Un secolo di Insulina: Storia, sviluppi e peculiarità di un peptide incompreso[3° parte].

Per accedere alla prima e alla seconda parte clicca qui e qui.

Il ruolo dell’Insulina nella regolazione della sintesi e della degradazione delle proteine del muscolo-scheletrico umano:

Nell’uomo, le proteine costituiscono circa il 15% del peso corporeo [1]. Sono il principale macronutriente che compone il muscolo-scheletrico, che a sua volta contiene circa il 30-45% delle proteine totali del corpo e contribuisce al 20-35% del turnover proteico dell’intero organismo. È stato dimostrato che sia gli aminoacidi (AA) che l’Insulina svolgono un ruolo cruciale nella regolazione delle variazioni diurne del turnover proteico del muscolo scheletrico [2] e che gli squilibri tra i tassi di sintesi proteica muscolare (MPS) e di degradazione delle proteine muscolari (MPB) hanno importanti conseguenze sulle dimensioni, sulla qualità e sulla funzione del muscolo [3]. La “sarcopenia” descrive la perdita di massa e forza muscolare scheletrica che si verifica con l’avanzare dell’età [4]. Il processo di invecchiamento stesso è caratterizzato dall’incipiente sviluppo della sarcopenia, in cui è stato segnalato un costante declino della massa magra (e della funzione associata) di circa l’1% all’anno oltre i 60 anni di età [5]. A causa della fragilità associata, la sarcopenia porta a una diminuzione della qualità della vita e della salute, caratterizzata da scarsa mobilità, sedentarietà, aumento del rischio di cadute e scarso recupero dalle malattie [6, 7].

Turnover Proteico schematico e diversi destini metabolici degli aminoacidi nel muscolo-scheletrico.

I dati provenienti da studi epidemiologici e sperimentali hanno riportato che il diabete di tipo II è correlato a una scarsa forza e funzione muscolare, con un tasso accelerato di declino della qualità e della forza muscolare negli individui anziani fino al 30% [8]. Alla luce della crescente prevalenza del diabete e delle sequele metaboliche della sarcopenia legata all’età, è aumentato l’interesse per i meccanismi con cui il diabete di tipo II esacerba il declino della massa muscolare legato all’età. Inoltre, poiché il muscolo scheletrico è un sito importante per lo smaltimento del glucosio, la riduzione quantitativa del volume del muscolo appendicolare potrebbe potenzialmente influire negativamente sullo smaltimento e sul metabolismo del glucosio [9]. Una maggiore comprensione dei fattori endocrini che regolano la massa muscolare è quindi importante per il controllo glicemico e per contrastare la sarcopenia.

Molti pazienti con diabete di tipo II necessitano di Insulina per raggiungere gli obiettivi ottimali di glucosio, poiché la capacità di produrre Insulina endogena da parte delle cellule beta pancreatiche diminuisce progressivamente [10]. Tuttavia, la terapia insulinica è associata a un aumento di peso [11, 12], soprattutto di massa grassa [13], anche se non correlate all’ormone in se come abbiamo visto nella seconda parte, che aumenta l’insulino-resistenza e rende necessario l’uso di dosi più elevate di Insulina a scapito di un ulteriore aumento di peso. L’esatto ruolo dell’Insulina nel metabolismo del muscolo scheletrico umano, tuttavia, continua a far discutere. Sebbene gli studi sugli animali abbiano riportato che l’Insulina promuove la MPS, questi studi sono stati condotti principalmente su animali in crescita [14, 15]. Il ruolo dell’Insulina nel muscolo scheletrico umano adulto è più complesso e soggetto all’interazione tra altri fattori come la disponibilità di AA, il flusso sanguigno muscolare e il reclutamento microvascolare [16, 17]. Ciò ha portato a diversi studi che riportano conclusioni opposte per quanto riguarda la relazione tra Insulina e turnover proteico del muscolo scheletrico umano [16-22]. Andiamo quindi a tentare di chiarire il ruolo dell’Insulina nella regolazione del metabolismo muscolare nell’uomo.

Vie di segnalazione insulinica del muscolo scheletrico. Il muscolo scheletrico sano è in grado di alternare l’uso dei carboidrati nei periodi di abbondanza (aumento dell’Insulina) e dei lipidi nei periodi di scarsità calorica (diminuzione dell’Insulina). L’utilizzo di substrati carboidratici e lipidici può essere potenziato anche durante i periodi di elevata richiesta metabolica dell’esercizio fisico. IR 5 recettore dell’Insulina; IRS 5 substrato del recettore dell’Insulina; PI3K 5 fosfatidilinositolo-3-chinasi; PDK 5 proteina chinasi fosfoinositide-dipendente; aPKC 5 proteina chinasi C atipica; PIP3 5 fosfatidilinositolo 3,4,5-trifosfato; Akt 5 proteina chinasi B; AS160 5 substrato 160 di Akt; GLUT4 5 trasportatore di glucosio insulino-sensibile; IMTG 5 trigliceridi intramiocellulari; LCFA 5 acidi grassi a catena lunga; AMPK 5 proteina chinasi attivata dall’AMP.

Per la realizzazione di una interessante review sistematica e meta-analisi riguardante il ruolo dell’Insulina sulla MPS e MPB sono stati cercati studi in lingua inglese pubblicati tra il 1946 e il novembre 2013. Sono stati selezionati gli articoli sottoposti a revisione paritaria che indagavano il ruolo dell’Insulina sulle MPS e/o sulla MPB. Per la review sistematica sono stati selezionati tutti gli studi sperimentali che riportavano cambiamenti nel metabolismo delle proteine muscolari nell’uomo in risposta a interventi con Insulina, indipendentemente dal metodo di valutazione. Sia il metodo a due pool (compartimenti) che quello a tre pool sono stati utilizzati per riportare il metabolismo proteico muscolare, ed entrambi forniscono cambiamenti qualitativamente comparabili nel metabolismo proteico dal sangue e dall’arricchimento intracellulare di fenilalanina [21]. Nel modello a due pool (arteria e vena), la fenilalanina entra ed esce dall’arto rispettivamente attraverso l’arteria e la vena. La velocità di scomparsa della fenilalanina dall’arteria è utilizzata per stimare l’MPS e deriva dalle misurazioni della velocità di MPB e del bilancio netto (NB); MPB è determinato dalla velocità di comparsa della fenilalanina in vena (cioè la diluizione dell’arricchimento del tracciante attraverso l’arto), mentre NB è semplicemente la differenza di concentrazione della fenilalanina attraverso l’arto. Nel modello a tre bacini (arteria, vena e muscolo), la fenilalanina entra ed esce dall’arto come sopra. Il flusso unidirezionale di fenilalanina libera dall’arteria al compartimento intramuscolare è determinato dalla velocità di trasporto verso l’interno. La velocità di comparsa intracellulare della fenilalanina definisce la velocità di rilascio dal MPB. Poiché la fenilalanina non viene ossidata dal muscolo scheletrico, il tasso di utilizzo intracellulare corrisponde al tasso di utilizzo per la MPS [22].

Negli studi esaminati, il modello a due pool è stato il metodo analitico più comunemente utilizzato e la fenilalanina è stata il tracciante AA più comunemente usato. Pertanto, per consentire un’analisi quantitativa comparabile degli studi eleggibili per la review sistematica e per evitare un’eterogeneità significativa, la meta-analisi ha incluso solo gli studi che hanno utilizzato il modello a due pool per analizzare i dati di fenilalanina, rispetto ad altri metodi analitici o ad altri traccianti di AA (ad esempio, la leucina). I dati a tre pool sono stati inclusi nella review sistematica. A causa di un’ampia sovrapposizione tra gli studi che riportavano dati a due e tre pool (n = 10) e del numero significativamente inferiore di studi che riportavano esclusivamente dati a tre pool (n = 5), non è stata eseguita una meta-analisi dei dati a tre pool.

Sono stati esaminati tutti gli studi che rispondevano ai criteri di inclusione. L’esito primario era la variazione di MPS e/o MPB in risposta all’intervento insulinico. I dati pubblicati sono stati estratti dagli studi e sono state calcolate le medie. A causa dei metodi di misurazione simili tra gli studi inclusi, sono stati utilizzati modelli a effetti casuali per calcolare le differenze medie ponderate (WMD), gli CI al 95% e i valori di p corrispondenti. L’eterogeneità tra gli studi è stata valutata utilizzando la statistica I 2, che descrive la percentuale di variazione totale tra gli studi che è il risultato dell’eterogeneità piuttosto che del caso [23]. Poiché gli AA sono il substrato principale per la sintesi proteica, sono state effettuate analisi di sottogruppo in base ai diversi livelli di apporto di AA al muscolo e quindi alla quantità disponibile (aumentata, invariata o diminuita) per il metabolismo proteico. Un’altra analisi di sottogruppo è stata eseguita con studi che coinvolgevano popolazioni con diabete. In questi studi, l’apporto di AA non è cambiato. È stata condotta un’analisi di meta-regressione per verificare le differenze nelle stime in pool tra i sottogruppi e per verificare se le stime in pool differissero in base ad altre covarianti (ad esempio, i livelli di concentrazione di Insulina raggiunti, l’età o la massa corporea magra).

