi, diarrea, stitichezza, ecc.) [ 119,120,121]. Inoltre, è stato dimostrato che l’indice glicemico di diverse fonti di carboidrati influisce sui tassi di sintesi del glicogeno [122, 123]. Questo può essere di maggiore importanza per i bodybuilder che mirano a riempire le riserve di glicogeno in una finestra temporale breve (ad esempio dopo aver preso peso), poiché i carboidrati ad alto indice glicemico hanno dimostrato tassi di risintesi del glicogeno superiori [122]. Tuttavia, in un arco di tempo più lungo (cioè 8 + ore), le riserve di glicogeno possono essere reintegrate in modo simile, indipendentemente dalla frequenza di alimentazione [124], quando si consuma una quantità totale adeguata di carboidrati [125]. Inoltre, i dati hanno dimostrato che la combinazione di proteine ​​e carboidrati può migliorare la risintesi del glicogeno [126]. Tuttavia, sembra prudente che gli atleti non “sperimentino” durante la Peak Week con nuovi CHO, fonti proteiche o altri integratori non integrati nelle strategie specifiche della Peak Week per ridurre il rischio di manifestare sintomi gastrointestinali negativi o altre conseguenze deleterie.

Esistono prove sostanziali a sostegno dell’uso della supplementazione di creatina per i bodybuilder. Chappell et al. hanno riferito che ~ 48 % degli uomini e ~ 51 % delle donne hanno integrato con creatina durante la preparazione del contest [2]. È stato dimostrato che la creatina migliora la composizione corporea (cioè aumenta la massa corporea magra, diminuisce la massa grassa) [127, 128] e aumenta lo stato di idratazione intracellulare [129, 130]. Ziegenfuss et al. [129] hanno dimostrato che una fase di carico di creatina di tre giorni ha aumentato il volume del fluido intracellulare di ~ 3 % senza influire sul fluido extracellulare. L’uso dell’analisi dell’impedenza bioelettrica multifrequenza (MBIA) ha indotto alcuni a interpretare inizialmente i dati con un certo scetticismo. Tuttavia, uno studio di follow-up che impiega lo stesso schema di carico di creatina di tre giorni ha osservato un aumento del 6,6% del volume muscolare della coscia tra gli atleti di potenza NCAA d’élite, come determinato dalla risonanza magnetica standard [131]. È stato anche dimostrato che l’integrazione di creatina aiuta nella sintesi del glicogeno e nella sua supercompensazione [132]. Inoltre, il consumo di CHO con creatina aumenta il carico di creatina [133], che aumenta l’idratazione cellulare come detto sopra [32, 129]. Infine, i livelli di creatina muscolare diminuiscono molto lentamente dopo il carico [134], quindi l’assunzione di creatina dopo il carico di glicogeno nella settimana di picco non è necessaria, tranne forse in piccole quantità per accelerare potenzialmente l’apporto di carboidrati dell’ultimo minuto, il giorno della competizione, nel muscolo scheletrico. Pertanto, l’integrazione di creatina può essere uno strumento potenzialmente efficace durante la Peak Week per l’espansione acuta della massa muscolare. Tuttavia, va notato che non tutti gli individui risponderanno all’assunzione di creatina esogena a fronte di un aumento significativo del contenuto di creatina muscolare [135, 136]. In particolare, i “responder” tendono ad essere quelli che hanno un’area di fibre muscolari di tipo II più ampia (cioè quelli con una propensione innata per lo sprint e/o gli sport di forza/potenza) [137, 138] e/o quelli con creatina iniziale inferiore ai livelli basali, forse a causa della mancanza di assunzione (p. es., coloro che non hanno integrato con creatina o che sono vegetariani che non integrano) [139].

L’integrazione di acidi grassi omega-3 [acido eicosapentaenoico (EPA), acido docosaesaenoico (DHA)] è stata osservata anche nei bodybuilder [2, 3]. Chappell et al. hanno riferito che il 39% degli uomini e il 47% delle donne consumavano un integratore di omega-3 (ad esempio olio di pesce, krill, olio di lino) [2]. Sebbene dati sostanziali in molti dati demografici della popolazione supportino l’uso di EPA e DHA come mezzo per ridurre l’infiammazione sistemica e migliorare la sensibilità all’insulina [140, 141], rimane sconosciuto se ciò possa migliorare il processo di picco.

Come discusso in precedenza, l’uso di diuretici è stato comunemente riportato nel bodybuilding agonistico [8, 19,20,21, 34, 35]. I bodybuilder usano spesso diuretici (sia estratti vegetali che farmaci) per aumentare la produzione di urina ed espellere il sodio nel tentativo di alterare il volume dei liquidi, migliorare la composizione corporea e presentare un fisico più “qualitativo”[142]. Inoltre, alcuni possono utilizzare i diuretici per ridurre la massa corporea totale con l’obiettivo di stabilire una specifica classe di peso [8, 19,20,21, 34, 35, 143]. Ad esempio, Caldwell et al. [143] hanno studiato gli effetti di un diuretico da prescrizione (Furosemide 1,7mg/kg) su atleti di vari sport (ad es. sollevatori di pesi e artisti marziali) e hanno riportato una significativa riduzione della massa corporea totale (-3,1 α 0,8kg) in un periodo di 24 ore. Tuttavia, a causa dei potenziali effetti collaterali e della loro capacità di mascherare l’uso di farmaci per il miglioramento delle prestazioni, i diuretici soggetti a prescrizione sono stati vietati dall’Agenzia mondiale antidoping [144]. Sebbene questi farmaci non siano presumibilmente utilizzati dai bodybuilder natural, sono stati impiegati da agonisti non sottoposti a test [19, 20]. È interessante notare che alcuni integratori a base di erbe che non sono vietati hanno dimostrato un effetto diuretico e possono essere impiegati allo stesso modo da culturisti doped e natural. Ad esempio, è stato dimostrato che il Taraxacum Officinale (Dente di Leone) aumenta significativamente la frequenza di urinazione e la produzione di escrezione in modo acuto (cioè entro una finestra di 10 ore) [145]; tuttavia, per quanto ne sappiamo, nessuna ricerca ha esaminato direttamente il suo impatto sugli spostamenti dei fluidi intracellulari rispetto a quelli extracellulari o sulla sua efficacia durante la Peak Week.

Attività del Furosemide

La vitamina C (acido ascorbico) è idrosolubile e considerata non tossica anche in quantità elevate [146]. Poiché richiede la filtrazione renale per l’escrezione, provoca anche diuresi osmotica [147]. La ricerca supporta un effetto diuretico della vitamina C sia orale che endovenosa [148], con dosi giornaliere di appena 11mg/kg che producono diuresi nei bambini [149], sebbene una dose endovenosa di 500mg non sia riuscita a indurre diuresi nei maschi adulti [150] . Uno studio sia su soggetti sani che su pazienti con carenza di vitamina C ha dimostrato che le perdite urinarie di vitamina C (e la diuresi concomitante) si verificano solo al di sopra della soglia di concentrazioni ematiche di ~ 14mg/L (che corrisponde ai livelli di saturazione dei tessuti). Questi dati suggeriscono che il raggiungimento di concentrazioni ematiche di vitamina C che promuovono la diuresi varia in funzione dei tassi di assorbimento e assorbimento/deposito nei tessuti [151] (3). Dato il suo uso comune, la relativa sicurezza e la potenziale efficacia come diuretico non farmacologico, l’uso dell’acido ascorbico in uno scenario di picco della preparazione (compresi i modelli di dosaggio per ridurre al minimo il disagio gastrointestinale e ottimizzare le concentrazioni ematiche nel contesto dei tempi dei pasti e di altri fattori che possono influenzare l’assorbimento) giustificano ulteriori ricerche. Infatti, a causa della scarsità di ricerche disponibili sull’argomento, è difficile formulare raccomandazioni definitive sull’uso e sul dosaggio durante la Peak Week. Tuttavia, sulla base delle prove disponibili, il dosaggio ripetuto (ogni poche ore) di 500-1000mg di vitamina C è una strategia praticabile da utilizzare durante le 12-24 ore prima della competizione per accelerare potenzialmente la perdita di acqua corporea con effetti collaterali minimi (ad es. disturbi gastrointestinali). Si prega di notare che è necessaria cautela poiché un consumo eccessivo di vitamina C può causare diarrea osmotica [152].

L’uso di un integratore di Caffeina è di menzione speciale per le sue proprietà diuretiche. Dosi di almeno  ~ 250-300mg di Caffeina (2-3 tazze di caffè) possono essere assunte per promuovere la diuresi acuta in coloro che non sono tolleranti alla caffeina a causa dell’uso cronico [153]. D’altra parte, diversi giorni di astinenza possono ripristinare la sensibilità agli effetti diuretici della caffeina (sebbene l’effetto diuretico sia ancora presente solo a queste dosi maggiori) [154]. Anche gli effetti diuretici, migliorativi dell’umore [155] e delle prestazioni della caffeina [156] dovrebbero essere considerati nel contesto di potenziali disturbi del sonno se assunta in modo acuto per promuovere la diuresi per ridurre il peso la notte prima della competizione, così come l’effetto di astinenza se l’uso viene interrotto bruscamente [157]. Una potenziale strategia della Peak Week sarebbe quella di limitare la caffeina all’inizio della settimana (specialmente nei consumatori cronici, per ripristinare la sensibilità), impiegarla all’inizio della giornata come diuretico (p. es., il giorno prima della competizione) per limitare gli effetti negativi su qualità del sonno e continuare il suo uso in seguito (p. es., il giorno della competizione) per prevenire gli effetti di astinenza sia sull’omeostasi dei liquidi che sull’umore e sull’eccitazione [157]. È stato notato che la caffeina può essere impiegata (3-8mg/kg) come agente per accelerare il carico di glicogeno [158], sebbene i dati siano scarsi ed equivoci su questo effetto [159]. Pertanto, gli atleti che potrebbero scegliere di includere la caffeina per aumentare il carico di carboidrati a metà della Peak Week potrebbero anche perdere la sua utilità come diuretico durante i giorni successivi (ad esempio, quando tentano di “asciugarsi” ~ 24h prima di salire sul palco ).

L’uso del farmaco Metformina (500mg-1.5g/die) è utilizzato durante i giorni di ricarica dei CHO della Peak Week. Essa aumenta la sensibilità all’insulina e il miglioramento del ripartizionamento calorico. Nonostante riduca in parte l’assorbimento glucidico e possa alterare la glicogenolisi epatica, molti atleti hanno riferito di usarla con successo aggiustando la quantità di carboidrati la dove necessario e senza compromissioni della supercompensazione del glicogeno muscolare. La pratica d’uso della Metformina ha di gran lunga sostituito il malsano utilizzo dell’Insulina la quale mostra una quantità secreta più che sufficiente dall’alimentazione. L’aggiunta di un GDA (farmacologico o OCT) ne migliora l’effetto. Si sconsiglia un suo inserimento nella Peak Week se non già testata in precedenza dal momento che può causare disturbi gastrointestinali con conseguenti eventi diarroici.

Come sostituto alla Metformina, l’uso della Berberina è stato applicato da alcuni atleti durante la Peak Week nei giorni di ricarica dei carboidrati. L’attività della Berberina, similmente alla Metformina, si esplica attraverso i PPARγ e l’attivazione indiretta del AMPK, con conseguente aumento del uptake del glucosio (migliore insulino sensibilità) sia da parte del miocita che del adipocita (quest’ultimo, in una condizione di bassa concentrazione e deplezione epatico-muscolare di glicogeno risulta limitato per ciò che concerne la ripartizione calorica).

Meccanismo d’azione della Metformina

I dosaggi di Berberina che hanno dimostrato un impatto statisticamente significativo, anche alla luce della ricerca scientifica svolta fino ad oggi, vanno dai  500mg a 1.5g al giorno assunti in 2-3 somministrazioni di uguale portata  distribuite durante la giornata (preferibilmente prima dei pasti principali). L’abbinamento con la Silimarina ha mostrato di aumentarne la biodisponibilità. L’emivita della Berberina è stata stimata essere di circa 5-6 ore.(The 5-minute Herb and Dietary Supplement Consult – a cura di Adriane Fugh-Berman (pag. 158)) Ai dosaggi comunemente usati nella medicina tradizionale e nel limite di 1.5g/die la Berberina è ben tollerata e sicura; a dosaggi più alti può determinare: disturbi gastrointestinali, dispnea, diminuzione pressoria, sintomi simil-influenzali e danno cardiaco. (https://www.ncbi.nlm.nih.gov/pubmed/10767672)

Effetto della Berberina sul metabolismo glucidico

I “NO-booster” vengono utilizzati da alcuni atleti il giorno del contest. Alcuni si limitano ad assumere 8g di Citrullina Malato 30 minuti-1h prima di salire sul palco. Altri, invece, aggiungono, al fine di potenziare l’effetto “pump”, il Sildenafil assumendolo ad un dosaggio di 25-100mg 1h prima di salire sul palco.

Alcuni “intrepidi” con poca conoscenza su farmacologia ed emivita, somministrano per via intramuscolare nei gruppi carenti la PGF1-α per aumentare il “pump” in questi gruppi. Si tratta di una pratica di nicchia e, in definitiva, poco efficace per via della breve vita attiva della molecola (pochi minuti) e la scomodità di utilizzo durante un contest.

Sono anche utilizzate le soluzioni topiche anti-infiammatorie e drenanti per aumentare il flusso dei liquidi extracellulari dalle zone critiche come le gambe. Molecole come il Glicosaminoglicanopolisolfato che viene applicato a partire dall’ultimo post workout del “Leg Day” fino alla sera prima del contest con applicazione in 3 somministrazioni. La sua efficacia è risultata apprezzabile e additiva con le altre pratiche per il controllo dei liquidi extracellulari, anche se vanno comunque valutate le risposte individuali.

I bodybuilder utilizzatori di PEDs usano in vista della Peak Week anche pratiche per la riduzione marcata degli estrogeni per via farmacologica (vedi inibitori dell’Aromatasi) nel tentativo di ridurre lo spessore della pelle. L’Estradiolo, come il GH, è implicato nella sintesi di collagene, una riduzione ulteriore di queste due variabili potrebbe ridurre nel giro di 14 giorni lo spessore cutaneo. La pratica, per essere oggettiva, deve basarsi sugli esami ematici di controllo per valutare i livelli di E2. Non esiste alcuna letteratura in merito ma semplici dati aneddotici raccolti negli anni. E’ scontato dire che gli effetti negativi degli estrogeni sullo spessore della pelle possono richiedere diversi mesi affinché vangano eliminati completamente, quindi il mantenimento di un elevato livello di estrogeni durante i primi mesi di preparazione alla gara per poi farli calare fino al livello minimo solo un paio di settimane prima dell’esibizione non è l’ideale. Per tutti coloro che usano grandi dosi di AAS aromatizzabili per tutta la maggior parte della preparazione, tenete questo bene in mente.

Fibre e FODMAP:

La fibra alimentare è materia vegetale indigeribile proveniente da fonti di carboidrati che possono essere classificate come idrosolubili o insolubili (cioè fermentabili) e svolge un ruolo vitale nella salute gastrointestinale e nella regolarità del movimento intestinale [160]. I culturisti che mirano a ridurre la massa corporea totale durante la Peak Week come mezzo per fare una particolare classe di peso possono trarre beneficio dalla riduzione intenzionale dell’assunzione di fibre. Ad esempio, Reale et al. [55] hanno studiato l’effetto delle manipolazioni dietetiche (cioè macronutrienti, fibre, sodio e assunzione di acqua) sulla perdita di peso acuta per gli atleti da combattimento e hanno prescritto 10-13g di fibre per ridurre il contenuto intestinale totale e la massa corporea. Diverse fonti di cibo influiscono sulle caratteristiche di massa fecale e quelle ricche di fibre tendono ad aumentare l’acqua nello spazio interstiziale e la massa delle feci [161]. I dati hanno dimostrato che una relazione diretta tra l’assunzione di fibre e il contenuto intestinale con periodi di restrizione acuta (di appena due giorni) è efficace nello svuotamento/pulizia del tratto gastrointestinale [162]. Pertanto, la logica per ridurre l’assunzione di fibre prima della competizione è in genere quella di ridurre al minimo il rischio di gonfiore/ritenzione idrica [11] e, per alcuni, può essere una strategia efficace per stabilire una classe di peso.

Sebbene la ricerca sull’argomento sia limitata, Chappell et al. [11] hanno riferito che i bodybuilder che hanno osservato hanno ridotto gravemente il loro apporto di fibre principalmente riducendo/omettendo le verdure fibrose durante la Peak Week. Inoltre, è ben noto che oligosaccaridi, disaccaridi, monosaccaridi e polioli fermentati (FODMAP) sono scarsamente assorbiti, attirano fluidi all’interno del tratto gastrointestinale e aumentano la probabilità di gonfiore/gas [163]. Pertanto, potrebbe essere consigliabile per i bodybuilder limitare le fonti di cibo ad alto contenuto di FODMAP durante la Peak Week. Questo potrebbe essere uno dei motivi per cui anche le fonti alimentari come latticini e fonti ricche di lattosio e glutine sono aneddoticamente limitate in questo periodo. D’altra parte, fonti di fibre come la gomma di guar [164] e lo psillio [165], che hanno dimostrato di ridurre i sintomi della sindrome dell’intestino irritabile dominata sia da stitichezza che da diarrea, potrebbero essere impiegate su base individuale per compensare il disagio gastrointestinale, come notato sopra nello studio di de Moraes et al. [15]. Nonostante la mancanza di dati all’interno di questo gruppo demografico, la fibra alimentare è probabilmente una variabile che può influire sul processo di picco di un bodybuilder e dovrebbe essere considerata su base individuale nel contesto con gli altri aspetti dell’approccio della Peak Week.

Allenamento:

Poiché i bodybuilder si allenano invariabilmente e principalmente con esercizi contro-resistenza (RE), la misura in cui questo tipo di allenamento in particolare riduce il glicogeno e i IMT merita una considerazione. In uno studio iniziale sull’uso di substrati energetici durante un RE in bodybuilder allenati, Essen-Gustavsson e Tesch [96] hanno scoperto che una sessione di RE ad alto volume nella parte inferiore del corpo riduceva sia il glicogeno che i IMT del vasto laterale di ~ 30%, e che sia i livelli a riposo che l’entità della deplezione era correlata rispettivamente agli enzimi energeticamente connessi come la esochinasi e il 3-idrossi-Co-A deidrogenasi. In un altro studio, solo tre serie di Curl delle braccia (80% 1RM o ~ 12RM) erano sufficienti per ridurre il glicogeno del bicipite brachiale del 24 % e aumentare il lattato muscolare ~ 20 volte nei bodybuilder allenati [166]. Allo stesso modo, Roberg et al. [167] hanno scoperto che 6 serie di estensioni del ginocchio (~ 13 ripetizioni/serie; intervalli di riposo di 2 minuti) hanno ridotto il glicogeno muscolare di circa il 40% negli uomini allenati contro-resistenza, ma i livelli di glicogeno hanno recuperato il 50% delle perdite durante le 2 ore di riposo a digiuno, presumibilmente a causa dell’immediata assimilazione post-esercizio dei metaboliti glicogenolitici (ad esempio, lattato) [168]. Lo stesso gruppo ha anche scoperto che un regime di corrispondenza del carico di lavoro esterno (impiegando il doppio del carico in modo tale da impostare una media di solo  ~ 6 ripetizioni ad esaurimento) produceva un modello quasi identico di uso di glicogeno e recupero immediato post-esercizio. Pertanto, il RE eseguito con intervalli di ripetizioni comunemente impiegati tra i bodybuilder riduce sostanzialmente le riserve di glicogeno muscolare in un modo correlato al carico di lavoro/volume di una data seduta.

In linea con la ricerca precedente che suggeriva che l’ossidazione del grasso è maggiore nelle donne così come in quelle con livelli di grasso corporeo più elevati [85, 169], uno studio su donne obese non allenate ha rilevato che il 42% delle riserve IMT miste a riposo sono state utilizzate solo durante 6 serie di 10 ripetizioni di estensione del ginocchio [170]. Mentre i IMT erano tornati al 33% al di sotto della linea di base 2 ore dopo l’esercizio, nonostante l’assenza di assunzione di cibo, le riserve di glicogeno muscolare sono diminuite solo del 25% nel corso della seduta, ma non sono riuscite a recuperare significativamente in assenza di consumo di cibo [170]. I dati di cui sopra suggeriscono che il ripristino dei IMT può procedere lentamente in luogo delle fonti alimentari [171], mentre per i CHO è necessario per ripristinare sostanzialmente i livelli di glicogeno una deplezione acuta post allenamento contro-resistenza con riassorbimento degli intermedi glicolitici.

Pertanto, il potenziale di modificare le riserve di glicogeno intramuscolare e di IMT attraverso la dieta (vedi sopra) e l’esercizio è chiaro, ma gli effetti corrispondenti possono essere variabili tra i bodybuilder in funzione della dieta pre-gara (la composizione e il contenuto dei macronutrienti possono influenzare le riserve a riposo), attività enzimatica muscolare e sesso, tra le altre variabili non studiate. Anche il danno muscolare indotto dall’esercizio può essere importante nell’interpretazione dei dati di cui sopra poiché è altamente variabile [172,173,174], una funzione dello stato di allenamento [175] e noto per compromettere la sensibilità all’insulina muscolare [176] così come il rifornimento di glicogeno [177] . Evitare un danno muscolare eccessivo può quindi essere importante quando si considera una strategia di allenamento contro-resistenza durante la Peak Week non solo per massimizzare le riserve di glicogeno e IMT, ma anche per prevenire indolenzimento muscolare a insorgenza ritardata indesiderato che potrebbe impedire la capacità di attivare i muscoli [178] durante la posa sul palco. In effetti, le richieste energetiche di recupero da un allenamento apportante danno muscolare possono essere così grandi che in casi estremi i livelli di glicogeno possono continuare a diminuire dopo l’esercizio e non recuperare completamente in 24h nonostante un elevato consumo di CHO (10 g/kg/giorno) [179 ]. La variabilità nell’entità dell’infiammazione post-esercizio [180, 181] può anche spiegare la sopra menzionata variabilità nell’entità dell’idratazione che accompagna il carico di glicogeno. I livelli di IMT a riposo e di glicogeno sono più elevati e vengono utilizzati più facilmente in soggetti allenati che impiegano un carico di lavoro assoluto maggiore. Tuttavia, il ripristino post-esercizio di entrambe le riserve di energia è correlato alla sensibilità all’insulina e procede in modo simile rispetto ai depositi a riposo, indipendentemente dallo stato di allenamento [182]. Pertanto, l’elevata sensibilità all’insulina generalmente osservata nei bodybuilder nel pre-gara [5, 7, 90, 183, 184] conferisce un vantaggio per i depositi di IMT e il ripristino del glicogeno dopo sessioni di allenamento ad alto fabbisogno di substrato [185], ma la loro maggiore massa e capacità muscolare per ridurre le riserve di energia muscolare impongono che l’assunzione di grassi alimentari e CHO debba essere proporzionalmente grande per garantire un effetto super compensativo.

Applicazioni pratiche per la Peak Week:

È evidente che i bodybuilder implementano una varietà di strategie per la Peak Week nonostante la scarsità di ricerche specifiche sulla sicurezza e l’efficacia sui bodybuilder. Poiché ci sono molte variabili correlate da considerare durante il processo di picco che si influenzano direttamente a vicenda, non sono possibili raccomandazioni specifiche per la Peak Week. Inoltre, ci sono significative risposte interindividuali alla manipolazione di queste variabili e i bodybuilder potrebbero dover adottare approcci diversi durante la Peak Week a seconda delle loro circostanze, obiettivi e come il loro corpo risponde alle alterazioni delle variabili. Ad esempio, gli approcci alla Peak Week potrebbero differire sostanzialmente in base alle circostanze di un bodybuilder che deve raggiungere un peso per una specifica classe rispetto a un bodybuilder che non è vincolato da un limite di peso. Allo stesso modo, gli atleti che gareggiano nelle varie suddivisioni di categoria del bodybuilding potrebbero dover adottare approcci diversi (ad es. women’s physique/figure/wellness/bikini/fitness e men’s physique/classic physique) in cui gli standard di giudizio possono differire da quelli del bodybuilding tradizionale.

Mentre una discussione approfondita degli standard di giudizio sfumati e in qualche modo fluidi (che variano tra le numerose federazioni/organizzazioni di bodybuilding) delle varie categorie del culturismo competitivo esula dallo scopo di questo articolo, le seguenti considerazioni generali possono essere applicate nella costruzione di una strategia della Peak Week per queste altre categorie:

  • (1) Lo standard per la magrezza nelle divisioni femminili non bodybuilding spesso richiede livelli di grasso corporeo più elevati e meno muscolosità rispetto al bodybuilding femminile, e può anche quindi richiedere poche o nessuna delle manipolazioni della Peak Week descritte fino a qui ;
  • (2) Aneddoticamente, le concorrenti femminili (tipicamente nelle divisioni Bikini o Figure) possono ridurre intenzionalmente il grasso corporeo totale per ottenere livelli di grasso corporeo inferiori e competitivi e, invece di applicare procedure diuretiche, “carico d’acqua”, nel tentativo di ridurre la comparsa di eccessivo magrezza, mantengono l’aspetto desiderato di una distribuzione del grasso corporeo più uniformemente e omogenea;
  • (3) I concorrenti fitness, in cui vengono giudicate le prestazioni fisiche e l’aspetto fisico, potrebbero dover creare approcci altamente individualizzati al ripristino dell’acqua e dei depositi energetici che ottimizzino la competitività, minimizzino il rischio di lesioni e tengano conto della tempistica relativa dei set di routine e fisici nel corso di una gara.

Date le attuali prove discusse nel corso di questo articolo, offro le seguenti raccomandazioni generali per i bodybuilder al fine di aiutare i lettori a sviluppare strategie personalizzate per la Peak Week che coordinino l’assunzione di macronutrienti, le strategie di idratazione e di gestione degli elettroliti, l’integrazione e la routine di allenamento contro-resistenza/endurance(cardio). È importante sottolineare che queste raccomandazioni non dovrebbero essere considerate “regole” concrete in quanto esiste una significativa variabilità individuale di come gli atleti possono rispondere alla manipolazione di queste variabili. Infatti, a causa del numero di variabili che possono essere manipolate e degli scenari espansi che possono verificarsi, presento linee guida più specifiche di Peaking per:

  • (1) Un concorrente Physique femminile (60kg che non è vincolata da un limite di peso (BB1);
  • (2) un bodybuilder supermassimo (105 kg) che non è vincolato da un limite di peso (BB2);
  • (3) un concorrente Classic Physique che deve essere sotto un limite di peso (85 kg) in base alla sua classe di altezza (BB3)

In tutte le circostanze, si presumerà che i concorrenti effettuino il check-in (e il peso, se applicabile) il venerdì pomeriggio per competere il sabato mattina per il giudizio preliminare e il sabato sera per le finali. Si prega di notare che, nonostante queste circostanze specifiche, le raccomandazioni presentate nella Fig. 1 e nelle Tabelle 1, 2 e 3 dovrebbero essere viste come punti di partenza raccomandati che probabilmente richiederanno aggiustamenti basati sulle risposte dell’individuo all’alterazione delle variabili. La strategia simulata della Peak Week nella Fig. 1 è presentata solo come illustrativo esemplificativa e non devono essere considerati consigli dietetici, di esercizio fisico e/o medici prescrittivi. Si prega di fare riferimento al testo per una spiegazione razionale dettagliata per la manipolazione di macronutrienti, acqua, sodio e potassio presentata nella Fig. 1 e nelle Tabelle 1, 2 e 3. A tal fine, le strategie della Peak Week includerebbero le seguenti considerazioni:

1) Durante un protocollo di esaurimento/supercompensazione indotta da allenamenti contro-resistenza, l’attività fisica dovrebbe coinvolgere tutti i principali gruppi muscolari e impiegare una varietà di esercizi per garantire una riduzione diffusa dei livelli di IMT e di glicogeno nell’intera massa muscolare.

2) Utilizzando uno schema di ripetizione relativamente alto (>12 ripetizioni) con un approccio a volume più basso o più alto [167], ed esercitando uno sforzo e/o un carico sufficienti per impegnare la maggior parte dei tipi di fibre [186,187,188] ma fermandosi prima del cedimento applicando un rapporto tra volume/intensità ben delineato e non eccessivo, evitando nuovi esercizi, sembra un approccio prudente per garantire che il danno muscolare sia ridotto al minimo.

3) Gli esercizi che sovraccaricano il muscolo nella fase di allungamento/o eccentrico dominante (es. Stacco da terra rumeno, DB Lat Pullover, DB Fly) dovrebbero essere ridotti al minimo poiché è stato dimostrato che l’allenamento con modalità di allungamento aumenta il danno muscolare [189].

4) L’esercizio cardiovascolare dovrebbe essere ridotto o eliminato preferibilmente prima di entrare nella fase compensatoria delle riserve energetiche nei giorni precedenti la competizione.

5) L’allenamento contro-resistenza durante la Peak Week dovrebbe generalmente avvenire all’inizio della settimana, distribuito su 3-4 giorni a seconda della suddivisione di allenamento abituale dell’atleta, per consentire un tempo adeguato per la supercompensazione durante i giorni prima di salire sul palco di gara. Allenare le gambe per prime in questa serie di allenamenti della Peak Week consente il massimo tempo per il recupero in questi gruppi muscolari.

6) Il potenziale per il carico di glicogeno di compromettere la conservazione dei IMT suggerisce che la separazione dei periodi di carico di glicogeno e di grassi può essere prudente, con una dieta ad alto contenuto di CHO che precede gli sforzi per il carico dei grassi [92]. Ridurre la coingestione dei grassi con grandi quantità di carboidrati può anche evitare gli effetti negativi degli acidi grassi liberi sulla formazione di glicogeno [190], ridurre la distensione gastrica accelerando lo svuotamento gastrico, nonché migliorare il carico di glicogeno aumentando ulteriormente i livelli di glucosio nel sangue e di insulina [191,192,193] . Se consumate in giorni diversi, le diete contenenti grassi a 2g/kg/giorno [92] e CHO a 10g/kg/giorno [100] possono ripristinare e potenzialmente sovracompensare i rispettivi depositi energetici entro 24 ore. La variabilità individuale e gli obiettivi/bisogni dell’atleta possono richiedere strategie diverse, incluso consentire >24h per il carico di glicogeno [194] se le circostanze lo consentono.

7) Piuttosto che introdurre nuovi alimenti, consumare principalmente gli stessi costituenti dietetici durante la Peak Week che si consumano durante le settimane/mesi precedenti può anche essere utile per evitare disturbi gastrici. Poiché le fonti di carboidrati di frutta e fruttosio stimolano meglio il ripristino del glicogeno epatico, mentre il glucosio lo fa per il glicogeno muscolare [195], si raccomanda che la maggior parte dei carboidrati consumati provenga da fonti a base di amido/glucosio. Da notare, tuttavia, che è stato dimostrato che combinazioni di glucosio, fruttosio e saccarosio con bevande sportive aumentano la velocità di assorbimento dei liquidi dall’intestino tenue prossimale [196]. Pertanto, si consiglia agli atleti di sperimentare prima della settimana di picco su quali fonti di carboidrati funzionano meglio per loro.

8) Garantire che le proteine ​​siano co-ingerite, anche se in quantità inferiori, con i CHO durante la ricarica può aumentare il rilascio di insulina e facilitare il carico di glicogeno [197, 198].

9) Un apporto proteico più elevato (es. 3,0g/kg) può essere combinato con un apporto più elevato di grassi durante i periodi di deplezione dei CHO per avviare il carico di grassi seguito da un carico di CHO con un apporto proteico inferiore (es. 1,6 g/kg) per compensare le riserve di glicogeno . Una volta completato il carico di carboidrati, può essere implementata una dieta ad alto contenuto proteico (3,0 g/kg)/alto contenuto di grassi/basso contenuto di CHO. Ancora una volta, la variabilità individuale e gli obiettivi/bisogni dell’atleta possono richiedere strategie diverse per raggiungere il massimo della forma fisica.

10) Varie strategie di carico dei CHO sono state riportate nel bodybuilding. Ad esempio, Roberts et al. [199] discussero la pratica della ricarica dei CHO a caricamento frontale (l’assunzione è maggiore all’inizio della settimana e poi ridotta per mantenere la pienezza muscolare fino alla competizione) e il carico dei CHO a caricamento posteriore (l’assunzione avviene più tardi nella settimana ma può comportare meno tempo per apportare modifiche al fisico). In alternativa, potrebbe essere utilizzato anche un modello in cui i CHO vengono esaurite all’inizio della settimana (7 − 4 giorni out), caricati a metà settimana (3 − 2 ​​giorni out), e quindi regolati/mantenuti (1 giorno out). Nello studio di de Moraes et al. [15], è stato utilizzato un metodo di carica a ritroso, ma sono necessarie ulteriori prove prima di formulare raccomandazioni più concrete. Sulla base delle prove attuali, si raccomanda il terzo modello discusso, come presentato nella Tabella 1 per la concorrente Physique femminile di 60kg e il bodybuilder di sesso maschile di 105kg, per ottenere i benefici del carico frontale e del carico posteriore; tuttavia, devono essere prese in considerazione le risposte/preferenze individuali al carico dei CHO e le esigenze dell’individuo (ad es., fare una classe di peso può richiedere il carico a ritroso).

11) La precedente dieta pre-gara può influenzare la tolleranza del concorrente alla manipolazione dietetica, nonché l’entità della restrizione dietetica di grassi e CHO durante i giorni di allenamento della Peak Week necessari per accelerare un successivo effetto super-compensativo. Ad esempio, quei concorrenti che seguono una dieta ricca di CHO/basso contenuto di grassi, ma molto ipocalorica (lasciando i livelli di glicogeno cronicamente bassi) potrebbero evitare di eliminare completamente i CHO durante l’allenamento della Peak Week. Tuttavia, coloro che hanno utilizzato un approccio a basso contenuto di carboidrati potrebbero continuare a utilizzare una dieta di questo tipo durante la Peak Week, ma potrebbero diffidare di applicare un allenamento eccessivo (invece di un approccio tapering) se i livelli di glicogeno sono già probabilmente diminuiti all’inizio della Peak Week.

12) In generale, ridurre i CHO e aumentare l’assunzione di grassi (in base alla tollerabilità individuale) durante i giorni di allenamento (“esaurimento”) della Peak Week può facilitare il carico di glicogeno durante i giorni successivi all’allenamento e, contemporaneamente, garantire che i livelli di IMT non vengano abbassati eccessivamente. Dopo 1-2 giorni di carico di glicogeno a metà/fine settimana come raccomandato nel prima citato approccio al carico dei CHO, i livelli di IMT potrebbero essere aumentati il giorno prima della competizione con un approccio ad alto contenuto di grassi/basso di CHO che servirebbe anche a ridurre l’acqua corporea in eccesso [117]. Ancora una volta, la variabilità individuale e gli obiettivi/bisogni dell’atleta possono richiedere strategie diverse con queste linee guida generali come base.