Il bias di pubblicazione è stato valutato esaminando un funnel plot in funzione della dimensione dell’effetto. I test statistici per le meta-analisi sono stati eseguiti utilizzando il pacchetto statistico STATA 13.0 (StataCorp, College Station, TX, USA).

Dopo la rimozione dei duplicati, sono stati recuperati 646 articoli dalla ricerca e dalle liste di riferimento degli articoli selezionati (Fig. seguente). Lo screening del titolo e dell’abstract ha portato all’esclusione di 455 articoli a causa dell’irrilevanza (ad esempio, studi in vitro, studi sul metabolismo delle proteine epatiche) e di altri 87 articoli perché gli studi erano stati condotti su muscolo scheletrico animale. In totale sono stati identificati 104 articoli potenzialmente rilevanti, che sono stati valutati in modo più approfondito. Di questi, altri 60 articoli sono stati esclusi. I principali motivi di esclusione sono stati: (1) gli studi valutavano il ruolo degli interventi nutrizionali e non dell’Insulina in sé; e (2) gli articoli erano revisioni piuttosto che studi di ricerca. Un totale di 44 articoli che comprendevano 75 studi soddisfaceva i criteri per la review sistematica. Di questi 44 articoli, 13 (contenenti 25 studi) sono stati inclusi nella meta-analisi, in quanto rappresentavano il gruppo più numeroso che conteneva dati quantitativamente comparabili. Tutti i 25 studi hanno utilizzato la fenilalanina come tracciante AA, hanno riportato la MPS/MPB in unità di nmol (100ml leg vol.)-1 min-1 e hanno utilizzato l’approccio a due pool (equilibrio arterovenoso) per stimare le variabili di esito.

Diagramma di flusso che rappresenta il processo di reperimento degli articoli e delinea gli articoli che hanno soddisfatto i criteri per la revisione sistematica e la meta-analisi. Solo gli studi che utilizzavano il modello a due pool e i traccianti di fenilalanina sono stati inclusi nella meta-analisi.
  • MPS e Insulina

Per l’inclusione nella meta-analisi sono stati identificati 13 articoli [16, 19-21, 24-32], contenenti 25 studi sperimentali che hanno utilizzato diverse concentrazioni di insulina (Tabella 1); tutti hanno analizzato l’effetto dell’insulina sia sulla MPS che sulla MPB (Tabella 1). In totale sono stati inclusi 173 individui in questi studi. Un totale di 13 studi ha coinvolto giovani adulti e tre di questi 13 studi hanno coinvolto individui con diabete. Otto studi hanno coinvolto persone anziane e sane, mentre per quattro studi non erano disponibili dati sull’età. L’età media dei partecipanti variava da 18 a 74 anni. La maggior parte degli studi (20 studi) ha utilizzato l’infusione locale di insulina intra-arteriosa per limitare lo sviluppo di ipoglicemia sistemica e un’infusione obbligatoria di glucosio, anche per limitare l’ipoaminoacidemia [33]. Questo aspetto è di fondamentale importanza, soprattutto quando si utilizzano concentrazioni di insulina sovrafisiologiche. Le concentrazioni sistemiche di insulina variavano tra 62,5 e 861,2 pmol/l. L’apporto di AA (concentrazione di AA nell’arteria × flusso sanguigno arterioso) è stato mantenuto in 14 studi e aumentato in otto studi. Tuttavia, come conseguenza diretta della somministrazione sistemica di insulina (vedi discussione sotto), gli AA circolanti sono diminuiti in tre studi.

Caratteristiche degli studi inclusi nella meta-analisi, ordinati per modalità di somministrazione dell’insulina e di erogazione degli AA. I valori sono medie ± SEM, se non diversamente specificato.
aI numeri accanto al nome dell’autore distinguono studi diversi dello stesso autore; le lettere indicano interventi o caratteristiche dei partecipanti diversi all’interno di uno stesso studio.
bRispetto al basale
cPartecipanti con diabete

I dati della meta-analisi sono stati raggruppati da 13 studi (25 studi o confronti) che hanno coinvolto 173 individui. La WMD per la MPS era 3,90 (95% CI -0,74, 8,55; p = 0,71). L’analisi degli studi basati sulla somministrazione di AA ha rivelato un aumento della MPS (WMD 13,44 [95% CI 4,07, 22,81], p < 0,01) negli studi in cui la somministrazione di AA era aumentata (otto studi, 63 individui). Tuttavia, la MPS non è cambiata significativamente quando la somministrazione di AA è stata ridotta (tre studi; 22 partecipanti; WMD 1,57 [95% CI -3,97, 7,12], p = 0,58) o mantenuta al basale (11 studi; 73 partecipanti; WMD 2,00 [95% CI -5,28, 9,28], p = 0,59). Gli studi che hanno coinvolto individui con diabete (tre studi, 15 individui) hanno mostrato riduzioni significative della MPS in risposta all’Insulina, anche se l’apporto di AA è stato mantenuto (WMD -6,67 [95% CI -12,69, -0,66], p < 0,05).

Forest plot della meta-analisi a effetti casuali della WMD (95% CI) sull’effetto dell’insulina sulla MPS. Nel complesso non è stato osservato un aumento significativo della MPS (p = 0,710). Quando si è stratificato per l’apporto di AA, è stato osservato un aumento della MPS quando l’AA è stato aumentato (p < 0,01), ma non è stata osservata alcuna differenza quando l’apporto di AA è stato mantenuto (p = 0,59) o ridotto (p = 0,58). Nei soggetti con insulino-resistenza o diabete (IR), la MPS era significativamente ridotta (p < 0,05) nonostante il mantenimento dell’apporto di AA. I numeri accanto al nome dell’autore differenziano i diversi studi dello stesso autore; le lettere indicano interventi diversi o caratteristiche dei partecipanti all’interno di uno stesso studio.

All’analisi di meta-regressione, la dimensione della stima (WMD) era significativamente diversa tra i sottogruppi basati sulla disponibilità di AA (p = 0,001).

L’I 2 per l’effetto complessivo dell’Insulina sulla MPS era del 49% (p = 0,003). Questa significativa eterogeneità moderata sembrava essere dovuta principalmente all’eterogeneità all’interno del sottogruppo con aumento degli AA (I 2 59%; p = 0,018). Gli altri sottogruppi hanno mostrato valori di p non significativi per l’eterogeneità, suggerendo una maggiore coerenza tra questi studi rispetto ai dati complessivi della MPS (sottogruppi: consegna AA mantenuta: I 2 21%; p = 0,241; diminuzione del rilascio di AA: I 2 0%; p = 0,811; individui con diabete: I 2 0%; p = 0,605).

  • MPB e Insulina

I dati sono stati raggruppati dagli stessi 25 studi come per la MPS. La WMD per la MPB era di -15,46 (95% CI -19,74, -11,18; p < 0,0001; Fig. 3). La disponibilità di AA non ha avuto un impatto significativo sulla dimensione stimata della MPB (p = 0,754). L’I 2 per l’effetto complessivo dell’Insulina sulla MPB era del 13% (p = 0,282), indicando un’eterogeneità non significativa (Fig. 3).

Forest plot della meta-analisi a effetti casuali della WMD (95% CI) sull’effetto dell’Insulina sulla MPB. Nel complesso è stata osservata una riduzione significativa della MPB (p < 0,0001). I numeri accanto al nome dell’autore differenziano i diversi studi dello stesso autore; le lettere indicano interventi o caratteristiche dei partecipanti diversi all’interno di uno stesso studio.
  • Insulina e bilancio netto delle proteine [NB]

In un’ulteriore analisi in pool di tutti i 25 studi, è stato riscontrato che l’Insulina aumenta significativamente l’assorbimento di proteine NB (WMD 20,09 [95% CI 15,93, 24,26], p < 0,0001).

Forest plot della meta-analisi a effetti casuali della WMD (95% CI) sull’effetto dell’Insulina sulla cinetica delle proteine NB. L’insulina ha avuto un forte effetto positivo sull’assorbimento di proteine NB nel complesso (p < 0,0001). Gli studi sono ordinati cronologicamente. I numeri accanto al nome dell’autore differenziano i diversi studi dello stesso autore; le lettere indicano diversi interventi o caratteristiche dei partecipanti all’interno di uno stesso studio.
  • Analisi di meta-regressione di altre variabili


È stata condotta un’analisi di meta-regressione per verificare se altre variabili confondenti di interesse avessero un effetto sulla WMD (ad esempio, la concentrazione di insulina infusa, l’età e la massa corporea magra, se disponibili). Le differenze nelle concentrazioni di Insulina infusa non hanno avuto alcun effetto su MPS (p = 0,955), MPB (p = 0,713) o NB (p = 0,621). Non vi è stato alcun effetto nemmeno per le differenze di età (p = 0,480, p = 0,159 e p = 0,610, rispettivamente) o per le variazioni della massa corporea magra (p = 0,433, p = 0,936 e p = 0,617, rispettivamente).