13) La pratica del carico d’acqua seguita dalla restrizione idrica è stata documentata come una strategia di perdita di peso sicura ed efficace per perdere TBW negli atleti da combattimento [55]. Sebbene il rapporto tra ECW e ICW perso non sia stato riportato in questo studio, Costill et al. [40] (come affermato in precedenza) hanno riportato che il rapporto tra ECW e perdita di ICW rimane vicino a 1:1 quando i livelli di glicogeno si stabilizzano nel tempo e vengono raggiunti livelli più elevati di disidratazione. Pertanto, sembra che la ritenzione del glicogeno muscolare, evitando l’esercizio che fa molto affidamento sul glicogeno, possa essere importante se i metodi di perdita di acqua devono essere effettuati per una perdita favorevole di ECW rispetto a ICW (ECW > ICW) in modo tale che la dimensione muscolare venga mantenuta mentre L’ECW interstiziale viene preferibilmente perso, migliorando potenzialmente l’aspetto della “definizione” muscolare.

14) Molte variabili possono alterare l’approccio utilizzato per il carico/esaurimento idrico (cioè quanta acqua l’atleta è abituato a bere regolarmente), ma i partecipanti allo studio di Reale et al. hanno perso con successo la TBW bevendo una grande quantità di acqua (100ml/kg) per tre giorni, seguita da una significativa riduzione dell’acqua a 15ml/kg il quarto giorno [55] senza effetti deleteri. In alternativa, l’assunzione di acqua può essere mantenuta relativamente costante (ad eccezione di qualche ora prima di gareggiare per prevenire qualsiasi distensione addominale) per ridurre al minimo le variabili manipolate; in effetti, questo potrebbe essere l’approccio migliore se non vengono eseguite prove pratiche prima della competizione. Mantenere una ratio Sodio:Acqua pari a 1:0.4 (per semplificare, 1L d’acqua = 1g di Cloruro di Sodio (Na)= 400mg di Sodio) fino al giorno precedente alla gara aggiungendo nelle ultime 24h il Glicerolo (generalmente 3 dosi da 10-20ml) il quale ha un noto effetto osmotico intracellulare.

15) Poiché il glicogeno muscolare crea un effetto osmotico, attirando l’acqua nella cellula mentre il glicogeno viene immagazzinato [26], il carico di CHO dovrebbe essere effettuato insieme all’assunzione di acqua [199] in modo che l’ICW muscolare possa essere massimizzato mentre l’assunzione di CHO è alta. Dopo circa tre giorni di carico d’acqua con un apporto di CHO più alto (se si utilizza il metodo di carico d’acqua), l’assunzione di acqua può diminuire a ~ 15ml/kg per 24h, il che aiuterà a indurre la diuresi entro ~ 24h prima della competizione. Si noti che questa raccomandazione si basa su quanto studiato e riportato; tuttavia, gli autori riconoscono che maggiori assunzioni di acqua possono essere preferenziali, come 30-40ml/kg, ma non sono state studiate e quindi richiedono ulteriori ricerche.

16) Aumentare o mantenere un’assunzione elevata di proteine mentre si riduce il consumo di carboidrati e contemporaneamente aumentare l’assunzione di grassi durante il giorno prima della competizione può invertire i guadagni indesiderati di acqua extracellulare/sottocutanea sperimentati durante il carico dei carboidrati [118].

17) È stato riportato che l’assunzione di sodio è significativamente ridotta dai bodybuilder durante la Peak Week [11, 14, 20], ma i tempi di questa pratica dovrebbero essere attentamente implementati e l’assunzione di sodio non dovrebbe essere ridotta contemporaneamente al carico dei CHO poiché l’evidenza suggerisce che la somministrazione di CHO è limitata dalla capacità di trasporto di SGLT1 [72,73,74,75]. Una volta che l’assunzione di CHO è diminuita dopo il carico di glicogeno, l’assunzione di sodio può essere temporaneamente ridotta poiché la ricerca indica che l’attivazione del RAAS è evidente entro 24 ore e sono necessarie  ~ 48 ore per osservare un forte aumento dei livelli di Aldosterone plasmatico [53]. Questo ritardo temporale nello stabilire l’omeostasi di fluidi ed elettroliti, se programmato correttamente, può essere implementato per indurre la diuresi prima che i meccanismi omeostatici protettivi si manifestino completamente per arrestare la perdita di acqua. A seconda delle esigenze del bodybuilder prima della competizione (ad esempio, necessità di stabilire una classe di peso), nella Tabella 2 sono presentati vari scenari di assunzione di sodio. In alternativa, il sodio può essere mantenuto come costante per ridurre al minimo le variabili manipolate; in effetti, questo potrebbe essere l’approccio migliore se non vengono eseguite prove pratiche prima della competizione. Il mantenimento di una corretta ratio Sodio:Acqua, accennata in precedenza, garantisce una migliore escrezione di liquidi e impedisce la comparsa di stati di iponatriemia. L’assunzione di Potassio (2g netti al giorno) garantisce all’atleta una migliore omeostasi qualitativa dei liquidi corporei.

18) I bodybuilder utilizzatori di PEDs che presentano nel proprio protocollo il GH, dovrebbero cessarne l’uso almeno 14-7 giorni prima della competizione dal momento che il peptide ha una attività di alterazione del RAAS.

18) L’immagazzinamento e la ritenzione del glicogeno muscolare dipendono fortemente dalla disponibilità di potassio (un catione intracellulare primario) [41,42,43,44,45,46]. Pertanto, garantire un’adeguata assunzione di potassio durante le procedure sia di carico dei carboidrati che di riduzione dell’acqua (se aggiunta) è probabilmente fondamentale per ottimizzare l’aspetto della pratica attraverso lo stoccaggio e la ritenzione di glicogeno muscolare e quindi stimolare una perdita più favorevole di ECW rispetto a ICW quando si utilizzano strategie di disidratazione.

19) Ridurre l’assunzione di fibre durante la Peak Week sembra offrire alcuni potenziali benefici. Rale et al. [55] hanno riferito che la riduzione dell’assunzione di fibre a 10-13 g/giorno per ~ 5 giorni ha ridotto con successo il contenuto intestinale totale e la massa corporea nei contact fighters. I dati hanno dimostrato che una relazione diretta tra l’assunzione di fibre e il contenuto intestinale con periodi di restrizione acuta (di appena due giorni) è efficace nello svuotamento/pulizia del tratto gastrointestinale [162]. Pertanto, la logica per ridurre l’assunzione di fibre prima della competizione è tipicamente quella di ridurre al minimo il rischio di gonfiore/ritenzione idrica [11] e, per alcuni, parte del loro processo per creare una classe di peso.

20) L’utilizzo di alcuni integratori durante la Peak Week può rivelarsi vantaggioso per gli atleti. È stato dimostrato che l’integrazione di creatina aiuta nella sintesi del glicogeno e nella sua supercompensazione [132]. Inoltre, il consumo di CHO con creatina aumenta il carico di creatina [133], che aumenta l’idratazione intracellulare [32, 129]. Insieme alla creatina, possono essere prese in considerazione anche polveri di carboidrati (ad es. destrosio, ciclo-destrine altamente ramificate, ecc.). Le caratteristiche dei carboidrati come l’osmolalità, il tasso di clearance gastrica e l’indice glicemico sono alcune delle variabili che i bodybuilder dovrebbero prendere in considerazione poiché questi fattori possono variare significativamente tra le fonti e possono influire sui sintomi gastrointestinali (ad es. gonfiore, crampi, diarrea, costipazione, ecc.) [ 119,120,121]. Sia le polveri di proteine del siero di latte idrolizzate, gli EAA, le classiche proteine che le polveri di carboidrati possono essere utilizzate come mezzi per manipolare e consumare quantità specifiche di macronutrienti senza dover consumare grandi volumi di cibo. Anche l’uso di diuretici erboristici e farmacologici, con le dovute precauzioni, possono essere inseriti negli ultimi giorni prima del contest per facilitare l’eliminazione dell’acqua extracellulare. Come detto in precedenza, l’uso di Metformina o Berberina nei giorni di ricarica dei CHO ha il potenziale di migliorare la “qualità” di questa pratica per via di un migliore ripartizionamento calorico. L’uso di “NO-booster” come Citrullina Malato e/o Sildenafil possono dare un affetto “pump” dando un aspetto muscolare più “pieno”. Soluzioni topiche con attività anti-infiammatoria/drenante, come quelle contenenti Glicosaminoglicanopolisolfato, possono agevolare la perdita di liquidi extracellulari in aree critiche come le gambe (applicazione dal post workout dell’ultimo Leg Day fino alla sera precedente il contest). Sempre per i bodybuilder utilizzatori di PEDs, la riduzione estrema dei livelli estrogenici nelle ultime due settimane pre-contest può facilitare l'”assottiogliamento” della cute per via del legame tra sintesi di Collagene e Estrogeni.

21) Situazioni emotivamente stressanti possono evocare polidipsia e alterare l’omeostasi dei fluidi in appena 48 ore [78, 79]. Quindi, lo stress psicologico può contrastare i tentativi del bodybuilder agonista di ridurre l’acqua corporea, specialmente nei casi estremi di ansia pre-gara. Come notato in precedenza, si raccomanda di eseguire una prova pratica della strategia della Peak Week ~ 2–4 settimane prima della competizione effettiva, in parte per ridurre l’ansia e assicurare al concorrente che la strategia della Peak Week è sia gestibile che efficace.

22) Riposare e/o dormire con una posizione di “inclinazione a testa in giù” (HDT) (tipicamente da − 4 a -6˚ per cui l’intera superficie del corpo durante il sonno è inclinata verso il basso [57, 58] simula l’aumento del ritorno venoso cardiaco (e la perdita di pressione ortostatica) che si verifica durante la microgravità e si traduce in diuresi e risposte cardiovascolari [57, 59]. Pertanto, i concorrenti potrebbero plausibilmente impiegare l’HDT quando riposano e dormono durante le 12-24 ore prima della competizione per stimolare ulteriormente la diuresi. Questo potenziale beneficio dovrebbe essere bilanciato con possibili effetti dannosi della pratica sui modelli di sonno, che potrebbero interferire con le prestazioni in gara.

23) Il peso della bilancia può essere utilizzato durante la Peak Week per valutare e confermare i livelli di idratazione (vedere la seguente sezione “Considerazioni pratiche per il giorno della gara”).

24) Dal momento che sono coinvolte una moltitudine di variabili e una sostanziale interindividualità biologica, una pratica o “mock” Peak Week durante le ~ 2-4 settimane prima della competizione può fornire informazioni preziose sull’entità e sui tempi appropriati delle alterazioni della dieta e dell’allenamento durante la Peak Week. Inoltre, può attenuare i livelli di stress che un bodybuilder può avere prima della competizione, il che può facilitare il modo in cui il corpo risponde al protocollo della Peak Week.

25) Gli atleti che possono partecipare a una serie di competizioni in successione relativamente rapida, in genere su base settimanale, dovrebbero costruire strategie per le Peak Week (come negli esempi qui riportati) che possono essere replicate, con aggiustamenti aggiuntivi se necessario, durante il periodo di tempo tra le gare . Ciò può richiedere ai concorrenti di mantenere uno stretto controllo dietetico e di stabilire rapidamente l’omeostasi dei fluidi post-gara in modo da ripristinare le condizioni iniziali di base (ad esempio, i livelli di glicogeno muscolare) su cui può fare affidamento una data strategia della Peak Week. Inoltre, oltre ai rischi medici rilevati citati in precedenza, l’uso non oculato di diuretici farmacologici durante la Peak Week può probabilmente interrompere l’omeostasi dei liquidi e diminuire l’affidabilità e quindi il successo delle strategie diuretiche impiegate in una serie di competizioni in stretta prossimità temporale.

26) Come detto in precedenza, i bodybuilder utilizzatori di PEDs utilizzano in vista della Peak Week anche pratiche per la riduzione marcata degli estrogeni per via farmacologica (vedi inibitori dell’Aromatasi) nel tentativo di ridurre lo spessore della pelle. L’Estradiolo, come il GH, è implicato nella sintesi di collagene, una riduzione di queste due variabili potrebbe ridurre nel giro di 14 giorni lo spessore cutaneo. La pratica, per essere oggettiva, deve basarsi sugli esami ematici di controllo per valutare i livelli di E2. Non esiste alcuna letteratura in merito ma semplici dati aneddotici raccolti negli anni.

È essenziale capire che nessuna delle suddette strategie della Peak Week fornirà un restyling fisico per compensare la mancanza di una preparazione corretta o della aderenza durante le fasi di preparazione al contest off-season o pre-gara. Il grasso corporeo deve essere ridotto al minimo ~ 2–3 settimane prima della competizione, in modo che il concorrente possa concentrarsi sulla riduzione al minimo dell’acqua sottocutanea per mostrare al meglio la muscolatura e sull’ottimizzazione delle dimensioni muscolari aumentando le riserve intramuscolari di glicogeno e trigliceridi. Pertanto, l’utilizzo di strategie per la Peak Week è semplicemente un mezzo per ottenere un aspetto migliore durante il giorno della competizione sul palco “sintonizzando” il corpo rispetto al semplice mantenimento della dieta e delle strategie di allenamento pre-gara (cioè quelle focalizzate principalmente sulla riduzione del grasso corporeo e sul mantenimento della massa muscolare).

Considerazioni pratiche per il giorno della gara:

Idealmente il fisico presentato sul palco rappresenta il miglior aspetto possibile dell’atleta, superando quello delle settimane e dei mesi precedenti. Garantire che il picco si verifichi il giorno della competizione spesso richiede un approccio su misura con almeno le seguenti considerazioni:

  • Programma della giornata di gara: quando viene giudicato l’atleta e quante volte? Molte organizzazioni competitive includono più turni di valutazione [200,201,202] e categorie tali che la competizione può svolgersi nel corso di un’intera giornata (o più).
  • Strategie (pre-programmate o meno) per mettere a punto l’aspetto del fisico il giorno della competizione manipolando l’assunzione di acqua, cibo e integratori alimentari secondo necessità.
  • Aspetto personale e percezione del fisico (quanto detto sopra), ed altri mezzi per valutare la fase preparazione. Naturalmente, gli obiettivi della Peak Week settimana di punta per ridurre al minimo l’acqua sottocutanea e garantire che i IMTG e le riserve di glicogeno del muscolo scheletrico siano massimizzate, mettendo i muscoli in pieno rilievo e mostrando la massima “muscolarità” dovrebbero essere ampiamente raggiunti prima del risveglio il giorno della competizione. Nel gergo del bodybuilding, queste componenti della muscolatura potrebbero essere considerate “secchezza” (mancanza di fluido sottocutaneo) e “pienezza” (le riserve energetiche delle cellule muscolari sono completamente riempite / supercompensate). Tuttavia, spesso è necessaria una messa a punto per ottimizzare l’aspetto del fisico quando viene giudicato.

A mia conoscenza, non vi è ricerca che esamini la misura in cui i mezzi soggettivi o altri mezzi pratici al fine di garantire la buona preparazione al giorno della competizione di bodybuilding siano associati al presunto fluido sottocutaneo e alle misure istologiche. Tuttavia, i seguenti sono modi comunemente accettati e suggeriti in precedenza [36] per valutare la prestanza per il giorno del contest:

  • Le riserve di glicogeno muscolare sono “piene” e l’atleta può ottenere un buon “pump”? I metaboliti glicolitici (ad esempio, lattato e fosfato inorganico) derivati dall’uso del glicogeno producono una risposta di iperemia reattiva post-esercizio nota come “pump” [203] che gonfia il tessuto muscolare, aumentandone lo spessore fino a ~ 10% [204, 205]. Ciò rappresenta un vantaggio per l’aumento acuto della dimensione muscolare prima di salire sul palco e spostare il fluido in specifici ventri muscolari (idealmente anche riducendo così il volume del fluido sottocutaneo interstiziale per migliorare ulteriormente l’aspetto della muscolosità, tale che un atleta può preferibilmente “pompare” la muscolatura per migliorare l’equilibrio dell’espansione muscolare.
  • L’atleta è “secco”? L’acqua corporea è stata ridotta abbastanza da ridurre al minimo il fluido sottocutaneo per evidenziare notevolmente la muscolatura sottostante?
  • L’atleta è “piatto”? Creare una situazione di pienezza muscolare e con un aspetto fisico “asciutto” richiede uno stretto atto di riequilibrio fisiologico. La “pompa” iperemica richiede un fluido corporeo adeguato per spostarsi nel ventre muscolare; tuttavia, un atleta con alti livelli di glicogeno muscolare ma acqua corporea eccessivamente ridotta può sperimentare la “piattezza muscolare”, cioè la mancanza di un “pump” muscolare solitamente associata a un aspetto sciupato a causa dell’eccessiva disidratazione. D’altra parte, la colpa potrebbe essere anche della mancanza di glicogeno muscolare come fonte di osmoliti metabolici per l’effetto “pump” [203].

Sia le riserve di glicogeno (“pienezza”) che la disidratazione (aspetto “asciutto”) dipendono dall’omeostasi dei fluidi che cambia rapidamente. Pertanto, propongo che il peso della bilancia possa essere impiegato come indicatore rudimentale, ma pratico e oggettivo dell’idratazione corporea nel contesto del “pump” muscolare e dell’aspetto visivo, nonché delle perdite di liquidi urinari [notare che il colore delle urine è una misura di campo adeguata dello stato di idratazione, ma può essere alterata dal consumo di integratori alimentari [206, 207]. Pertanto, misurare il peso corporeo durante la Peak Week e il suo tasso di variazione può aiutare a determinare la misura in cui l’acqua corporea è stata ridotta al minimo il giorno della competizione. Le misurazioni per un ipotetico concorrente sono fornite nella Tabella 4. Presumiamo qui che il glicogeno del muscolo-scheletrico sia stato adeguatamente super compensato (aumentando il contenuto di acqua intramiocellulare e aumentando il peso corporeo) dopo un periodo di ridotta assunzione di carboidrati che riduce il contenuto di acqua corporea (e peso corporeo) all’inizio della Peak Week (vedi sopra). Se le strategie di disidratazione determinano una riduzione del peso della bilancia che si avvicina o è inferiore ai livelli di pre ricarica dei carboidrati, ipotizziamo che ciò rifletta che i cambiamenti desiderati nell’ECF (riduzione del fluido sottocutaneo) e negli spazi ICF (aumento del fluido intramiocellulare e del glicogeno) siano stati raggiunti.

La figura 2 di seguito delinea un albero decisionale del giorno della competizione che un concorrente potrebbe utilizzare per affrontare le possibilità discusse sopra (mancanza di pienezza muscolare o condizione fisica “asciutta”, o essere “piatto”). Presumiamo una preferenza per ridurre al minimo l’acqua corporea rispetto alla pienezza muscolare. Inoltre, tenete presente che lo scenario in cui la “piattezza” è un problema potrebbe richiedere una combinazione di aggiunta di acqua, sodio, carboidrati e/o grassi alimentari a seconda delle circostanze. Le precedenti esperienze di “finta Peak Week” e di assunzione di carboidrati possono servire bene all’atleta nella scelta di un giorno strategicamente appropriato per dare il massimo sul palco. Questo stesso albero decisionale può essere applicato ripetutamente in situazioni in cui l’atleta viene giudicato in più round.

Fig. 2: Albero decisionale per le regolazioni dietetiche e l’assunzione di liquidi del giorno della competizione di Bodybuilding

Conclusioni:

Ricapitolando, l’evidenza suggerisce che i bodybuilder usano frequentemente strategie di “Peak Week” come il carico dei CHO, la manipolazione di acqua/sodio e altri approcci nel tentativo di migliorare il loro fisico durante l’ultima settimana di preparazione alla competizione. Sfortunatamente, c’è una scarsità di ricerche sull’efficacia e la sicurezza di queste strategie quando implementate individualmente o collettivamente. Poiché le variabili che vengono frequentemente manipolate dai bodybuilder sono correlate, l’alterazione di una variabile in genere influenza altre variabili. Inoltre, le risposte interindividuali all’alterazione di queste variabili rendono ancora più difficile fornire precise “regole” da seguire per la Peak Week. Data la complicata interazione di variabili fisiologiche durante la Peak Week, nonché l’interindividualità biologica e la variabilità nell’importanza attribuita alla massimizzazione dei vari aspetti della muscolarità attraverso le diverse categorie competitive, ci sono una moltitudine di vie di ricerca per studiare le strategie della Peak Week. In particolare, un esame strettamente controllato degli effetti quantificabili della supercompensazione del glicogeno, della disidratazione graduale tramite la manipolazione del sodio e/o dell’acqua e delle strategie di “pump” pre-palco, insieme alla documentazione dei cambiamenti visivi “pratici” soggettivi associati nell’aspetto fisico, potrebbero essere aree di studio rilevanti che possono aiutare a informare meglio i concorrenti e indirizzarli lontano da pratiche potenzialmente pericolose e/o meno efficaci della fase Peak Week . Pertanto, grazie alla review di  Brad J. Schoenfeld e colleghi, e alla piccola aggiunta delle mie ricerche e annotazioni, viene presentato questo articolo al fine di rappresentare un approccio basato sull’evidenza alle strategie di picco pre-gara basate sullo stato attuale della letteratura scientifica (e sull’aneddotica più affidabile) nella speranza che possa stimolare il miglioramento dell’atleta e/o del preparatore i quali possono accrescere le loro conoscenze e maturare una corretta comprensione delle delicate componenti che caratterizzano la preparazione ad un contest di Bodybuilding potendo così sviluppare approcci pratici e sicuri applicabili per ottimizzare la forma fisica da mostrare sul palco.

Gabriel Bellizzi

Riferimenti:

  1. Bamman MM, Hunter GR, Newton LE, Roney RK, Khaled MA. Changes in body composition, diet, and strength of bodybuilders during the 12 weeks prior to competition. J Sports Med Phys Fitness. 1993;33:383–91. https://www.ncbi.nlm.nih.gov/pubmed/8035587.
  2. 2.Chappell AJ, Simper T, Barker ME. Nutritional strategies of high level natural bodybuilders during competition preparation. J Int Soc Sports Nutr. 2018;15:4. doi:https://doi.org/10.1186/s12970-018-0209-z.CAS Article PubMed PubMed Central Google Scholar 
  3. 3.Kistler BM, Fitschen PJ, Ranadive SM, Fernhall B, Wilund KR. Case study: Natural bodybuilding contest preparation. Int J Sport Nutr Exerc Metab. 2014;24:694–700. doi:https://doi.org/10.1123/ijsnem.2014-0016.Article PubMed Google Scholar 
  4. 4.Robinson SL, Lambeth-Mansell A, Gillibrand G, Smith-Ryan A, Bannock L. A nutrition and conditioning intervention for natural bodybuilding contest preparation: case study. J Int Soc Sports Nutr. 2015;12:20. doi:https://doi.org/10.1186/s12970-015-0083-x.Article PubMed PubMed Central Google Scholar 
  5. 5.Rossow LM, Fukuda DH, Fahs CA, Loenneke JP, Stout JR. Natural bodybuilding competition preparation and recovery: a 12-month case study. Int J Sports Physiol Perform. 2013;8:582–92. https://www.ncbi.nlm.nih.gov/pubmed/23412685.
  6. 6.Tinsley GM, Trexler ET, Smith-Ryan AE, Paoli A, Graybeal AJ, Campbell BI, et al. Changes in Body Composition and Neuromuscular Performance Through Preparation, 2 Competitions, and a Recovery Period in an Experienced Female Physique Athlete. J Strength Cond Res. 2019;33:1823–39. doi:https://doi.org/10.1519/JSC.0000000000002758.Article PubMed Google Scholar 
  7. 7.Helms ER, Aragon AA, Fitschen PJ. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 2014;11:20. doi:https://doi.org/10.1186/1550-2783-11-20.CAS Article PubMed PubMed Central Google Scholar 
  8. 8.Kleiner SM, Bazzarre TL, Litchford MD. Metabolic profiles, diet, and health practices of championship male and female bodybuilders. J Am Diet Assoc. 1990;90:962–7. https://www.ncbi.nlm.nih.gov/pubmed/2365938.
  9. 9.Gentil P, de Lira CAB, Paoli A, dos Santos JAB, da Silva RDT, Junior JRP, et al. Nutrition, pharmacological and training strategies adopted by six bodybuilders: case report and critical review. Eur J Transl Myol. 2017;27. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5391526/.
  10. 10.Mitchell L, Slater G, Hackett D, Johnson N, O’connor H. Physiological implications of preparing for a natural male bodybuilding competition. EJSS. 2018;18:619–29. doi:https://doi.org/10.1080/17461391.2018.1444095.Article PubMed Google Scholar 
  11. 11.Chappell AJ, Simper TN. Nutritional Peak Week and Competition Day Strategies of Competitive Natural Bodybuilders. Sports (Basel). 2018;6. doi:https://doi.org/10.3390/sports6040126.
  12. 12.Probert A, Palmer F, Leberman S. The Fine Line: An insight into “risky”practices of male and female competitive bodybuilders. Annals of Leisure Research. 2007;10:272–90. https://www.tandfonline.com/doi/abs/https://doi.org/10.1080/11745398.2007.9686767.
  13. 13.Spendlove J, Mitchell L, Gifford J, Hackett D, Slater G, Cobley S, et al. Dietary Intake of Competitive Bodybuilders. Sports Med. 2015;45:1041–63. doi:https://doi.org/10.1007/s40279-015-0329-4.Article PubMed Google Scholar 
  14. 14.Mitchell L, Hackett D, Gifford J, Estermann F, O’Connor H Do Bodybuilders Use Evidence-Based Nutrition Strategies to Manipulate Physique? Sports (Basel). 2017;5. doi:https://doi.org/10.3390/sports5040076.
  15. 15.de Moraes WMAM, de Almeida FN, Dos Santos LEA, Cavalcante KDG, Santos HO, Navalta JW, et al. Carbohydrate Loading Practice in Bodybuilders: Effects on Muscle Thickness, Photo Silhouette Scores, Mood States and Gastrointestinal Symptoms. J Sports Sci Med. 2019;18:772–9. https://www.ncbi.nlm.nih.gov/pubmed/31827362.
  16. 16.Norton L, Baker P. The Complete Contest Prep Guide (Male Cover). CreateSpace Independent Publishing Platform; 2018. https://play.google.com/store/books/details?id=k9S5uwEACAAJ.
  17. 17.Aceto C. Championship Bodybuilding. ASL Publications; 2001.
  18. 18.Konrad C, Schüpfer G, Wietlisbach M, Gerber H. [Insulin as an anabolic: hypoglycemia in the bodybuilding world]. Anasthesiol Intensivmed Notfallmed Schmerzther. 1998;33:461–3. doi:https://doi.org/10.1055/s-2007-994284.CAS Article PubMed Google Scholar 
  19. 19.Mayr FB, Domanovits H, Laggner AN. Hypokalemic paralysis in a professional bodybuilder. Am J Emerg Med. 2012;30:1324.e5–8. doi:https://doi.org/10.1016/j.ajem.2011.06.029.Article Google Scholar 
  20. 20.Kingston M. Dangers of ripping in body building. Intern Med J. 2011;41:708–9. doi:https://doi.org/10.1111/j.1445-5994.2011.02550.x.CAS Article PubMed Google Scholar 
  21. 21.Caldwell JE. Diuretic therapy and exercise performance. Sports Med. 1987;4:290–304. doi:https://doi.org/10.2165/00007256-198704040-00005.CAS Article PubMed Google Scholar 
  22. 22.Goforth HW Jr, Arnall DA, Bennett BL, Law PG. Persistence of supercompensated muscle glycogen in trained subjects after carbohydrate loading. J Appl Physiol. 1997;82:342–7. doi:https://doi.org/10.1152/jappl.1997.82.1.342.CAS Article PubMed Google Scholar 
  23. 23.Ivy JL. Muscle glycogen synthesis before and after exercise. Sports Med. 1991;11:6–19. doi:https://doi.org/10.2165/00007256-199111010-00002.CAS Article PubMed Google Scholar 
  24. 24.Nielsen J, Ørtenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38:91–9. doi:https://doi.org/10.1139/apnm-2012-0184.CAS Article PubMed Google Scholar 
  25. 25.Graham TE, Yuan Z, Hill AK, Wilson RJ. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol. 2010;199:489–98. doi:https://doi.org/10.1111/j.1748-1716.2010.02131.x.CAS Article Google Scholar 
  26. 26.Oakley HB, Young FG. The osmotic pressure of glycogen solutions. Biochem J. 1936;30:868–76. doi:https://doi.org/10.1042/bj0300868.CAS Article PubMed PubMed Central Google Scholar 
  27. 27.King RFGJ, Jones B, O’Hara JP. The availability of water associated with glycogen during dehydration: a reservoir or raindrop? Eur J Appl Physiol. 2018;118:283–90. doi:https://doi.org/10.1007/s00421-017-3768-9.CAS Article PubMed Google Scholar 
  28. 28.Olsson K-E, Saltin B. Variation in Total Body Water with Muscle Glycogen Changes in Man. Acta Physiol Scand. 1970;80:11–8. doi:https://doi.org/10.1111/j.1748-1716.1970.tb04764.x.CAS Article PubMed Google Scholar 
  29. 29.McBride JJ, Guest MM, Scott EL, Others. The storage of the major liver components; emphasizing the relationship of glycogen to water in the liver and the hydration of glycogen. J Biol Chem. 1941;139:943–52. https://www.cabdirect.org/cabdirect/abstract/19411401274.
  30. 30.Sherman WM, Plyley MJ, Sharp RL, Van Handel PJ, McAllister RM, Fink WJ, et al. Muscle glycogen storage and its relationship with water. Int J Sports Med. 1982;3:22–4. doi:https://doi.org/10.1055/s-2008-1026056.CAS Article PubMed Google Scholar 
  31. 31.Shiose K, Yamada Y, Motonaga K, Sagayama H, Higaki Y, Tanaka H, et al. Segmental extracellular and intracellular water distribution and muscle glycogen after 72-h carbohydrate loading using spectroscopic techniques. J Appl Physiol. 2016;121:205–11. doi:https://doi.org/10.1152/japplphysiol.00126.2016.CAS Article PubMed Google Scholar 
  32. 32.Bone JL, Ross ML, Tomcik KA, Jeacocke NA, Hopkins WG, Burke LM. Manipulation of Muscle Creatine and Glycogen Changes Dual X-ray Absorptiometry Estimates of Body Composition. Med Sci Sports Exerc. 2017;49:1029–35. doi:https://doi.org/10.1249/mss.0000000000001174.CAS Article PubMed Google Scholar 
  33. 33.Schoenfeld BJ, Alto A, Grgic J, Tinsley GM, Trexler ET. Alterations in body composition, resting metabolic rate, muscular strength, and eating behavior in response to natural bodybuilding competition preparation: A case study. Journal of Strength Conditioning Research. 2020. doi:https://doi.org/10.1519/JSC.0000000000003816. ;Publish Ahead of Print.Article PubMed Google Scholar 
  34. 34.Albertson TE, Chenoweth JA, Colby DK, Sutter ME. The Changing Drug Culture: Use and Misuse of Appearance- and Performance-Enhancing Drugs. FP Essent. 2016;441:30–43. https://www.ncbi.nlm.nih.gov/pubmed/26881771.
  35. 35.Hickson JF Jr, Johnson TE, Lee W, Sidor RJ. Nutrition and the precontest preparations of a male bodybuilder. J Am Diet Assoc. 1990;90:264–7. https://www.ncbi.nlm.nih.gov/pubmed/2303663.
  36. 36.Stevenson SW. Be Your Own Bodybuilding Coach: A Reference Guide For Year-Round Bodybuilding Success. Integrative Bodybuilding, LLC; 2018. https://play.google.com/store/books/details?id=nzi4ugEACAAJ.
  37. 37.Tobias A, Mohiuddin SS. Physiology, Water Balance. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2019. https://www.ncbi.nlm.nih.gov/pubmed/31082103.
  38. 38.Sawka MN, Coyle EF. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc Sport Sci Rev. 1999;27:167–218. https://www.ncbi.nlm.nih.gov/pubmed/10791017.
  39. 39.NSCA -National Strength & Conditioning Association. Campbell B, Spano M. NSCA’s Guide to Sport and Exercise Nutrition. Human Kinetics; 2011. https://play.google.com/store/books/details?id=nu96DwAAQBAJ.
  40. 40.Costill DL, Coté R, Fink W. Muscle water and electrolytes following varied levels of dehydration in man. J Appl Physiol. 1976;40:6–11. doi:https://doi.org/10.1152/jappl.1976.40.1.6.CAS Article PubMed Google Scholar 
  41. 41.Gardner LI, Talbot NB, Cook CD, Berman H, Uribe RC. The effect of potassium deficiency on carbohydrate metabolism. J Lab Clin Med. 1950;35:592–602. https://www.ncbi.nlm.nih.gov/pubmed/15412290.
  42. 42.Clarke DW. The influence of potassium ion upon glucose uptake and glycogen synthesis in the isolated rat diaphragm. Can J Biochem Physiol. 1955;33:687–94. https://www.ncbi.nlm.nih.gov/pubmed/13240543.
  43. 43.Kreitzman SN, Coxon AY, Szaz KF. Glycogen storage: illusions of easy weight loss, excessive weight regain, and distortions in estimates of body composition. Am J Clin Nutr. 1992;56 1 Suppl:292S – 293S. doi:https://doi.org/10.1093/ajcn/56.1.292S.
  44. 44.Patrick J. Assessment of body potassium stores. Kidney Int. 1977;11:476–90. doi:https://doi.org/10.1038/ki.1977.65.CAS Article PubMed Google Scholar 
  45. 45.King RFGJ, Cooke C, Carroll S, O’Hara J. Estimating changes in hydration status from changes in body mass: considerations regarding metabolic water and glycogen storage. J Sports Sci. 2008;26:1361–3. doi:https://doi.org/10.1080/02640410802192768.Article PubMed Google Scholar 
  46. 46.Torres HN, Birnbaumer L, Del Carmen Garcia M, Bernard E, Belocopitow E. Glycogen metabolism in muscle homogenates. I. The effect of potassium ions on glycogen synthesis. Arch Biochem Biophys. 1966;116:59–68. doi:https://doi.org/10.1016/0003-9861(66)90012-9.CAS Article PubMed Google Scholar 
  47. 47.Knepper MA, Kwon T-H, Nielsen S. Molecular physiology of water balance. N Engl J Med. 2015;372:1349–58. doi:https://doi.org/10.1056/NEJMra1404726.CAS Article PubMed PubMed Central Google Scholar 
  48. 48.Spano M, Kruskall L, Travis Thomas D. Nutrition for Sport, Exercise, and Health. Human Kinetics; 2017. https://play.google.com/store/books/details?id=dvR6DwAAQBAJ.
  49. 49.Kanbay M, Aslan G, Afsar B, Dagel T, Siriopol D, Kuwabara M, et al. Acute effects of salt on blood pressure are mediated by serum osmolality. J Clin Hypertens. 2018;20:1447–54. doi:https://doi.org/10.1111/jch.13374.CAS Article Google Scholar 
  50. 50.Schweda F. Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch. 2015;467:565–76. doi:https://doi.org/10.1007/s00424-014-1668-y.CAS Article PubMed Google Scholar 
  51. 51.Gomez RA, Sequeira Lopez MLS. Who and where is the renal baroreceptor?: the connexin hypothesis. Kidney international. 2009;75:460–2. doi:https://doi.org/10.1038/ki.2008.536.CAS Article PubMed PubMed Central Google Scholar 
  52. 52.Scott JH, Menouar MA, Dunn RJ. Physiology, Aldosterone. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/pubmed/29261963.
  53. 53.Rogacz S, Williams GH, Hollenberg NK. Time course of enhanced adrenal responsiveness to angiotensin on a low salt diet. Hypertension. 1990;15:376–80. doi:https://doi.org/10.1161/01.hyp.15.4.376.CAS Article PubMed Google Scholar 
  54. 54.Maack T. Role of atrial natriuretic factor in volume control. Kidney Int. 1996;49:1732–7. doi:https://doi.org/10.1038/ki.1996.257.CAS Article PubMed Google Scholar 
  55. 55.Reale R, Slater G, Cox GR, Dunican IC, Burke LM. The Effect of Water Loading on Acute Weight Loss Following Fluid Restriction in Combat Sports Athletes. Int J Sport Nutr Exerc Metab. 2018;28:565–73. doi:https://doi.org/10.1123/ijsnem.2017-0183.CAS Article PubMed Google Scholar 
  56. 56.Convertino VA, Bloomfield SA, Greenleaf JE. An overview of the issues: physiological effects of bed rest and restricted physical activity. Med Sci Sports Exerc. 1997;29:187–90. doi:https://doi.org/10.1097/00005768-199702000-00004.CAS Article PubMed Google Scholar 
  57. 57.Blomqvist CG, Stone HL. Cardiovascular adjustments to gravitational stress. Compr Physiol. 2011;:1025–63. http://neuroyates.com/honorshumanphysiology/clinicalpapers/Cardio_Gravitational-Stress.pdf.
  58. 58.Nixon JV, Murray RG, Bryant C, Johnson RL, Mitchell JH, Holland OB, et al. Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol. 1979;46:541–8. doi:https://doi.org/10.1152/jappl.1979.46.3.541.CAS Article PubMed Google Scholar 
  59. 59.Convertino VA, Bisson R, Bates R, Goldwater D, Sandler H. Effects of antiorthostatic bedrest on the cardiorespiratory responses to exercise. Aviat Space Environ Med. 1981;52:251–5. https://www.ncbi.nlm.nih.gov/pubmed/7283897.
  60. 60.Mauran P, Sediame S, Pavy-Le Traon A, Maillet A, Carayon A, Barthelemy C, et al. Renal and hormonal responses to isotonic saline infusion after 3 days’ head-down tilt vs. supine and seated positions. Acta Physiol Scand. 2003;177:167–76. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-201X.2003.01059.x?casa_token=aXoRJ9ceXV8AAAAA:2WA6uD_yoUfSi8ayHb30rOTAOEghdhIGhwFXqAsbNenvQL8eUUuPgEOH_xExJwt4cJmrwqzoujhcbw.
  61. 61.Norsk P. Gravitational stress and volume regulation. Clin Physiol. 1992;12:505–26. doi:https://doi.org/10.1111/j.1475-097x.1992.tb00355.x.CAS Article PubMed Google Scholar 
  62. 62.Mauran P, Sediame S, Traon AP, Maillet A, Carayon A, Barthelemy C, et al. Effects of a three-day head-down tilt on renal and hormonal responses to acute volume expansion. Am J Physiol. 1999;277:R1444–52. doi:https://doi.org/10.1152/ajpregu.1999.277.5.R1444.CAS Article PubMed Google Scholar 
  63. 63.Nagaya K, Wada F, Nakamitsu S, Sagawa S, Shiraki K. Responses of the circulatory system and muscle sympathetic nerve activity to head-down tilt in humans. Am J Physiol. 1995;268(5 Pt 2):R1289–94. doi:https://doi.org/10.1152/ajpregu.1995.268.5.R1289.CAS Article PubMed Google Scholar 
  64. 64.Reuter DA, Felbinger TW, Schmidt C, Moerstedt K, Kilger E, Lamm P, et al. Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance. Eur J Anaesthesiol. 2003;20:17–20. doi:https://doi.org/10.1017/s0265021503000036.CAS Article PubMed Google Scholar 
  65. 65.Kalmar AF, Foubert L, Hendrickx JFA, Mottrie A, Absalom A, Mortier EP, et al. Influence of steep Trendelenburg position and CO 2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433–9. doi:https://doi.org/10.1093/bja/aeq018.CAS Article PubMed Google Scholar 
  66. 66.Marshall-Goebel K, Mulder E, Bershad E, Laing C, Eklund A, Malm J, et al. Intracranial and Intraocular Pressure During Various Degrees of Head-Down Tilt. Aerosp Med Hum Perform. 2017;88:10–6. doi:https://doi.org/10.3357/AMHP.4653.2017.Article PubMed Google Scholar 
  67. 67.Khan BA, Sodhi JS, Zargar SA, Javid G, Yattoo GN, Shah A, et al. Effect of bed head elevation during sleep in symptomatic patients of nocturnal gastroesophageal reflux. J Gastroenterol Hepatol. 2012;27:1078–82. doi:https://doi.org/10.1111/j.1440-1746.2011.06968.x.Article PubMed Google Scholar 
  68. 68.Scott DR, Simon RA. Supraesophageal Reflux: Correlation of Position and Occurrence of Acid Reflux–Effect of Head-of-Bed Elevation on Supine Reflux. J Allergy Clin Immunol Pract. 2015;3:356–61. doi:https://doi.org/10.1016/j.jaip.2014.11.019.Article PubMed Google Scholar 
  69. 69.Meyers WF, Herbst JJ. Effectiveness of positioning therapy for gastroesophageal reflux. Pediatrics. 1982;69:768–72. https://www.ncbi.nlm.nih.gov/pubmed/7079042.
  70. 70.Cohn JR. Elevation of the Head of Bed to Treat Supraesophageal Reflux: Controlling the Trigger and Reducing the “Drip.” J Allergy Clin Immunol Pract. 2015;3:362–4. https://www.jaci-inpractice.org/article/S2213-2198(15)00129-4/abstract.
  71. 71.Heijke SA, Smith G, Key A. The effect of the Trendelenburg position on lower oesophageal sphincter tone. Anaesthesia. 1991;46:185–7. doi:https://doi.org/10.1111/j.1365-2044.1991.tb09405.x.CAS Article PubMed Google Scholar 
  72. 72.Jeukendrup AE. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29(Suppl 1):91–9. doi:https://doi.org/10.1080/02640414.2011.610348.Article Google Scholar 
  73. 73.Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl 1):25–33. doi:https://doi.org/10.1007/s40279-014-0148-z.Article PubMed Central Google Scholar 
  74. 74.Jeukendrup AE, McLaughlin J. Carbohydrate ingestion during exercise: effects on performance, training adaptations and trainability of the gut. Nestle Nutr Inst Workshop Ser. 2011;69:1–12. doi:https://doi.org/10.1159/000329268. discussion 13–7.CAS Article PubMed Google Scholar 
  75. 75.Jeukendrup AE. Training the Gut for Athletes. Sports Med. 2017;47(Suppl 1):101–10. doi:https://doi.org/10.1007/s40279-017-0690-6.Article PubMed PubMed Central Google Scholar 
  76. 76.Mandell AJ, Mersol-Sabbot I, Mandell MP. Psychological disturbance and water retention. Arch Gen Psychiatry. 1964;10:513–8. doi:https://doi.org/10.1001/archpsyc.1964.01720230075008.CAS Article PubMed Google Scholar 
  77. 77.Banday AA, Lokhandwala MF. Dopamine receptors and hypertension. Curr Hypertens Rep. 2008;10:268–75. doi:https://doi.org/10.1007/s11906-008-0051-9.CAS Article PubMed Google Scholar 
  78. 78.Kuchel O, Cuche JL, Buu NT, Guthrie GP, Unger T, Nowaczynski W, et al. Catecholamine Excretion in “Idiopathic” Edema: Decreased Dopamine Excretion, a Pathogenic Factor? The Journal of Clinical Endocrinology Metabolism. 1977;44:639–46. doi:https://doi.org/10.1210/jcem-44-4-639.CAS Article PubMed Google Scholar 
  79. 79.Kuchel O, Cuche JL, Hamet O, Buu NT, Nowaczynski Boucher R, Genest J. Idiopathic edema: New pathogenetic and therapeutic aspects. Mod Med Can. 1976;31:619–24.Google Scholar 
  80. 80.Espiner EA. The effects of stress on salt and water balance. Baillieres Clin Endocrinol Metab. 1987;1:375–90. doi:https://doi.org/10.1016/s0950-351x(87)80068-x.CAS Article PubMed Google Scholar 
  81. 81.Kubzansky LD, Adler GK. Aldosterone: a forgotten mediator of the relationship between psychological stress and heart disease. Neurosci Biobehav Rev. 2010;34:80–6. doi:https://doi.org/10.1016/j.neubiorev.2009.07.005.CAS Article PubMed Google Scholar 
  82. 82.Light K, Koepke J, Obrist P, Willis P. Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science. 1983;220:429–31. doi:https://doi.org/10.1126/science.6836285.CAS Article PubMed Google Scholar 
  83. 83.Nicholls AR, Polman RCJ, Levy AR. A path analysis of stress appraisals, emotions, coping, and performance satisfaction among athletes. Psychol Sport Exerc. 2012;13:263–70. doi:https://doi.org/10.1016/j.psychsport.2011.12.003.Article Google Scholar 
  84. 84.Hanton S, Thomas O, Mellalieu SD. Management of competitive stress in elite sport. International Olympic Committee sport psychology handbook. 2009;:30–42. https://books.google.com/books?hl=en&lr=&id=UwI4xd3a5W0C&oi=fnd&pg=PA30&dq=Hanton+S+Thomas+O+and+Mellalieu+SD+Management+of+competitive+stress+in+elite+sport+2009&ots=ODW4HUUsq4&sig=un9LxJpac8-2dTgVGI9kjCw82o4.
  85. 85.van Loon LJC. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol. 2004;97:1170–87. doi:https://doi.org/10.1152/japplphysiol.00368.2004.Article PubMed Google Scholar 
  86. 86.Frayn KN, Maycock PF. Skeletal muscle triacylglycerol in the rat: methods for sampling and measurement, and studies of biological variability. J Lipid Res. 1980;21:139–44. https://www.ncbi.nlm.nih.gov/pubmed/7354251.
  87. 87.Starling RD, Trappe TA, Parcell AC, Kerr CG, Fink WJ, Costill DL. Effects of diet on muscle triglyceride and endurance performance. J Appl Physiol. 1997;82:1185–9. doi:https://doi.org/10.1152/jappl.1997.82.4.1185.CAS Article PubMed Google Scholar 
  88. 88.Keats TE. Reference Man. A Report Prepared by a Task Group of Committee 2 of the International Commission on Radiological ProtectionReference Man. A Report Prepared by a Task Group of Committee 2 of the International Commission on Radiological Protection. ICRP Publ. 23. Cloth, $50.00; ₤ 21.50. Pp. 480, with figures. Oxford, Pergamon Press, 1975. Radiology. 1975;117:584–584. doi:https://doi.org/10.1148/117.3.584.
  89. 89.van Loon LJC, Schrauwen-Hinderling VB, Koopman R, Wagenmakers AJM, Hesselink MKC, Schaart G, et al. Influence of prolonged endurance cycling and recovery diet on intramuscular triglyceride content in trained males. Am J Physiol Endocrinol Metab. 2003;285:E804–11. doi:https://doi.org/10.1152/ajpendo.00112.2003.Article PubMed Google Scholar 
  90. 90.Dubé JJ, Amati F, Toledo FGS, Stefanovic-Racic M, Rossi A, Coen P, et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia. 2011;54:1147–56. doi:https://doi.org/10.1007/s00125-011-2065-0.CAS Article PubMed PubMed Central Google Scholar 
  91. 91.Shinohara A, Takakura J, Yamane A, Suzuki M. Effect of the classic 1-week glycogen-loading regimen on fat-loading in rats and humans. J Nutr Sci Vitaminol. 2010;56:299–304. doi:https://doi.org/10.3177/jnsv.56.299.CAS Article PubMed Google Scholar 
  92. 92.Décombaz J. Nutrition and recovery of muscle energy stores after exercise. SCHWEIZERISCHE ZEITSCHRIFT FUR SPORTMEDIZIN UND SPORTTRAUMATOLOGIE. 2003;51:31–8. https://ssms.ch/fileadmin/user_upload/Zeitschrift/51-2003-1/07-2003-1.pdf.
  93. 93.Decombaz J, Fleith M, Hoppeler H, Kreis R, Boesch C. Effect of diet on the replenishment of intramyocellular lipids after exercise. Eur J Nutr. 2000;39:244–7. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf/10.1007/s003940070002.pdf&casa_token=KPQETCIB6tUAAAAA:LYP3-oXpXtmiTXk7zGOgOjtZa47nT5Df8voNSC_OkN7RUfT3ay1PYUxrz3C1OF9U4u0C4ECAzl1V3wQpEw.
  94. 94.Spriet LL. Metabolic regulation of fat use during exercise and in recovery. Nestle Nutr Inst Workshop Ser. 2011;69:39–53. doi:https://doi.org/10.1159/000329281. discussion 53–8.CAS Article PubMed Google Scholar 
  95. 95.Zderic TW, Davidson CJ, Schenk S, Byerley LO, Coyle EF. High-fat diet elevates resting intramuscular triglyceride concentration and whole body lipolysis during exercise. Am J Physiol Endocrinol Metab. 2004;286:E217–25. doi:https://doi.org/10.1152/ajpendo.00159.2003.CAS Article PubMed Google Scholar 
  96. 96.Essen-Gustavsson B, Tesch PA. Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1990;61:5–10. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/BF00236686&casa_token=Td7tAAIrqeAAAAAA:4JmL2F0bjS-lXEbu45VJD7_sa9yea81nbaYF85LNufOAbofFiqJjmfUGwxiYHX42InAspYx6lIzKqOPOEw.
  97. 97.Fat Loading. https://muscleinsider.com/features/fat-loading. Accessed 6 Aug 2020.
  98. 98.D’Angelo A Dialing In My Way: The Final Week Preparation! 2002. https://www.bodybuilding.com/fun/angelo2.htm. Accessed 6 Aug 2020.
  99. 99.Kiens B, Richter EA. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am J Physiol. 1998;275:E332–7. doi:https://doi.org/10.1152/ajpendo.1998.275.2.E332.CAS Article PubMed Google Scholar 
  100. 100.Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol. 2002;87:290–5. doi:https://doi.org/10.1007/s00421-002-0621-5.CAS Article PubMed Google Scholar 
  101. 101.Prior BM, Modlesky CM, Evans EM, Sloniger MA, Saunders MJ, Lewis RD, et al. Muscularity and the density of the fat-free mass in athletes. J Appl Physiol. 2001;90:1523–31. doi:https://doi.org/10.1152/jappl.2001.90.4.1523.CAS Article PubMed Google Scholar 
  102. 102.National Research Council, Commission on Life Sciences. Food and Nutrition Board, Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances: 10th Edition. National Academies Press; 1989. https://play.google.com/store/books/details?id=gHB32IsIpu0C.
  103. 103.Layman DK. Dietary Guidelines should reflect new understandings about adult protein needs. Nutr Metab. 2009;6:12. doi:https://doi.org/10.1186/1743-7075-6-12.CAS Article Google Scholar 
  104. 104.Phillips SM, Chevalier S, Leidy HJ. Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab. 2016;41:565–72. doi:https://doi.org/10.1139/apnm-2015-0550.CAS Article PubMed Google Scholar 
  105. 105.Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52:376–84. doi:https://doi.org/10.1136/bjsports-2017-097608.Article PubMed Google Scholar 
  106. 106.Bandegan A, Courtney-Martin G, Rafii M, Pencharz PB, Lemon PW. Indicator Amino Acid-Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance. J Nutr. 2017;147:850–7. doi:https://doi.org/10.3945/jn.116.236331.CAS Article PubMed Google Scholar 
  107. 107.Mazzulla M, Sawan SA, Williamson E, Hannaian SJ, Volterman KA, West DWD, et al. Protein Intake to Maximize Whole-Body Anabolism during Postexercise Recovery in Resistance-Trained Men with High Habitual Intakes is Severalfold Greater than the Current Recommended Dietary Allowance. J Nutr. 2020;150:505–11. doi:https://doi.org/10.1093/jn/nxz249.Article PubMed Google Scholar 
  108. 108.Helms ER, Zinn C, Rowlands DS, Brown SR. A Systematic Review of Dietary Protein During Caloric Restriction in Resistance Trained Lean Athletes: A Case for Higher Intakes. Int J Sport Nutr Exerc Metab. 2014;24:127–38. doi:https://doi.org/10.1123/ijsnem.2013-0054.CAS Article PubMed Google Scholar 
  109. 109.Mäestu J, Eliakim A, Jürimäe J, Valter I, Jürimäe T. Anabolic and Catabolic Hormones and Energy Balance of the Male Bodybuilders During the Preparation for the Competition. Journal of Strength Conditioning Research. 2010;24:1074–81. doi:https://doi.org/10.1519/jsc.0b013e3181cb6fd3.Article PubMed Google Scholar 
  110. 110.Antonio J, Ellerbroek A, Silver T, Vargas L, Tamayo A, Buehn R, et al. A High Protein Diet Has No Harmful Effects: A One-Year Crossover Study in Resistance-Trained Males. Journal of Nutrition Metabolism. 2016;2016:1–5. doi:https://doi.org/10.1155/2016/9104792.CAS Article Google Scholar 
  111. 111.Vella F. Biochemistry. By RH Garrett and CM Grisham. pp 1154. Saunders College Publishing: Harcourt Brace, Orlando, FL. 1995.£ 19.95. Biochem Educ. 1995;23:108–8. https://iubmb.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1016/0307-4412(95)90667-3.
  112. 112.Bilsborough S, Mann N. A review of issues of dietary protein intake in humans. Int J Sport Nutr Exerc Metab. 2006;16:129–52. doi:https://doi.org/10.1123/ijsnem.16.2.129.CAS Article PubMed Google Scholar 
  113. 113.Rudman D, DiFulco TJ, Galambos JT, Smith RB 3rd, Salam AA, Warren WD. Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J Clin Invest. 1973;52:2241–9. doi:https://doi.org/10.1172/JCI107410.CAS Article PubMed PubMed Central Google Scholar 
  114. 114.Epstein FH, Kleeman CR, Pursel S, Hendrikx A. THE EFFECT OF FEEDING, PROTEIN AND UREA ON THE RENAL CONCENTRATING PROCESS 1. Journal of Clinical Investigation. 1957;36:635–41. doi:https://doi.org/10.1172/jci103463.CAS Article PubMed Central Google Scholar 
  115. 115.Levinsky NG, Berliner RW. The role of urea in the urine concentrating mechanism. J Clin Invest. 1959;38:741–8. doi:https://doi.org/10.1172/JCI103854.CAS Article PubMed PubMed Central Google Scholar 
  116. 116.Gomez-Arbelaez D, Bellido D, Castro AI, Ordoñez-Mayan L, Carreira J, Galban C, et al. Body Composition Changes After Very-Low-Calorie Ketogenic Diet in Obesity Evaluated by 3 Standardized Methods. J Clin Endocrinol Metab. 2017;102:488–98. doi:https://doi.org/10.1210/jc.2016-2385.Article PubMed Google Scholar 
  117. 117.Yang MU, Van Itallie TB. Composition of weight lost during short-term weight reduction. Metabolic responses of obese subjects to starvation and low-calorie ketogenic and nonketogenic diets. Journal of Clinical Investigation. 1976;58:722–30. doi:https://doi.org/10.1172/jci108519.CAS Article PubMed Central Google Scholar 
  118. 118.Strong JA, Shirling D, Passmore R. Some effects of overfeeding for four days in man. Br J Nutr. 1967;21:909–19. doi:https://doi.org/10.1079/bjn19670090.CAS Article PubMed Google Scholar 
  119. 119.Vist GE, Maughan RJ. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol. 1995;486(Pt 2):523–31. doi:https://doi.org/10.1113/jphysiol.1995.sp020831.CAS Article PubMed PubMed Central Google Scholar 
  120. 120.Takii H, Kometani T, Nishimura T, Kuriki T, Fushiki T. A sports drink based on highly branched cyclic dextrin generates few gastrointestinal disorders in untrained men during bicycle exercise. Food Sci Technol Res. 2007;10:428–31. https://www.jstage.jst.go.jp/article/fstr/10/4/10_4_428/_article/-char/ja/.
  121. 121.Birchall EF, Fenton PF, Pierce HB. Gastric emptying and intestinal absorption of dextrose solutions. Am J Physiol. 1946;146:610–2. doi:https://doi.org/10.1152/ajplegacy.1946.146.4.610.CAS Article PubMed Google Scholar 
  122. 122.Burke LM, Collier GR, Hargreaves M. Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. J Appl Physiol. 1993;75:1019–23. doi:https://doi.org/10.1152/jappl.1993.75.2.1019.CAS Article PubMed Google Scholar 
  123. 123.Wee S-L, Williams C, Tsintzas K, Boobis L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol. 2005;99:707–14. doi:https://doi.org/10.1152/japplphysiol.01261.2004.CAS Article PubMed Google Scholar 
  124. 124.Costill DL, Sherman WM, Fink WJ, Maresh C, Witten M, Miller JM. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr. 1981;34:1831–6. doi:https://doi.org/10.1093/ajcn/34.9.1831.CAS Article PubMed Google Scholar 
  125. 125.Parkin JA, Carey MF, Martin IK, Stojanovska L, Febbraio MA. Muscle glycogen storage following prolonged exercise: effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc. 1997;29:220–4. doi:https://doi.org/10.1097/00005768-199702000-00009.CAS Article PubMed Google Scholar 
  126. 126.Ivy JL, Goforth HW Jr, Damon BM, McCauley TR, Parsons EC, Price TB. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002;93:1337–44. doi:https://doi.org/10.1152/japplphysiol.00394.2002.CAS Article PubMed Google Scholar 
  127. 127.Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003;13:198–226. doi:https://doi.org/10.1123/ijsnem.13.2.198.CAS Article PubMed Google Scholar 
  128. 128.Chilibeck PD, Magnus C, Anderson M. Effect of in-season creatine supplementation on body composition and performance in rugby union football players. Appl Physiol Nutr Metab. 2007;32:1052–7. doi:https://doi.org/10.1139/H07-072.Article PubMed Google Scholar 
  129. 129.Ziegenfuss TN, Lowery LM, Lemon PWR. Acute fluid volume changes in men during three days of creatine supplementation. J Exerc Physiol Online. 1998;1:1–9. http://www.asep.org/asep/asep/jan13d.htm.
  130. 130.Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4:6. doi:https://doi.org/10.1186/1550-2783-4-6.Article PubMed PubMed Central Google Scholar 
  131. 131.Ziegenfuss TN, Rogers M, Lowery L, Mullins N, Mendel R, Antonio J, et al. Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA Division I athletes. Nutrition. 2002;18:397–402. doi:https://doi.org/10.1016/s0899-9007(01)00802-4.CAS Article PubMed Google Scholar 
  132. 132.Roberts PA, Fox J, Peirce N, Jones SW, Casey A, Greenhaff PL. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids. 2016;48:1831–42. doi:https://doi.org/10.1007/s00726-016-2252-x.CAS Article PubMed PubMed Central Google Scholar 
  133. 133.Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. American Journal of Physiology-Endocrinology Metabolism. 1996;271:E821–6. doi:https://doi.org/10.1152/ajpendo.1996.271.5.e821.CAS Article Google Scholar 
  134. 134.Vandenberghe K, Van Hecke P, Van Leemputte M, Vanstapel F, Hespel P. INHIBITION OF MUSCLE. PHOSPHOCREATINE RESYNTHESIS BY CAFFEINE AFTER CREATINE LOADING 1417. Medicine & Science in Sports & Exercise. 1997;29 Supplement:249. doi:https://doi.org/10.1097/00005768-199705001-01416.
  135. 135.Cooper R, Naclerio F, Allgrove J, Jimenez A. Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr. 2012;9:33. doi:https://doi.org/10.1186/1550-2783-9-33.CAS Article PubMed PubMed Central Google Scholar 
  136. 136.Syrotuik DG, Bell GJ. Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders. J Strength Cond Res. 2004;18:610–7. doi:https://doi.org/10.1519/12392.1.Article PubMed Google Scholar 
  137. 137.Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–531. doi:https://doi.org/10.1152/physrev.00031.2010.CAS Article PubMed Google Scholar 
  138. 138.Andersen JL, Schjerling P, Saltin B. Muscle, genes and athletic performance. Sci Am. 2000;283:48–55. doi:https://doi.org/10.1038/scientificamerican0900-48.CAS Article PubMed Google Scholar 
  139. 139.Burke DG, Chilibeck PD, Parise G, Candow DG, Mahoney D, Tarnopolsky M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sports Exerc. 2003;35:1946–55. doi:https://doi.org/10.1249/01.MSS.0000093614.17517.79.CAS Article PubMed Google Scholar 
  140. 140.Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L. Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients. 2018;10. doi:https://doi.org/10.3390/nu10030350.
  141. 141.Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2:355–74. doi:https://doi.org/10.3390/nu2030355.CAS Article PubMed PubMed Central Google Scholar 
  142. 142.Brunton LL, Lazo JS, Parker K, Buxton I, Blumenthal D. Book, Review: Goodman and Gilman’s The Pharmacological Basis of Therapeutics: Digital Edition, 11th Edition. Annals of Pharmacotherapy. 2006;40:1218–1218. doi:https://doi.org/10.1345/aph.1g685.
  143. 143.Caldwell JE, Ahonen E, Nousiainen U. Differential effects of sauna-, diuretic-, and exercise-induced hypohydration. J Appl Physiol. 1984;57:1018–23. doi:https://doi.org/10.1152/jappl.1984.57.4.1018.CAS Article PubMed Google Scholar 
  144. 144.Cadwallader AB, De La Torre X, Tieri A, Botrè F. The abuse of diuretics as performance-enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis. Br J Pharmacol. 2010;161:1–16. doi:https://doi.org/10.1111/j.1476-5381.2010.00789.x.CAS Article PubMed PubMed Central Google Scholar 
  145. 145.Clare BA, Conroy RS, Spelman K. The Diuretic Effect in Human Subjects of an Extract of Taraxacum officinale Folium over a Single Day. The Journal of Alternative Complementary Medicine. 2009;15:929–34. doi:https://doi.org/10.1089/acm.2008.0152.Article PubMed Google Scholar 
  146. 146.Vitamin C. https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/. Accessed 1 Apr 2021.
  147. 147.Mydlík M, Derzsiová K, Žemberová E. Influence of Water and Sodium Diuresis and Furosemide on Urinary Excretion of Vitamin B6, Oxalic Acid and Vitamin C in Chronic Renal Failure. Miner Electrolyte Metab. 1999;25:352–6. doi:https://doi.org/10.1159/000057474.Article PubMed Google Scholar 
  148. 148.Kenawy MR, El-Nabawy, El-Mohandis MM, El -D, Rohayem HK, El-Sheehy AW. Studies on the diuretic action of vitamin C in normal animals and human beings, and its clinical value in pathological retention of water. Int Z Vitaminforsch. 1952;24:40–61. https://www.ncbi.nlm.nih.gov/pubmed/12999380.
  149. 149.Abbasy MA. The diuretic action of vitamin C. Biochem J. 1937;31:339–42. doi:https://doi.org/10.1042/bj0310339.CAS Article PubMed PubMed Central Google Scholar 
  150. 150.Brennan CF, Martin E, Parkes WB. The effect of vitamin C on urinary excretion. Ir J Med Sci. 1956;31:329–33. https://link.springer.com/content/pdf/10.1007/BF02951118.pdf.
  151. 151.Goldsmith GA, Ellinger GF. ASCORBIC ACID IN BLOOD AND URINE AFTER ORAL ADMINISTRATION OF A TEST DOSE OF VITAMIN C: SATURATION TEST. Arch Intern Med. 1939;63:531–46. doi:https://doi.org/10.1001/archinte.1939.00180200100008.CAS Article Google Scholar 
  152. 152.Hoyt CJ. Diarrhea from vitamin C. JAMA. 1980;244:1674. https://www.ncbi.nlm.nih.gov/pubmed/7411820.
  153. 153.Maughan RJ, Griffin J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet. 2003;16:411–20. doi:https://doi.org/10.1046/j.1365-277x.2003.00477.x.CAS Article PubMed Google Scholar 
  154. 154.Passmore AP, Kondowe GB, Johnston GD. Renal and cardiovascular effects of caffeine: a dose–response study. Clin Sci. 1987;72:749–56. https://portlandpress.com/clinsci/article-pdf/72/6/749/457997/cs0720749.pdf.
  155. 155.Nehlig A. Is caffeine a cognitive enhancer? J Alzheimers Dis. 2010;20(Suppl 1):85–94. doi:https://doi.org/10.3233/JAD-2010-091315.CAS Article Google Scholar 
  156. 156.Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24:257–65. doi:https://doi.org/10.1519/JSC.0b013e3181c1f88a.Article PubMed Google Scholar 
  157. 157.O’Callaghan F, Muurlink O, Reid N. Effects of caffeine on sleep quality and daytime functioning. Risk Manag Healthc Policy. 2018;11:263–71. doi:https://doi.org/10.2147/RMHP.S156404.Article PubMed PubMed Central Google Scholar 
  158. 158.Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33. doi:https://doi.org/10.1186/s12970-017-0189-4.CAS Article PubMed PubMed Central Google Scholar 
  159. 159.Beelen M, van Kranenburg J, Senden JM, Kuipers H, van Loon LJC. Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc. 2012;44:692–700. doi:https://doi.org/10.1249/MSS.0b013e31823a40ef.CAS Article PubMed Google Scholar 
  160. 160.Klosterbuer A, Roughead ZF, Slavin J. Benefits of dietary fiber in clinical nutrition. Nutr Clin Pract. 2011;26:625–35. doi:https://doi.org/10.1177/0884533611416126.Article PubMed Google Scholar 
  161. 161.Monro JA. Faecal bulking index: A physiological basis for dietary management of bulk in the distal colon. Asia Pac J Clin Nutr. 2000;9:74–81. doi:https://doi.org/10.1046/j.1440-6047.2000.00155.x.CAS Article PubMed Google Scholar 
  162. 162.Wu K-L, Rayner CK, Chuah S-K, Chiu K-W, Lu C-C, Chiu Y-C. Impact of low-residue diet on bowel preparation for colonoscopy. Dis Colon Rectum. 2011;54:107–12. doi:https://doi.org/10.1007/DCR.0b013e3181fb1e52.Article PubMed Google Scholar 
  163. 163.Gibson PR, Shepherd SJ. Evidence-based dietary management of functional gastrointestinal symptoms: the FODMAP approach. J Gastroenterol Hepatol. 2010;25:252–8. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1440-1746.2009.06149.x.
  164. 164.Giannini EG, Mansi C, Dulbecco P, Savarino V. Role of partially hydrolyzed guar gum in the treatment of irritable bowel syndrome. Nutrition. 2006;22:334–42. doi:https://doi.org/10.1016/j.nut.2005.10.003.CAS Article PubMed Google Scholar 
  165. 165.Prior A, Whorwell PJ. Double blind study of ispaghula in irritable bowel syndrome. Gut. 1987;28:1510–3. doi:https://doi.org/10.1136/gut.28.11.1510.CAS Article PubMed PubMed Central Google Scholar 
  166. 166.Macdougall JD, Ray S, Sale DG, Mccartney N, Lee P, Garner S. Muscle substrate utilization and lactate production during weightlifting. Can J Appl Physiol. 1999;24:209–15. https://www.nrcresearchpress.com/doi/abs/https://doi.org/10.1139/h99-017.
  167. 167.Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, et al. Muscle glycogenolysis during differing intensities of weight-resistance exercise. J Appl Physiol. 1991;70:1700–6. doi:https://doi.org/10.1152/jappl.1991.70.4.1700.CAS Article PubMed Google Scholar 
  168. 168.Pascoe DD, Gladden LB. Muscle glycogen resynthesis after short term, high intensity exercise and resistance exercise. Sports Med. 1996;21:98–118. doi:https://doi.org/10.2165/00007256-199621020-00003.CAS Article PubMed Google Scholar 
  169. 169.Steffensen CH, Roepstorff C, Madsen M, Kiens B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab. 2002;282:E634–42. doi:https://doi.org/10.1152/ajpendo.00078.2001.CAS Article PubMed Google Scholar 
  170. 170.Harber MP, Crane JD, Douglass MD, Weindel KD, Trappe TA, Trappe SW, et al. Resistance exercise reduces muscular substrates in women. Int J Sports Med. 2008;29:719–25. doi:https://doi.org/10.1055/s-2007-989442.CAS Article PubMed Google Scholar 
  171. 171.Stannard SR, Thompson MW, Fairbairn K, Huard B, Sachinwalla T, Thompson CH. Fasting for 72 h increases intramyocellular lipid content in nondiabetic, physically fit men. Am J Physiol Endocrinol Metab. 2002;283:E1185–91. doi:https://doi.org/10.1152/ajpendo.00108.2002.CAS Article PubMed Google Scholar 
  172. 172.Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol. 2016;116:1595–625. doi:https://doi.org/10.1007/s00421-016-3411-1.Article PubMed PubMed Central Google Scholar 
  173. 173.Chen TC. Variability in muscle damage after eccentric exercise and the repeated bout effect. Res Q Exerc Sport. 2006;77:362–71. doi:https://doi.org/10.1080/02701367.2006.10599370.Article PubMed Google Scholar 
  174. 174.Del Coso J, Valero M, Salinero JJ, Lara B, Gallo-Salazar C, Areces F. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon. PLoS One. 2017;12:e0172965. doi:https://doi.org/10.1371/journal.pone.0172965.CAS Article PubMed PubMed Central Google Scholar 
  175. 175.Meneghel AJ, Crisp AH, Verlengia R, Lopes CR. Review of the repeated bout effect in trained and untrained men. Int J Sports Sci Coach. 2013;3:107–8. http://www.academia.edu/download/53689082/10.5923.j.sports.20130305.02.pdf.
  176. 176.Tee JC, Bosch AN, Lambert MI. Metabolic consequences of exercise-induced muscle damage. Sports Med. 2007;37:827–36. doi:https://doi.org/10.2165/00007256-200737100-00001.Article PubMed Google Scholar 
  177. 177.O’Reilly KP, Warhol MJ, Fielding RA, Frontera WR, Meredith CN, Evans WJ. Eccentric exercise-induced muscle damage impairs muscle glycogen repletion. J Appl Physiol. 1987;63:252–6. doi:https://doi.org/10.1152/jappl.1987.63.1.252.Article PubMed Google Scholar 
  178. 178.Vila-Chã C, Hassanlouei H, Farina D, Falla D. Eccentric exercise and delayed onset muscle soreness of the quadriceps induce adjustments in agonist–antagonist activity, which are dependent on the motor task. Exp Brain Res. 2012;216:385–95. doi:https://doi.org/10.1007/s00221-011-2942-2.Article PubMed Google Scholar 
  179. 179.Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U. Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur J Nutr. 2004;43:148–59. doi:https://doi.org/10.1007/s00394-004-0453-7.CAS Article PubMed Google Scholar 
  180. 180.Paulsen G, Crameri R, Benestad HB, Fjeld JG, Mørkrid L, Hallén J, et al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc. 2010;42:75–85. doi:https://doi.org/10.1249/MSS.0b013e3181ac7adb.Article PubMed Google Scholar 
  181. 181.Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2017;122:559–70. doi:https://doi.org/10.1152/japplphysiol.00971.2016.CAS Article PubMed Google Scholar 
  182. 182.Décombaz J, Schmitt B, Ith M, Decarli B, Diem P, Kreis R, et al. Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2001;281:R760–9. doi:https://doi.org/10.1152/ajpregu.2001.281.3.R760.Article PubMed Google Scholar 
  183. 183.Hocking S, Samocha-Bonet D, Milner K-L, Greenfield JR, Chisholm DJ. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev. 2013;34:463–500. doi:https://doi.org/10.1210/er.2012-1041.CAS Article PubMed Google Scholar 
  184. 184.Stone MH, Fleck SJ, Triplett NT, Kraemer WJ. Health- and performance-related potential of resistance training. Sports Med. 1991;11:210–31. doi:https://doi.org/10.2165/00007256-199111040-00002.CAS Article PubMed Google Scholar 
  185. 185.Kraemer WJ, Noble BJ, Clark MJ, Culver BW. Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med. 1987;8:247–52. doi:https://doi.org/10.1055/s-2008-1025663.CAS Article PubMed Google Scholar 
  186. 186.Morton RW, Sonne MW, Zuniga AF, Mohammad IYZ, Jones A, McGlory C, et al. Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. The Journal of Physiology. 2019;597:4601–13. doi:https://doi.org/10.1113/jp278056.CAS Article PubMed Google Scholar 
  187. 187.Grgic J, Schoenfeld BJ. Higher effort, rather than higher load, for resistance exercise-induced activation of muscle fibres. The Journal of Physiology. 2019;597:4691–2. doi:https://doi.org/10.1113/jp278627.CAS Article PubMed Google Scholar 
  188. 188.The correct interpretation of the size principle. and it’s practical appliction to resistance training – Научные статьи – Библиотека международной спортивной информации. http://bmsi.ru/doc/c33fb1e0-9e05-44fc-a4c7-ad36356db8ea. Accessed 7 Aug 2020.
  189. 189.Child RB, Saxton JM, Donnelly AE. Comparison of eccentric knee extensor muscle actions at two muscle lengths on indices of damage and anglespecific force production in humans. J Sports Sci. 1998;16:301–8. doi:https://doi.org/10.1080/02640419808559358.CAS Article PubMed Google Scholar 
  190. 190.Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. Journal of Clinical Investigation. 1996;97:2859–65. doi:https://doi.org/10.1172/jci118742.CAS Article PubMed Central Google Scholar 
  191. 191.Hunt JN, Knox MT. A relation between the chain length of fatty acids and the slowing of gastric emptying. The Journal of Physiology. 1968;194:327–36. doi:https://doi.org/10.1113/jphysiol.1968.sp008411.CAS Article PubMed PubMed Central Google Scholar 
  192. 192.Collier G, O’Dea K. The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. The American Journal of Clinical Nutrition. 1983;37:941–4. doi:https://doi.org/10.1093/ajcn/37.6.941.CAS Article PubMed Google Scholar 
  193. 193.Gentilcore D, Chaikomin R, Jones KL, Russo A, Feinle-Bisset C, Wishart JM, et al. Effects of Fat on Gastric Emptying of and the Glycemic, Insulin, and Incretin Responses to a Carbohydrate Meal in Type 2 Diabetes. The Journal of Clinical Endocrinology Metabolism. 2006;91:2062–7. doi:https://doi.org/10.1210/jc.2005-2644.CAS Article PubMed Google Scholar 
  194. 194.Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163:1079–94. doi:https://doi.org/10.1016/j.cell.2015.11.001.CAS Article PubMed Google Scholar 
  195. 195.Blom PC, Høstmark AT, Vaage O, Kardel KR, Maehlum S. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc. 1987;19:491–6. https://www.ncbi.nlm.nih.gov/pubmed/3316904.
  196. 196.Shi X, Passe DH. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis. Int J Sport Nutr Exerc Metab. 2010;20:427–42. doi:https://doi.org/10.1123/ijsnem.20.5.427.Article PubMed Google Scholar 
  197. 197.Zawadzki KM, Yaspelkis BB, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72:1854–9. doi:https://doi.org/10.1152/jappl.1992.72.5.1854.CAS Article PubMed Google Scholar 
  198. 198.Alghannam A, Gonzalez J, Betts J. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients. 2018;10:253. doi:https://doi.org/10.3390/nu10020253.CAS Article PubMed Central Google Scholar 
  199. 199.Roberts BM, Helms ER, Trexler ET, Fitschen PJ. Nutritional Recommendations for Physique Athletes. J Hum Kinet. 2020;71:79–108. doi:https://doi.org/10.2478/hukin-2019-0096.Article PubMed PubMed Central Google Scholar 
  200. 200.Official Bodybuilding Rules. http://npcnewsonline.com/official-bodybuilding-rules/. Accessed 16 Oct 2020.
  201. 201.General Information. http://www.nabbasa.com/index.php/categories-judging/general-information. Accessed 16 Oct 2020.
  202. 202.Judging Criteria. https://www.worldnaturalbb.com/judging-criteria/. Accessed 16 Oct 2020.
  203. 203.Schoenfeld BJ, Contreras B. The muscle pump: potential mechanisms and applications for enhancing hypertrophic adaptations. Strength Conditioning Journal. 2014;36:21–5. https://journals.lww.com/nsca-scj/Fulltext/2014/06000/The_Muscle_Pump___Potential_Mechanisms_and.11.aspx.
  204. 204.Freitas EDS, Miller RM, Heishman AD, Ferreira-Júnior JB, Araújo JP, Bemben MG. Acute Physiological Responses to Resistance Exercise With Continuous Versus Intermittent Blood Flow Restriction: A Randomized Controlled Trial. Front Physiol. 2020;11. doi:https://doi.org/10.3389/fphys.2020.00132.
  205. 205.Freitas EDS, Poole C, Miller RM, Heishman AD, Kaur J, Bemben DA, et al. Time Course Change in Muscle Swelling: High-Intensity vs. Blood Flow Restriction Exercise. Int J Sports Med. 2017;38:1009–16. doi:https://doi.org/10.1055/s-0043-118342.Article PubMed Google Scholar 
  206. 206.Armstrong LE, Maresh CM, Castellani JW, Bergeron MF, Kenefick RW, LaGasse KE, et al. Urinary Indices of Hydration Status. Int J Sport Nutr. 1994;4:265–79. doi:https://doi.org/10.1123/ijsn.4.3.265.CAS Article PubMed Google Scholar 
  207. 207.Armstrong LE, Herrera Soto JA, Hacker FT, Casa DJ, Kavouras SA, Maresh CM. Urinary Indices during Dehydration, Exercise, and Rehydration. Int J Sport Nutr. 1998;8:345–55. doi:https://doi.org/10.1123/ijsn.8.4.345.CAS Article PubMed Google Scholar 