  • Bias di pubblicazione e altri dati


I diagrammi a imbuto dell’effetto dell’insulina su MPS e MPB rispetto a SE non hanno mostrato alcun bias di pubblicazione (vedi materiale supplementare elettronico [ESM]).
Tra gli articoli esaminati, 15 studi hanno utilizzato dati a tre pool [21, 25, 28, 30-35]. I dati a due pool di dieci di questi studi sono stati inclusi nella meta-analisi, che nel complesso ha riportato risultati simili con visualizzazioni quantitativamente diverse. Tutti e cinque gli studi che hanno riportato esclusivamente dati a tre pool hanno dimostrato che l’Insulina ha migliorato l’assorbimento di proteine NB [25, 33-35]. L’aumento dell’NB in questi studi è stato determinato principalmente da una riduzione della MPB [34] o da un aumento della MPS [25, 33-35]. Nessuno di questi studi prevedeva una riduzione della disponibilità di AA. Due degli studi hanno riportato un aumento della MPS in uno stato iperinsulinemico indotto sperimentalmente in soggetti apparentemente insulino-resistenti con gravi ustioni trattati in un’unità di alta dipendenza [33, 35].

Caratteristiche degli studi che riportano dati su tre pool. I valori sono medie ± SEM, se non diversamente specificato.
aI numeri accanto al nome dell’autore distinguono studi diversi dello stesso autore; le lettere indicano interventi o caratteristiche dei partecipanti diversi all’interno di uno stesso studio.
bRispetto al basale.
  • Discussioni conclusive

L’infusione sistemica di Insulina porta a ipoglicemia e a una ridotta disponibilità di AA (ipoaminoacidemia) per la sintesi proteica. Per ovviare a queste conseguenze, glucosio e AA vengono co-infusi per mantenere la glicemia target e la disponibilità di AA. L’infusione locale di Insulina intra-arteriosa sembra limitare l’effetto dell’ipoglicemia sistemica e dell’ipoaminoacidemia, evitando così la necessità di una co-infusione obbligatoria di glucosio (o AA) [33].

La meta-analisi di questi 25 studi non ha mostrato alcun effetto significativo dell’Insulina sulla MPS. L’analisi dei sottogruppi, tuttavia, ha rivelato che negli individui sani l’effetto dell’Insulina sulla MPS diventa significativo solo quando viene aumentata la somministrazione di AA al muscolo scheletrico. Questi risultati sono stati replicati da altri ricercatori in studi in cui la coinfusione di AA e Insulina ha aumentato con successo l’apporto di AA al muscolo [30, 31, 36-42]. In uno studio di Fujita et al, l’esercizio fisico per 45 minuti ha aumentato con successo l’apporto di AA e la MPS rispetto ai controlli non allenati, sebbene l’esercizio fisico di per sé abbia effetti anabolici acuti sulla MPS muscolare [21]. In alcuni studi, tuttavia, l’aumento dell’apporto di AA non ha prodotto un aumento di MPS indotto dall’Insulina [16, 43]. Ciò è probabilmente dovuto al fatto che l’aumento dell’apporto di AA era minimo e ottenuto principalmente attraverso l’aumento del flusso sanguigno, piuttosto che attraverso un aumento della concentrazione di AA. Gli anziani mostrano una resistenza all’effetto anabolico dell’Insulina rispetto alle loro controparti più giovani, probabilmente attraverso meccanismi legati alla disfunzione endoteliale, alla ridotta perfusione tissutale e all’attenuazione della segnalazione anabolica, piuttosto che a una ridotta tolleranza al glucosio [30]. Tuttavia, in presenza di un maggiore apporto di AA, l’Insulina sembra conservare il suo effetto anabolico negli anziani sani. Questo sembra essere il caso sia che l’aumento dell’apporto di AA al muscolo sia ottenuto tramite concentrazioni fisiologiche [24, 38] o sovrafisiologiche [30] di Insulina, farmacologicamente con nitroprussiato di sodio [31] o tramite esercizio fisico [21].

L’aumento delle concentrazioni di Insulina nell’intervallo postprandiale non sembra influire sulla MPS. Uno studio precedente ha riportato che, con aumenti incrementali delle concentrazioni di AA, la MPS ha risposto positivamente a concentrazioni di Insulina di 139,0-194,5 pmol/l, aumentando del 22% rispetto al basale e del 72% quando sono state somministrate concentrazioni di AA più elevate [37]. D’altra parte, un altro studio ha riportato che, in presenza di concentrazioni fisse di AA, l’aumento della concentrazione di Insulina da 34,7 pmol/l a 500,0 pmol/l non ha prodotto ulteriori incrementi significativi della MPS [39]. L’Insulina non ha avuto alcun effetto sulla MPS quando l’apporto di AA è rimasto invariato rispetto al basale. Questi risultati sono supportati anche da altri studi [17, 20, 28-31, 34, 44]. In tutti gli studi sull’uomo sano in cui la disponibilità di AA è stata ridotta, la MPS si è ridotta o è rimasta invariata [18, 19, 37, 45, 46], anche in presenza di concentrazioni sovrafisiologiche di Insulina [18].

La meta-analisi dei 25 studi ha dimostrato che l’Insulina esercita la sua regolazione della massa muscolare magra principalmente attraverso un effetto anticatabolico nella riduzione della MPB. Questo è più evidente se si considerano i dati sulla NB, che hanno mostrato un effetto positivo sulla massa muscolare. Pertanto, le capacità proanaboliche dell’Insulina sono prevalentemente guidate dalla sua capacità di attenuare la MPB scheletrica, piuttosto che da un effetto positivo sulla MPS. Questo risultato è in accordo con le valutazioni di altri ricercatori [16, 29].

La riduzione della MPB indotta dall’Insulina sembra essere più potente quando gli AA sono scarsi. Questi risultati sono coerenti con altri studi che hanno riportato una riduzione della risposta all’Insulina [30, 32, 37, 39, 42, 44], ad eccezione di tre studi che non hanno osservato alcun cambiamento significativo nella MPB [45, 47, 48]. Ciò potrebbe essere dovuto alla resistenza anabolica all’Insulina in una popolazione di studio relativamente anziana e alla presenza di diabete mellito. È interessante notare che l’inibizione massima della MPB da parte dell’Insulina si verifica in risposta a incrementi molto modesti della concentrazione di Insulina (cioè a 104,2 pmol/l) [44].

È stato riferito che il diabete attenua l’effetto positivo dell’Insulina sulle MPB in presenza di una somministrazione prolungata di AA [17, 20, 49]. Tuttavia, in risposta a un trattamento intensivo a lungo termine con Insulina s.c., Halvatsiotis et al. non hanno riscontrato differenze nelle MPS mitocondriali, sarcoplasmatiche o miste rispetto ai controlli sani che non ricevevano Insulina [50]. Non è noto se l’aumento dell’assunzione di AA nei pazienti diabetici trattati con Insulina possa portare a un aumento della massa muscolare. Tuttavia, dato il ruolo facilitante dell’Insulina nel mantenimento della massa muscolare, in particolare in presenza di una maggiore disponibilità di AA, si può ipotizzare la necessità di consigliare ai pazienti con diabete in trattamento insulinico di aumentare l’assunzione di AA per sfruttare gli effetti positivi dell’Insulina sul metabolismo muscolare. Nei pazienti gravemente malati, dove ci si aspetta una significativa resistenza all’Insulina, sono stati osservati aumenti della MPS, ma solo quando sono state utilizzate concentrazioni sovrafisiologiche di Insulina [33, 51]. In uno studio condotto su individui affetti da obesità [40] e insufficienza cardiaca [42], è stato dimostrato che la MPB si riduce in risposta all’Insulina. Questa riduzione, tuttavia, è stata significativamente inferiore a quella osservata nei controlli sani. È evidente che sono necessari ulteriori studi per comprendere appieno il ruolo dell’insulino-resistenza nella regolazione di MPS e MPB nel diabete di tipo II.

Comunque, la review qui esposta presenta diverse limitazioni. I diversi metodi di stima del metabolismo proteico del muscolo scheletrico e la mancanza di dati primari disponibili hanno reso difficile eseguire una valutazione quantitativa completa mediante meta-analisi per tutti gli studi che soddisfacevano i criteri di inclusione della review sistematica. Riconosciamo inoltre che l’uso di più studi per ogni pubblicazione significa che il pooling degli studi non è del tutto indipendente. Inoltre, poiché si tratta di una meta-analisi di studi sperimentali, non è stato possibile effettuare una valutazione completa dei bias, come normalmente si fa nelle meta-analisi di studi controllati randomizzati [52] (ad esempio, generazione della sequenza e occultamento dell’allocazione per controllare i bias di selezione; cecità per controllare eventuali bias di performance, dati di esito incompleti, bias di segnalazione selettiva e altre fonti di bias), poiché nessuno degli studi ha utilizzato questi metodi per l’allocazione dei pazienti. Inoltre, poiché tutti gli studi erano di dimensioni simili, l’analisi del funnel plot potrebbe non essere completamente affidabile nell’informarci di eventuali bias di pubblicazione.

In sintesi, questa review sistematica e meta-analisi suggerisce che il ruolo principale dell’Insulina nell’anabolismo del muscolo scheletrico umano è di tipo facilitativo ed è influenzato dalla velocità di somministrazione degli AA. In situazioni in cui l’apporto di AA è invariato, sono necessarie concentrazioni sovrafisiologiche di Insulina per ottenere l’anabolismo del muscolo scheletrico. Tuttavia, il ruolo dell’Insulina nel ridurre la MPB è chiaramente evidente nella maggior parte degli studi. Questo effetto è attenuato nelle persone anziane e in quelle con resistenza all’Insulina. Questa resistenza è probabilmente legata a un’alterata segnalazione insulinica del metabolismo proteico muscolare e alla disfunzione endoteliale, piuttosto che all’intolleranza al glucosio. Sono necessarie ulteriori prove per tradurre questi risultati in strategie per massimizzare la massa muscolare nei pazienti con diabete insulino-trattato.

Effetto dell’Insulina esogena sull’aumenta del tasso di sintesi proteica muscolare:

L’Insulina è ben nota come ormone chiave responsabile dell’aumento dell’accumulo endogeno di carboidrati e grassi. Tuttavia, il suo ruolo nel metabolismo delle proteine è più controverso. Studi in vitro hanno dimostrato che l’Insulina stimola la sintesi proteica muscolare mediante l’attivazione diretta del meccanismo di traduzione attraverso la via PI3K→Akt→mTORC1 (53,54,55,56,57,58,59,60,61,62,63). L’Insulina può anche influenzare il metabolismo proteico in vivo grazie alle sue proprietà vasoattive. L’aumento postprandiale dell’Insulina circolante stimola la vasodilatazione endotelio-dipendente in virtù della sua azione sull’ossido nitrico sintasi endoteliale, con conseguente maggiore reclutamento capillare, aumento del volume microvascolare e flusso sanguigno nutritivo al tessuto muscolare scheletrico (64). Si potrebbe ipotizzare che la maggiore perfusione postprandiale aumenti l’esposizione del tessuto muscolare ai nutrienti e ai fattori di crescita e aumenti la sintesi proteica muscolare. Tuttavia, se l’Insulina abbia un effetto stimolante sulla sintesi proteica muscolare postprandiale nell’uomo è stato oggetto di un ampio dibattito come, tra l’altro, abbiamo appena visto (65, 66). Molti ritengono che le concentrazioni di Insulina in circolo siano semplicemente permissive, anziché modulatorie, per consentire un aumento della sintesi proteica muscolare in soggetti giovani e sani (66). In particolare, si ritiene che sia necessaria solo una piccola quantità di Insulina per “innescare” il sistema e che sia il successivo aumento della disponibilità di aminoacidi a guidare la risposta della sintesi proteica muscolare post-prandiale (67). Tuttavia, si ipotizza che gli anziani siano più resistenti all’effetto dell’Insulina sulla sintesi proteica muscolare, un difetto associato alla disfunzione endoteliale (68, 69, 70). Questa nuova review sistematica esamina la letteratura esistente sull’effetto proposto dell’aumento dei livelli di Insulina circolante sulla sintesi proteica muscolare in vivo nell’uomo e cerca di definire se tale effetto differisce tra giovani e anziani.

Attivazione della via del mammalian target of rapamycin (mTOR) nella sintesi proteica muscolare da parte di leucina e fattori anabolizzanti.
Insulina e IGF-1: fattore di crescita insulino-simile, PKB/Akt: protein chinasi B, AMPK: adenosina monofasfato protein chinasi, mTOR: mammalian target of rapamycin,
p70S6K: proteina ribosomiale S6 chinasi, 4E-BP1: proteina legante il fattore di iniziazione eucariotica 4E, eIF4G: fattore di iniziazione eucariotica 4G.

È stata eseguita una review sistematica secondo le linee guida PRISMA (71). In breve, nel gennaio 2014 è stata eseguita una ricerca computerizzata della letteratura utilizzando il database PubMed (http://www.ncbi.nlm.gov/pubmed/) e cercando a mano le liste di riferimento degli studi identificati e le principali review della letteratura. Sono stati utilizzati i seguenti termini di ricerca: Insulina; iperinsulinismo; muscolo; gamba; avambraccio; miofibrillare; anabol; sintesi proteica e accrescimento proteico e le funzioni booleane AND e OR. La ricerca elettronica finale è stata effettuata l’8 agosto 2014.

  • Tipi di studi
    Studi clinici che studiano la somministrazione di Insulina a persone sane. Gli studi sono stati limitati a quelli scritti in lingua inglese. Non sono state imposte restrizioni sulla data di pubblicazione.
  • Tipi di partecipanti
    Sono stati presi in considerazione partecipanti sani di qualsiasi età che ricevevano Insulina esogena e sono stati stratificati in giovani adulti sani (età media del gruppo tra 18 e 65 anni) o adulti anziani (età media del gruppo ≥65 anni). Per studiare l’effetto dell’età sulla sintesi proteica muscolare insulino-mediata di per sé, sono stati esclusi i soggetti con qualsiasi co-morbilità apparente, incluso il diabete.
  • Tipi di intervento
    Questa review è stata limitata agli studi che hanno esaminato la somministrazione di Insulina esogena.
  • Tipi di misure di esito
    La misura di esito primaria è la valutazione qualitativa della sintesi proteica muscolare, ossia un aumento significativo o nessun effetto. Gli studi inclusi hanno valutato la sintesi proteica muscolare come misurata dal tasso di scomparsa dei precursori (leg Rd) nel metodo del bilancio arteriovenoso a due vasche, dall’utilizzo intracellulare dei precursori (Fo,m) nel metodo del bilancio arteriovenoso a tre vasche o dal tasso di sintesi frazionale (FSR) nel modello precursore-prodotto (28). Queste misure tendevano a raggiungere valutazioni qualitative simili della sintesi proteica muscolare (dati non mostrati), pertanto non è stata fatta alcuna distinzione tra i modelli per l’interpretazione dell’effetto riportato dell’Insulina sulla sintesi proteica muscolare.

La valutazione dell’idoneità è stata eseguita individualmente da due autori (J Trommelen e B B L Groen). Le divergenze tra i revisori sono state risolte per consenso. I titoli e gli abstract identificati dalla strategia di ricerca sono stati vagliati per la rilevanza, definita dal rispetto di tutti i seguenti criteri: i) soggetti umani, ii) il disegno dello studio era un trial clinico, iii) l’intervento includeva la somministrazione di insulina esogena in almeno uno dei bracci dello studio, iv) valutava la sintesi proteica muscolare mista (Rd, Fo,m o FSR) e v) l’accessibilità al testo completo.
Due autori (J Trommelen e B B L Groen) hanno estratto individualmente i dati dagli studi inclusi. Le divergenze tra i revisori sono state risolte per consenso. Da ogni studio incluso sono state estratte informazioni su: i) caratteristiche dei soggetti, tra cui età e numero; ii) modello di valutazione della sintesi proteica muscolare (dati non mostrati); iii) tipo di intervento, tra cui dose, co-intervento, compartimento di infusione e gruppi di confronto; e iv) esito dello studio, tra cui effetto dell’insulina esogena sulla sintesi proteica muscolare, raggruppato in aumento significativo o nessun effetto.

Gli studi sono stati esaminati con una tabulazione completa dei risultati di tutti gli studi inclusi. A causa dell’eterogeneità clinica dei disegni sperimentali, non è stato possibile condurre una meta-analisi. Inoltre, è noto che le differenze nei metodi sperimentali introducono variabilità nella sintesi proteica muscolare, complicando l’analisi quantitativa tra gli studi (si rimanda a Smith et al. (72) per una rassegna su questo argomento). Pertanto, per gli studi inclusi è stata determinata una valutazione qualitativa della sintesi proteica muscolare, ossia un aumento significativo o nessun effetto. Sulla base di questi dati, abbiamo costruito diversi modelli in cui i bracci di studio sono stati esclusi sulla base di motivazioni (biologiche). Nel modello 1 sono stati esclusi i bracci di studio con iperamminoacidemia concomitante. Gli aminoacidi possono stimolare in modo indipendente la sintesi proteica muscolare e il rilascio endogeno di insulina, rendendo impossibile distinguere tra l’effetto dell’insulina e quello dell’infusione di aminoacidi (73, 74). Il modello 2 esclude inoltre i bracci di studio con ipoaminoacidemia insulino-mediata. È stato suggerito che l’effetto dell’insulina sulla sintesi proteica muscolare sia mediato da cambiamenti indotti dall’insulina nell’apporto di aminoacidi al muscolo (75, 76, 77, 78). L’infusione sistemica di insulina induce ipoaminoacidemia, che può limitare l’apporto di aminoacidi al muscolo. Pertanto, in questo modello, sono stati esclusi i bracci di studio che hanno permesso ai livelli di aminoacidi di scendere al di sotto del valore basale. Il modello 3 esclude inoltre i bracci di studio che raggiungono concentrazioni di insulina sovrafisiologiche. Ciò è stato fatto per differenziare tra livelli sovrafisiologici che possono essere raggiunti solo con la somministrazione di Insulina (>1200 pmol/l) e livelli fisiologici alla portata della produzione endogena in risposta a un pasto misto (≤1200 pmol/l). Il modello 4 esclude inoltre i bracci di studio in soggetti anziani, perché è stato suggerito che gli anziani sono più resistenti alle proprietà stimolanti proposte dall’insulina sulla sintesi proteica muscolare (79, 80).