Dal “morbo del caribù” alla “Protein Starvation” – storia e metamorfosi della “Carne e Acqua” –

DISCLAIMER: Il presente articolo NON intende in alcun modo consigliare il regime alimentare ivi presentato. Si tratta di semplice divulgazione scientifica e non ha nessun valore medico e/o prescrittivo.

Introduzione:

Le mode alimentari che hanno caratterizzato gli ultimi sessant’anni delle preparazioni ai contest di Bodybuilding mostrano pratiche gestionali dietetiche dal similare al totalmente opposto. Si è passati dalle “low fat” alle “higt fat” con un alternanza quasi ciclica e sempre più dipendente dalla “leggenda da spogliatoio” che non dalla ricerca scientifica. Oggi, per lo meno buona parte di noi, sa che la chiave principale della perdita di peso/grasso è il deficit calorico. L’ipotesi dell’Insulina e quella secondo la quale “una caloria non è una caloria” sono state bocciate dal metodo scientifico e dalla pratica ormai da tempo. E allora perchè dedicare un articolo ad una metodologia alimentare estrema com’è la “Carne e Acqua” se alla fine, semplicemente, basta un deficit calorico di qualsiasi tipo e con un adeguato apporto proteico per raggiungere l’agognato obbiettivo? Beh, i motivi sono principalmente 2:

1- Lo sviluppo e le caratteristiche che tale pratica ha avuto nel mondo del Culturismo agonistico, ma non solo, nel tempo;

2- La sua capacità di essere adattabile e, seppur con una sostenibilità limitata, applicabile su un discreto numero di soggetti pur presentando tagli calorici molto drastici per un numero di giorni variabili durante la settimana.

Essendo, nel mio piccolo, un ricercatore anche in campo nutrizionale, ho osservato e analizzato l’applicazione di questa pratica nelle sue diverse varianti su diversi bodybuilder (sia “Natural” che “Doped”), maturando una valutazione sufficientemente oggettiva e arrivando a “crearne” due nuove versioni.

Ma non dilunghiamoci oltre, per il momento, e partiamo dal principio…

Esiste una letteratura sulla dieta “Carne e Acqua”?

Nello specifico, la risposta è no sebbene esista una discreta letteratura su una condizione alimentare estrema osservata nelle spedizioni artiche o in altre condizioni al limite della sopravvivenza dove l’unica fonte di cibo facilmente reperibile era selvaggina dalle carni estremamente magre: si tratta del “Protein poisoning“, letteralmente “avvelenamento da proteine”.

L’avvelenamento da proteine (chiamato anche colloquialmente come rabbit starvationmorbo del caribou, o fat starvation) è una forma acuta di malnutrizione causata da una dieta carente di grassi, in cui quasi tutte le calorie consumate provengono da carni magre.[1][2 ] Il concetto è solitamente discusso nel contesto delle ipotesi paleoantropologiche sulla dieta degli antichi esseri umani, specialmente durante l’ultimo massimo glaciale e alle alte latitudini.[3][4]

Il termine “rabbit starvation” deriva dal fatto che la carne di coniglio è molto magra, con quasi la totalità delle calorie da essa provenienti apportate dalle proteine e una percentuale di grasso molto bassa. Di conseguenza, è un alimento che, se imperante nella dieta, causerebbe il così detto “avvelenamento da proteine”.[4] D’altra parte, si è osservato che alcuni animali che vivono in ambienti terrestri rigidi e freddi si presentano molto magri.[3]

In Storia Romana di Appiano, Volume I, Libro VI: Le guerre in Spagna, capitolo IX, pagina 223, l’autore osserva e descrive che una moltitudine di soldati romani morivano di dissenteria grave dopo aver mangiato quasi esclusivamente conigli, mentre assediavano la città di Intercatia nel 150 A.C. :

… strano terrore nell’accampamento romano. I soldati erano malati per la veglia e la mancanza di sonno, e per il cibo inconsueto che il paese offriva. Non avevano vino, né sale, né aceto, né olio, ma vivevano di grano e orzo, e quantità di carne di cervo e di coniglio bollite senza sale, causando la dissenteria, dalla quale molti morirono. [5]

Soldati romani consumano il rancio.

Si dice che l’esploratore Vilhjalmur Stefansson abbia vissuto per anni esclusivamente di carne di selvaggina e pesce, senza effetti negativi. Lo stesso vale per il suo compagno esploratore Karsten Anderson. Come parte della sua promozione della dieta a base di carne modellata sulla cucina Inuit, e per dimostrarne gli effetti, a New York City a partire dal febbraio 1928, Stefansson e Anderson “vissero e mangiarono nel reparto metabolismo del Russell Sage Institute of Pathology del Bellevue Hospital. , New York” per un anno, con le loro prestazioni metaboliche osservate da vicino, tutto questo in parte finanziato dall’Institute of American Meat Packers.[6] I ricercatori che speravano di replicare l’esperienza di Stefansson con la “rabbit starvation” sul campo lo hanno esortato a ridurre a zero l’assunzione di grassi nella sua dieta a base di carne. Lo ha fatto, e ha sperimentato un’insorgenza di diarrea molto più rapida rispetto a quanto osservato nel campo. Con l’aggiunta di grasso, Stefansson si è ripreso, sebbene con un periodo seguente di stitichezza di 10 giorni. Lo studio ha riferito di non aver trovato letteratura medica precedente che esaminasse gli effetti delle diete a base di sola carne, che sembrano essere sostenibili, o sulla “rabbit starvation”, che è fatale.

Stefansson scrisse:

I gruppi che dipendono dagli animali grassi sono i più fortunati nello stile di vita della caccia, perché non soffrono mai di fat starvation. Questo problema è peggiore, per quanto riguarda il Nord America, tra quegli indiani delle foreste che dipendono a volte dai conigli, l’animale più magro del Nord, e che sviluppano l’estrema fame di grasso nota come rabbit starvation. I mangiatori di conigli, se non assumono grasso da un’altra fonte – castoro, alce, pesce – svilupperanno diarrea in circa una settimana, con mal di testa, stanchezza e vago disagio. Se ci sono abbastanza conigli, la gente mangia fino a dilatare lo stomaco; ma non importa quanto mangiano si sentono insoddisfatti. Alcuni pensano che un uomo morirà prima se mangia continuamente carne senza grasso piuttosto che se non mangia nulla, ma questa è una credenza sulla quale nel Nord non sono state raccolte prove sufficienti per una conferma in merito. Le morti per rabbit starvation o per il consumo di altra carne magra sono rare; poiché tutti ne comprendono il principio, e vengono naturalmente prese tutte le misure preventive possibili.[7]

Vilhjalmur Stefansson durate una delle sue spedizioni artiche.

Nella prefazione del libro di Alden Todd “Abbandonati: la storia della spedizione artica Greely, 1881-1884” sempre lo stesso Stefansson sostiene che sia stato il cannibalismo dei compagni già morti a provocare il decesso di buona parte dell’equipaggio come conseguenza di questa inquietante e inusuale rabbit starvation.
Charles Darwin nel “Viaggio del Beagle” descrisse esperienze simili relative alla fame da grassi, pur valutando che i gauchos argentini mangiavano per mesi esclusivamente chili di carne di manzo ogni giorno apparentemente senza problema alcuno. In questo ultimo caso, la risposta alla tolleranza dei gauchos è con tutta probabilità da attribuirsi alla percentuale di grasso presente nella carne di manzo che, anche quando il taglio è magro, risulta essere di circa 5g per ogni 100g di carne.

Un opuscolo sulla sopravvivenza artica dell’epoca della seconda guerra mondiale emesso dal comando di controllo di volo delle forze aeree dell’esercito degli Stati Uniti includeva questo enfatico avvertimento:

A causa dell’importanza dei grassi, in nessuna condizione limitarsi a una dieta a base di carne di coniglio solo perché si verifica essere abbondante nella regione in cui sei costretto a stanziare. Una dieta continua di coniglio produrrà la rabbit starvation – la diarrea inizierà in circa una settimana e se la dieta viene continuata POTREBBE RISULTARE LA MORTE.[8]

In Into the Wild (1996), Jon Krakauer ha ipotizzato che Chris McCandless, un avventuriero americano del XX secolo, potrebbe aver sofferto di rabbit starvation.

Chris McCandless

La revisione dell’assunzione di riferimento dietetico statunitense e canadese per le proteine menziona la “rabbit starvation”, ma ha concluso che non c’erano prove sufficienti fino al 2005 per stabilire un livello di assunzione superiore tollerabile, ovvero un limite massimo per la quantità di proteine che può essere consumata in sicurezza.[9 ] Secondo quanto riferito, gli esseri umani moderni sono in grado di ricavare solo il 20% del loro fabbisogno energetico dalle proteine.[10] Per i cacciatori-raccoglitori artici, tuttavia, la quantità può aumentare stagionalmente fino al 45%.[11] In realtà, specie negli atleti, si è osservata un ampia capacità di adattamento alla quota proteica senza ripercussioni negative sul medio termine (circa 4g/Kg). Secondo Bilsborough e Mann (2006), l’assunzione di proteine è principalmente limitata dal ciclo dell’urea. Suggeriscono, quindi, un limite di 2,5 g/kg.[10] L’errore di fondo, è quello di confondere una possibilità di adattamento funzionale (quota proteica aumentata) con la mancanza di lipidi, totale o marcata, nella dieta.

Quindi, è chiaro che la letteratura scientifica non ci fornisce moltissime informazioni in merito a questo argomento. E, a proposito di ciò, esiste uno studio [12] su di un singolo caso di decesso per rabbit starvation riportato anche dal fanatico della “Paleo Dieta” Loren Cordain il quale peraltro ritiene [1], similmente a Bilsborough e Mann, che a fronte di un carico proteico eccessivo il fegato non sia in grado di produrre enzimi sufficienti per la sintesi dell’urea.
Oltre un certo limite variabile, infatti, l’organismo va in iperammonemia e iperaminoacidemia.[13]
Il tratto gastro-intestinale potrebbe assorbire in teoria non oltre 1,3 – 10 gr di aminoacidi ogni ora [14], anche se il dato ci appare superato di gran lunga all’atto pratico. Lo stesso autore d’altronde nella ricerca citata sottolinea come il 75% delle comunità di cacciatori–raccoglitori ricavi da fonti animali fino al 73% (98% gli Eskimos) del proprio nutrimento. Il limite di tolleranza sarebbe raggiunto sempre secondo Cordain quando l’apporto proteico equivale a circa il 40% dell’introduzione calorica complessiva, secondo Billsborought quando si aggira sul 35%.

La “Carne e Acqua” ed il Bodybuilding:

Se vogliamo parlare di dieta “Carne e Acqua” nel Bodybuilding non possiamo esimerci dal citare Rheo Blair.

Rheo H. Blair è stato il primo uomo riconosciuto come un “mago della nutrizione” quando si trattava di dieta e integratori per il Bodybuilding. Ha regolarmente eseguito degli ottimi lavori di trasformazione fisica su centinaia di bodybuilder inferiori alla media dei competitor. Durante gli anni ’50, ’60 e ’70, abbondavano le testimonianze sulle incredibili trasformazioni fisiche che Blair aveva compiuto su centinaia di “casi senza speranza”. Si diceva trasformasse regolarmente i deboli di 97 libbre in uomini robusti con le sue speciali formule proteiche e la vigorosa routine di allenamento con i pesi basata sul volume. Anche i bodybuilder avanzati riportavano risultati simili dal sistema Blair. In un articolo del numero di maggio 1967 della rivista Iron Man, un bodybuilder scrisse:

“Dopo aver seguito il programma di Rheo per sole tre settimane, ho ottenuto più guadagni di quelli che ho avuto negli ultimi sei anni. Ho messo quasi mezzo pollice sulle mie braccia. E dopo due mesi ho messo su quasi 20 libbre di muscoli puri.”

Sotto la guida di Blair, Jim Park passò dall’essere uno sconosciuto bodybuilder con un fisico nella media ad essere Mr. America… in meno di quattro mesi! Non si esclude l’uso di AAS che, già negli anni 50, pur essendo di nicchia e non ancora dilaganti, erano presenti. Ovviamente, come vuole il politically correct, viene, e venne, affermato che questa straordinaria trasformazione era stata realizzata senza farmaci! Adducendo al fatto che, dal momento che il tutto accadeva negli anni ’50, cioè prima che l’uso degli AAS diventasse così diffuso nel bodybuilding, la probabilità d’uso non era possibile. Personalmente, lo trovo poco importante e banale come discussione. C’erano AAS disponibili all’epoca? Si (es. Methyltestosterone, Mesterolone e Testoterone Propionato). Avrebbe potuto averne accesso? Possibile. E’ importante? Non per chi valuta l’atleta e non il suo “sgabuzzino”.

Sebbene avesse la reputazione di essere un eccentrico, tutti i grandi bodybuilder degli anni ’50, ’60 e ’70 (Arnold, Frank Zane, Dave Draper, Larry Scott, ecc.) hanno seguito i consigli di Blair e sono entrati nella loro forma migliore. Uno dei segreti di Blair era la sua speciale formula proteica. La famosa polvere proteica di Blair si basava sui rapporti di aminoacidi nel latte materno. Era anni in anticipo sui tempi. Sfortunatamente, Blair è morto prematuramente nei primi anni ’80 e molti dei suoi “segreti” sul bodybuilding sono morti con lui… inclusa la formula esatta della sua polvere proteica.

Rheo Blair

Ma la sua “arma” nelle preparazioni alimentari, soprattutto nella preparazione alla gara, era l’uso elevato di proteine con un esclusione marcata di Carboidrati e Grassi.

Come abbiamo visto in precedenza, mentre Vilhjamur Stefannsson ha reso popolare la dieta a base di carne degli Inuit all’inizio del 1900, una dieta a base di carne per atleti sembra essere un nuovo sviluppo dietetico, anche se così non è. Facendo eco alla meravigliosa “serie niente di nuovo sotto il sole” prodotta da Chaos and Pain (sicuramente non sicura per il lavoro!), abbiamo precedenti per la dieta “Carne e Acqua” anche con Rheo H. Blair e, in un certo qual modo, con Vince Gironda, diete dimagranti a breve termine utilizzate dai bodybuilder prima di una competizione.

A parte Vince Gironda, Rheo H. Blair è, a mio avviso, uno dei personaggi più affascinanti del bodybuilding degli anni ’50 e ’60. Fondamentali nella divulgazione degli integratori proteici, le polveri proteiche a base di latte e le compresse vitaminiche di Blair hanno acquisito uno status quasi mitico tra la comunità del sollevamento pesi. Blair contava tra i suoi clienti bodybuilder, atleti, celebrità e individui comuni. Il suo continuo interesse per la nutrizione fu senza dubbio la ragione del suo successo. Fu questo interesse che portò al suo esperimento “carne e acqua”, una dieta simile alla “dieta di massima definizione” di Gironda. Come raccontato da Steve Davis, che ha subito un drastico cambiamento nella dieta a base di carne e acqua, Blair ha voluto stabilire se una dieta di questo genere fosse preferenziale rispetto alla dieta a base di carne e uova promossa da Gironda, quest’ultima soprannominata “maximum definition diet”. Preparandosi per un servizio fotografico, Davis, allora aspirante bodybuilder, si è dimostrato una cavia ideale.

Al momento ho prove che i bodybuilder usassero la dieta a base di carne e acqua di Blair alla fine degli anni ’60 e all’inizio degli anni ’70. Il primo, Steve Davis, ha usato la dieta per coronare un’incredibile perdita di peso. Come raccontato da Old School Bodybuilding, Davis era inizialmente un powerlifter che voleva cimentarsi nel bodybuilding. Sotto la guida di Vince Gironda e Rheo H. Blair, ha subito una notevole perdita di peso che comprendeva quasi 100 libbre (circa 45,35Kg).

Parlando con Dennis Weis in Raw Muscularity, Davis ha raccontato le sue esperienze non così felici sul programma alimentare a base di carne e acqua:

Per raggiungere la forma in queste foto mi sono reso conto che avrei dovuto perdere quel minuscolo strato di tessuto adiposo per affinare davvero il mio corpo alla condizione di un Larry Scott o di un Gable Boudreaux…

A questo punto del programma Rheo ha detto: “Steve, vogliamo aiutarti a ottenere un po’ di magrezza in più per il tuo corpo e c’è un programma dietetico che possiamo usare per farlo. Vivere solo di carne e acqua…

Rheo mi ha spiegato che, per potermi preparare appositamente per il servizio fotografico, solo per due o cinque giorni al massimo avrei dovuto vivere di nient’altro che carne più un integratore di proteine ​​della carne …

Ho continuato questo tipo di programma per un periodo fino a dodici giorni. E questa è la parte triste della storia. Sono diventato così fisicamente esausto, così teso, così tassato e tirato che dopo che Rheo aveva scattato le foto ero sul punto di crollare.

Steve Davis prima e dopo essere diventato un atleta di Blair.

Ora, ciò che è importante sottolineare della testimonianza di Davis è che ha intrapreso una dieta a base di carne che era estremamente povera di calorie per prepararsi ad un servizio fotografico nel breve termine.

Passando ora a Heart of Steel, una meravigliosa biografia di Dan Lurie, troviamo menzione di innumerevoli altri bodybuilder che usarono la dieta di Blair, incluso il rivale di Arnold in Pumping Iron, Lou Ferrigno. Parlando all’inizio degli anni ’70, un tempo in cui Lou Ferrigno era ancora un imponente bodybuilder piuttosto che “l’incredibile Hulk”, Lurie commentò che:

Lui (Lou Ferrigno) è stato quindi sottoposto a una dieta speciale “carne e acqua” per ridurre il suo peso, per ottenere un aspetto “strappato”, da competizione. I bodybuilder che volevano preservare i muscoli mentre perdevano grasso usavano spesso la dieta a base di carne e acqua a quei tempi, e aveva funzionato a meraviglia per campioni come Vince Gironda, e per gli atleti seguiti da Rheo H. Blair e altri risalenti agli anni ’50.

Era una dieta che prevedeva carne di ogni tipo, poche verdure e acqua, il che la rendeva ricca di proteine, moderatamente grassa e con pochissimi carboidrati. E Lou ha fatto grandi progressi con questo piano.

Lou Ferrigno vincitore del Mr. Universo 1974.

Quindi Davis era in buona compagnia durante l’età dell’oro del Bodybuilding. Su questo punto sono probabilmente necessarie spendere alcune parole. La riduzione del grasso corporeo per le competizioni o i servizi fotografici è stata spesso eseguita in modo semplice: ridurre gli amidi (quindi le calorie dai carboidrati) e aumentare l’attività fisica (maggiore dispendio calorico). Non è avvenuto fino agli anni ’80 che gli atleti hanno iniziato a contare le calorie in modo ossessivo. Non che contare le calorie sia sbagliato, ma l’eccesso porta sempre a ripercussioni negative. Dalla metà del secolo, si può quindi osservare una adesione nel pre-contest molto evidente alla dieta “carne e acqua”, era semplice ed efficace. Inoltre ha avuto il sostegno di alcuni dei migliori allenatori e atleti di questo sport. Anche quella “statua vivente” quale fu Serge Nubret, in preparazione alla gara seguiva un regime “Carne e Acqua” basato su carne, pesce e amminoacidi.

Serge Nubret

Vi sono taluni che pensano che la “dieta carnivora” per gli atleti sia nata negli ultimi decenni insieme a regimi ortoressici e inutilmente restrittivi come la “Paleo Dieta”, ma come abbiamo visto non è così. Non sono estraneo alle diete restrittive – ho osservato e seguito molti soggetti sotto regime chetogenico per quasi sei anni – ma il concetto di “dieta carnivora” mi è sempre parso intrinsecamente fallimentare se non adeguatamente contestualizzato e, in definitiva, inserito in un piano di preparazione culturistica. Non sono affatto favorevole all’applicazione di questo modo di mangiare sul lungo termine, poiché risulterebbe controproducente su più aspetti della salute umana. Ma la dieta “carne e acqua”, come quella di Blair, dà a questa metodica alimentare una giusta e limitata dimensione nell’ambito della preparazione alla gara di Bodybuilding.

Attualmente, il maggior sostenitore della dieta carnivora come stile di vita è Shawn Baker, ex medico ortopedico americano.(15) Egli cita fantomatiche testimonianze di coloro che seguono la dieta carnivora come prova (non provata) che può curare la depressione, l’ansia, l’artrite, l’obesità, il diabete e altro.[15][16] Ovviamente, nessuna ricerca ha analizzato gli effetti della dieta carnivora e dimostrato quanto precedentemente asserito. Inoltre, nel 2017 la licenza medica di Baker è stata revocata dal New Mexico Medical Board a causa delle preoccupazioni sulla sua competenza.[17]

E’ chiaro, quindi, che il concetto applicativo di Blair e Baker differiscono significativamente nella loro applicazione. Baker, da quanto egli stesso fa trasparire, vede la dieta carnivora come una dieta a vita, il che significa che può essere utilizzata per anni senza problemi (secondo lui). Blair e Gironda, invece, con intelligenza preferivano un uso a breve termine. Gironda, ad esempio, aveva di logica un approccio alimentare ciclico con i suoi clienti a seconda dei loro obiettivi. Quindi, si sta parlando fondamentalmente di una forma commerciale venduta al grande pubblico (la dieta carnivora di Baker) e di una strategica per il miglioramento della composizione corporea rivolta ad atleti in preparazione ad un contest di Bodybuilding.

La mia ricerca applicata:

Dal 2016 ho iniziato a raccogliere dati sulla pratica alimentare “carne e acqua” valutandone gli effetti su diversi culturisti, sia agonisti in preparazione alla gara che amatori nella fase “Cut”.

La prima cosa che annotai, e che era del tutto presumibile già partendo dai dati preliminari in mio possesso, era che la “carne e acqua” risultava tollerabile in un numero ristretto di persone. ma questo era direttamente proporzionale al numero di giorni nei quali l’atleta rimaneva alimentato totalmente con carni magre. Classificai tre principali modalità di applicazione:

  • Modalità Estrema: si trattava di seguire un regime alimentare basato su carni magre e integratori di fibre (anche se non sempre) e integratori multi vitaminici-minerali per un periodo determinato totalmente sulla resistenza del soggetto sottoposto e dalla valutazione della forma fisica;
  • Modalità Metabolica: su stampo della famosissima dieta di Mauro di Pasquale, “La Dieta Metabolica”, l’atleta segue un regime “carne e acqua” per 5-6 giorni a settimana per poi “ricaricare” con Carboidrati e Grassi per 1-2 giorni a settimana;
  • Modalità Ciclica: simile alla precedente, essa tiene strettamente conto delle risposte psicofisiche dell’atleta alternando periodi a “carne e acqua” con giorni di refeed.

La più problematica e meno sostenibile risulta essere, e per ovvie ragioni, la “Modalità Estrema”. Se dovessimo elencare i principali problemi questi sarebbero:

  • Deficit nutrizionali;
  • Aumento del Cortisolo in risposta al deficit calorico e alle richieste metaboliche per la gestione del carico amminoacidico.
  • Risposta fisiologica e non determinante nella negativizzazione della composizione corporea nel breve termine.

    Ricordiamoci inoltre che la transaminazione al fine di convertire le proteine in urea e indurre la sintesi degli aminoacidi derivati in glucosio è un processo dal costo metabolico molto elevato.
    E’ un processo aerobico che ha il proprio limite nella disponibilità di ossigeno del fegato. La capacità complessiva del sistema si attesta comunque sulla produzione di 250g circa. E’ vero anche che la conversione metabolica degli amminoacidi in Glucosio, per via della sua richiesta energetica, è soggettivamente limitato e dipendente dagli adattamenti metabolici in atto o all’uso di determinati farmaci.

    Via della gluconeogenesi con molecole ed enzimi chiave. Molti passaggi sono opposti a quelli che si osservano nella glicolisi.

    Al deficit calorico diretto va sommato, oltre a quanto sopra, quello causato dalla termogenesi indotta dal cibo che nel caso delle Proteine si aggira tra il 10 ed il 35% (22,5% in media) delle calorie ingerite.

    Questo aspetto risulta positivo, almeno in parte, ma insieme ad esso, in una “carne e acqua” estrema, va considerato l’enorme deficit nutrizionale che, nonostante la possibilità di sopperire a ciò sul piano vitaminico, minerale e di fibre, colpisce duramente la richieste fisiologiche di una quantità sufficiente di Grassi. Inoltre, la privazione eccessivamente prolungata del consumo glucidico peggiora per circostanze adattative il metabolismo glucidico ed i vantaggi ad esso legati (vedi, per esempio, la qualità della prestazione, la capacità di utilizzo del substrato energetico una volta reintrodotto ecc… ).

    L’aumento del Cortisolo, e so già che alcuni limitati si scandalizzeranno, è la preoccupazione minore in quanto trattasi di un adattamento fisiologico che può diventare un problema nel cronico. Stesso discorso vale per lo squilibrio della bilancia acido-base dell’organismo e conseguente catabolismo muscolare. Ciò si verifica solo in sistemi organici gravemente compromessi, come quelli osservati all’inizio del XX secolo nelle aree del Canada dove per molti mesi non ci si nutriva se non di coniglio e qualche radice.

    Comunque sia, gli atleti che optavano per la versione più “bruta” della “carne e acqua” arrivavano ben presto ad un esaurimento fisico e mentale con forte nervosismo e calo della performance sportiva. Non mi dilungherò a parlare dei volumi che, e questo lo dovreste sapere più o meno tutti, venivano rapidamente supercompensati con i refeed.

    Le più tollerabili tra le versioni elencate erano la “Metabolica” e la “Ciclica”. Quest’ultima, la migliore in assoluto tra le tre versioni, viene retta anche da alcuni “Natutral” che, al fine di tagliare le calorie totali della settimana tenevano due giorni in cui il loro consumo calorico era molto ridotto, e per fare ciò usavano in quei giorni una “carne e acqua”.

    Personalmente, sperimentai una mia prima versione di dieta “carne e acqua ibridata” nell’estate del 2016. Si trattava di ciclicizzare 3 giorni in regime simil-Chetogenico (versione dieta Atkins Modificata) seguiti da 1 giorno di refeed seguito a sua volta da 3 giorni a “carne e acqua” per poi ripetere la sequenza per tutta la durata della programmazione. All’epoca la ribattezzai con il “pacchianissimo” nome di “Roller Coaster“.

    Ripartizione macro-calorica nelle fasi della “Roller Coaster”

    L’anno successivo, siamo quindi nel 2017, modificai il sopra citato schema rendendolo pianificabile sui canonici 7 giorni settimanali. Si trattava quindi di 3 giorni in regime simil-Chetogenico (versione dieta Atkins Modificata) seguito da 1 giorno di refeed seguito a sua volta da 2 giorni a “carne e acqua” e successivamente un altro giorno di refeed. Questa volta la ribattezzai “Keto Starvation”.

    Ripartizione macro-calorica nelle fasi della “Keto Starvation””

    Quest’ultimo schema applicativo risultò essere ben tollerato e con pochi disagi se non gli iniziali annessi a tutti i regimi low-carb (mal di testa, spossatezza, feci molli) che tendono a scomparire dopo poche settimane.

    Da questa versione ne è nata una recente e decisamente più “drastica”. Infatti, la “Protein Starvation” consiste in un piano settimanale nel quale vi sono 3 giorni iniziali a “carne e acqua” seguiti da 1 giorno di refeed glucidico/low fat, successivamente vi sono altri 2 giorni a “carne e acqua” e 1 giorno di refee glucidico/lipidico.

    Ripartizione macro-calorica nelle fasi della “Protein Starvation””

    Questo schema è poco tollerato dalla maggior parte delle persone ma ha mostrato effetti su periodi di tempo di 8 settimane statisticamente significativi rispetto a quanto ottenuto negli stessi soggetti con il regime più “soft”. Ed è ovvio che non si tratta di una pratica propriamente da “Natural”.

    Importante da ricordare è che vi è un integrazione d’obbligo in questa pratica alimentare:

    • Multivitaminico Multiminerale;
    • Potassio;
    • Magnesio;
    • Calcio;
    • Ferro;
    • EPA+DHA;
    • Zinco;
    • Fibra o in alternativa shirataki di Konjac.

    Supplementazione addizionale:

    • Metformina: l’uso della Metformina trova la sua ragione d’essere in una “carne e acqua” per via del suo effetto su l’attività metabolica cellulare via PPAR e AMPK, con conseguente miglioramento del metabolismo energetico sia glucidico che lipidico che, sebbene ci si trovi in un regime low-carb, ipoteticamente dovrebbe indurre delle “forzature di sistema” tali da spingere l’organismo ad attingere maggiormente dai depositi adiposi e dal surplus amminoacidico come substrati di sostentamento per via della “precarietà” dei livelli di glucosio ematico. Inoltre, la Metformina riduce le concentrazioni di glucosio plasmatico a digiuno riducendo i tassi di produzione epatica di glucosio a partire dagli amminoacidi [18][19], il suo effetto sui contributi relativi della glicogenolisi epatica e della gluconeogenesi rimane comunque controverso. Alcuni studi concludono che la Metformina agisca principalmente riducendo i tassi di gluconeogenesi [20]; altri, che agisce riducendo i tassi di glicogenolisi epatica [21][22]. Comunque sia, come già precedentemente accennato, il corpo può ricavare solo 1000 calorie al giorno attraverso la gluconeogenesi in una dieta di sole proteine dal momento che il fegato è in grado di produrre solo 250g di glucosio dalle proteine, e non importa quante proteine si mangiano. Con l’aggiunta di 750mg/die di Metformina si ipotizza, almeno da considerazioni fatte per via di rapporti sui cambiamenti glicemici, per quello che valgono, che la produzione di glucosio scenda a circa 180g al giorno, al limite del mantenimento dei tessuti glucosio dipendenti.
    Metformina

    Nota: l’uso della Metformina può dare dissenteria e problemi gastrointestinali.

    Sfortunatamente, nei piani “carne e acqua” prolungati, il fegato inizierà a non riuscire a convertire l’ammoniaca in urea (non abbastanza ATP), quindi l’ammoniaca rientrerà nel flusso sanguigno. Questo inizierà a dare problemi al sistema nervoso.

    Mi sembra scontato aggiungere che la dove viene applicata una supplementazione farmacologica strategica e contestualizzata il piano da i suoi migliori risultati. Per esempio, oltre a quanto detto prima per la Metformina, l’uso del 7-Keto-DHEA, o di altro inibitore della 11 βHSD-1, riduce la risposta cortisolemica. Alcuni riducono l’assorbimento lipidico dei pasti con fonti non accuratamente pesate e che possono contenere una quantità di grassi più elevata delle fonti comunemente consumate.

    Azione del 7-Keto-DHEA sull’attività dell’enziama 11 β-HSD-1

    Vi ricordo, e sto parlando all’idiota che sta sempre dietro lo schermo leggendo ma non capendo una emerita ciola, che estremizzare questo tipo di dieta già di suo estrema scimmiottando quanto sofferto dagli esploratori del secolo scorso beh, gli effetti non sono affatto piacevoli e comprendono nausea e affaticamento iniziali, seguiti da diarrea continua e infine, nei casi cronici, la morte.[4]

    Conclusione:

    Cosa si può imparare dalla dieta “carne e acqua”?

    Lo ripeto affinché sia chiaro a tutti: la dieta “carne e acqua” trova il suo motivo d’esistere per brevi periodi di tempo (vedi pre-contest), e ancora meglio se nello schema alimentare i giorni di “starvation” vengono intervallati da refeed glucidici e misti!

    Come ben si comprende, sembra che la dieta “carne e acqua” abbia funzionato per un certo numero di culturisti, un punto che sottolinea la necessità di adattare il piano alimentare alle capacità adattative del soggetto. Ma questo, ad oggi, lo abbiamo ben capito, di qualsiasi piano alimentare o allenante si tratti.

    Consiglio la “carne e acqua” o la mia “Protein Starvation”? Non la consiglio da un punto di vista etico e professionale dal momento che per seguire tali regimi il soggetto interessato deve per forza di cose essere attentamente seguito da un professionista onde evitare che si ritrovi collassato sul cesso a causa di una pesante disidratazione da dissenteria. Non consiglio in nessun modo di seguire la “dieta carnivora” come stile di vita promossa da Shawn Baker, una follia!

    Per il resto, affidatevi a personale qualificato prima di intraprendere qualsiasi percorso alimentare.

    Gabriel Bellizzi

    Riferimenti:

    1. Cordain, L.; Miller, J. B.; Eaton, S. B.; Mann, N.; Holt, S. H.; Speth, J. D. (March 2000). “Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets”The American Journal of Clinical Nutrition71 (3): 682–692.
    2. Hosfield, Rob (2016-10-02). “Walking in a Winter Wonderland? Strategies for Early and Middle Pleistocene Survival in Midlatitude Europe”Current Anthropology57 (5): 653–682. 
    3. Jump up to:a b Hardy, Bruce L. (2010-03-01). “Climatic variability and plant food distribution in Pleistocene Europe: Implications for Neanderthal diet and subsistence”Quaternary Science Reviews29 (5): 662–679. 
    4. Jump up to:a b c Fiorenza, Luca; Benazzi, Stefano; Henry, Amanda G.; Salazar‐García, Domingo C.; Blasco, Ruth; Picin, Andrea; Wroe, Stephen; Kullmer, Ottmar (2015). “To meat or not to meat? New perspectives on Neanderthal ecology”American Journal of Physical Anthropology156 (S59): 43–71. 
    5. “Appian’s Roman History, Vol. I-III.”, Edited and translated by Brian McGing. Loeb Classical Library 2. Cambridge, MA: Harvard University Press, 1912.
    6. McClellan WS, Du Bois EF (February 13, 1930). “Clinical Calorimetry: XLV. Prolonged Meat Diets With A Study Of Kidney Function And Ketosis” (PDF). J. Biol. Chem87 (3): 651–668. 
    7. “Not by Bread Alone”, Vilhjalmur Stefansson, Publisher, Macmillan, 1946
    8.  Jungle, Desert, and Arctic Emergencies Booklet. Flight Control Command Safety Education Division of the United States Army Air Forces. 1 January 1941. p. 116,119. Retrieved 27 July 2020.
    9. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids, Institute of Medicine. National Academy Press, 2005
    10. Jump up to:a b Bilsborough, S; Mann, N (April 2006). “A review of issues of dietary protein intake in humans”. International Journal of Sport Nutrition and Exercise Metabolism16 (2): 129–52. 
    11. Lahtinen, Maria; Clinnick, David; Mannermaa, Kristiina; Salonen, J. Sakari; Viranta, Suvi (December 2021). “Excess protein enabled dog domestication during severe Ice Age winters”Scientific Reports11 (1): 7. 
    12. Lieb CW THE EFFECTS ON HUMAN BEING OF A TWELVE MONTHS EXCLUSIVELY MEAT DIET jama 1929; 93:20-2
    13. Rudman et al MAXIMAL RATES OF EXCRETION AND SYNTESIS OF UREA IN NORMAL AND CIRRHOTICS SUBJECTS J Clin Invest 1973; 52:2241-9
    14. Bilsborought S, Mann N. A REVIEW OF ISSUE OF DIETARY PROTEIN INTAKE IN HUMANS Int J Sport Nutr Exerc Metab, 2000 Apr; 16(2): 129-52
    15. Shawn Baker MD – The Carnivore Diet (shawn-baker.com)
    16. Carnivore Diet Success Stories | MeatRX
    17. B O A R D A C T I O N S (state.nm.us)
    18. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334:574–579. [PubMed] [Google Scholar]
    19. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Rev. 1998;6:89–131. [Google Scholar]
    20. Stumvoll M, Nurjhan N, Periello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–554. [PubMed] [Google Scholar]
    21. Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81:4059–4067. [PubMed] [Google Scholar]
    22. Christiansen MP, Linfoot PA, Neese RA, Hellerstein M. Metformin: effects upon postabsorptive intrahepatic carbohydrate fluxes. Diabetes. 1997;46 Suppl. 1:244A. [Google Scholar]

    Alpinia officinarum, dieta ipercalorica e accumulo di grasso.

    Introduzione:

    Non è la prima volta che attraverso un articolo o un post tratto di molecole con un ipotetico potenziale sulla riduzione dell’accumulo di grasso in contesto di una dieta ipercalorico. Questa volta vorrei parlare degli studi effettuati sulla Alpinia officinarum e pubblicati sul Journal of Medicinal Food tra il 2010 ed il 2012.[1][2] Sono studi su animali, quindi di puro interesse speculativo e non applicabili con validità comprovata sull’uomo, ma rimangono sempre dei lavori di discreto interesse nella ricerca di agenti anti-obesogeni.

    Cos’è l’Alpinia officinarum?

    L’Alpinia officinarum ( galanga minore) è una pianta appartenente alla famiglia delle Zingiberaceae [3], nativa della Cina, in particolare delle coste del sud-est (Isola di Hainan), sebbene sia comunque presente anche in India e in tutto il Sud-Est asiatico. La pianta è imparentata con lo zenzero e la curcuma ed è un parente stretto della galanga maggiore o Alpinia galangal. Sia Alpinia officinarum che Alpinia galangal hanno una lunga storia di uso medicinale e culinario in oriente.

    Sebbene la composizione di entrambe le piante sia molto simile, si trova spesso l’Alpinia officinarum nelle medicine tradizionali asiatiche e l’Alpinia galangal più spesso come spezia.

    Per qualunque fine siano usate, le parti più interessanti di entrambe le piante sono le radici.

    Dettagli dello studio del 2010

    I ricercatori della Zhejiang Chinese Medical University si sono procurati le radici essiccate di Alpinia officinarum e le hanno trasformate in un estratto alcolico. Hanno messo gli estratti ottenuti nel cibo dei ratti da laboratorio per 6 settimane.

    I ricercatori hanno diviso i ratti in 4 gruppi. Il primo gruppo ricevette cibo standard. Questo era il gruppo di controllo. Un secondo gruppo ricevette cibo con zuccheri e grassi extra [HFD]. Quei ratti, come ci si potrebbe aspettare, sono ingrassati. Un terzo gruppo venne nutrito con mangime con zuccheri e grassi extra costituiti dal 3% di estratto [AOE], un quarto gruppo venne nutrito con zucchero e una dieta ricca di grassi costituita dal 5% di estratto. L’estratto ha mostrato di bloccare quasi completamente l’aumento della massa grassa nei ratti trattati.

    L’alimentazione iper-glucidica e iper-lipidica aveva causato, come d’ovvia intuizione, un peggioramento dei livelli di colesterolo, ma l’estratto di Alpinia officinarum ha praticamente eliminato questo peggioramento [vedi la figura sopra].

    I ricercatori hanno affermato che questo studio potrebbe avere importanti implicazioni perché è il primo rapporto che riporti gli effetti anti-obesogeni e di miglioramento della lipidemia ematica dell’estratto di Alpinia officinarum nei ratti nutriti con una dieta ricca di grassi.

    Tuttavia, i ricercatori erano perfettamente consapevoli della necessità di ulteriori studi per indagare quali composti nell’estratto di Alpinia officinarum sono responsabili degli effetti osservati, nonché i meccanismi molecolari responsabili dell’attività anti-obesità e ipolipemizzante.

    Se calcolassimo la dose per l’uomo da quella usata per i ratti trattati, si ottengono quantità molto elevate, pari a oltre i 10g al giorno. Tale dosaggio non è né sicuro né necessario.

    Dettagli dello studio del 2012

    Nel 2012, i ricercatori del Korea Food Research Institute hanno effettuato uno studio simile al precedente, ma con un dosaggio somministrato ai ratti meno elevato.

    I ricercatori hanno somministrato attraverso il cibo una quantità di estratto di Alpinia officinarum pari a 5g per chilo. Come i ricercatori dello studio cinese, i coreani hanno usato un estratto autoprodotto a base alcolica 1:4 (wt/wt).

    Se dovessimo rapportare il dosaggio utilizzato al dosaggio umana, esso sarebbe di circa 3-4g di estratto al giorno. È ancora un dosaggio abbastanza alto, ma decisamente inferiore a quello somministrato agli animali da laboratorio nello studio cinese.

    Il design sperimentale dei ricercatori coreani assomigliava a quello dei loro colleghi cinesi. Infatti, i ricercatori hanno somministrato ad un gruppo di topi mangime standard [C], ad un altro gruppo mangime in cui era stato aggiunto zucchero e grasso extra [HFD], e ad un terzo gruppo di animali è stato somministrato cibo ipercalorico più l’estratto di Alpinia officinarum [HFD + AOE].

    L’estratto ha inibito l’aumento di peso corporeo degli animali trattati durante le 8 settimane dell’esperimento.

    Quando i ricercatori hanno studiato i depositi di grasso dei topi dopo 8 settimane, hanno osservato che Alpinia officinarum aveva ridotto la loro crescita.

    Quando i ricercatori hanno effettuato test con cellule adipose in vitro, hanno scoperto che l’estratto di Alpinia officinarum ne bloccava la crescita.

    A detta dei ricercatori, la Galangina, un importante flavonolo presente nell’Alpinia officinarum, potrebbe essere responsabile di questo effetto.

    Nel tessuto adiposo dei topi trattati, l’Alpinia officinarum aveva causato una parziale disattivazione di recettori attivati da proliferatori perossisomiali come la PPAR-γ, che ostacolava la crescita delle cellule adipose. Nel fegato dei topi, invece, l’Alpinia officinarum aveva causato l’attivazione del PPAR-α, che nei roditori svolge un ruolo importante nell’ossidazione degli acidi grassi.

    Conclusione

    Come agffermato dagli stessi ricercatori, la prima citata Galangina, può inibire l’adipogenesi durante la differenziazione degli adipociti e può essere efficace nel migliorare lo stato di obesità.

    Se la Galangina è davvero il principio attivo cardine nella Alpinia officinarum, non dovrebbe essere difficile testarlo in un numero discreto di soggetti con un dosaggio rivisto e più sicuro. Ma la momento, in mancanza di dati sull’uomo, possiamo solo ipotizzare la sua efficacia nell’uomo.

    Gabriel Bellizzi

    Riferimenti:

    1- https://www.ergo-log.com/10.1089/jmf.2009.1235

    2- https://doi.org/10.1089/jmf.2012.2286

    3- Alpinia officinarum, su The Plant List

    Rauwolscina (α-yohimbina).

    Introduzione:

    Come si potrà facilmente capire dalle prime righe di questo articolo, la Rauwolscina è una molecola molto simile nella sua struttura alla Yohimbina e probabilmente condivide simili effetti; ipoteticamente potrebbe essere più potente, ma esistono prove limitate.

    Dal momento che mi è capitato molto spesso di ricevere domande su questa forma di Yohimbina, ho deciso di scrivere alcune righe in merio trattando gli effetti maggiormente ricercati dall’utilizzatore medio dell’alcaloide in questione.

    Rauwolscina: caratteristiche proprie e similitudini con la Yohimbina

    La Rauwolscina, nota anche come Isoyohimbina, α-yohimbina e Corynanthidina, è un alcaloide presente in varie specie del genere Rauvolfia e Pausinystalia (precedentemente noto come Corynanthe).[1] È uno stereoisomero della Yohimbina. [1] la Rauwolscina è uno stimolante del sistema nervoso centrale, un anestetico locale e possiede un certo potenziale afrodisiaco.[1] La Rauwolscina agisce prevalentemente come antagonista del recettore α2-adrenergico.[2][3] È stato anche dimostrato che agisce come agonista parziale del recettore 5-HT1A e antagonista del recettore 5-HT2A e 5-HT2B. [4] [5] [6]

    la Rauwolscina, o {3H}Rauwolscina, come già accennato, è un antagonista dei recettori adrenergici alfa-1 e alfa-2 (con una maggiore selettività per quest’ultimo).[7] La Yohimbina condivide il medesimo meccanismo d’azione recettoriale.

    Come ormai risaputo, la Yohimbina agisce sul sistema dei recettori adrenergici delle cellule adipose, che regolano la termogenesi. Le subunità beta dei recettori adrenergici (bersagli, per esempio, dell’Efedrina) possono essere viste come stimolanti per la perdita di grasso poiché aumentano l’attività dell’enzima adenil ciclasi e successivamente dei livelli di cAMP (principalmente attraverso le subunità b1 e b2; con la b3 che è meno attiva negli umani).[8][9] Le subunità alfa sono soppressive del metabolismo lipidico, e attraverso la loro attivazione si riduce l’attività dell’adenil ciclasi e si riducono i livelli di cAMP (in particolare per opera degli alfa-2). La Yohimbina, come la Rauwolscina, è un antagonista selettivo del recettore alfa-2 adrenergico (inattivatore), che inibisce l’attivazione del set di recettori soppressivi e preserva l’attività dell’adenil ciclasi e gli effetti mediati dai recettori beta.[10]

    Osservando le interazioni della Yohimbina a livello del recettore, la molecola è risultata essere un antagonista alfa2-adrenergico selettivo con un’affinità 44 volte maggiore per la subunità alfa2 rispetto alla subunità alfa1 quando testata su ratti anoccigei e dotti deferenti; questo differisce dal relativo composto Corinantino e Rauwolscina che sono selettivi per il recettore alfa1 (33 volte) e per lo più non selettivi (3,3 volte); rispettivamente.[11] Questi valori sono stati derivati ​​da sperimentazioni in vitro e un secondo test nel quale è stato osservato il legame competitivo in campioni di cervello notando che la selettività era ridotta da 45 a 5,7. Quando si osserva il recettore alfa2 stesso, la Yohimbina sembra avere ulteriore selettività per la subunità alfa2C piuttosto che per la A o la B; nell’intervallo di 4-15 volte la selettività,[12] mentre la Rauwolscina sembra essere non selettiva tra queste tre subunità.[13][12] La Rauwolscina sembra essere efficace a livello del recettore quanto la Yohimbina,[14] con la Coynantina che presenta la minore entità di efficacia.[11]

    Oltre a ciò, la stessa Yohimbina può potenzialmente indurre la perdita di grasso per via indiretta attraverso il rilascio di Adrenalina; l’Adrenalina stessa è un attivatore dei recettori beta-adrenergici.[15] Tuttavia, questo aumento di Adrenalina può svanire con il tempo raggiungendo l’irrilevanza statistica 2 settimane dopo l’inizio dell’ingestione giornaliera.[16] L’aumento degli acidi grassi liberi plasmatici e la densità dei recettori alfa2-adrenergici rimangono simili in entrambi i momenti, suggerendo che la Yohimbina perde selettivamente il picco di Adrenalina ma non gli effetti diretti sulla sovra-regolazione della lipolisi recettore-dipendente.

    La Yohimbina è stata inizialmente studiata per il suo ruolo nella riduzione degli accumuli adiposi localizzati grazie al suo utilizzo come crema topica (potendo scegliere dove applicare la Yohimbina)[17][18] ma anche secondariamente al suo utilizzo per ridurre l’adipe nelle cosce delle donne, poiché livelli elevati di Estrogeni aumentano l’attività del recettore alfa2-adrenergico.[19] A causa dell’aumento dell’attività alfa2-adrenergica nel tessuto adiposo sito nelle cosce delle donne, si pensava che l’antagonismo di questi recettori riducesse l’adiposità in modo selettivo; i risultati con la soluzione topica sono ad oggi vaghi, con uno studio con esito positivo [18] e l’altro nel quale si sono notati benefici sia con la Forskolina (da Coleus Forskohlii) che con l’Aminofillina ma non con la Yohimbina. [17]

    La chetogenesi, o la produzione di corpi chetonici, è potenziata dalla presenza di Noradrenalina in condizioni normali. Il blocco dei recettori alfa adrenergici, tramite l’antagonismo della Yohimbina (e della Rauwolscina) sul recettore alfa-2 adrenergico, aumenta gli effetti chetogenici della Noradrenalina. [20]

    Uno studio nel quale si è osservato un aumento della ossidazione lipidica (aumento dei biomarcatori di NEFA e glicerolo) ha anche notato che questo aumento è stato soppresso durante lo stato di alimentazione.[21] È stato ipotizzato che questa interazione con lo stato di digiuno così come gli effetti apparentemente additivi/sinergici della Yohimbina e l’esercizio sulla lipolisi[21] potrebbero portare a tempistiche di assunzione ideale della Yohimbina prima dell’esercizio mattutino.[22] Se abbinata al cibo in modo acuto, la Yohimbina può effettivamente aumentare il rilascio di Insulina indotto dal glucosio attraverso lo stimolo delle cellule pancreatiche[23][24] ma non si verifica a digiuno dopo il consumo orale di 0,2g/kg.[25][21]

    Se il meccanismo avviene tramite la stimolazione del rilascio di Insulina che riduce la lipolisi, è teorico che un pasto privo di carboidrati e a basso contenuto proteico (per ridurre la stimolazione indotta dagli amminoacidi) potrebbe essere simile allo stato di digiuno; questo non è stato però studiato.

    Uno studio è stato condotto con la somministrazione di Yohimbina a giocatori di calcio d’élite che assumevano 10mg della molecola due volte al giorno (20 mg in totale) per un periodo di 21 giorni. Durante lo studio si è osservato che, in seguito al controllo della dieta, la percentuale di grasso era diminuita dallo 9,3 +/- 1,1% allo 7,1 +/- 2,2% (valutato tramite calibro), mentre nel gruppo placebo è stato registrato un aumento non significativo.[26] La dose di 0,2mg/kg di Yohimbina in uomini altrimenti sani sembra aumentare gli effetti sul miglioramento del metabolismo lipidico e della beta-ossidazione della Noradrenalina endogena e sembra essere più efficace durante i periodi di esercizio e attenuarsi se somministrati dei beta-bloccanti;[21] un altro studio ha rilevato che questa attenuazione deve essere misurata al 70%.[25] Tuttavia, almeno uno studio ha rilevato risultati nulli, in quanto la Yohimbina non ha fatto diminuire il peso nei volontari sani.[27]

    La {3H} Rauwolscina è meno potente della Yohimbina nel proteggere dagli aumenti della pressione sanguigna indotti dall’Adrenalina (entrambi meno potenti della Corinantina e più potenti della 3-epi-alfa-yohimbina), questo effetto sembra correlato alla loro affinità per gli alfa -2 adrenorecettori.[28]

    Come la Yohimbina, la Rauwolscina è un agonista dei recettori 5-HT1a/b e induce effetti simili alla Serotonina. Mentre la Yohimbina ha più affinità per tale recettore, la Rauwolscina ha un valore IC50 più basso (il che significa che può saturare più recettori alla stessa dose) e può essere considerata leggermente più potente nell’attività serotoninergica.[29][30]

    Non mi dilungherò oltre, dal momento che gli argomenti trattati fino a questo momento sono di maggiore interesse per la valutazione di supplementi contenenti Rauwolscina e del loro possibile utilizzo.

    Conclusione:

    Ora, sappiamo che le caratteristiche di entrambe le forme di Yohimbina sono pressoché identiche sebbene la selettività recettoriale della Rauwolscina sembri minore di quella della Yohimbina. La caratteristica che sembra spostare l’interesse sulla Rauwolscina è la sua più lunga emivita ( Yohimbine 0.25-2.5h; Rauwolscina 0.5-5h ipotetiche). Se però valutiamo quest’aspetto alla luce della sua bassa selettività e alto potenziale di saturazione recettoriale, viene facile intuire che ciò possa influire negativamente sulla percentuale di emersione di effetti collaterali tipici dell’alcaloide (tremori, insonnia, emicrania, tachicardia, ecc…). Con molta probabilità il dosaggio “ideale” con un certo margine di “sicurezza” può essere attestato a 0.1mg/Kg/die.

    Gabriel Bellizzi

    Riferimenti:

    1.  KOHLI JD, DE NN (June 1956). “Pharmacological action of rauwolscine”. Nature177 (4521): 1182. doi:10.1038/1771182a0PMID 13334509.
    2.  Perry BD, U’Prichard DC (December 1981). “[3H]rauwolscine (alpha-yohimbine): a specific antagonist radioligand for brain alpha 2-adrenergic receptors”. European Journal of Pharmacology76 (4): 461–4. doi:10.1016/0014-2999(81)90123-0PMID 6276200.
    3.  Kou Qin; Pooja R. Sethi; Nevin A. Lambert (August 2008). “Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins”The FASEB Journal22 (8): 2920–2927. doi:10.1096/fj.08-105775PMC 2493464PMID 18434433.
    4.  Arthur JM, Casañas SJ, Raymond JR (June 1993). “Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptors”. Biochemical Pharmacology45 (11): 2337–41. doi:10.1016/0006-2952(93)90208-EPMID 8517875.
    5.  Kaumann AJ (June 1983). “Yohimbine and rauwolscine inhibit 5-hydroxytryptamine-induced contraction of large coronary arteries of calf through blockade of 5 HT2 receptors”. Naunyn-Schmiedeberg’s Archives of Pharmacology323 (2): 149–54. doi:10.1007/BF00634263PMID 6136920.
    6.  Wainscott DB, Sasso DA, Kursar JD, Baez M, Lucaites VL, Nelson DL (January 1998). “[3H]Rauwolscine: an antagonist radioligand for the cloned human 5-hydroxytryptamine2b (5-HT2B) receptor”Naunyn-Schmiedeberg’s Archives of Pharmacology357 (1): 17–24. doi:10.1007/PL00005133PMID 9459568. Archived from the original on 2001-09-11.
    7. J C Doxey, et al. Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthineNaunyn Schmiedebergs Arch Pharmacol. (1984)
    8. Carmen GY, Víctor SM. Signalling mechanisms regulating lipolysisCell Signal. (2006)
    9. ^ Liu CY, Boyer JL, Mills SE. Acute effects of beta-adrenergic agonists on porcine adipocyte metabolism in vitroJ Anim Sci. (1989)
    10. ^ Lafontan M, et al. Alpha-2 adrenoceptors in lipolysis: alpha 2 antagonists and lipid-mobilizing strategiesAm J Clin Nutr. (1992)
    11. a b c Doxey JC, et al. Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthineNaunyn Schmiedebergs Arch Pharmacol. (1984)
    12. a b Lalchandani SG, et al. Yohimbine dimers exhibiting selectivity for the human alpha 2C-adrenoceptor subtypeJ Pharmacol Exp Ther. (2002)
    13. ^ MacDonald E, Kobilka BK, Scheinin M. Gene targeting–homing in on alpha 2-adrenoceptor-subtype functionTrends Pharmacol Sci. (1997)
    14. ^ Tan S, Curtis-Prior PB. Comparative effects of RX 781094, mianserin, yohimbine, rauwolscine and prazosin in reversing clonidine inhibition of MIX-stimulated lipolysis in hamster isolated white fat cellsPharmacol Res Commun. (1984)
    15. Reiner S, et al. Differential signaling of the endogenous agonists at the beta2-adrenergic receptorJ Biol Chem. (2010)
    16. Galitzky J, et al. Pharmacodynamic effects of chronic yohimbine treatment in healthy volunteersEur J Clin Pharmacol. (1990)
    17. Greenway FL, Bray GA, Heber D. Topical fat reductionObes Res. (1995)
    18. a b Greenway FL, Bray GA. Regional fat loss from the thigh in obese women after adrenergic modulationClin Ther. (1987)
    19. ^ Pedersen SB, et al. Estrogen controls lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distributionJ Clin Endocrinol Metab. (2004)
    20. ^ Keller U, Weiss M, Stauffacher W. Contribution of alpha- and beta-receptors to ketogenic and lipolytic effects of norepinephrine in humansDiabetes. (1989)
    21. a b c d Galitzky J, et al. Alpha 2-antagonist compounds and lipid mobilization: evidence for a lipid mobilizing effect of oral yohimbine in healthy male volunteersEur J Clin Invest. (1988)
    22. ^ McCarty MF. Pre-exercise administration of yohimbine may enhance the efficacy of exercise training as a fat loss strategy by boosting lipolysisMed Hypotheses. (2002)
    23. ^ Ito K, et al. Adrenoceptor antagonists, but not guanethidine, reduce glucopenia-induced glucagon secretion from perfused rat pancreasDiabetes Res Clin Pract. (1995)
    24. ^ Ribes G, et al. Involvement of a central nervous pathway in yohimbine-induced insulin secretionEur J Pharmacol. (1989)
    25. Berlan M, et al. Plasma catecholamine levels and lipid mobilization induced by yohimbine in obese and non-obese womenInt J Obes. (1991)
    26. Ostojic SM. Yohimbine: the effects on body composition and exercise performance in soccer playersRes Sports Med. (2006)
    27. Sax L. Yohimbine does not affect fat distribution in menInt J Obes. (1991)
    28. Rockhold RW, Gross F. Yohimbine diastereoisomers: cardiovascular effects after central and peripheral application in the ratNaunyn Schmiedebergs Arch Pharmacol. (1981)
    29. Arthur JM, Casañas SJ, Raymond JR. Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptorsBiochem Pharmacol. (1993)
    30. [3H.

    Pillola blu o pillola rossa? Realtà per aspiranti “doped” … ma non solo…

    DISCLAIMER: Il presente articolo è a solo scopo educativo, di intrattenimento e informativo. Non rappresenta in alcun modo una forma di incitamento all’uso/abuso di sostanze dopanti. L’autore ed il sito, per tanto, è esentato da qualsiasi responsabilità dipendente dalla libera scelta individuale.

    Introduzione ad un dilemma…

    Chiunque frequenti l’ambiente del Bodybuilding e del Fitness avrà letto o sentito almeno una volta nella vita espressioni del genere “se mi dopassi sarei anche io così [indicando Flex Wheeler]” o “ho provato di tutto e senza farmaci non riuscirò ad ottenere risultati”. Andando poi ad approfondire la storia di ognuno di questi soggetti si scopre in percentuale quasi assoluta che si tratta di individui nella norma (o al di sotto) frustrati e/o con personalità deboli, speranzosi omini che attendono placidamente che accada una svolta miracolosa nella loro banale e piatta esistenza e, cosa molto importante, con il minimo dello sforzo (meglio se nessuno).

    Nella mia esperienza come ricercatore e operatore nel campo della cultura fisica in qualità di Preparatore Atletico, ho assistito a innumerevoli casi in cui un soggetto aspirava al miglioramento della propria composizione corporea trascurando, consciamente o inconsciamente, le basi fondamentali rappresentate da Nutrizione e Allenamento baipassandole in vista della possibile prescrizione di una pillola miracolosa capace di renderlo/a possessore della forma fisica ambita.

    Tralasciando l’ovvio ragionamento che spinge ogni essere umano dotato di un minimo d’intelletto verso la comprensione che la genetica è il blocco d’argilla sul quale si va ad operare, ma le sue qualità e difetti sono presenti in modo eterogeneo nella popolazione mondiale, e ciò non è modificabile nemmeno con la farmacologia più oculata, quando ci si trova davanti al bivio tra “pillola rossa” (PEDs) e “pillola blu” (drug free) bisogna essere pienamente consapevoli non solo del fattore illegalità ma del fattore conoscitivo. Purtroppo, la politica del terrore ha operato in modo fallimentare nel goffo intento di allontanare dalla scelta “rossa”, e ciò si è tradotto in un numero sensibile di soggetti abusatori con tutte le conseguenze cliniche derivanti.

    Se un individuo non ha raggiunto un livello di maturità sportiva tale da conferirgli una gestione corretta della nutrizione e della periodizzazione allenante (gestione delle variabili volume, intensità, densità ecc…), è molto meglio per lui/lei rivedere i suoi programmi e scegliere ancora la “pillola blu”. Capita, a volte, di incontrare persone decise ad intraprendere la via del “lato oscuro” che, dopo una approfondita chiacchierata sulla gestione dei suddetti fattori, rivede le proprie posizioni.

    Per tutti coloro i quali sono immersi nel dilemma della scelta, vi espongo alcuni punti per rendere l’eventuale decisione meno rischiosa anche se pur sempre illegale nel “bel paese”…

    “Pillola blu o pillola rossa?” I punti da tenere in considerazione per una scelta consapevole:

    #1 Raggiungere una adeguata maturità sportiva

    Per “maturità sportiva”, in particolare riferimento al BodyBuilding, si intende la capacità del atleta di sapersi alimentare e allenare correttamente con piena gestione delle proprie potenzialità fisiologiche/genetiche. Questa è la base, se viene a mancare ciò non solo la vostra esperienza finirà per deludervi e rendervi ancora di più dei frustrati, ma potrebbe rovinosamente portarvi ad un abuso cronico a senso inesorabilmente negativo…

    #2 I PEDs non faranno miracoli

    Una cosa da tenere bene a mente, e questo non dovrebbe interessare solo gli aspiranti “doped”, è che l’uso di PEDs non renderà diversi da ciò che rientra nelle potenzialità espressive del proprio patrimonio genetico. Certamente le caratteristiche genetiche verranno “iperespresse”, nel bene e nel male, dall’uso di PEDs ma non vi sarà nessun miracolo! Migliorerete ma non sarete ne più ne meno di ciò che potete essere!

    Un esempio per capire come la base genetica faccia la differenza anche con protocolli che, ad oggi, spesso non raggiungono nemmeno i livelli del “bridge” più soft..

    #3 Ridurre la percentuale di grasso corporeo

    Il tessuto adiposo rappresenta uno dei siti dove il Testosterone, ed altri AAS soggetti all’aromatizzazione, viene convertito in Estradiolo. Soggetti con percentuali di grasso corporeo elevate vedrebbero una alterazione marcata della Testosterone:Estradiolo ratio a favore della componente estrogenica, con conseguenze quali alterazione del comportamento sessuale (impotenza, difficoltà nel raggiungere e/o mantenere l’erezione), ritenzione idrica, accumulo di grasso con modello femminile e ginecomastia. E no, l’uso di DHT derivati o di SARM non steroidei senza una base di Testosterone non risolverebbe il problema o, per lo meno, porterebbe ad altre conseguenze negative, che pur non comprendendo, per esempio, ritenzione idrica e ginecomastia, interesserebbero l’attività sessuale e la condizione psichica del soggetto trattato. [1]

    Schema esemplificato del processo di aromatizzazione degli androgeni aumentati in un soggetto con percentuale di grasso corporeo alta.

    Allo stesso tempo, i rischi cardiovascolari della somministrazione di AAS- come il possibile aumento esponenziale del Ematocrito, l’aumento del LDL e Trigliceridi a discapito di una riduzione del HDL, e l’aumento della pressione sanguigna – sarebbero già presenti in certa misura quando la body fat è già alta e sarebbero quindi soggetti ad un repentino aggravamento.