La ricerca nel database PubMed ha fornito un totale di 2021 citazioni. Dal totale di 2025 citazioni, sono stati scartati 1980 studi perché, dopo aver esaminato gli abstract, non soddisfacevano i criteri di inclusione. Il testo completo delle restanti 45 citazioni è stato esaminato in modo più approfondito. Dopo un’attenta lettura del testo integrale, altri dieci studi non soddisfacevano i criteri di inclusione descritti. In totale, 40 studi hanno soddisfatto i criteri di ammissibilità e sono stati inclusi nella revisione sistematica.

Questa immagine ha l'attributo alt vuoto; il nome del file è study.png
Diagramma di flusso dell’identificazione dello studio.
Questa immagine ha l'attributo alt vuoto; il nome del file è graf1.png
Questa immagine ha l'attributo alt vuoto; il nome del file è graf2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è graf3.png
Questa immagine ha l'attributo alt vuoto; il nome del file è graf4.png
Questa immagine ha l'attributo alt vuoto; il nome del file è graf5.png
Questa immagine ha l'attributo alt vuoto; il nome del file è graf6.png
AABASAL, somministrazione di aminoacidi per mantenere i livelli basali; AAHYPER, somministrazione di aminoacidi per raggiungere l’iperamminoacidemia; INS, Insulina; INSSUPRA, somministrazione di Insulina per raggiungere i livelli sovrafisiologici; MPS, sintesi proteica muscolare; ↑, aumento significativo; ↔, nessun effetto significativo.


È stata osservata un’elevata eterogeneità metodologica. I design degli studi includevano studi a braccio singolo, a bracci paralleli e crossover. I gruppi di confronto variavano notevolmente, includendo nessun intervento (condizioni basali), soluzione fisiologica, dosaggi insulinici alternativi o protocolli di somministrazione di aminoacidi.
I principali criteri di ammissibilità prevedevano un buono stato di salute. La maggior parte degli studi riportava un esame anamnestico preliminare ed esami del sangue standard (principalmente per la valutazione della tolleranza al glucosio).
I dosaggi di insulina esogena applicati hanno portato a concentrazioni plasmatiche di insulina che variavano da livelli a digiuno (36 pmol/l) a livelli sovrafisiologici (81 078 pmol/l). Sono stati comunemente utilizzati protocolli di infusione sia sistemici che locali. I protocolli di infusione locale di Insulina utilizzavano l’avambraccio o la gamba come compartimento. Il co-intervento variava notevolmente; il più comune era la coinfusione di aminoacidi.

Sono stati identificati 40 studi da includere nella review, che variavano notevolmente nel design sperimentale. Numerosi studi hanno applicato disegni di ricerca che comprendevano più bracci sperimentali con interventi separati e molti dei quali hanno riportato risultati opposti, rendendo difficile trarre conclusioni a livello di studio. Inoltre, molti degli studi identificati includevano co-interventi, come la somministrazione di farmaci o protocolli di esercizio, che influenzano i risultati. Pertanto, la sintesi dei dati è stata effettuata a livello di braccio di studio.

Dai 40 studi selezionati, dopo l’esclusione degli interventi non correlati ai pasti (cioè la co-somministrazione di farmaci), è stato identificato un totale di 66 bracci di studio che includevano il trattamento insulinico. Di questi 66 bracci di studio, 34 hanno riscontrato un effetto insulino-stimolante sulla sintesi proteica muscolare, mentre 32 non hanno riscontrato tale effetto. Dodici bracci di studio consistevano in dati riutilizzati da altri studi inclusi (81, 82, 83, 84, 85, 86, 87, 88). Dopo la deduplicazione, è stato trovato un totale di 54 bracci di studio unici, di cui 28 hanno riportato un aumento dei tassi di sintesi proteica muscolare, mentre 26 non lo hanno fatto.

Questa immagine ha l'attributo alt vuoto; il nome del file è grafstudy.png
Diagramma di flusso dei modelli stepwise che riportano la presenza o l’assenza di un aumento della sintesi proteica muscolare in risposta all’Insulina esogena. MPS, sintesi proteica muscolare; ↑, aumento significativo; ↔, nessun effetto significativo.

Sulla base di questi dati, sono stati costruiti diversi modelli che escludevano i bracci di studio sulla base di un razionale (biologico), come descritto in precedenza. Nel modello 1, sono stati esclusi i bracci di studio in cui la somministrazione di insulina era combinata con co-interventi di aminoacidi che aumentavano gli aminoacidi plasmatici oltre i livelli basali e non avevano un gruppo di confronto per correggere l’aumento degli aminoacidi plasmatici (89, 90, 91, 92, 93, 94, 95, 96, 97, 98). Questo criterio ha escluso 17 bracci di studio, che hanno tutti riportato un aumento della sintesi proteica muscolare.

Il modello 2 escludeva inoltre i bracci di studio in cui i livelli di aminoacidi potevano scendere al di sotto dei livelli basali (99, 100, 101, 102, 102, 103, 104, 105). Questo criterio ha escluso altri dieci bracci di studio rispetto al modello 1, nessuno dei quali ha riportato un effetto sulla sintesi proteica muscolare.

Il modello 3 ha inoltre escluso i bracci di studio in cui è stata raggiunta una concentrazione sovrafisiologica di insulina (106). Questo criterio ha escluso altri due bracci di studio rispetto al modello 2, che hanno entrambi riportato che l’insulina aumenta la sintesi proteica muscolare.

Il modello 4 ha inoltre escluso i bracci di studio in soggetti anziani (107, 108, 109,110, 111). Questo criterio ha escluso altri quattro interventi rispetto al modello 3, uno dei quali ha riportato un effetto insulino-stimolante sulla sintesi proteica muscolare, mentre gli altri tre non lo hanno fatto. Dopo queste esclusioni finali, il modello 4 includeva un totale di 21 bracci di studio, otto dei quali riportavano un aumento della sintesi proteica muscolare, mentre 13 non lo facevano.

  • Discussione finale

Questa review sistematica ha esaminato la letteratura riguardante l’effetto proposto, legato all’età, della somministrazione di Insulina esogena sui tassi di sintesi proteica muscolare in vivo nell’uomo. Sebbene siano stati condotti numerosi studi per valutare l’impatto della somministrazione di Insulina esogena sulla sintesi proteica muscolare, i dati non supportano un ruolo stimolatorio della somministrazione di Insulina esogena sui tassi di sintesi proteica muscolare in vivo nell’uomo.

Gli aminoacidi sono ben noti per la loro capacità indipendente di stimolare la sintesi proteica muscolare (112, 113). Pertanto, è stato costantemente dimostrato che la somministrazione di Insulina e aminoacidi aumenta la sintesi proteica muscolare (114, 115, 116). Senza un adeguato gruppo di controllo con un grado simile di iperamminoacidemia, è impossibile differenziare le proprietà anaboliche proposte dalla somministrazione di Insulina e aminoacidi. Come previsto, tutti i 17 bracci di studio che combinavano la somministrazione di Insulina e aminoacidi, esclusi dalle analisi in base a questo criterio, hanno riportato un aumento della sintesi proteica muscolare. Va notato che uno stato di iperinsulinemia e iperamminoacidemia concomitanti riflette le condizioni fisiologiche successive all’ingestione di un pasto misto. Tre studi hanno esaminato se la somministrazione di Insulina esogena possa aumentare ulteriormente la sintesi proteica muscolare in condizioni di iperamminoacidemia, e tutti non hanno rilevato un effetto incrementale (60, 75, 83). Questi risultati suggeriscono che l’iperinsulinemia e l’iperamminoacidemia concomitanti aumentano la sintesi proteica muscolare ma, almeno nei soggetti giovani e sani, questo effetto sembra interamente attribuito all’iperamminoacidemia.

La somministrazione di Insulina per via endovenosa è seguita da una riduzione dose-dipendente dei livelli plasmatici di aminoacidi, con gli aminoacidi a catena ramificata più sensibili all’aumento dei livelli circolanti di Insulina (90). Questa ipoaminoacidemia indotta dall’Insulina è il riflesso di un aumento dell’assorbimento di aminoacidi dal plasma in combinazione con l’azione inibitoria proposta dall’aumento dei livelli di Insulina sulla proteolisi endogena (80, 70). È stato suggerito che il proposto effetto positivo della somministrazione di Insulina esogena sulla sintesi proteica muscolare sia mediato dall’aumento del flusso sanguigno indotto dall’Insulina e dal conseguente maggiore apporto di aminoacidi al muscolo. Un calo delle concentrazioni circolanti di aminoacidi può limitare l’apporto di aminoacidi al muscolo e di conseguenza limitare la capacità dell’Insulina di stimolare la sintesi proteica muscolare. Per evitare questo calo dei livelli di aminoacidi, diversi studi hanno applicato infusioni i.v. di aminoacidi in combinazione con la somministrazione di Insulina o hanno infuso Insulina esogena localmente nell’arteria femorale o brachiale. Nel modello 2, sono stati esclusi dieci bracci di studio che hanno mostrato un’ipoaminoacidemia indotta dall’Insulina. Nessuno di questi dieci bracci di studio ha riscontrato un effetto insulino-stimolante dell’Insulina sulla sintesi proteica muscolare, sostenendo il razionale che l’ipoaminoacidemia indotta dall’Insulina possa ovviare alle proprietà stimolanti proposte dalla somministrazione di Insulina sull’apporto di aminoacidi al muscolo e sul conseguente aumento della sintesi proteica muscolare.