    Se la percentuale di grasso è relativamente alta, si dovrebbe prima di tutto considerare di migliorare la composizione corporea con una adeguata routine alimentare e allenante (senza farmaci) prima di iniziare solo a pensare all’uso di AAS. Sicuramente ciò renderà la scelta più efficace e meno rischiosa.

    Nel caso fosse necessario sottolinearlo, no, non è saggio nemmeno utilizzare agenti PEDs a fini lipolitici e/o antiadipogenici e/o termogenici (compresi gli Ormoni Tiroidei). A meno che non siate affetti da ipotiroidismo, e in questo caso la terapia vi dovrebbe essere stilata dal vostro medico, per ridurre in modo sensibile la body fat non sono necessari i farmaci!

    #4 Controllare se si ha una storia familiare di trombosi (o qualsiasi altra malattia cardiovascolare)

    Molte malattie cardiovascolari hanno una componente di base genetica. Uno stile di vita sano può ridurne sensibilmente la loro insorgenza, ma l’uso di AAS può causare l’attivazione di specifici geni implicati nella comparsa di malattie cardio-circolatorie. Caratteristico dell’interazione tra AAS e geni specifici è un caso studio ben documentato che ricercatori americani hanno pubblicato sul “Blood Coagulation & Fibrinolysis”.[2]

    Trombosi venosa

    Oltre all’attivazione genica diretta dagli AAS, e nociva per il sistema cardio-circolatorio, vi sono altre condizioni negative innescate dall’uso/abuso di Steroidi Anabolizzanti, e di altri PEDs, come, per esempio, l’aumento del tasso di coagulazione, l’incremento eccessivo dell’Ematocrito con aumento pressorio, rigidità dell’endotelio vascolare con perdita di efficienza strutturale e aumento della pressione ematica con incremento delle possibilità di danno strutturale dei componenti del sistema interessato.

    #5 Inserire delle sedute di allenamento cardio prima, durante e dopo l’uso di PEDs

    Un moderato allenamento cardiovascolare è sicuramente una delle migliori strategie preventive contro la comparsa di malattie cardio-circolatorie. Tale tipologia di allenamento può portare un miglioramento e/o riduzione delle alterazioni lipidiche ematiche del praticante, fornendo un, seppur minimo, tampone all’azione negativa degli AAS e SARM non steroidei sui livelli di LDL (aumento), Trigliceridi (aumento) e HDL (diminuzione). Secondo quanto riportato da una interessante review del 2013, l’abbinamento di sedute cardio e in sala pesi possono avere una azione additiva benefica sui livelli di LDL, Trigliceridi e HDL.[3]

    Risulta interessante anche quanto emerso da alcuni studi su animali a seguito dei quali si è osservato un significativo grado di protezione dato dall’allenamento cardio negli esemplari trattati con AAS.[4]

    #6 Assicurarsi di rimanere ben idratati

    Oltre ad agevolare il mantenimento di un Ematocrito migliore, una buona idratazione risulta positiva sulla pressione di lavoro renale nel filtraggio del sangue. Diversi AAS come il Trenbolone e i metilati in C-17 presentano una particolare resistenza metabolica che, oltre a causare un aumentato stress epatico, può portare ad una sofferenza renale sfociabile nel patologico. Si è osservato come una combinazione di AAS, dieta iperproteica e supplementazione di Creatina possa aumentare l’incidenza di problemi renali.[5] In un soggetto in fisiologia, la sola dieta ad altro contenuto proteico e la supplementazione di Creatina non hanno mostrato nessun grado di pericolosità, soprattutto sul breve/medio termine.

    #7 Non usare “droghe ricreative”

    A livello globale, il numero di decessi tra gli abusatori di AAS è in aumento. Alcuni, troppo superficialmente, dicono che questo sia dovuto al fatto che sempre più uomini e donne usano AAS, ma questa è solo una spiegazione dozzinale e limitata. Il sospetto ricade soprattutto sulle modalità di approccio dei consumatori di AAS: i dosaggi sono drammaticamente aumentati e un numero crescente di individui combina PEDs con “droghe ricreative”. Ed è su questi due ultimi punti che risiede la spiegazione principale dell’aumento statistico prima menzionato. Soprattutto la combinazione di PEDs e le così dette “droghe ricreative” risulta essere probabilmente un fattore significativo, come evidenziato alcuni anni fa da ricercatori australiani. Nel loro studio sono state analizzate tutte le morti documentate tra i consumatori di AAS a Sydney tra il 1997 e il 2012, scoprendo che le droghe ricreative come la cocaina avevano avuto un ruolo nella schiacciante molteplicità dei casi. Dagli studi sugli animali ora sappiamo della possibilità che la co-assunzione di un AAS come il Nandrolone con la cocaina vede moltiplicati gli effetti cardiotossici rispetto ai singoli composti.[6] E secondo studi in vitro la combinazione di Testosterone e cocaina aumenterebbe la possibilità di formazione di coaguli nel flusso ematico. [7]

    #8 Corretta modalità di iniezione e herpes labiale

    Gli utilizzatori di AAS a volte sviluppano ascessi, ma non sempre dovuti alla bassa qualità dei prodotti utilizzati.

    Alcuni medici ritengono che gli utilizzatori di AAS dovrebbero effettivamente ricevere una formazione sulle tecniche di iniezione corrette, onde evitare embolie oleose o ascessi per cattiva gestione igienica della procedura. [8]

    Molti utilizzatori ancora non sanno che disturbi come l’herpes labiale rendono le iniezioni ancora più rischiose. Perchè? Il virus che causa l’herpes labiale, come altri patogeni, riduce l’efficienza del sistema immunitario, fornendo così terreno fertile per infezioni batteriche i cui microorganismi scatenanti vengono inoculati nel corpo del soggetto attraverso l’iniezione in modo diretto o indiretto.

    #9 Non fare affidamento sugli integratori

    Secondo un buon numero di studi svolti su animali, alcuni integratori proteggono dagli effetti collaterali degli AAS. Secondo alcune ricerche, la Taurina, la Vitamina C ed E proteggono i testicoli durante un ciclo e la vitamina C e il cacao proteggono la prostata.

    L’utilità dei risultati provenienti da questi studi è limitata per tre motivi:

    A. gli animali da laboratorio non sono esseri umani, e

    B. le dosi utilizzate e rapportate ad un essere umano sono quasi sempre molto inferiori rispetto a quelle utilizzate dai “doped”, e

    C. la ricerca in campo psicologico mostra che l’uso di integratori stimola comportamenti rischiosi e malsani. I supplementi fanno pensare agli utilizzatori di essere invulnerabili e di non dover comportarsi in modo sano ed attento.[9]

    Gli integratori possono aiutare a creare una mentalità che non si dovrebbe avere da utilizzatore consapevole di AAS.

    Ovviamente, alcuni supplementi “protettivi” utilizzati dai soggetti meglio informati hanno un potenziale di “tamponare” in modo discreto alcune alterazioni legate all’uso di AAS e SARM come, ma non limitato a, Riso Rosso fermantato (controllo lipidico) [10], Silimarina (epatoprotezione), NAC (epatoprotezione) [11], Niacina (controllo lipidico) ecc…

    #10 Ridurre al minimo (se non eliminare) il consumo di alcolici

    Potrebbe sembrare un indicazione superflua ma non lo è.

    L’abuso di alcol è indubbiamente uno dei problemi sociali più diffusi. Uno dei problemi correlati all’abuso di alcol e l’epatopatia alcolica. Questo stato patologico è derivante da un processo infiammatorio progressivo ai danni del fegato legato al consumo eccessivo di alcolici. È una malattia a più stadi. La steatosi provoca un ingrossamento del fegato causato da un accumulo di trigliceridi, spesso senza sintomi per molto tempo. I rischi correlati sono la steatosi (fegato grasso), l’epatite alcolica e la cirrosi epatica. Il rapporto con l’alcolismo è complesso. Non tutti i bevitori, infatti, hanno danni al fegato, anche se sono altamente probabili. La causa è da rinvenire in una trasformazione dell’alcol (etanolo) in sostanze tossiche che danneggiano il fegato in maniera irreversibile e cronica, con un rischio elevato di insufficienza epatica e di cancro, fino alla necessità di un trapianto di fegato.

    In acuto, invece, l’alcol può essere una causa di alterazione delle transaminasi ma non si può sapere se e con quale modalità si potrebbero innalzare: dipende molto dalla risposta individuale dell’organismo. In caso di stress preesistente, di causa iatrogena e/o alimentare, si può presentare una alterazione significativa. [12]

    Il primo caso è una consequenziale possibile se eventi stressori concomitanti si presentano in cronico. Ed è semplice giungere alla conclusione che l’uso di AAS, specie se metilati, possa comportare un aumentato stress epatico che potrebbe degenerare in peliosi epatica, cirrosi ecc…

    Che siate “doped” o “natural”, per ragioni legate e non, dovreste evitare di consumare più di 25g per gli uomini, o 12,5g per le donne, di Etanolo al giorno.

    #11 Sottoporsi a regolari controlli medici pre, intra e post utilizzo

    Il monitoraggio della salute dovrebbe essere la base fondante del comportamento del utilizzatore consapevole e minimamente attento ai potenziali rischi nei quali potrebbe imbattersi.

    Gli esami di controllo sono i seguenti:

    • Esami ematici e delle urine (comprendenti il quadro ormonale secondo necessità);
    • Elettrocardiogramma ogni 6 mesi circa;
    • Elettrocardiogramma sotto sforzo (prima di iniziare);
    • Ecocardiogramma ogni 6 mesi circa;
    • Coronarografia ogni 6 mesi circa;
    • Monitoraggio della pressione ematica;
    • TAC addome completa ogni 6 mesi circa.

    Ovviamente, ogni accertamento , al di la degli esami ematici, deve essere gestito in base alle esigenze soggettive, caratteristiche e tipo di PEDs utilizzati.

    #12 Essere seguiti da personale qualificato

    Fin troppa gente è stata salutisticamente deturpata da gorilla di spogliatoio a mala pena consapevoli dell’esistenza dei macronutrienti e che, nonostante ciò, si sono improvvisati farmacisti. Donne divenuti uomini e uomini divenuti simili a cagne in calore per via di orrende ginecomastie.
    Evitate il fai da te e l’affidarsi a semianalfabeti … la somaticità sopra la norma è cosa diversa dall’intelligenza e alla competenza in biologia, biochimica e farmacologia… senza offesa per tutti quelli che “io mi facevo e ho vinto! Senzia scienzia!” …

    #13 Pensare seriamente al post ciclo prima del ciclo

    Molti aspiranti “doped” non considerano il fattore post ciclo. La maggior parte di loro è convinta che la PCT sarà una facile soluzione alla sottoregolazione dell’Asse HPT, ma in realtà non è proprio così. Esistono diversi casi studio che mostrano come gli ex utilizzatori abbiano spesso livelli di Testosterone inferiori rispetto al pre-utilizzo anche a distanza di anni dal cessato uso di AAS. Sembra che i fattori che aumentano le possibilità e il grado di tale effetto sul lungo termine siano:

    • Tempo di somministrazione;
    • Età
    • Molecole utilizzate (con maggiore impatto negativo dato dai19-norsteroidi come il Nandrolone per via della lunga permanenza dei metaboliti nel sistema).

    Tutto ciò è indipendente dalla qualità della PCT, anche se essa può avere dei riscontri positivi specie nel primo periodo di stacco dagli AAS. Le alterazioni ormonali legate ad una alterazione dell’Asse HPT comprendono depressione, ansia, bassa libido, difficoltà nel raggiungere e mantenere l’erezione, stanchezza cronica ecc…

    Per questa ragione molti scelgono di entrare in TRT (Terapia Sostitutiva del Testosterone) dopo il primo ciclo.

    Quale conclusione?…

    Se mai non dovesse bastare il disclaimer, questo articolo non rappresenta in alcun modo un consiglio e, ne tanto meno, un incitamento all’uso di sostanze dopanti! E’ semplicemente a fine divulgativo con l’obbiettivo di far comprendere a più persone possibili che la scelta di intraprendere coscientemente certe pratiche (illegali) necessita di una sufficiente (e veritiera) conoscenza del argomento.

    Quindi? Leggete e comprendete correttamente ciò che ho riportato in sintesi fruibile ad un largo pubblico… Pensate prima di tutto ad alimentarvi e allenarvi in modo ottimale!

    La conoscenza della Verità rende liberi dalla cattiva informazione, dagli strumenti commerciali e dal relativismo… Negarla è semplice e pericolosa manifestazione di profonda ignoranza… di VERO NEGAZIONISMO!

    Se avete una buona conoscenza della lingua inglese e volete approfondire l’argomento PEDs e Sport, potete leggere il libro ANABOLICS 11th Edition di William Llewellyn

    Gabriel Bellizzi

    Riferimenti:

    1- Androgens and Adipose Tissue in Males: A Complex and Reciprocal Interplay (hindawi.com)

    2- https://www.ncbi.nlm.nih.gov/pubmed/26588446

    3- Differential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile: Review, Synthesis and Recommendations (nih.gov)

    4https://www.ingentaconnect.com/content/bsc/ijep/2008/00000089/00000005/art00007;jsessionid=31871vv9fkia1.alice

    5- https://ckj.oxfordjournals.org/content/early/2015/05/26/ckj.sfv032.abstract

    6- Eur J Pharmacol. 2000 Jun 16; 398 (2): 263-72.

    7- Thromb Res. 15 febbraio 2003; 109 (4): 195-201.

    8- Int J Sports Med. 1999 Nov; 20 (8): 563-6.

    9- https://doi.org/10.1177/0956797611416253

    10- [‘Red yeast rice’ as a cholesterol-lowering substance?Caution is warranted] – PubMed (nih.gov)

    11- The effect of N-acetyl-l-cysteine (NAC) on liver toxicity and clinical outcome after hematopoietic stem cell transplantation (nih.gov)

    12- Alcoholic Liver Disease: Pathogenesis and Current Management (nih.gov)

    Integrazione di antiossidanti durante l’uso di DNP: potrebbe essere utile?

    Introduzione:

    In rete sono consultabili articoli a tema DNP, scritti da improvvisati biochimici o da qualche “guru” del settore Fitness e BodyBuilding, nei quali si espongono “consigli” sulla riduzione degli effetti collaterali legati all’uso di questo disaccoppiante della fosforilazione ossidativa. Alcuni di questi sono incentrati sulla caratteristica del DNP di aumentare massivamente i radicali liberi. Per ovviare a ciò, si riportano mix integrativi caratterizzati da antiossidanti come la Vitamina C, il NAC o direttamente il Glutatione. Ma tale pratica svolge un reale effetto riduttivo sui potenziali danni di una concentrazione elevata di radicali liberi DNP dipendente? Se si legge lo studio svolto su animali che i biologi finlandesi hanno pubblicato su “Comparative Biochemistry and Physiology Part C”, la risposta a questa specifica domanda potrebbe essere negativa o, comunque, l’effetto potrebbe essere poco rilevante nel contesto del tentativo di ridurre gli effetti collaterali del nitrocomposto in questione.[1] Lo so, stiamo parlando di uno studio su animali, ma ci offre comunque una visione d’insieme abbastanza concreta per porre ipotesi sull’efficacia di questa supplementazione sull’impatto negativo correlato all’uso di DNP.

    2,4-dinitrofenolo

    Dettagli dello studio:

    Antoine Stier dell’Università di Turku in Finlandia ha svolto il suo esperimento utilizzando i fringuelli zebra. Gli animali sono stati divisi in due gruppi: al primo era stata somministrata acqua potabile per 4 anni mentre all’altro gruppo ha ricevuto acqua potabile contenente DNP. Ai fringuelli sono stati somministrati 4mg di DNP per chilo di peso corporeo al giorno. Se il dosaggio usato nei fringuelli fosse stato trasposto agli esseri umani, essi avrebbero ricevuto solo una frazione di quella dose. Il metabolismo dei fringuelli zebra è molto più elevato di quello dell’uomo.

    Fringuelli zebra

    Risultati dello studio:

    I fringuelli trattati con il DNP, ovviamente, risposero alla somministrazione con un calo del peso e della massa grassa. Allo stesso tempo, i fringuelli del gruppo DNP vivevano il 21% in meno rispetto ai fringuelli del gruppo di controllo [solo acqua potabile].

    Di per sé, la durata della vita più breve dei fringuelli zebra trattati con DNP non sorprende. Il DNP è un dissipatore di ATP sotto forma di calore, il che causa una produzione massiva di radicali liberi nei mitocondri. Da qui il consiglio di assumere quantità significative di antiossidanti con il DNP . Ma, stranamente, la concentrazione del perossido di idrogeno (uno dei due radicali liberi più conosciuti a contenuto d’ossigeno [ROS da Reacting Oxygen Species]) non è aumentata nei fringuelli zebra del gruppo DNP.

    Conclusione:

    Lo studio evidenzia che, anche a una dose moderata […], un trattamento cronico con DNP può abbreviare la durata della vita. Il DNP promuove il flusso di protoni non solo attraverso la membrana mitocondriale, ma anche attraverso la membrana plasmatica. Questo potrebbe essere un elemento chiave che spiega l’impatto negativo del DNP sulla durata della vita, ma potrebbe essere potenzialmente risolto utilizzando disaccoppiatori di prossima generazione (ad esempio BAM15) specifici per la membrana mitocondriale. Ulteriori studi che indagano i percorsi molecolari e fisiologici attraverso i quali il DNP riduce la durata della vita nei fringuelli zebra sarebbero utili per consentire indagini mirate di effetti deleteri subletali in altri modelli animali e potenzialmente nell’uomo. Il presente studio dovrebbe essere un potenziale segnale di avvertimento per gli attuali utilizzatori di DNP e sollevare domande per gli scienziati che indagano sull’uso del DNP come medicinale.

    Quindi è inutile una supplementazione a base di antiossidanti per attenuare gli effetti collaterali cellulari legati alla somministrazione di DNP? Beh, dai risultati sembrerebbe che la questione radicali liberi sia addirittura molto secondaria nella lista degli effetti collaterali DNP-dipendenti ma, ed è da tenere in considerazione, parliamo di uno studio effettuato utilizzando una specie con caratteristiche nettamente differenti da quella umana e, oltretutto, lo studio è stato svolto con dosaggi di DNP somministrati in cronico (4 anni). Ovviamente, gli utilizzatori di DNP usano tale composto solo per brevi periodi di tempo; parliamo di una media di 2 settimane consecutive.
    Detto ciò, l’assunzione di antiossidanti non è da considerarsi (al momento) del tutto inutile visto il tasso di stressor aggiuntivi ai quali il soggetto in trattamento con DNP viene sottoposto.

    Nota: l’effetto collaterale predominante e incisivo (non che letale) del DNP rimane lo shock termico da dose letale la quale è molto vicina alla dose comunemente utilizzata a scopi termogenici.

    Gabriel Bellizzi

    Riferimenti:

    1. https://doi.org/10.1016/j.cbpc.2020.108944

    Methylepitiostanolo e Cyanostano: dai numerosi casi studio sull’abuso alla scarsa letteratura scientifica.

    Introduzione:

    In questo articolo ho intenzione di trattare due “designer-steroid”(DS), il Methylepitiostanolo e Cyanostano. Per la pima molecola (Methylepitiostanolo) mi soffermerò sull’aspetto dei potenziali effetti collaterali ad essa legati e manifestatisi in numerosi casi [1] mentre, nel secondo caso (Cyanostano) sottolineerò la scarsità di letteratura di riferimento e quanto la mancanza di essa possa essere fonte di problemi per l’utilizzatore. [2]

    Methylepitiostanolo e i potenziali effetti del suo abuso:

    Come già riportato in un mio vecchio articolo dedicato a questa molecola, il Methylepitiostanolo (commercialmente noto con i nomi di  Epistane, Hemapolin, Havoc, Epi Plex, ecc…), è anche conosciuto come 17α-Methylepitiostanolo o 2α, 3α-epithio-17α-metil-5α-androstan-17β-olo, è uno steroide steroide androgeno-anabolizzante sintetico (AAS) derivato 17α-metilato del Epitiostanolo, un AAS con azione  antiestrogenica utilizzato nel trattamento del cancro al seno in Giappone; e in modo simile al Mepitiostano (estere Epitiostanolo 17-methyloxycyclopentyl), è una versione attiva per via orale del  Epitiostanolo. Il Methylepitiostanolo è una forma modificata del Diidrotestosterone (DHT), differendo dalla molecola di partenza per l’aggiunta di un gruppo metilico in posizione C-17, che contribuisce alla protezione dell’AAS durante somministrazione orale e successivo transito epatico e ne aumenta la refrattarietà di legame con le SHBG, e la sostituzione del 3-cheto gruppo rende la molecola maggiormente potente nel legame recettoriale aumentando di conseguenza il suo potenziale Anabolizzante e Androgeno nel tessuto muscolo-scheletrico.

    Nota: la Androgeno:Anabolico ratio del Methylepitiostanolo è pari a 91:1100 (riferimento al Methyltestosterone orale 94-130:115-150)

    Methylepitiostanolo  

    Il Methylepitiostanolo  è stato descritto per la prima volta  nel 1966, durante una serie di ricerche sulla modifica dell’anello-A dei derivati del Androstane. Nello stesso anno è stata analizzata la sua potenza androgena e anabolizzante attraverso studi su ratti normali, dimostrando spiccate proprietà anabolizzanti con un potere androgeno tutto sommato contenuto. I risultati del test sono stati probabilmente più simili a quelli del Desoxymethyltestosterone (Madol), anche se il Methylepitiostanolo  mostra la metà del valore androgenico. Sebbene i risultati dei test sugli animali erano molto favorevoli, questo composto non arrivò fino al punto di essere testato su soggetti umani. Come successo per molti altri AAS, il Methylepitiostanolo  è stato esaminato ma non è stato mai immesso sul mercato dei farmaci da prescrizione. Per quarant’anni, del composto se ne persero quasi totalmente le tracce, resistendo solo come elemento di interesse per la ricerca.

    Il Methylepitiostanolo  riemerse dall’oscurità della ricerca alla fine del 2006, quando una nuova società denominata Recomp Performance Nutrition lo  introdusse sul mercato statunitense dei prodotti OTC con il nome commerciale di Havoc. Viene venduto come prodotto OTC a causa del fatto che i brevetti del mercato  degli integratori alimentari non sono strettamente regolamentati, e il composto in questione non è mai stato classificato (in particolare secondo la legge), come uno steroide anabolizzante. Mentre i regolamenti che impedirebbero la vendita di un nuovo farmaco non approvato come integratore alimentare esistono, non hanno lo stesso peso come le leggi sul controllo degli steroidi anabolizzanti, e sono da sempre non applicate in modo aggressivo.

    Nel 2015, i ricercatori dell’Università di Malaga hanno pubblicato 25 casi studio i quali riportavano i danni epatici osservati negli utilizzatori di AAS spagnoli e ispanoamericani.[3] I casi risalgono al periodo 2001-2013.

    Nello studio, l’AAS che ha mostrato di causare più frequentemente danni al fegato è stato lo Stanozololo. Non sorprende, dal momento che lo Stanozololo è uno degli AAS più abusati in ambiente sportivo. Più sorprendente (per posizione) è stato il numero 2 nella Top 5 degli AAS tossici per il fegato compilata dai ricercatori. Si trattava, appunto, del Methylepitiostanolo, uno DS che sappiamo benissimo essere ancora presente nel mercato.

    Nel 2020, altri ricercatori affiliati all’Instituto de Investigacion Sanitaria La Fe hanno pubblicato altri quattro casi di danno epatico da Methylepitiostanolo.[4]

    Generalmente, quando gli AAS orali causano danni epatici, essi coinvolgono la colestasi. Ciò significa che il fegato non può più trasportare correttamente la bile nell’intestino perché i dotti biliari sono bloccati. Il corpo produce la bile dal colesterolo e il corpo si sbarazza del colesterolo attraverso la bile. Se l’espulsione della bile è compromessa, si deteriora anche l’equilibrio del colesterolo.

    Allo stesso tempo, anche lo smaltimento della bilirubina è compromessa. La bilirubina viene rilasciata durante la degradazione dei globuli rossi. La bilirubina viene espulsa dal corpo attraverso la bile. Nello studio del 2020, la quantità totale di acidi biliari nel corpo degli utilizzatori di Methylepitiostanolo è aumentata di un fattore da 14 a 61. La figura seguente mostra che la concentrazione di bilirubina in tre degli utilizzatori ha superato i 20mg per decilitro.

    A quella concentrazione, la bilirubina può danneggiare i reni. Questo è accaduto ad un altro bodybuilder di 40 anni che utilizzava il Methylepitiostanolo, sul cui caso la nefrologa Monica Milla Castellanos ha pubblicato un caso di studio nel 2018.[5]

    L’uomo presentava i classici sintomi da danno epatico, come ittero e prurito. La concentrazione di bilirubina nel sangue era alta. Inizialmente, la sua concentrazione di creatinina era normale. Un livello normale di creatinina oscilla tra 0,84 e 1,21. Dopo pochi giorni, tuttavia, il livello di creatinina era salito a livelli preoccupanti. La ricercatrice ha rilevato la bilirubina nelle urine dell’uomo.

    Apparentemente l’alta concentrazione di bilirubina ha danneggiato i reni dell’uomo, quindi i medici hanno deciso di trattare il paziente con farmaci come i corticosteroidi e, quando ciò si è rivelato non essere di sufficiente impatto terapeutico, il trattamento è passato alla terapia dialitica [MARS, CVVHD].

    I danni ai reni causati dall’abuso di AAS non sono rari. Nello studio dell’Università di Malaga sopra menzionato, il 31% degli utilizzatori di AAS con danni al fegato ha sviluppato anche danni ai reni.

    Adesso passiamo al Cyanostano…

    Cyanostano caratteristiche e “zone d’ombra”:

    Il Cyanostano è strutturalmente simile al Methyldrostanolone (Superdrol), differendo da esso per la presenza di una sostituzione del legame 2α-metilico con un legame cianidrico (caratteristica per l’appunto mancante nel Methyldrostanolone e che lo rende stabile nel 3-Chetogruppo e, di conseguenza, più anabolizzante).

    Cyanostano

    Le aziende che vendono il Cyanostano affermano che la molecola sia uno steroide anabolizzante molto efficace. L’affermazione principale è che la Androgeno:Anabolico ratio del Cyanostano sia sorprendentemente alto. Alcuni speculatori, senza citare nemmeno le fonti, hanno riportato una A:A ratio pari a 45:800.

    Chiunque voglia scoprire su quale ricerca scientifica si basano queste affermazioni rimarrà sorpreso. Se si cercano informazioni sul Cyanostano nel lavoro di Julius Vida “Androgens and Anabolic Agents”, ci si imbatte in uno steroide anabolizzante che assomiglia al Cyanostano e ha le proprietà che l’industria degli integratori attribuisce allo stesso.

    Tuttavia, questo promettente AAS non è il Cyanostano. Il Cyanostano può essere descritto come 2-ciano-metil-DHT, mentre l’agente anabolizzante descritto da Vida è il 2-ciano-madolo. Vida trovò le informazioni riportate in un articolo che i ricercatori della società farmaceutica americana Syntex avevano pubblicato sul Journal of Organic Chemistry nel 1964.[6]

    E in quell’articolo ci si imbatte nel Cyanostano. Già nella prima pagina. È lo steroide 1a. Modificando questo steroide, precedentemente descritto in un articolo del 1960 su “Chemistry & Industry” (di cui non sono riuscito a procurarmi una copia), il dipartimento di ricerca della Syntex aveva realizzato una serie di analoghi delta-2 che erano piuttosto attivi. Almeno secondo i loro studi sugli animali.

    I nuovi analoghi delta-2 sono “un po ‘più androgeni” del Testosterone e del Methyltestosterone e “hanno un’attività miotrofica che è molte volte quella degli standard di riferimento”. Questi standard di riferimento sono ovviamente il Testosterone e il Methyltestosterone. Il Cyanostano in sé non è molto promettente, e lo si può capire leggendo le prime righe dell’articolo.

    Eh no, non penso che i ricercatori si siano sbagliati confondendo le molecole tra loro…

    Conclusioni

    Qualcuno si domanda ancora perchè la liberalizzazione dei farmaci per il miglioramento delle prestazioni sia una cattiva idea quanto si è dimostrata esserlo quella di vietarli e dare spazio alla criminalità organizzata di lucrare sul loro mercato nero. Si tratta di molecole aventi impatto marcato e differenziato sull’intero organismo, non si tratta di prodigiosi elisir che trasformano roiti umani in atleti dall’estetica sopra la media, e certamente non lo fanno in condizioni di forte abuso.
    In conclusione, abbandonate la filosofia del “il fine giustifica i mezzi” e, piuttosto, abbracciate quella “di necessità virtù”… chi vuole capire capisca …

    Gabriel Bellizzi

    Riferimenti:

    1- https://doi.org/10.1016/j.nefro.2017.03.017

    2- https://doi.org/10.1021/jo01034a042

    3- https://doi.org/10.1111/apt.13023

    4- https://doi.org/10.1007/s00204-019-02643-y

    5-https://doi.org/10.1016/j.nefro.2017.03.017

    6- https://doi.org/10.1021/jo01034a042

    Supplementazione di Creatina e salute ossea

    Introduzione

    Con l’invecchiamento, sia gli uomini che le donne, oltre alla perdita di massa muscolare (sarcopenia) devono far fronte alla perdita della densità minerale ossea (osteopenia), condizione che si aggrava in modo significativo dopo i quarant’anni. Il ritmo della degradazione ossea e di danno ad esso correlato aumenta con l’età. L’allenamento contro-resistenza può rallentare il processo. E anche l’uso della Creatina sembra poter coadiuvare il processo protettivo aumentandolo, come osservato e riportato dai ricercatori della University of Saskatchewan in Canada.[1]

    Dettagli dello studio

    I ricercatori hanno svolto il loro studio utilizzando diciotto donne in post-menopausa e dividendole in due gruppi. L’età media dei soggetti osservati era di 57 anni.

    Le donne reclutate per lo studio si allenavano tre volte a settimana in sala pesi, allenando i loro gruppi muscolari più grandi eseguendo esercizi base come Hack Squat, Hamstring Curl, Back Extension, Bench Press, Lat Pull-Downs e Shoulder Press. Le donne hanno eseguito 3 serie da 10 ripetizioni per ogni esercizio, con un carico dell’80% del 1RM. A un gruppo è stata somministrata Creatina, ad una dose di 0,1g per kg di peso corporeo al giorno. L’altro gruppo ha ricevuto un placebo. Prima dell’inizio dell’esperimento e dopo che le donne si erano allenate per un anno, i ricercatori hanno eseguito delle scansioni per misurare la densità ossea dei soggetti.

    Risultati dello studio

    La diminuzione della massa ossea nel collo del femore delle donne nel gruppo trattato con Creatina si era quasi arrestata. Nelle donne che non avevano assunto Creatina la degradazione ossea è continuata. Questa è una scoperta rilevante perché le persone con osteoporosi spesso incorrono nella rottura del collo del femore quando si lesionano all’anca. La guarigione è spesso lenta o non avviene.

    Conclusioni

    L’effetto della matrice ossea nel collo del femore è stato l’unico effetto benefico statisticamente significativo sullo scheletro osservato dai ricercatori.

    L’aumento della forza muscolare è stato modesto in tutte i soggetti e le donne in entrambi i gruppi hanno perso massa magra. Allenarsi tre volte a settimana per un anno e perdere massa magra? Probabilmente, i soggetti dello studio potrebbero non essersi allenati molto duramente e/o non hanno seguito una dieta adeguata (è probabile una co-fattorialità).

    E’ comunque possibile che l’effetto positivo dell’allenamento contro-resistenza sulla massa ossea – con o senza Creatina – sia maggiore di quanto suggerito da questo studio.

    Gabriel Bellizzi

    Riferimenti:

    1- Med Sci Sports Exerc. 2015 Aug;47(8):1587-95. (doi.org)

    Dieta ad alto apporto proteico e Capsaicina: maggiore effetto sulla perdita di peso?

    Introduzione

    Questione ormai conosciuta è l’effetto delle proteine sulla sazietà percepita. E’ infatti risaputo che, dopo il consumo di proteine (ma anche di grassi) nel duodeno e nella prima parte dell’intestino si libera un ormone, la Colecistochinina (CCK), che segnala al cervello di smettere di mangiare. Inoltre,
    nell’intestino e nel colon, le proteine ​ingerite determinano la produzione di un altro ormone saziante, il PYY. Il suo livello si alza dopo 1-2 ore dal pasto e rimane alto per circa 6 ore, limitando così l’insorgenza dell’appetito in questo periodo di tempo. Quindi, le proteine, da un lato, grazie al CCK e all’effetto del PYY, favoriscono la sazietà. Altrettanto conosciuto è il maggiore effetto sulla TID (Termogenesi Indotta dalla Dieta) dato dall’azione dinamica specifica delle proteine le quali, con variabili date dalla fonte, per essere digerite ed assimilate richiedono un dispendio energetico tra il 10 ed il 35% (media del 22,5%).

    Da quanto riportato in uno studio pubblicato sette anni fa (2013) sul Journal of Nutrition [1], sembrerebbe che l’aggiunta di Capsaicina, uno degli alcaloidi responsabili della maggior parte della “piccantezza” dei peperoncini, ad una dieta con alto apporto proteico possa migliorarne l’effetto, migliorando ulteriormente il tempo e grado di efficacia di una dieta ipocalorica.

    Dettagli dello studio

    I ricercatori che hanno svolto lo studio in questione, hanno reclutato 28 soggetti sani facendoli permanere per otto periodi di 24 ore in una camera di respirazione, dove potevano essere osservati e misurate le quantità esatte di calorie ossidate dagli individui in osservazione. In ogni occasione i soggetti hanno ricevuto pasti diversi.

    1. Ai soggetti è stato somministrato il 100% della quantità calorica ossidata giornalmente. Il 10% della quota calorica dei pasti proveniva dalle proteine.
    2. Ai soggetti è stato somministrato l’80% della quantità calorica ossidata giornalmente. Il 10% della quota calorica dei pasti proveniva dalle proteine.
    3. Ai soggetti è stato somministrato il 100% della quantità calorica ossidata giornalmente. Il 10% della quota calorica dei pasti proveniva dalle proteine. Inoltre ai soggetti sono state somministrate 2 capsule contenenti 40.000 unità di calore Scoville dal pepe ad ogni pasto (Capsaicina).

    La sostanza bioattiva più importante del pepe è la Capsaicina. I nutrizionisti hanno utilizzato un prodotto realizzato dalla Solaray. [solarayuk.co.uk]

    1. Ai soggetti è stato somministrato l’80% della quantità calorica ossidata giornalmente. Il 10% della quota calorica dei pasti proveniva dalle proteine. Inoltre, i soggetti hanno assunto 2 capsule contenenti 40.000 unità di calore Scoville dal pepe ad ogni pasto.
    2. Ai soggetti è stato somministrato il 100% della quantità calorica ossidata giornalmente. Il 25% dell’introito calorico dei pasti proveniva dalle proteine. I ricercatori hanno ridotto la quantità di carboidrati sostituendola con proteine.
    3. Ai soggetti è stato somministrato l’80% della quantità calorica ossidata giornalmente. Il 25% dell’introito calorico dei pasti proveniva dalle proteine.
    4. Ai soggetti è stato somministrato il 100% della quantità calorica ossidata giornalmente. Il 25% dell’introito calorici dei pasti proveniva dalle proteine. Inoltre i soggetti hanno assunto 2 capsule contenenti 40.000 unità di calore Scoville dal pepe ad ogni pasto (Capsaicina).
    5. Ai soggetti è stato somministrato l’80% della quantità calorica ossidata giornalmente. Il 25% dell’introito calorico dei pasti proveniva dalle proteine. Inoltre, i soggetti hanno assunto 2 capsule contenenti 40.000 unità di calore Scoville dal pepe ad ogni pasto (Capsaicina).

    Risultato dello studio

    Come mostrato nella figura seguente, il ridotto apporto calorico ha portato ad una riduzione del 5% del dispendio energetico dei soggetti osservati. La riduzione del dispendio energetico a seguito della riduzione dell’apporto calorico non si è verificata quando i soggetti assumevano la Capsaicina o aumentavano il loro apporto proteico. La combinazione di una dieta ricca di proteine con la componente supplementare di Capsaicina ha portato a migliori risultati.

    Colonne chiare: apporto calorico = 100% delle calorie ossidate; Colonne scure = apporto calorico = 80% delle calorie ossidate .

    La Capsaicina integrativa di per se ha mostrato effetti anoressizzanti causando, consequenzialmente, una migliore compliance del protocollo alimentare. I ricercatori hanno riportato risultati migliori nei soggetti che seguivano una dieta ricca di proteine combinata con l’integrazione di Capsaicina. Indi, si è verificato un effetto additivo sulla soppressione della fame.

    Sembrerebbe, quindi, che una combinazione di Capsaicina con la sostituzione di una parte dell’introito calorico giornaliero proveniente dai Carboidrati con Proteine, ed un apporto calorico pari al 20% in meno del totale di mantenimento, possa portare ad un maggiore dispendio energetico e sazietà rispetto a una dieta di controllo del solo bilancio energetico.

    In conclusione, i ricercatori sottolineano che l’efficacia della combinazione di Capsaicina e Proteine dovrebbe essere ulteriormente valutata in studi sulla perdita di peso ben progettati su individui in sovrappeso e obesi.

    Nota: è utile aggiungere che se si è intenzionati a testare l’effetto della Capsaicina sulla perdita di peso, bisogna tenere in considerazione la tollerabilità individuale alla molecola. Infatti, alle dosi di Capsaicina utilizzate dai ricercatori, specie sul lungo termine, possono causare problemi gastrointestinali (stomaco e tratto digerente).[2]

    Gabriel Bellizzi

    Riferimenti:

    1- https://doi.org/10.3945/jn.112.170613

    2- https://doi.org/10.1519/jsc.0b013e3182429ae5

    Niacina – uso e controindicazioni –

    b3

    La Niacina è largamente utilizzata dagli atleti supplementati chimicamente, in special modo da coloro i quali usano molecole con un potenziale negativo marcato sui lipidi ematici. Ma come spesso capita, gli utilizzatori non conoscono a sufficienza le caratteristiche di ciò che assumono, e questa essenziale vitamina del gruppo B  (B3) non è da meno. Per la maggior parte degli individui tanto basta sapere che una sua integrazione si traduce in livelli migliorati di Colesterolo e Trigliceridi. Purtroppo, però, si trascurano caratteristiche importanti la cui conoscenza può fare la differenza tra un uso più o meno funzionale per la salute sistemica. Infatti,  un effetto collaterale dell’integrazione di Niacina è un peggioramento della resistenza all’insulina, cosa che limita i benefici di tale supplementazione sulla salute cardiovascolare  se non vengono prese adeguate precauzioni.

    Prima di correre a defenestrare in preda al panico la vostra Niacina, leggete con attenzione (e comprendete) le informazioni che seguono…

    Introduzione alla Niacina (vitamina B3)

    1024px-Niacin_structure.svg
    Niacina

    La Niacina, nota anche come Acido Nicotinico, è un composto organico e una forma di vitamina B3, un micronutriente essenziale per l’essere umano. [1] La Niacina ha formula bruta C6H5NO2 e appartiene al gruppo dell’acido piridinecarbossilico.[1] Come precursore di NAD e NADP, la Niacina è coinvolta nella riparazione del DNA.[2] La Niacina viene assunta attraverso la  dieta da una varietà di alimenti interi e trasformati, con il più alto contenuto in alimenti confezionati fortificati, carne, pollame, pesce rosso come tonno e salmone, con minori quantità nelle noci, legumi e semi. [1] [3] La Niacina come integratore alimentare viene anche utilizzata per trattare la pellagra, una malattia causata da una sua carenza. Segni e sintomi includono lesioni della pelle e della bocca, anemia, mal di testa e stanchezza.[4] Molti paesi richiedono la sua aggiunta alla farina di grano o ad altri cereali, riducendo così il rischio di pellagra.[1][5] Come vitamina, le raccomandazioni di dosaggio giornaliero indicate in diversi paesi sono 14-18mg/die per gli adulti, quota sufficiente per soddisfare le esigenze delle persone sane. [6] [7] [8]

    niacina

    Sebbene la Niacina e la Nicotinamide (Niacinamide) siano identiche nella loro attività vitaminica, la Nicotinamide non ha gli stessi effetti farmacologici, modificanti i lipidi o gli effetti collaterali della Niacina, cioè quando la Niacina assume il gruppo -amide, non riduce il Colesterolo né causa vampate di calore.[9][10] La Nicotinamide è raccomandata come trattamento per la carenza di Niacina poiché può essere somministrata in quantità correttive senza causare l’effetto negativo del rossore.[11]

    cholesterol-niacin

    La Niacina è anche un farmaco di prescrizione. Quantità molto superiori all’assunzione dietetica raccomandata per le funzioni vitaminiche ridurranno i Trigliceridi nel sangue e le   lipoproteine a bassa densità (LDL-C) e aumenteranno le  lipoproteine  ad alta densità (HDL-C). Ne esistono due forme: Niacina a rilascio immediato e a rilascio prolungato. Le quantità iniziali di prescrizione sono di 500mg/die, con possibilità di essere aumentate nel tempo fino a raggiungere l’effetto terapeutico ricercato. Le dosi a rilascio immediato possono arrivare fino a 3g/die;  quelle a rilascio prolungato fino a 2g/die. [12] Nonostante i comprovati cambiamenti lipidici, la Niacina non è stata trovata utile per ridurre il rischio di malattie cardiovascolari nei soggetti già in trattamento con statine. [13] Una review  del 2010 aveva concluso che l’efficacia della Niacina si osservava in mono-terapia, [14] ma una review  del 2017 che incorporava il doppio del numero degli studi ha concluso che la Niacina su prescrizione, pur influenzando i livelli lipidici, non riduceva la mortalità per tutte le cause, la mortalità cardiovascolare, gli infarti del miocardio, né ictus  fatali o non fatali. [15] È stato dimostrato che la Niacina da prescrizione provoca epatotossicità [16] e aumenta il rischio di diabete di tipo 2. [17] [18] Le prescrizioni di Niacina negli Stati Uniti avevano raggiunto il picco nel 2009, a 9,4 milioni, in calo a 1,3 milioni entro il 2017.[19]

    Niacina, flusso ematico, pressione e vasodilatazione

    vene-braccio-wiki

    Uno studio sulla supplementazione di Niacina che ha valutato il flusso sanguigno dell’avambraccio non è riuscito a trovare un effetto significativo fino a 1g al giorno somministrati nel corso di due settimane in soggetti altrimenti sani, [20] e 1.5g di Niacina a rilascio prolungato negli uomini con sindrome metabolica non sono riusciti a influenzare la dilatazione flusso- mediata (FMD). [21] Un altro  studio  non è riuscito a trovare un effetto significativo in un intero gruppo di pazienti affetti da afta epizootica, mentre in un gruppo di pazienti con malattia coronarica ha riscontrato un miglioramento in un sottogruppo con bassi livelli  HDL-C. [22]

    In soggetti con bassi livelli di HDL-C, è stato osservato che 1g di Niacina a rilascio prolungato per una settimana aumenta il flusso sanguigno (via FMD) del 4,5%; questo meccanismo non era correlato alle Prostaglandini, poiché il Laropiprant (un inibitore della Prostaglandine D2) non ha influenzato l’effetto. [23] Questo effetto ha anche coinciso con un aumento della bilirubina indiretta (ma non totale) del 62%. [23] Poiché la bilirubina del acido biliare è un antiossidante endoteliale, [24] e poiché i benefici della niacina sulla funzione endoteliale in questo studio sono stati ritenuti dipendenti dall’ossido nitrico, [23] è stato ipotizzato che un effetto conservativo  della bilirubina sulla biodisponibilità dell’ossido nitrico sia alla base della beneficio osservato. Sia l’aumento della bilirubina che il miglioramento del flusso sanguigno si sono dissipati una settimana dopo l’interruzione della Niacina.[23]

    Laropiprant.svg
    Laropiprant

    I soggetti che in precedenza avevano subito  infarto del miocardio, a seguito del trattamento con  Niacina (con Laropiprant) hanno riscontrato  un aumento del flusso sanguigno dipendente dall’ossido nitrico (FMD) dopo dodici settimane di terapia insieme a un miglioramento della vasodilatazione indotta da nitroglicerina, entrambe non correlate con alterazioni dei trigliceridi. [25] Miglioramenti simili nel flusso sanguigno sono stati osservati in pazienti con infezione da HIV e con bassi livelli di HDL-C trattati con la sola Niacina. [26]

    Prostaglandin_D2_structure
    Prostaglandine D2 (PGD2)

    È noto che la Niacina influenza il diametro dei vasi sanguigni, in particolare per via della sua reazione vasodilatativa cutanea (allargamento dei vasi nella pelle), che ha portato a ipotizzare che potrebbe influenzare la pressione sanguigna aumentando il diametro   delle arterie e vene. Tuttavia, una review  [27] ha notato che un possibile effetto di riduzione della pressione arteriosa della Niacina è indipendente dalla Prostaglandine che media il rossore, nota come PGD2.

    È stato osservato che le infusioni di Niacina riducono acutamente la pressione sanguigna negli ipertesi senza alcun effetto nei soggetti con pressione sanguigna normale ed è stata associata ad un aumento della gittata cardiaca e della frequenza cardiaca che era simile in entrambi i gruppi. [28] Un altro studio ha confermato questo risultato, scoprendo che la pressione arteriosa ambulatoriale di 24 ore non sembra essere influenzata da un supplemento di Niacina fino a 1g nell’arco di due settimane in soggetti altrimenti sani. [20]

    In termini di effetti della Niacina in cronico sulla pressione sanguigna, una review [27] che ha valutato gli studi che hanno misurato la pressione sanguigna negli ipertesi [29] [30] [31] [32] non ha notato alcun effetto statisticamente significativo nella riduzione della pressione sanguigna associata alla supplementazione di Niacina, sebbene questi studi in quanto a metodologie di  misurazione sulle  variazioni della pressione sanguigna non fossero ideali secondo gli autori della review. Tuttavia, la review  ha osservato che in un ampio studio (il Coronary Drug Project), che inizialmente non è riuscito a trovare alcuna influenza della terapia con Niacina sulla pressione arteriosa, [32] ha osservato variazioni sensibili soltanto sui soggetti con sindrome metabolica. Questi presentavano un lieve riduzione di 2,2mmHg della pressione arteriosa sistolica con una moderata riduzione di 2,9mmHg della pressione diastolica. [33] Un’analisi post-hoc di un altro studio clinico [34] ha rilevato che la pressione arteriosa sistolica è stata abbassata di 2,2mmHg e la pressione sistolica di 2,7 rispetto al placebo nei pazienti dislipidemici trattati per 24 settimane. [35]

    Niacina, Trigliceridi, Colesterolo e Aterosclerosi

    RF00463
    Apolipoproteina B

    La Niacina sembra abbassare i trigliceridi nel sangue inibendo sia la sintesi degli acidi grassi sia la loro esterificazione epatica per formare i trigliceridi, il che aumenta  il tasso di degradazione dell’apolipoproteina B riducendo la sua secrezione dalle cellule epatiche. [36] Un meccanismo con cui la Niacina fa questo è attraverso l’inibizione diretta e non competitiva della diacilglicerolo aciltransferasi 2 (DGAT2), l’enzima finale nella sintesi dei trigliceridi nelle cellule epatiche, senza inibizione della DGAT1. [37]

    vldl

    Si è visto che gli effetti della Niacina sulla sintesi dei trigliceridi influenzano i livelli sierici di lipoproteine a densità molto bassa (vLDL-C), dove la terapia con Niacina per 16 settimane in soggetti con malattia del fegato grasso non alcolica (NAFLD) sembra ridurre le vLDL-C nel siero così come i complessi con trigliceridi (vLDL-TG) e apolipoproteina B (vLDL-ApoB) rispetto al placebo e con una potenza paragonabile al fenofibrato. [38] La Niacina lo fa riducendo la secrezione epatica di vLDL-C, sebbene ciò non aumenti la quantità di trigliceridi nel fegato anche nello stato di NAFLD. [38]

    nefa

    Oltre ai suoi effetti sul fegato, la Niacina può anche sopprimere il rilascio di acidi grassi liberi dal tessuto adiposo [39] che normalmente verrebbero reesterificati come trigliceridi nel fegato e quindi secreti via vLDL. [40] Tuttavia, questo meccanismo specifico, che è mediato dal recettore HM74A, [39] non sembra essere rilevante per le proprietà riducenti dei trigliceridi della Niacina. [41]

    I benefici sui livelli di trigliceridi possono verificarsi entro una settimana dall’inizio della supplementazione con Niacina a rilascio prolungato (1g), sebbene in misura minore di circa il 4%. [23]

    L’integrazione di 1.5-2g di Niacina a rilascio prolungato per due anni con follow-up di un anno nelle persone in terapia con statine caratterizzate da bassi livelli di HDL-C ha mostrato una riduzione dei trigliceridi del 28,6% (statina da sola dell’8,1%). [42]

    Esiste un fenomeno noto come “rimbalzo degli acidi grassi” associato alla supplementazione di Niacina, in quanto l’azione iniziale del composto sul suo recettore (HM74A) nel tessuto adiposo può determinare una minore lipolisi e una minore secrezione di acidi grassi non esterificati (NEFA) nel sangue [43] e una migliore conservazione adiposa; [44] si tratta di fenomeni prontamente reversibili in quanto in un giorno di esposizione continua vi è un aumento netto del NEFA piuttosto che la sua soppressione [45] [46] [47] e alterazioni nel NEFA possono non riflette alterazioni dei trigliceridi.

    Il primo meccanismo pensato per spiegare il miglioramento del profilo sierico di colesterolo in seguito alla supplementazione di Niacina è stato attraverso la riduzione del rilascio di acidi grassi non esterificati (NEFA) dai tessuti, che non è più considerato un probabile meccanismo in quanto l’integrazione di niacina in cronico è associata ad un aumento, piuttosto che alla soppressione, di NEFA mentre il recettore HM74A appare superfluo in termini di effetti della Niacina nei topi  con altri ligandi del HM74A (Acipimox [48] e MK-0354 [49]) che si sono  mostrati rispettivamente meno efficaci o inefficaci sul colesterolo. Attualmente si ritiene che l’influenza della Niacina sui NEFA nel  siero non sia un fattore determinante nel modo in cui influenza i livelli di colesterolo nel corpo, con le teorie attuali che ipotizzano che il fattore sia determinato dalla sua sintesi e dal suo tasso di catabolismo.

    Il primo potenziale meccanismo prevede la sintesi di HDL-C nel fegato attraverso l’aumento della trascrizione del gene ABCA1 (che dipende dal legame LXRα alla regione del promotore DR4 di questo gene). [50] L’attività di ABCA1 promuove la “lipidazione” della principale proteina dell’HDL nota come apolipoproteina AI (ApoAI) aumentando il tasso che associa ai fosfolipidi e al colesterolo, [51] [52] un passaggio obbligatorio nella sintesi dell’HDL-C che è aumentato di 500-1000µM con Niacina in vitro. [50] Questo meccanismo non è stato confermato, poiché mentre l’ApoAI può essere aumentato parallelamente all’aumento dell’HDL-C in soggetti trattati con Niacina e con livelli di HDL-C  bassi di base, [53] LXRα sembra richiedere un coattivatore (PPARγ) per esercitare questi effetti, [54] che è attivato dal recettore della Niacina. [55] Tuttavia, l’attività del recettore della Niacina non è stata richiesta per i suoi effetti sui livelli di colesterolo, suggerendo che altri meccanismi potrebbero essere rilevanti.

    PPARG
    PPARγ 

    L’altra teoria relativa alla sintesi di HDL dalla Niacina afferma che ciò dipenda dalla proteina di trasferimento dell’estere del colesterolo (CETP) nonostante la riduzione del colesterolo totale e dei trigliceridi non richieda per entrambe questa proteina. [56] [57] CETP è una proteina che facilita il trasferimento di lipidi tra diverse lipoproteine ​​(generalmente donando un trigliceride da vLDL a HDL e prendendo un estere di colesterolo in un processo noto come trasporto inverso di colesterolo. [58]) La Niacina riduce l’espressione di CETP nel fegato e la sua attività nel sangue dei topi; [56] una riduzione del CETP aumenta la quantità di HDL-C nel sangue poiché i tassi di catabolismo dell’HDL / LDL riflettono l’attività del trasporto inverso del colesterolo e raggiungono rapidamente l’equilibrio, [59] e se il CETP è ridotto allora sarebbe necessario più HDL per normalizzare i tassi di trasporto inverso del colesterolo.  Questo meccanismo può anche essere correlato a LXRα, poiché mentre un eteromero di LXRα con il recettore nucleare di vitamina A (RXR) attiva l’elemento DR4 aumenta la CETP [60] la Niacina agevola  l’eterodimerizzazione di LXRα e PPARγ che attiva ancora DR4, ma in un modo che promuove l’efflusso di colesterolo. [61-44] Questa eterodimerizzazione competitiva [62] non è stata ancora dimostrata sperimentalmente, e lo studio che ha utilizzato dosi di Niacina da 2g nell’uomo non è riuscito a trovare un’influenza sull’attività del CETP nel siero nonostante un aumento dell’HDL. [63]

    L’ultimo potenziale meccanismo per l’aumento dell’HDL non consiste nel suo incremento di sintesi ma piuttosto nel preservare il colesterolo HDL già sintetizzato arricchito con apoAI, riducendo il tasso in cui la lipoproteina viene assunta nelle cellule epatiche nonostante la donazione di colesterolo dall’HDL a queste cellule sia inalterata a causa della riduzione dell’espressione del recettore (catena beta sintasi ATP) che normalmente trasporta l’HDL nella cellula. [64] Questa ipotesi funziona meglio con le osservazioni che suggeriscono che il ridotto catabolismo dell’HDL è il principale fattore determinante dei suoi livelli più elevati, [65] e influenza anche l’apoA1 poiché la sua clearance dal sangue e l’assorbimento da parte dei reni sono ridotti. [66]

    Una supplementazione di Niacina a rilascio prolungato (1g) della durata di una settimana in soggetti con bassi livelli di HDL-C non sembra essere sufficiente da aumentare sensibilmente i livelli totali di HDL-C, sebbene sia stata notata una riduzione della dimensione media delle particelle; [23] le variazioni di HDL -C possono mediare un miglioramento della vasodilatazione dipendente dall’ossido nitrico, sebbene sia stato anche osservato un aumento della bilirubina indiretta. [23]

    L’integrazione prolungata di Niacina nei diabetici è associata ad un aumento della quantità e delle dimensioni particellari dell’HDL-C (32,7%) mentre le particelle di dimensioni più piccole sono diminuite (8,2%). [67]

    È stato osservato che la Niacina conferisce un effetto protettivo sulla mortalità cardiovascolare poiché una metanalisi [68] ha osservato che negli studi su soggetti con malattia coronarica la terapia con Niacina era associata a un minor rischio di rivascolarizzazione dell’arteria coronarica (RR di 0,31; IC al 95% di 0,15-0,63), infarto miocardico non fatale (RR di 0,72; IC al 95% di 0,60-0,86) e attacco ischemico transitorio (RR di 0,76; IC al 95% di 0,61-0,94) mentre la riduzione della mortalità complessiva non è riuscita a raggiungere significatività statistica (RR 0,883; IC 95% di 0,773-1,008).  I sette studi inclusi in questa meta-analisi [32] [29]  [31] [30] (e un follow-up [69]) hanno totalizzato 5137 pazienti che utilizzavano anche vari prodotti farmaceutici della classe di statine e fibrati .

    In uno studio i cui partecipanti erano in terapia con statine e avevano  bassi livelli di colesterolo HDL è stato rilevato che 1.5-2g di Niacina a rilascio prolungato sono stati in grado di fornire benefici additivi nel miglioramento dell’HDL-C (20%) e nella riduzione dell’LDL-C (17%) rispetto al placebo, sebbene per quanto riguarda l’endpoint clinico predeterminato (morte o ricovero in ospedale) sia la Niacina che il placebo avevano una uguale quantità di responder. [70] Questo studio ha rilevato un’alta percentuale di pazienti con sindrome metabolica (80%) e commenti [71] hanno suggerito che a causa di una possibile capacità della Niacina a rilascio prolungato di deteriorare l’insulino-resistenza [72] che i suoi benefici potrebbero essere compensati da questo effetto avverso, mentre lo studio stesso ha suggerito che i benefici delle statine hanno sostituito i benefici della Niacina.

    Mentre uno studio precedente che utilizzava alte dosi di Niacina a rilascio immediato (3g) ha riscontrato una riduzione della morte del 14% rispetto al placebo insieme a una riduzioni del colesterolo totale, [32] ed è stato osservato che questa riduzione è simile per grandezza agli studi che combinano statine con placebo.

    Microsoft Word - 2014-09-23_Gleissner-text.docx

    Studi in vitro suggeriscono che la Niacina potrebbe in teoria prevenire la formazione di placche aterosclerotiche riducendo l’infiammazione e il danno alla parete endoteliale attraverso diversi meccanismi. Limitate ricerche su animali  hanno mostrato  che la Niacina nella dieta, a concentrazioni paragonabili a quelle utilizzate per ridurre il colesterolo, riduce la deposizione della placca sulla parete dell’arteria e ritarda l’aterosclerosi.[73][74][75][76][77][78][79][80]

     

     

    Niacina e sue interazioni con il metabolismo del glucosio

    isolotti_pancreatici

    L’assunzione prolungata di Niacina è stata osservata causare una riduzione della  sensibilità all’insulina, causando un aumento compensativo della produzione di insulina da parte delle cellule  β del pancreas per mantenere i livelli di glucosio nel sangue. [81] La Niacina non sembra avere effetti diretti sulle cellule β pancreatiche, tuttavia, poiché la perfusione negli isolotti pancreatici (isole di Langerhans) di ratto isolati con Niacina in vitro non ha influenzato la secrezione di insulina. [82] Ciò indica che la Niacina aumenta la produzione di insulina mediante un meccanismo indiretto, secondario a causare insulino-resistenza periferica. È stato osservato che la supplementazione induce resistenza all’insulina a dosi comprese tra 500mg e 1g, che rientrano nell’intervallo di dosaggio che conferisce effetti di riduzione del colesterolo. [83]

    In particolare, sembra che sia necessaria una supplementazione cronica di Niacina per aumentare la produzione di Insulina, poiché in uno studio è stato dimostrato che la supplementazione acuta riduce i livelli di questo peptide in soggetti altrimenti sani prima di un picco dopo un giorno, [84] mentre altri studi in acuto hanno notato un effetto minimo o nullo sui livelli di Insulina. [85] [86] [87] [88]

    hepatite-journeemondiale-illustration-it-1080x1080

    Gli effetti dell’integrazione cronica di Niacina sui livelli di Insulina possono anche dipendere dalla popolazione. È stato osservato che la Niacina provoca iperinsulinemia in soggetti che invecchiano altrimenti sani [83] (1g / die) ed è stato dimostrato che quasi raddoppiano i livelli di Insulina nei soggetti con NAFLD (2g / giorno [89] [90]). Nei pazienti con sindrome metabolica, l’integrazione di Niacina a 6 settimane di somministrazione alla dose di 1.5g / die ha aumentato i livelli di Insulina del 30%. [91]

    Nei soggetti obesi con malattia del fegato grasso non alcolico (NAFLD), l’integrazione giornaliera di Niacina a rilascio prolungato (titolata fino a 2g) per 16 settimane sembrava aumentare lo stato di resistenza all’insulina nel fegato, nei muscoli e nel tessuto adiposo [89] con un effetto inibitorio sulle azioni dell’Insulina nel fegato notate negli uomini non diabetici con dislipidemia. [92]

    PBB_Protein_ADIPOQ_image
    Adiponectina

    Negli uomini adulti con sindrome metabolica, è stato osservato che la Niacina a rilascio prolungato alla dose di 1.5g ostacola in modo significativo la sensibilità all’Insulina, valutata dall’HOMA-IR (42%), che è stata associata ad un aumento dell’Insulina sierica nonostante un aumento dell’Adiponectina sierica. [91] Questo è stato notato anche in un altro studio (aumento del 22% dell’HOMA-IR), in cui l’Aspirina assunta insieme alla Niacina non ha impedito la comparsa di una ridotta sensibilità all’Insulina. [93]

    Questo effetto può persistere in soggetti altrimenti sani, poiché i soggetti trattati con 1g di Niacina per due settimane a cui veniva somministrato un clamp iperinsulinaemico-euglicemico richiedono meno glucosio per mantenere l’omeostasi, il che è indicativo di una riduzione dell’assorbimento del glucosio (attraverso un aumento dell’Insulino-resistenza). [94]

    La resistenza all’Insulina indotta dalla Niacina è stata inizialmente attribuita a un effetto di rebound  nel tessuto adiposo in cui un aumento del rilascio di acidi grassi non esterificati (NEFA) da parte della Niacina compromette gli effetti della segnalazione dell’Insulina. [95] [96] Ciò è plausibile, poiché la resistenza all’Insulina può essere indotta con infusione di NEFA in 24 ore nei roditori. [97] Altre fonti suggeriscono che la resistenza all’Insulina non è associata al rebound del NEFA, poiché i soggetti con NAFLD che sperimentano resistenza all’Insulina dalla terapia con Niacina non hanno necessariamente un aumento del NEFA nel siero. [89].

    Hypothetical-model-for-intracellular-roles-of-DGAT1-and-DGAT2-On-the-basis-of-the
    Modello ipotetico per i ruoli intracellulari del DGAT1 e DGAT2.

    Un’altra possibile opzione è che la Niacina può inibire in modo non competitivo l’enzima noto come diacilglicerolo aciltransferasi 2 (DGAT2) con un IC50 di 100 µM (potenza simile a circa 300 µM). [98] L’inibizione di questo enzima non causa di per sé resistenza all’insulina con la somministrazione di Niacina, [92] ma poiché il DGAT catalizza il primo stadio della sintesi dei trigliceridi, la sua inibizione può favorire l’accumulo di diacilglicerolo (DAG) che è la molecola che si ritiene spieghi parzialmente la resistenza all’insulina data dalla Niacina. [92] Poiché l’aumento del DAG nelle cellule del fegato sopprime la segnalazione dell’Insulina, [99-162] l’inibizione mediata dalla Niacina del DGAT2 provoca insulino-resistenza, [98] [89] ostacolando così la capacità dell’Insulina di sopprimere la sintesi di glucosio e promuovendo indirettamente uno stato di iperglicemia.

    Sebbene l’integrazione cronica di alte dosi di Niacina riduca la sensibilità all’Insulina, ciò non è associato a variazioni dei livelli di glucosio a digiuno. [90] Ciò può essere spiegato da un aumento compensativo della sintesi  di Insulina che contrasta la resistenza alla stessa, lasciando sostanzialmente invariati i livelli di glucosio nel sangue. [81]

    L’attivazione del recettore della Niacina (HM74A) da parte di alcuni altri agonisti sembra ridurre rapidamente il glucosio sierico nei diabetici migliorando la sensibilità all’Insulina [100] o comunque migliorando i tassi di smaltimento del glucosio. [101] Ciò indica che lo stesso recettore della Niacina  può avere effetti benefici sul metabolismo del glucosio e che la resistenza all’Insulina indotta dalla Niacina non si verifica tramite l’attivazione del HM74A.

    Quando si osserva il muscolo scheletrico, è stato dimostrato che la terapia con Niacina induce resistenza all’Insulina in questo tessuto in soggetti obesi con NAFLD (2g al giorno nel corso di 16 settimane). Uno studio svolto su ratti a digiuno (il digiuno aumenta la concentrazione plasmatica di acidi grassi non esterificati (NEFA), similmente alla somministrazione di Niacina [102-135] e diminuisce il glicogeno del muscolo scheletrico [103]) in cui sono stati accuratamente somministrati 20mg/kg di Niacina ha mostrato  che il glicogeno nel soleo era ridotto mentre il gastrocnemius e il fegato non sono stati influenzati. [103]

    260px-Pyruvaldehyde.svg
    Metilgliossale 

    Quando il processo di glicazione è testato in vitro, la Niacina ha avuto solo effetti inibitori minori sulla glicazione dell’albumina sierica bovina da un noto agente glicante (Metilgliossale [104]) nonostante altri antiossidanti testati come lo Zinco (10-25 µg / mL) avessero più potenti benefici. [105]

    È importante sottolineare che qualsiasi effetto della Niacina sulla glicazione in vitro deve essere interpretato con l’avvertenza che la Niacina riduce la sensibilità all’Insulina. Mentre la resistenza all’Insulina indotta dalla Niacina è ben compensata in soggetti sani giovani, lasciando sostanzialmente invariati i livelli di glucosio nel sangue, [81] la compensazione delle cellule β del pancreas negli individui più anziani o in quelli con ridotta tolleranza al glucosio era incompleta in uno studio, [83] causando aumenti nei livelli ematici di glucosio. Pertanto, la misura in cui la Niacina possa influenzare la glicazione in vivo non è chiara e probabilmente dipendente dalla popolazione.

    Obesità e massa grassa 

    hdl-where-are-we-and-where-are-we-going-24-728

    L’Adiponectina, un’adipochina nota per migliorare la sensibilità all’Insulina, per essere cardioprotettiva e ritenuta anche antiobesogena, [106] è aumentata in risposta all’attivazione mediata dalla Niacina del recettore HM74A nei topi. [107] La produzione di Adiponectina indotta dalla Niacina è stata rapida in questo studio, aumentando i livelli di questa adipochina del 37% entro 10 minuti da una dose di 30mg / kg per iniezione. I livelli sierici hanno raggiunto il picco dopo 60 minuti e sono rimasti elevati al di sopra del basale fino a 24 ore dopo la somministrazione. [107]

    PDB_1ax8_EBI (1)
    Leptina 

    È noto anche che la Leptina è aumentata in seguito alla somministrazione di Niacina nell’uomo [91], il che si ritiene si verifichi tramite un meccanismo simile poiché l’agonista farmaceutico HM74A Acipimox induce anch’esso la secrezione di Leptina dal tessuto adiposo in vitro [108] e in vivo. [109]

    È stato osservato che la supplementazione di Niacina nel corso di sei settimane negli uomini obesi aumenta l’Adiponectina sierica del 43-56%, con circa metà dell’aumento rappresentato dalla forma ad alto peso molecolare [93] [91] insieme a un aumento del 26,8% della Leptina [91 ] senza cambiamenti osservabili nella Resistina. [91] L’Adiponectina è stata osservata aumentare di circa il 30%  in soggetti obesi con NAFLD in risposta alla terapia con Niacina (fino a 2g al giorno), che era correlata con un aumento dell’Insulino-resistenza, [90] portando all’ipotesi che i due meccanismi siano intrecciati, forse come risposta adattativa. [90]

    resistina
    Resistina

    Lo “spillover” degli acidi grassi risultante da una conservazione inefficiente del grasso dopo un pasto aumenta i lipidi sierici non esterificati (NEFA), [110] che influenzano negativamente la sensibilità all’Insulina epatica, aumentando la produzione di VLDL e potenzialmente svolgono un ruolo causale nella steatosi epatica. [111] [112] La somministrazione in acuto di Niacina  (285 mg per via endovenosa) nell’uomo durante l’alimentazione ha dimostrato di ridurre lo spillover degli acidi grassi, promuovendo l’assorbimento del grasso alimentare nel tessuto adiposo e riducendo i Trigliceridi sierici e i NEFA. [113]

    Al contrario, è stato osservato che un trattamento prolungato con Niacina, noto per favorire la resistenza all’Insulina nell’uomo, induce la resistenza all’Insulina adipocitaria, [114] che favorirebbe lo spillover degli acidi grassi, aumentando i livelli sierici di NEFA.[115]

    220px-G6PD_-_3D_structure_-_PDB1qki
    Glucosio-6-fosfato deidrogenasi (G6PD) 

    È stato osservato che la Nicotinamide sopprime la differenziazione degli adipociti 3T3-L1 in modo dipendente dalla concentrazione con un range superiore a 10mM (il valore ED50), raggiungendo la soppressione completa a 20mM dopo nove giorni. [116] Si ritiene che ciò sia correlato a un effetto inibitorio sulla poli (ADP-ribosio) sintetasi, [116] che la Nicotinamide inibisce a 50µM mentre la Niacina non lo fa. [117] Quando aggiunta dopo differenziazione e in condizioni di glucosio elevato, la Nicotinamide sembra inibire il glucosio-6-fosfato deidrogenasi (G6PD) e prevenire il normale  stress ossidativo. [118]

    Il recettore dell’Acido Nicotinico è espresso negli dipociti in cui la sua attivazione sopprime l’adenilato ciclasi. [119] Questo effetto sembra essere circa il 30% più efficace negli adipociti rispetto ad altre linee cellulari (milza). [120] Poiché l’attivazione di questo recettore inibisce l’adenilato ciclasi, [119] e i fenolici che agiscono su di esso riducono anch’essi i tassi di lipolisi, [35] l’effetto complessivo dell’Acido Nicotinico sarebbe quello di ridurre la lipolisi negli adipociti, almeno a breve termine.

    a2

    A lungo termine, tuttavia, il recettore dell’Acido Nicotinico può essere desensibilizzato con esposizione cronica a un agonista [121] e uno studio sui topi ha evidenziato che gli adipociti che sono diventati insulino-resistenti dopo la terapia con Niacina hanno mostrato una maggiore reattività dei recettori adrenergici (β1 e β2) all’aumentare dei livelli di cAMP nella cellula adiposa, [114] (il cAMP viene normalmente soppresso dalla Niacina che agisce sul recettore GRP109A [119]). Ciò potrebbe essere stato correlato alla sottoregolazione  dei geni mediata dalla Niacina nella via di segnalazione dell’Insulina incluso il PDE3B, che normalmente degrada il cAMP, [114] una potenziale risposta adattativa nelle cellule adipose che è stata osservata avere la funzione di normalizzare i tassi di lipolisi (nei ratti sotto l’infusione di Niacina) . [97]

    Un piccolo studio su sette partecipanti altrimenti sani che assumevano Niacina a 500mg/die, e aumentando la dose a 2g nel corso di due settimane ha mostrato una riduzione dei tassi di ossidazione dei grassi. [94] Tuttavia, a causa di un aumento dei tassi di ossidazione dei carboidrati, non vi era alcuna differenza netta nel tasso metabolico tra Niacina e placebo [94].