È stato dimostrato che l’Insulina aumenta la sintesi proteica muscolare in vitro (117, 118, 119). Tuttavia, dagli studi in vivo sull’uomo emergono molte discrepanze sugli effetti positivi proposti dall’Insulina esogena sui tassi di sintesi proteica muscolare. È stato suggerito che l’apparente discrepanza sia attribuita alle concentrazioni di Insulina sovrafisiologiche più che decuplicate (14.000 pmol/l o superiori) applicate nei modelli in vitro rispetto agli aumenti più fisiologici dei livelli di Insulina plasmatica (fino a 1.200 pmol/l) applicati nella maggior parte degli studi umani in vivo (53, 60). Uno studio ha somministrato Insulina esogena localmente nell’avambraccio per ottenere livelli locali di Insulina sovrafisiologica superiori a 50.000pmol/l, mentre si bloccavano gli aminoacidi a livelli arteriosi o venosi basali, e ha riportato un aumento dei tassi di sintesi proteica muscolare (60). I loro risultati suggeriscono che i livelli di Insulina sovrafisiologici possono stimolare efficacemente la sintesi proteica muscolare.

È stato ipotizzato che gli anziani siano più resistenti agli stimoli anabolici, come gli aumenti delle concentrazioni plasmatiche circolanti di Insulina e aminoacidi, rispetto agli adulti più giovani (106). La resistenza anabolica alla somministrazione di aminoacidi e/o Insulina nella popolazione anziana potrebbe essere attribuita a un’alterazione dell’apporto di aminoacidi al muscolo stimolato dall’Insulina (58). Di conseguenza, si è ipotizzato che la somministrazione di Insulina esogena possa aumentare la sintesi proteica muscolare negli adulti più anziani (più resistenti all’Insulina). Dopo aver stratificato i dati in giovani e anziani, è stato identificato uno studio che ha riportato un effetto positivo della somministrazione di Insulina esogena sulla sintesi proteica muscolare nei soggetti anziani (54), mentre tre bracci di studio non hanno osservato tale effetto (112, 113). È interessante notare che l’aumento della sintesi proteica muscolare stimolato dall’Insulina nei soggetti anziani è stato osservato solo in presenza di livelli locali di Insulina relativamente elevati, superiori a 900 pmol/l (54). Dosaggi inferiori di somministrazione locale di Insulina, con livelli plasmatici locali di Insulina di ∼500 pmol, non sembravano aumentare la sintesi proteica muscolare negli anziani. Questi dati suggeriscono che gli anziani potrebbero essere più resistenti alle proprietà anaboliche dell’Insulina, una resistenza che potrebbe essere superata con concentrazioni di Insulina più elevate.

Nel modello 4 sono stati applicati criteri di esclusione rigorosi per escludere i fattori che potrebbero modulare l’effetto stimolante proposto dalla somministrazione di Insulina esogena negli adulti sani, tra cui:

  1. iperamminoacidemia concomitante;
  2. ipoaminoacidemia indotta dall’Insulina;
  3. concentrazioni di insulina sovrafisiologiche e
  4. soggetti più anziani e più resistenti all’Insulina.

Sono stati identificati otto bracci di studio che hanno riportato un aumento della sintesi proteica muscolare stimolata dall’Insulina, mentre 14 bracci di studio non hanno osservato un aumento dei tassi di sintesi proteica muscolare stimolata dall’Insulina in soggetti giovani e sani. Un sottogruppo del modello 4 comprende otto bracci di studio in cui l’Insulina viene infusa localmente nella gamba, di cui cinque bracci di studio hanno riportato un aumento del tasso di sintesi proteica muscolare, mentre tre non lo hanno fatto. Tre di questi bracci di studio provengono da uno studio dose-risposta, in cui la somministrazione di Insulina a bassa dose (0,05 mU/min×100 ml di gamba) e ad alta dose (0,30 mU/min×100 ml di gamba) non ha aumentato il tasso di sintesi proteica muscolare, mentre la dose intermedia (0,15 mU/min×100 ml di gamba) sì (55). Questa dose intermedia ha aumentato i tassi di sintesi proteica muscolare in tutti e cinque i bracci di studio in cui è stata applicata (7, 24, 28, 54, 55), mentre non è stato osservato alcun aumento dei tassi di sintesi proteica muscolare nei tre bracci di studio che hanno applicato un dosaggio alternato (55, 61). Ciò suggerisce un effetto dose-risposta a forma di U della somministrazione di Insulina esogena sulla sintesi proteica muscolare, dove una dose di ∼0,15mU/min×100 ml di gamba può stimolare la sintesi proteica muscolare. È interessante notare che la somministrazione di Insulina esogena non sembra stimolare la sintesi proteica muscolare quando viene infusa localmente nell’avambraccio. In questo sottogruppo del modello 4, tutti e sei gli interventi non hanno riportato alcun aumento dei tassi di sintesi proteica muscolare, nonostante un’ampia gamma di protocolli di dosaggio studiati (58, 62, 63). Nel tentativo di delineare ulteriormente i risultati, i dati sono stati esaminati per individuare altri potenziali fattori modulanti. La presenza o l’assenza di un effetto stimolante in questi studi non poteva essere attribuita a differenze nei livelli di Insulina circolante o alla scelta dei traccianti aminoacidici.

In tutti i lavori presentati, l’Insulina esogena è stata somministrata con un approccio basato sul clamp. Questo approccio può avere dei limiti, in quanto si potrebbe ipotizzare che il forte aumento postprandiale del livello di Insulina circolante abbia una funzione regolatoria per attivare vari processi fisiologici che facilitano l’aumento postprandiale del tasso di sintesi proteica muscolare. Questi cambiamenti temporali nella secrezione di Insulina, nell’apporto e nell’assorbimento di aminoacidi e nella segnalazione intramiocellulare devono essere strettamente regolati per sostenere la risposta anabolica postprandiale. Inoltre, è stato notato che potrebbero esserci differenze nella rilevanza dei livelli di Insulina circolante sulla modulazione della sintesi di varie (serie di) proteine nel tessuto muscolare scheletrico (60).

Dai dati presentati nell’attuale review sistematica, si può concludere che:

  1. la somministrazione esogena di Insulina e aminoacidi aumenta efficacemente la sintesi proteica muscolare; tuttavia, questo effetto è attribuito all’iperaminoacidemia;
  2. l’Insulina esogena somministrata per via sistemica induce ipoaminoacidemia, che ovvia a qualsiasi effetto insulino-stimolatorio sulla sintesi proteica muscolare;
  3. l’Insulina esogena che determina livelli di Insulina sovrafisiologici superiori a 50.000 pmol/l può stimolare efficacemente la sintesi proteica muscolare anche se i livelli di soglia minima sono di 1.200pmol/l;
  4. l’Insulina esogena può avere un effetto ridotto sulla sintesi proteica muscolare negli adulti più anziani a causa della resistenza anabolica legata all’età;
  5. l’Insulina esogena somministrata in range fisiologici per via sistemica non aumenta la sintesi proteica muscolare nei giovani adulti sani.

In definitiva, in base ai dati raccolti dalla letteratura esistente, gli autori della review concludono che la somministrazione di Insulina esogena non aumenta i tassi di sintesi proteica muscolare negli adulti sani, giovani o anziani se non superando la soglia fisiologica.

Di conseguenza, ci troviamo di fronte ad un peptide con funzione prevalentemente anticatabolica e soggetto nella sua efficacia al grado di insulino-sensibilità tissutale?… Così sembrerebbe, specie in contesto fisiologico endogeno e indotto esogenamente. Ma se all’equazione ci aggiungessimo altre variabili che influenzino la risposta di base fisiologica e che non interessino il semplice dosaggio di Insulina utilizzato?…

Continua…

Gabriel Bellizzi

Riferimenti:

  1. Bier DM (1989) Intrinsically difficult problems: the kinetics of body proteins and amino acids in man. Diabetes Metab Rev 5:111–132Article CAS PubMed Google Scholar 
  2. Prod’homme M, Rieu I, Balage M, Dardevet D, Grizard J (2004) Insulin and amino acids both strongly participate to the regulation of protein metabolism. Curr Opin Clin Nutr Metab Care 7:71–77Article PubMed Google Scholar 
  3. McNurlan MA, Garlick PJ (1989) Influence of nutrient intake on protein turnover. Diabetes Metab Rev 5:165–189Article CAS PubMed Google Scholar 
  4. Cruz-Jentoft AJ, Landi F, Schneider SM et al (2014) Prevalence and intervention for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43:748–759PubMed Central Article PubMed Google Scholar 
  5. Atherton PJ, Etheridge T, Watt PW et al (2010) Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr 92:1080–1088Article CAS PubMed Google Scholar 
  6. Wolfson L, Judge J, Whipple R, King M (1995) Strength is a major factor in balance, gait, and the occurrence of falls. J Gerontol A Biol Sci Med Sci 50:64–67PubMed Google Scholar 
  7. Tinetti ME, Williams CS (1997) Falls, injuries due to falls, and the risk of admission to a nursing home. N Engl J Med 337:1279–1284Article CAS PubMed Google Scholar 
  8. Park SW, Goodpaster BE, Lee JS et al (2009) Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 32:1993–1997PubMed Central Article PubMed Google Scholar 
  9. Mavros Y, Kay S, Anderberg KA et al (2013) Changes in insulin resistance and HbA1c are related to exercise-mediated changes in body composition in older adults with type 2 diabetes: interim outcomes from the GREAT2DO trial. Diabetes Care 36:2372–2379PubMed Central Article CAS PubMed Google Scholar 
  10. Prospective UK (1995) Diabetes Study Group. UK Prospective Diabetes Study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 44:1249–1258Article Google Scholar 
  11. Koro CE, Bowlin SJ, Bourgeois N, Fedder DO (2004) Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes: a preliminary report. Diabetes Care 27:17–20Article PubMed Google Scholar 
  12. Biesenbach G, Raml A, Alsaraji N (2006) Weight gain and insulin requirement in type 2 diabetic patients during the first year after initiating insulin therapy dependent on baseline BMI. Diabetes Obes Metab 8:669–673Article CAS PubMed Google Scholar 
  13. Packianathan IC, Fuller NJ, Peterson DB, Wright A, Coward WA, Finer N (2005) Use of a reference four-component model to define the effects of insulin treatment on body composition in type 2 diabetes: the ‘Darwin study’. Diabetologia 48:222–229Article CAS PubMed Google Scholar 
  14. Pain VM, Albertse EC, Garlick PJ (1983) Protein metabolism in skeletal muscle, diaphragm, and heart of diabetic rats. Am J Physiol 245:E604–E610CAS PubMed Google Scholar 
  15. Garlick PJ, Grant I (1988) Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J 254:579–584PubMed Central Article CAS PubMed Google Scholar 
  16. Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80:1–6PubMed Central Article CAS PubMed Google Scholar 
  17. Pacy PJ, Nair KS, Ford C, Halliday D (1989) Failure of insulin infusion to stimulate fractional muscle protein synthesis in type I diabetic patients; anabolic effect of insulin and decreased proteolysis 38:612–624
  18. Denne SC, Liechty EA, Liu YM, Brechtel G, Baron AD (1991) Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Physiol 261:E809–E814CAS PubMed Google Scholar 
  19. Louard RJ, Fryburg DA, Gelfand RA, Barrett EJ (1992) Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J Clin Invest 90:2348–2354PubMed Central Article CAS PubMed Google Scholar 
  20. Bell JA, Volpi E, Fujita S et al (2006) Skeletal muscle protein anabolic response to increased energy and insulin is preserved in poorly controlled type 2 diabetes. J Nutr 136:1249–1255PubMed Central CAS PubMed Google Scholar 
  21. Fujita S, Rasmussen BB, Cadenas JG et al (2007) Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes 56:1615–1622PubMed Central Article CAS PubMed Google Scholar 
  22. Biolo G, Fleming RY, Maggi SP, Wolfe RR (1995) Transmembrane transport and intracellular kinetics of amino acids in human skeletal muscle. Am J Physiol 268:E75–E84CAS PubMed Google Scholar 
  23. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560PubMed Central Article PubMed Google Scholar 
  24. Newman E, Heslin MJ, Wolf RF, Pisters PW, Brennan MF (1994) The effect of systemic hyperinsulinemia with concomitant amino acid infusion on skeletal muscle protein turnover in the human forearm. Metabolism 43:70–78Article CAS PubMed Google Scholar 
  25. Biolo G, Declan Fleming RY, Wolfe RR (1995) Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 95:811–819PubMed Central Article CAS PubMed Google Scholar 
  26. Fryburg DA, Jahn LA, Hill SA, Oliveras DM, Barrett EJ (1995) Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J Clin Invest 96:1722–1729PubMed Central Article CAS PubMed Google Scholar 
  27. Luzi L, Piceni Sereni L, Spessot M et al (2000) Postabsorptive muscle protein metabolism in type 1 diabetic patients after pancreas transplantation. Acta Diabetol 37:219–224Article CAS PubMed Google Scholar 
  28. Rasmussen BB, Fujita S, Wolfe RR et al (2006) Insulin resistance of muscle protein metabolism in aging. FASEB J 20:768–769PubMed Central CAS PubMed Google Scholar 
  29. Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E (2006) Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab 291:E745–E754PubMed Central Article CAS PubMed Google Scholar 
  30. Fujita S, Glynn EL, Timmerman KL, Rasmussen BB, Volpi E (2009) Supraphysiological hyperinsulinaemia is necessary to stimulate skeletal muscle protein anabolism in older adults: evidence of a true age-related insulin resistance of muscle protein metabolism. Diabetologia 52:1889–1898PubMed Central Article CAS PubMed Google Scholar 
  31. Timmerman KL, Lee JL, Fujita S et al (2010) Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults. Diabetes 59:2764–2771PubMed Central Article CAS PubMed Google Scholar 
  32. Timmerman KL, Lee JL, Dreyer HC et al (2010) Insulin stimulates human skeletal muscle protein synthesis via an indirect mechanism involving endothelial-dependent vasodilation and mammalian target of rapamycin complex 1 signaling. J Clin Endocrinol Metab 95:3848–3857PubMed Central Article CAS PubMed Google Scholar 
  33. Gore DC, Herndon DN, Wolfe RR (2005) Comparison of peripheral metabolic effects of insulin and metformin following severe burn injury. J Trauma Inj Infect Crit Care 59:316–323Article CAS Google Scholar 
  34. Biolo G, Williams BD, Fleming RY, Wolfe RR (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48:949–957Article CAS PubMed Google Scholar 
  35. Ferrando AA, Chinkes DL, Wolf SE, Matin S, Herndon DN, Wolfe RR (1999) A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns. Ann Surg 229:11–18PubMed Central Article CAS PubMed Google Scholar 
  36. Hillier TA, Fryburg DA, Jahn LA, Barrett EJ, Teresa A (1998) Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. Am J Physiol Endocrinol Metab 247:E1067–E1074Google Scholar 
  37. Nygren J, Nair KS (2003) Differential regulation of protein dynamics in splanchnic and skeletal muscle beds by insulin and amino acids in healthy human subjects. Diabetes 52:1377–1385Article CAS PubMed Google Scholar 
  38. Guillet C, Prod’homme M, Balage M et al (2004) Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J 18:1586–1587CAS PubMed Google Scholar 
  39. Greenhaff PL, Karagounis LG, Peirce N et al (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295:595–604Article Google Scholar 
  40. Guillet C, Delcourt I, Rance M et al (2009) Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. J Clin Endocrinol Metab 94:3044–3050Article CAS PubMed Google Scholar 
  41. Smith GI, Atherton P, Reed DN et al (2009) No major sex differences in muscle protein synthesis rates in the postabsorptive state and during hyperinsulinemia-hyperaminoacidemia in middle-aged adults. J Appl Physiol 107:1308–1315PubMed Central Article CAS PubMed Google Scholar 
  42. Toth MJ, LeWinter MM, Ades PA, Matthews DE (2010) Impaired muscle protein anabolic response to insulin and amino acids in heart failure patients: relationship with markers of immune activation. Clin Sci (Lond) 119:467–476
  43. Heslin MJ, Newman E, Wolf RF, Pisters PW, Brennan MF (1992) Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am J Physiol 262:E911–E918CAS PubMed Google Scholar 
  44. Wilkes EA, Selby AL, Atherton PJ et al (2009) Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. Am J Clin Nutr 90:1343–1350Article CAS PubMed Google Scholar 
  45. Arfvidsson B, Zachrisson H, Moller-Loswick AC, Hyltander A, Sandstrom R, Lundholm K (1991) Effect of systemic hyperinsulinemia on amino acid flux across human legs in postabsorptive state. Am J Physiol 260:E46–E52CAS PubMed Google Scholar 
  46. Barazzoni R, Short KR, Asmann Y, Coenen-Schimke JM, Robinson MM, Nair KS (2012) Insulin fails to enhance mTOR phosphorylation, mitochondrial protein synthesis, and ATP production in human skeletal muscle without amino acid replacement. Am J Physiol Endocrinol Metab 303:E1117–E1125PubMed Central Article CAS PubMed Google Scholar 
  47. Wolf RF, Heslin MJ, Newman E, Pearlstone DB, Gonenne A, Brennan MF (1992) Growth hormone and insulin combine to improve whole-body and skeletal muscle protein kinetics. Surgery 112:284–291, discussion 291–292CAS PubMed Google Scholar 