    Downstream-targets-and-cellular-functions-of-SIRT1-SIRT1-regulates-a-variety-of

    I topi privi di PARP-1 sembrano avere tassi metabolici più alti e una minore massa grassa; in assenza di PARP, aumentano le concentrazioni di NAD +, attivando le SIRT1 che quindi lavorano per deacetilare varie proteine (PGC-1α e FOXO1) per promuovere il dispendio energetico attraverso un metabolismo ossidativo aumentato e un incremento dei mitocondri.[122]

    La SIRT2 e la SIRT3 non sono influenzate dalla bassa attività del PARP-1, [122] e l’inibizione della ribosilazione dell’ADP con altri mezzi come il knockdown NMNAT-1 sembra conferire anche effetti antiobesità nei roditori. [182] L’alimentazione aumenta acutamente l’attività del PARP-1 nei topi e ostacola transitoriamente l’attività della SIRT1, [122] che si pensa sia correlata al PARP-1 che ha la priorità per l’uso dei donatori di NAD +.

    unnamed (1)

    La supplementazione orale di Nicotinamide Riboside a 400mg/kg nel topo sembra aumentare il contenuto di NAD + nel muscolo scheletrico similmente a quanto avviene alla stessa dose di Niacina (Nicotinamide Mononucleotide inefficace in questo organo) [123] e sembra aumentare il dispendio energetico nei topi nutriti con un alto contenuto di grassi insieme all’aumento dell’attività dei geni bersaglio di FOXO1, suggerendo che l’integrazione orale è efficace. [123]

    Esistono prove limitate nell’uomo che valutano gli effetti della Niacina sul tasso metabolico, sebbene l’estremità inferiore del dosaggio farmacologico della niacina (1g) in soggetti altrimenti sani non sia riuscito ad aumentare il tasso metabolico rispetto al placebo. [94]

    Niacina, muscolo scheletrico e prestazioni fisiche

    F3.large

    La somministrazione di Niacina nell’uomo ha dimostrato di aumentare l’espressione dei fattori di trascrizione PPARδ e PPARγ coactivator-1α (PGC-1α) nel muscolo scheletrico. [124] Poiché questi fattori di trascrizione sono importanti regolatori del metabolismo ossidativo e della biogenesi mitocondriale, [125] [126] questo suggerisce che l’integrazione con Niacina può svolgere un ruolo nella resistenza dei muscoli scheletrici.
    Gli studi sugli animali hanno supportato questa idea, in cui è stato dimostrato che l’integrazione di Niacina provoca una transizione di fibre muscolari dal tipo II (contrazione rapida) al tipo I (contrazione lenta), aumentando anche il numero complessivo di fibre di tipo I nei muscoli scheletrici nello Zucker (ratto) obeso  [127] e suini in crescita [128] (750mg di Niacina/kg di dieta) e pecore (1g di Niacina al giorno). [129] Questo effetto può essere limitato a determinati modelli animali, tuttavia, poiché studi su ratti sani hanno dimostrato che la Niacina ha un effetto trascurabile sulla distribuzione del tipo di fibra muscolare o sul fenotipo metabolico. [130] Inoltre, nonostante la Niacina aumenti l’espressione dei fattori di trascrizione pro-ossidativa nell’uomo, [124] ​​fino ad oggi nessuno studio ha dimostrato che migliora le prestazioni o la capacità di resistenza del muscolo scheletrico.
    Tuttavia, come substrato per la sintesi di NAD +, un’adeguata presenza di Niacina può supportare indirettamente il metabolismo ossidativo e la resistenza muscolare. In soggetti altrimenti sani, un lieve esercizio fisico sembra essere associato ad un aumento delle concentrazioni di NAD + nel sangue rispetto a uno stato di riposo (indipendente da qualsiasi integrazione [131]) mentre, quando testato in un esercizio lieve nei roditori, portava anche ad un aumento del NAD + nel sangue prima che diminuisse durante un esercizio ad esaurimento, [131] che è stato notato anche nel muscolo scheletrico. [132] A questo livello di esaurimento c’è un concomitante aumento del contenuto di NADH nel muscolo scheletrico [133] [134] che è stato proposto [135] indicativo di una riduzione del trasferimento di elettroni dal NADH alla sintesi di ATP.

    tca7

    È stato inoltre proposto [135] che da quando l’esercizio aumenta l’ossidazione nei tessuti stimolati e i fattori di stress ossidativo sono noti per alterare l’attività del ciclo di Kreb (TCA) [136] e la catena di trasporto degli elettroni (compresa la NADH deidrogenasi [137]) che forniscono antiossidanti aumenterebbe la resistenza secondaria alla conservazione della cinetica intramuscolare di NAD + / NADH. Quando si forniscono 36mg di picnogenolo [135] come antiossidante durante l’esercizio fisico fino all’esaurimento, sembra che la diminuzione del NAD + nel sangue sia stata invertita in un aumento con gli effetti (sia la diminuzione che l’aumento in attesa di integrazione) più marcati negli atleti allenati. [135]

    Impatto organico della Niacina e principali effetti collaterali 

    2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetic_acid_200.svg
    Indometacina 

    In uno studio svolto sui ratti, la Nicotinamide ad un dosaggio di 20mg/kg somministrata un’ora prima di una dose di Indometacina che induceva ulcerazioni allo stomaco ha impedito l’ulcerazione a un livello paragonabile sia al controllo (nessuna induzione di ulcere) sia al farmaco di riferimento di 400mg/kg di sucralfato, che agisce localmente per forma una superficie protettiva per lo stomaco. [138] Questo effetto si è verificato insieme alla conservazione dell’attività del glutatione, alla riduzione della perossidazione lipidica e al miglioramento del muco gastrico. [138] Simili effetti protettivi contro l’ulcerazione indotta da etanolo e stress sono stati notati altrove, con il metabolita primario della Nicotinamide (1-metilnicotinamide; MNA). [139] Questo effetto gastroprotettivo è stato associato con un aumento dell’attività delle prostaglandine, in particolare la PGI2, [139] e nicotinamide, nonché il suo metabolita MNA sono stati implicati nell’aumento del flusso sanguigno gastrico [139] e nella riduzione della permeabilità microvascolare [138] dopo l’ulcerazione.

    IL10_Crystal_Structure.rsh
    Interleuchina 10 (IL-10)

    Nel colon dei topi, il recettore della Niacina (GPR109A) è necessario per la proliferazione ottimale delle cellule T CD4 + e la produzione di IL-10, che si traduce in un effetto antiinfiammatorio. [140] Questo effetto antinfiammatorio guidato dal GPR109A è mediato dal butirrato, l’acido grasso a catena corta del colon [140], che è un agonista del GPR109A ed è prodotto attraverso la fermentazione della fibra alimentare da parte dei batteri nel colon. [141] [142]

    L’effetto riducente dei Trigliceridi dato dalla Niacina sembra da doversi ricondurre al fegato, dove la secrezione di lipoproteine a bassissima densità (vLDL) è ridotta; poiché le vLDL normalmente trasportano i Trigliceridi dal fegato ad altri tessuti, riducendo la secrezione di vLDL ciò si traduce in un livello sierico di Trigliceridi  inferiori. [89] La diminuzione della secrezione di vLDL può essere secondaria all’inibizione della lipolisi nel tessuto adiposo, poiché l’aumento cronico di acidi grassi liberi nel siero può regolare negativamente la secrezione di vLDL. [143]

    Sembra che l’integrazione di Niacina in acuto (che riduce gli acidi grassi liberi nel siero) sopprime anche la produzione di vLDL e la sua complessazione con i trigliceridi. [144] Ciò suggerisce un altro possibile meccanismo, che può verificarsi attraverso la soppressione acuta del PGC-1β, [145] una proteina nota per promuovere la secrezione di Trigliceridi dal fegato in risposta all’ingestione di grassi nella dieta. [146] In accordo con quest’ultimo meccanismo, la somministrazione di Niacina con un pasto ad alto contenuto di grassi sembra ridurre il picco normale dei trigliceridi postprandiali. [147]

    image020
    Regioni regolatorie, fattori di trascrizione e molecole di segnalazione (citochine, fattori di crescita, metaboliti, farmaci) che modulano l’espressione del gene ABCA1 nei macrofagi e in altri tessuti. Le frecce e le linee di blocco indicano rispettivamente l’attivazione e la repressione.

    Non è confermato come la Niacina riduca le vLDL-C, ma la sua capacità di stimolare l’attività del gene ABCA1 e aumentare il suo contenuto proteico nelle cellule del fegato è alla base dell’aumento dell’HDL-C, [148] che è noto anche per sopprimere la secrezione di vLDL-C. [57] La Niacina (2g per 16 settimane), nonostante riduca le vLDL-C e il complesso con Trigliceridi, non sembra aumentare significativamente il contenuto di trigliceridi intraepatici in soggetti con malattia del fegato grasso non alcolica (NAFLD). [149]

    La Niacina sembra anche agire sulle cellule del fegato per promuovere l’accumulo di diacilglicerolo (DAG), che è associato all’insulino-resistenza localizzata. [92] La resistenza all’insulina nelle cellule del fegato riduce l’effetto soppressivo dell’insulina sulla sintesi del glucosio, con conseguente aumento dell’efflusso di glucosio dal fegato nel sangue. [150] Poiché gli stadi iniziali dell’insulino-resistenza indotta dalla Niacina (prima degli aumenti dell’insulina basale e del glucosio) sono stati associati a un fabbisogno ridotto di glucosio per bilanciare un morsetto euglicemico iperinsulinaemico, [109] questo suggerisce che l’inizio dell’insulino-resistenza avviene a livello del fegato. Il ruolo preciso del DAG in questo processo è tuttavia incerto. Mentre il DAG promuove la resistenza all’insulina attraverso l’attivazione di PKCε, [151] l’attivazione di questa proteina non è stata osservata nelle cellule del fegato che sono diventate insulino-resistenti con la Niacina. [92]

    (basse+concentrazioni)
    TRANSAMINASI. Enzimi intracellulari prodotti principalmente dagli epatociti. normalmente presenti in circolo a bassi livelli nel sangue. Aumentano in caso di danno cellulare. Indici molto sensibili ma moderatamente specifici di danno epatico. ALT è un marker più specifico di danno epatocellulare. (localizzazione citoplasmatica e più lunga emivita)

    Nota: La Niacina in dosi terapeutiche può causare aumenti modesti delle transaminasi sieriche e della bilirubina non coniugata, entrambi biomarcatori del danno epatico. Le modifiche vengono invertite se il trattamento farmacologico viene interrotto e di solito si risolvono anche quando si continua l’assunzione. [152] [153] [154] Tuttavia, meno comunemente, la forma di rilascio prolungato del farmaco può portare a gravi epatotossicità, con insorgenza in giorni o settimane. I primi sintomi di gravi danni al fegato includono nausea, vomito e dolore addominale, seguiti da ittero e prurito. Si ritiene che il meccanismo sia una tossicità diretta della Niacina sierica elevata. Abbassare la dose o passare alla forma a rilascio immediato può risolvere i sintomi. In rari casi la lesione è grave e progredisce fino a insufficienza epatica. [152]

    È noto che la Niacina rende le cellule β pancreatiche (un tipo di cellula specializzata che secerne insulina in risposta al glucosio) meno sensibile al glucosio sierico. [81] Inoltre, la normale riduzione della sensibilità al glucosio delle cellule β del pancreas associata all’invecchiamento può essere ulteriormente esacerbata dalla supplementazione di Niacina (500mg-1g due volte al giorno). [83] Anche se sembra esserci un aumento compensativo della secrezione di insulina nella risposta alla Niacina [83], in un modello di primati con diabete di tipo I, [155] questo non è stato sufficiente a  ridurre la glicemia a livelli normali, con conseguente lieve iperglicemia e iperinsulinemia dopo due settimane di integrazione.[83]

    Va notato che una linea cellulare coinvolta nel rossore cutaneo tipico della Niacina, nota come Langerhans, [156] [157] è diversa dall’area del pancreas nota come “Isole di Langerhans”.

    Nota: il rossore dato dalla Niacina – una dilatazione a breve termine delle arteriole della pelle, che causa il colore della pelle rossastra – di solito dura circa 15-30 minuti, anche se a volte può persistere per settimane con uso cronico e di forme a lento rilascio. In genere, il viso è maggiormente interessato, ma la reazione può estendersi al collo e alla parte superiore del torace. La causa è la dilatazione dei vasi sanguigni [158] [93] dovuta all’aumento della prostaglandina GD2 (PGD2) e serotonina. [159] [160] [161] [162] Si pensava spesso che il rossore riguardasse l’istamina, ma è stato dimostrato che l’istamina non è coinvolta nella reazione. [159] Il rossore a volte è accompagnato da una sensazione di prurito, in particolare, nelle aree coperte da indumenti. [93]

    aspirinam
    Acido Acetilsalicilico (Aspirina)

    La prevenzione del rossore richiede l’alterazione o il blocco della via mediata dalle prostaglandine. [93] [163] L’Aspirina [165-325mg] assunta mezz’ora prima della Niacina riduce fortemente il rossore, così come l’Ibuprofene [200mg] (una riduzione della frequenza e intensità del rossore fino al 50%). L’assunzione di Niacina ai pasti aiuta anche a ridurre questo effetto collaterale. [93] La tolleranza acquisita aiuterà  a ridurre l’effetto; dopo diverse settimane a dosaggio  costante, la maggior parte delle persone non ha più esperienza di vampate di calore. [93] Sono state sviluppate forme di Niacina a rilascio lento o “prolungato” per ridurre questi effetti collaterali. [164] [165]

    Conclusioni sulla supplementazione di Niacina

    Le informazioni che abbiamo a disposizione sulla Niacina e la sua supplementazione, ci presentano un composto senz’altro utile per il controllo o riassesto del quadro lipidico ma allo stesso tempo questa molecola risulta di una complessità d’azione biochimica non trascurabile. Il suo peggiorare l’insulino-resistenza in cronico ma con un maggior picco in acuto, picco che sembra venire controbilanciato da altri fattori come l’aumento della Adiponectina. Lo stesso effetto sulla riduzione della lipolisi può destare preoccupazione nell’atleta, specie se questo si trova in una fase ipocalorica con il principale intento di ridurre la massa grassa. Anche in questo caso sembrerebbe che l’effetto si manifesti in acuto per poi rientrare in condizioni pre-utilizzo. Ciò che è quasi certo, è che le osservazioni sul campo non hanno fatto emergere grosse differenze nell’alterazione della composizione corporea, sia con l’uso della Niacina in regimi ipercalorici che ipocalorici. L’utilizzo di GDA (in specie Berberina) anche alle  dosi base efficaci  potrebbe essere un “tampone”  sufficienti a compensare almeno in parte i possibili peggioramenti dei parametri dell’insulino resistenza. I controlli della glicemia basale e della insulinemia a digiuno sono indicatori da tenere sotto controllo durante l’uso di Niacina. Non è da trascurare la possibilità che la Niacina possa influenzare lo “shift” dalle fibre muscolari di tipo II a quelle di tipo I, cosa non auspicabile per un Bodybuilder o altro atleta di forza.
    In definitiva, considerando i dosaggi efficaci e la migliore azione in combinazione con statine (vedi Monacolina K), l’assunzione di Niacina può essere mantenuta con un certo margine di sicurezza tra i 500mg ed 1g/die, ovviamente tarando il dosaggio in risposta agli esami ematici di controllo.

    Gabriel Bellizzi

    Riferimenti:

    1.  “Niacin”. Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. 8 October 2018. Retrieved 16 September 2019.
    2.  Kennedy DO (January 2016). “B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review”Nutrients8 (2): 68. 
    3. “Niacin Fact Sheet for Health Professionals”. Office of Dietary Supplements, US National Institutes of Health. 3 June 2020. Retrieved 29 June 2020.
    4. Hegyi J, Schwartz RA, Hegyi V (January 2004). “Pellagra: dermatitis, dementia, and diarrhea”. International Journal of Dermatology43 (1): 1–5. 
    5. “Why fortify?”. Food Fortification Initiative. 2017. Retrieved 4 April 2017.
    6. Institute of Medicine (1998). “Niacin”Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: The National Academies Press. pp. 123–149. 
    7. “Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies” (PDF). 2017.
    8. “Nutrient reference values for Australia and New Zealand”(PDF)National Health and Medical Research Council. 9 September 2005. Archived from the original (PDF) on 21 January 2017. Retrieved 19 June 2018.
    9. Jaconello P (October 1992). “Niacin versus niacinamide”CMAJ147 (7): 990. 
    10. Kirkland JB (May 2012). “Niacin requirements for genomic stability”Mutation Research733 (1–2): 14–20. 
    11. World Health Organization (2000). “Pellagra And Its Prevention And Control In Major Emergencies”. World Health Organization (WHO). 
    12.  “Niacin”Drugs.com. 16 March 2019. Retrieved 27 April 2020.
    13. Keene D, Price C, Shun-Shin MJ, Francis DP (July 2014). “Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients”BMJ349: g4379. 
    14. Bruckert E, Labreuche J, Amarenco P (June 2010). “Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis”. Atherosclerosis210 (2): 353–61. 
    15. Schandelmaier S, Briel M, Saccilotto R, Olu KK, Arpagaus A, Hemkens LG, Nordmann AJ (June 2017). “Niacin for primary and secondary prevention of cardiovascular events”The Cochrane Database of Systematic Reviews6: CD009744. 
    16. “Niacin”. IN: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (Internet). Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases. February 2014. 
    17. Ong KL, Barter PJ, Waters DD (April 2014). “Cardiovascular drugs that increase the risk of new-onset diabetes”Am. Heart J167 (4): 421–8. 
    18. Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao XQ, Preiss D (February 2016). “Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials”Heart102 (3): 198–203. 
    19. “Niacin – Drug Usage Statistics”ClinCalc. Retrieved 11 April2020.
    20. Kelly JJ1, et al. Effects of nicotinic acid on insulin sensitivity and blood pressure in healthy subjectsJ Hum Hypertens. (2000)
    21.  Westphal S1, et al. Extended-release niacin raises adiponectin and leptinAtherosclerosis. (2007)
    22. Warnholtz A1, et al. Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF studyAtherosclerosis. (2009)
    23. Nasser Figueiredo V1, et al. Short-term effects of extended-release niacin with and without the addition of laropiprant on endothelial function in individuals with low HDL-C: a randomized, controlled crossover trialClin Ther. (2014)
    24. Stocker R. Antioxidant activities of bile pigmentsAntioxid Redox Signal. (2004)
    25. Bregar U1, et al. Extended-release niacin/laropiprant improves endothelial function in patients after myocardial infarctionHeart Vessels. (2014)
    26. Chow DC1, et al. Short-term effects of extended-release niacin on endothelial function in HIV-infected patients on stable antiretroviral therapyAIDS. (2010)
    27. Bays HE1, Rader DJ. Does nicotinic acid (niacin) lower blood pressureInt J Clin Pract. (2009)
    28. Gadegbeku CA1, et al. Hemodynamic effects of nicotinic acid infusion in normotensive and hypertensive subjectsAm J Hypertens. (2003)
    29. Brown BG1, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary diseaseN Engl J Med. (2001)
    30. Carlson LA1, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acidActa Med Scand. (1988)
    31. Whitney EJ1, et al. A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical eventsAnn Intern Med. (2005)
    32. [No authors listed. Clofibrate and niacin in coronary heart diseaseJAMA. (1975)
    33. Canner PL1, Furberg CD, McGovern ME. Benefits of niacin in patients with versus without the metabolic syndrome and healed myocardial infarction (from the Coronary Drug Project)Am J Cardiol. (2006)
    34. Maccubbin D1, et al. Lipid-modifying efficacy and tolerability of extended-release niacin/laropiprant in patients with primary hypercholesterolaemia or mixed dyslipidaemiaInt J Clin Pract. (2008)
    35. Bays HE1, et al. Blood pressure-lowering effects of extended-release niacin alone and extended-release niacin/laropiprant combination: a post hoc analysis of a 24-week, placebo-controlled trial in dyslipidemic patientsClin Ther. (2009)
    36. Ganji SH1, et al. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cellsJ Lipid Res. (2004)
    37.  Fabbrini E1, et al. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver diseaseJ Clin Endocrinol Metab. (2010)
    38. Tunaru S1, et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effectNat Med. (2003)
    39.  Eaton RP, Berman M, Steinberg D. Kinetic studies of plasma free fatty acid and triglyceride metabolism in manJ Clin Invest. (1969)
    40.  Lauring B1, et al. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppressionSci Transl Med. (2012)
    41. AIM-HIGH Investigators, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapyN Engl J Med. (2011)
    42.  Wang W1, et al. Effects of nicotinic acid on fatty acid kinetics, fuel selection, and pathways of glucose production in womenAm J Physiol Endocrinol Metab. (2000)
    43.  Nelson RH1, et al. Intravenous niacin acutely improves the efficiency of dietary fat storage in lean and obese humansDiabetes. (2012)
    44.  Ahlström C1, et al. Feedback modeling of non-esterified fatty acids in obese Zucker rats after nicotinic acid infusionsJ Pharmacokinet Pharmacodyn. (2013)
    45. Ahlström C1, et al. Feedback modeling of non-esterified fatty acids in rats after nicotinic acid infusionsJ Pharmacokinet Pharmacodyn. (2011)
    46. Oh YT1, et al. Continuous 24-h nicotinic acid infusion in rats causes FFA rebound and insulin resistance by altering gene expression and basal lipolysis in adipose tissueAm J Physiol Endocrinol Metab. (2011)
    47. O’Kane MJ1, et al. A comparison of acipimox and nicotinic acid in type 2b hyperlipidaemiaBr J Clin Pharmacol. (1992)
    48. Lai E1, et al. Effects of a niacin receptor partial agonist, MK-0354, on plasma free fatty acids, lipids, and cutaneous flushing in humansJ Clin Lipidol. (2008)
    49. van der Hoorn JW1, et al. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE-3Leiden.CETP miceArterioscler Thromb Vasc Biol. (2008)
    50. Zhang LH1, et al. Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cellsJ Lipid Res. (2012)
    51. Lee JY1, Parks JS. ATP-binding cassette transporter AI and its role in HDL formationCurr Opin Lipidol. (2005)
    52. Sahoo D1, et al. ABCA1-dependent lipid efflux to apolipoprotein A-I mediates HDL particle formation and decreases VLDL secretion from murine hepatocytesJ Lipid Res. (2004)
    53.  Sakai T1, Kamanna VS, Kashyap ML. Niacin, but not gemfibrozil, selectively increases LP-AI, a cardioprotective subfraction of HDL, in patients with low HDL cholesterolArterioscler Thromb Vasc Biol. (2001)
    54. Wu ZH1, Zhao SP. Niacin promotes cholesterol efflux through stimulation of the PPARgamma-LXRalpha-ABCA1 pathway in 3T3-L1 adipocytesPharmacology. (2009)
    55. Knowles HJ1, et al. Niacin induces PPARgamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathwaysBiochem Pharmacol. (2006)
    56. Hernandez M1, Wright SD, Cai TQ. Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in miceBiochem Biophys Res Commun. (2007)
    57. Barter PJ1, et al. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosisArterioscler Thromb Vasc Biol. (2003)
    58. Barter PJ, Hopkins GJ, Calvert GD. Transfers and exchanges of esterified cholesterol between plasma lipoproteinsBiochem J. (1982)
    59. Luo Y1, Tall AR. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR elementJ Clin Invest. (2000)
    60. Zhang LH1, et al. Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cellsJ Lipid Res. (2012)
    61. Zhang LH1, et al. Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cellsJ Lipid Res. (2012)
    62. Cinquin O1, Page KM. Generalized, switch-like competitive heterodimerization networksBull Math Biol. (2007)
    63. Lamon-Fava S1, et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteinsArterioscler Thromb Vasc Biol. (2008)
    64. Zhang LH1, et al. Niacin inhibits surface expression of ATP synthase beta chain in HepG2 cells: implications for raising HDLJ Lipid Res. (2008)
    65. Blum CB, et al. High density lipoprotein metabolism in manJ Clin Invest. (1977)
    66. van der Hoorn JW1, et al. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE-3Leiden.CETP miceArterioscler Thromb Vasc Biol. (2008)
    67. Bays H1, et al. Extended-release niacin/laropiprant effects on lipoprotein subfractions in patients with type 2 diabetes mellitusMetab Syndr Relat Disord. (2012)
    68. Duggal JK1, et al. Effect of niacin therapy on cardiovascular outcomes in patients with coronary artery diseaseJ Cardiovasc Pharmacol Ther. (2010)
    69. Cashin-Hemphill L1, et al. Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-upJAMA. (1990)
    70. AIM-HIGH Investigators, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapyN Engl J Med. (2011)
    71. Brouwers MC, Stehouwer CD. Niacin in cardiovascular patients receiving statinsN Engl J Med. (2012)
    72. Fabbrini E1, et al. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver diseaseJ Clin Endocrinol Metab. (2010)
    73. Si Y1, et al. Niacin inhibits vascular inflammation via downregulating nuclear transcription factor-κB signaling pathwayMediators Inflamm. (2014)
    74. Lipszyc PS1, et al. Niacin Modulates Pro-inflammatory Cytokine Secretion. A Potential Mechanism Involved in its Anti-atherosclerotic EffectOpen Cardiovasc Med J. (2013)
    75. Shashkin P1, Dragulev B, Ley K. Macrophage differentiation to foam cellsCurr Pharm Des. (2005)
    76. Rubic T1, Trottmann M, Lorenz RL. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacinBiochem Pharmacol. (2004)
    77. Tontonoz P1, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDLCell. (1998)
    78. Chinetti G1, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathwayNat Med. (2001)
    79. Bortnick AE1, et al. The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell linesJ Biol Chem. (2000)
    80. Zhang F, et al. Niacin-induced enhancement of lysosomal cholesterol efflux in macrophages through CD38 – NAADP signaling pathway: implication in reduced foam cell formation (671.6)FASEB J. (2014)
    81. Kahn SE1, et al. Increased beta-cell secretory capacity as mechanism for islet adaptation to nicotinic acid-induced insulin resistanceDiabetes. (1989)
    82. ^ Loffler, Trautschold. Influence of nicotinic acid on insulin secretion in vivo and in vitro. In Metabolic Effects of Nicotinic Acid and its Derivatives. Gey KF, Carlson LA, editors.Bern: Hanss Huber Publishers; pp. 487–496.. (1971)
    83. Chang AM1, et al. Impaired beta-cell function in human aging: response to nicotinic acid-induced insulin resistanceJ Clin Endocrinol Metab. (2006)
    84. Chen X1, Iqbal N, Boden G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjectsJ Clin Invest. (1999)
    85.  Gross RC, Carlson LA. Metabolic effects of nicotinic acid in acute insulin deficiency in the ratDiabetes. (1968)
    86.  Davidson MB, Bernstein JM. The effect of nicotinic acid on growth hormone-induced lipolysis and glucose intoleranceJ Lab Clin Med. (1973)
    87.  Reaven GM1, Chang H, Hoffman BB. Additive hypoglycemic effects of drugs that modify free-fatty acid metabolism by different mechanisms in rats with streptozocin-induced diabetesDiabetes. (1988)
    88. Kelly JJ1, et al. Effects of nicotinic acid on insulin sensitivity and blood pressure in healthy subjectsJ Hum Hypertens. (2000)
    89. Fabbrini E1, et al. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver diseaseJ Clin Endocrinol Metab. (2010)
    90. Fraterrigo G1, et al. Relationship between Changes in Plasma Adiponectin Concentration and Insulin Sensitivity after Niacin TherapyCardiorenal Med. (2012)
    91. Westphal S1, et al. Extended-release niacin raises adiponectin and leptinAtherosclerosis. (2007)
    92. Blond E1, et al. Nicotinic acid effects on insulin sensitivity and hepatic lipid metabolism: an in vivo to in vitro studyHorm Metab Res. (2014)
    93. Plaisance EP1, et al. Increased total and high-molecular weight adiponectin after extended-release niacinMetabolism. (2008)
    94. Kelly JJ1, et al. Effects of nicotinic acid on insulin sensitivity and blood pressure in healthy subjectsJ Hum Hypertens. (2000)
    95. Alvarsson M1, Grill V. Impact of nicotinic acid treatment on insulin secretion and insulin sensitivity in low and high insulin respondersScand J Clin Lab Invest. (1996)
    96. Poynten AM1, et al. Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid contentMetabolism. (2003)
    97. Oh YT1, et al. Continuous 24-h nicotinic acid infusion in rats causes FFA rebound and insulin resistance by altering gene expression and basal lipolysis in adipose tissueAm J Physiol Endocrinol Metab. (2011)
    98. Ganji SH1, et al. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cellsJ Lipid Res. (2004)
    99. Mithieux G. Brain, liver, intestine: a triumvirate to coordinate insulin sensitivity of endogenous glucose productionDiabetes Metab. (2010)
    100. Dobbins RL1, et al. GSK256073, a selective agonist of G-protein coupled receptor 109A (GPR109A) reduces serum glucose in subjects with type 2 diabetes mellitusDiabetes Obes Metab. (2013)
    101. Fulcher GR1, et al. Acipimox increases glucose disposal in normal man independent of changes in plasma nonesterified fatty acid concentration and whole-body lipid oxidation rateMetabolism. (1993)
    102. Oh YT1, et al. Continuous 24-h nicotinic acid infusion in rats causes FFA rebound and insulin resistance by altering gene expression and basal lipolysis in adipose tissueAm J Physiol Endocrinol Metab. (2011)
    103. Kokubun E1, et al. Changes of glycogen content in liver, skeletal muscle, and heart from fasted ratsCell Biochem Funct. (2009)
    104. Beránek M1, et al. Glycation and advanced glycation end-products in laboratory experiments in vivo and in vitroActa Medica (Hradec Kralove). (2006)
    105. Tarwadi KV1, Agte VV. Effect of micronutrients on methylglyoxal-mediated in vitro glycation of albuminBiol Trace Elem Res. (2011)
    106. Parker-Duffen JL1, Walsh K2. Cardiometabolic effects of adiponectinBest Pract Res Clin Endocrinol Metab. (2014)
    107. Plaisance EP1, et al. Niacin stimulates adiponectin secretion through the GPR109A receptorAm J Physiol Endocrinol Metab. (2009)
    108. Wang-Fisher YL1, Han J, Guo W. Acipimox stimulates leptin production from isolated rat adipocytesJ Endocrinol. (2002)
    109. Worm D1, et al. The nicotinic acid analogue acipimox increases plasma leptin and decreases free fatty acids in type 2 diabetic patientsEur J Endocrinol. (2000)
    110. Miles JM1, et al. Systemic and forearm triglyceride metabolism: fate of lipoprotein lipase-generated glycerol and free fatty acidsDiabetes. (2004)
    111. [No authors listed. Baron Theodore RoseLancet. (1978)
    112. Deivanayagam S1, et al. Nonalcoholic fatty liver disease is associated with hepatic and skeletal muscle insulin resistance in overweight adolescentsAm J Clin Nutr. (2008)
    113. Nelson RH1, et al. Intravenous niacin acutely improves the efficiency of dietary fat storage in lean and obese humansDiabetes. (2012)
    114. Heemskerk MM1, et al. Long-term niacin treatment induces insulin resistance and adrenergic responsiveness in adipocytes by adaptive downregulation of phosphodiesterase 3BAm J Physiol Endocrinol Metab. (2014)
    115. Vega GL1, et al. Influence of extended-release nicotinic acid on nonesterified fatty acid flux in the metabolic syndrome with atherogenic dyslipidemiaAm J Cardiol. (2005)
    116. Lewis JE, Shimizu Y, Shimizu N. Nicotinamide inhibits adipocyte differentiation of 3T3-L1 cellsFEBS Lett. (1982)
    117. Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetaseBiochem J. (1980)
    118. Torres-Ramírez N1, et al. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cellsLife Sci. (2013)
    119. Aktories K, Jakobs KH, Schultz G. Nicotinic acid inhibits adipocyte adenylate cyclase in a hormone–like mannerFEBS Lett. (1980)
    120. Soudijn W1, van Wijngaarden I, Ijzerman AP. Nicotinic acid receptor subtypes and their ligandsMed Res Rev. (2007)
    121. Aktories K, Jakobs KH. In vivo and in vitro desensitization of nicotinic acid-induced adipocyte adenylate cyclase inhibitionNaunyn Schmiedebergs Arch Pharmacol. (1982)
    122. Bai P1, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activationCell Metab. (2011)
    123. Cantó C1, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesityCell Metab. (2012)
    124. Wang YX1, et al. Regulation of muscle fiber type and running endurance by PPARdeltaPLoS Biol. (2004)
    125. Schuler M1, et al. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetesCell Metab. (2006)
    126. Ringseis R1, et al. Supplementing obese Zucker rats with niacin induces the transition of glycolytic to oxidative skeletal muscle fibersJ Nutr. (2013)
    127. Khan M1, et al. Niacin supplementation increases the number of oxidative type I fibers in skeletal muscle of growing pigsBMC Vet Res. (2013)
    128. Khan M1, et al. Niacin supplementation induces type II to type I muscle fiber transition in skeletal muscle of sheepActa Vet Scand. (2013)
    129. Scholz K1, et al. Supplementing healthy rats with a high-niacin dose has no effect on muscle fiber distribution and muscle metabolic phenotypeEur J Nutr. (2014)
    130. Fukuwatari T1, et al. Elevation of blood NAD level after moderate exercise in young women and miceJ Nutr Sci Vitaminol (Tokyo). (2001)
    131. Graham T, et al. NAD in muscle of man at rest and during exercisePflugers Arch. (1978)
    132. Sahlin K. NADH in human skeletal muscle during short-term intense exercisePflugers Arch. (1985)
    133. Sahlin K1, Katz A, Henriksson J. Redox state and lactate accumulation in human skeletal muscle during dynamic exerciseBiochem J. (1987)
    134. Mach J1, et al. The effect of antioxidant supplementation on fatigue during exercise: potential role for NAD+(H)Nutrients. (2010)
    135. Zhang SJ1, et al. Activation of aconitase in mouse fast-twitch skeletal muscle during contraction-mediated oxidative stressAm J Physiol Cell Physiol. (2007)
    136. Cardoso SM1, Pereira C, Oliveira R. Mitochondrial function is differentially affected upon oxidative stressFree Radic Biol Med. (1999)
    137. Zandi-Nejad K1, et al. The role of HCA2 (GPR109A) in regulating macrophage functionFASEB J. (2013)