  48. Bell JA, Fujita S, Volpi E, Cadenas JG, Rasmussen BB (2005) Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases. Am J Physiol Endocrinol Metab 289:E999–E1006PubMed Central Article CAS PubMed Google Scholar 
  49. Charlton MR, Balagopal P, Nair KS (1997) Skeletal muscle myosin heavy chain synthesis in type 1 diabetes. Diabetes 46:1336–1340Article CAS PubMed Google Scholar 
  50. Halvatsiotis P, Short KR, Bigelow M, Nair KS (2002) Synthesis rate of muscle proteins, muscle functions, and amino acid kinetics in type 2 diabetes. Diabetes 51:2395–2404Article CAS PubMed Google Scholar 
  51. Sakurai Y, Aarsland A, Herndon DN et al (1995) Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients. Ann Surg 222:283–297PubMed Central Article CAS PubMed Google Scholar 
  52. Wang C, Mamza J, Idris I (2015) Biphasic vs basal bolus insulin regimen in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabet Med 32:585–594
  53. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB Journal 2005 19 422–424. (doi:10.1096/fj.04-2640fje).
  54. Abellan Van Kan G. Epidemiology and consequences of sarcopenia. Journal of Nutrition, Health & Aging 2009 13 708–712. (doi:10.1007/s12603-009-0201-z).
  55. Kinsella K & He W. An aging world: 2008. In International Population Reports, pp P95/09-91. U.S. Department of Health and Human Services, 2009. http://www.census.gov/prod/2009pubs/p95-09-1.pdf.
  56. Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR. Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. Journal of the American Medical Association 2001 286 1206. (doi:10.1001/jama.286.10.1206).
  57. Koopman R, van Loon LJC. Aging, exercise, and muscle protein metabolism. Journal of Applied Physiology 2009 106 2040. (doi:10.1152/japplphysiol.91551.2008).
  58. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. American Journal of Clinical Nutrition 2005 82 1065–1073.
  59. Timmerman KL, Lee JL, Dreyer HC, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Sheffield-Moore M, Rasmussen BB, Volpi E. Insulin stimulates human skeletal muscle protein synthesis via an indirect mechanism involving endothelial-dependent vasodilation and mammalian target of rapamycin complex 1 signaling. Journal of Clinical Endocrinology and Metabolism 2010 95 3848–3857. (doi:10.1210/jc.2009-2696).
  60. Timmerman KL, Lee JL, Fujita S, Dhanani S, Dreyer HC, Fry CS, Drummond MJ, Sheffield-Moore M, Rasmussen BB, Volpi E. Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults. Diabetes 2010 59 2764–2771. (doi:10.2337/db10-0415).
  61. Frayn KN, Maycock PF. Regulation of protein metabolism by a physiological concentration of insulin in mouse soleus and extensor digitorum longus muscles. Effects of starvation and scald injury. Biochemical Journal 1979 184 323.
  62. Fulks RM, Li JB, Goldberg AL. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. Journal of Biological Chemistry 1975 250 290–298.
  63. Jefferson L, Rannels D, Munger B, Morgan H. Insulin in the regulation of protein turnover in heart and skeletal muscle. Federation Proceedings 1974 33 1098–1104.
  64. Jefferson L, Li J, Rannels S. Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. Journal of Biological Chemistry 1977 252 1476.
  65. Li J, Higgins J, Jefferson L. Changes in protein turnover in skeletal muscle in response to fasting. American Journal of Physiology. Endocrinology and Metabolism 1979 236 E222.
  66. Lundholm K, Edström S, Ekman L, Karlberg I, Walker P, Schersten T. Protein degradation in human skeletal muscle tissue: the effect of insulin, leucine, amino acids and ions. Clinical Science 1981 60 319.
  67. Jefferson LS. Lilly Lecture 1979: role of insulin in the regulation of protein synthesis. Diabetes 1980 29 487. (doi:10.2337/diab.29.6.487).
  68. Jefferson L, Koehler J, Morgan H. Effect of insulin on protein synthesis in skeletal muscle of an isolated perfused preparation of rat hemicorpus. PNAS 1972 69 816. (doi:10.1073/pnas.69.4.816).
  69. Stirewalt WS, Low R, Slaiby JM. Insulin sensitivity and responsiveness of epitrochlearis and soleus muscles from fed and starved rats. Recognition of differential changes in insulin sensitivities of protein synthesis and glucose incorporation into glycogen. Biochemical Journal 1985 227 355.
  70. Proud CG, Denton RM. Molecular mechanisms for the control of translation by insulin. Biochemical Journal 1997 328 329.
  71. Kimball SR, Vary TC, Jefferson LS. Regulation of protein synthesis by insulin. Annual Review of Physiology 1994 56 321–348. (doi:10.1146/annurev.ph.56.030194.001541).
  72. Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocrine Reviews 2007 28 463–491. (doi:10.1210/er.2007-0006).
  73. Phillips SM. Insulin and muscle protein turnover in humans: stimulatory, permissive, inhibitory, or all of the above? American Journal of Physiology. Endocrinology and Metabolism 2008 295 E731. (doi:10.1152/ajpendo.90569.2008).
  74. Timmerman KL, Volpi E. Amino acid metabolism and regulatory effects in aging. Current Opinion in Clinical Nutrition and Metabolic Care 2008 11 45. (doi:10.1097/MCO.0b013e3282f2a592).
  75. Greenhaff PL, Karagounis L, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. American Journal of Physiology. Endocrinology and Metabolism 2008 295 E595–E604. (doi:10.1152/ajpendo.90411.2008).
  76. Fujita S, Glynn EL, Timmerman KL, Rasmussen BB, Volpi E. Supraphysiological hyperinsulinaemia is necessary to stimulate skeletal muscle protein anabolism in older adults: evidence of a true age-related insulin resistance of muscle protein metabolism. Diabetologia 2009 52 1889–1898. (doi:10.1007/s00125-009-1430-8).
  77. Meneilly G, Elliot T, Bryer-Ash M, Floras J. Insulin-mediated increase in blood flow is impaired in the elderly. Journal of Clinical Endocrinology and Metabolism 1995 80 1899.
  78. Rasmussen BB, Fujita S, Wolfe RR, Mittendorfer B, Roy M, Rowe VL, Volpi E. Insulin resistance of muscle protein metabolism in aging. FASEB Journal 2006 20 768–769. (doi:10.1096/fj.05-4607fje).
  79. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 2009 6 e1000097. (doi:10.1371/journal.pmed.1000097).
  80. Biolo G, Declan Fleming RY, Wolfe RR. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. Journal of Clinical Investigation 1995 95 811–819. (doi:10.1172/JCI117731).
  81. Smith GI, Patterson BW, Mittendorfer B. Human muscle protein turnover – why is it so variable? Journal of Applied Physiology 2011 110 480–491. (doi:10.1152/japplphysiol.00125.2010).
  82. Bennet W, Connacher A, Scrimgeour C, Smith K, Rennie M. Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13C]leucine. Clinical Science 1989 76 447.
  83. Kimball S. The role of nutrition in stimulating muscle protein accretion at the molecular level. Biochemical Society Transactions 2007 35 1298–1301. (doi:10.1042/BST0351298).
  84. DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, Seals DR. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 2000 102 1351–1357. (doi:10.1161/01.CIR.102.12.1351).
  85. Fujita S, Rasmussen BB, Cadenas JG, Drummond MJ, Glynn EL, Sattler FR, Volpi E. Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes 2007 56 1615–1622. (doi:10.2337/db06-1566).
  86. Louard RJ, Fryburg DA, Gelfand RA, Barrett EJ. Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. Journal of Clinical Investigation 1992 90 2348–2354. (doi:10.1172/JCI116124).
  87. Bell JA, Volpi E, Fujita S, Cadenas JG, Sheffield-Moore M, Rasmussen BB. Skeletal muscle protein anabolic response to increased energy and insulin is preserved in poorly controlled type 2 diabetes. Journal of Nutrition 2006 136 1249–1255.
  88. Newman E, Heslin MJ, Wolf RF, Pisters PW, Brennan MF. The effect of systemic hyperinsulinemia with concomitant amino acid infusion on skeletal muscle protein turnover in the human forearm. Metabolism 1994 43 70–78. (doi:10.1016/0026-0495(94)90159-7).
  89. Drummond MJ, Bell JA, Fujita S, Dreyer HC, Glynn EL, Volpi E, Rasmussen BB. Amino acids are necessary for the insulin-induced activation of mTOR/S6K1 signaling and protein synthesis in healthy and insulin resistant human skeletal muscle. Clinical Nutrition 2008 27 447–456. (doi:10.1016/j.clnu.2008.01.012).
  90. Biolo G, Williams BD, Fleming R, Wolfe R. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 1999 48 949–957. (doi:10.2337/diabetes.48.5.949).
  91. Zanetti M, Barazzoni R, Kiwanuka E, Tessari P. Effects of branched-chain-enriched amino acids and insulin on forearm leucine kinetics. Clinical Science 1999 97 437–448. (doi:10.1042/CS19990163).
  92. Hillier TA, Fryburg DA, Jahn LA, Barrett EJ. Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. American Journal of Physiology 1998 274 E1067–E1074.
  93. Nygren J, Nair KS. Differential regulation of protein dynamics in splanchnic and skeletal muscle beds by insulin and amino acids in healthy human subjects. Diabetes 2003 52 1377–1385. (doi:10.2337/diabetes.52.6.1377).
  94. Guillet C, Prod’homme M, Balage M, Gachon P, Giraudet C, Morin L, Grizard J, Boirie Y. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB Journal 2004 18 1586–1587.
  95. Guillet C, Delcourt I, Rance M, Giraudet C, Walrand S, Bedu M, Duche P, Boirie Y. Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. Journal of Clinical Endocrinology and Metabolism 2009 94 3044–3050. (doi:10.1210/jc.2008-2216).
  96. Smith GI, Atherton P, Reeds DN, Mohammed BS, Jaffery H, Rankin D, Rennie MJ, Mittendorfer B. No major sex differences in muscle protein synthesis rates in the postabsorptive state and during hyperinsulinemia–hyperaminoacidemia in middle-aged adults. Journal of Applied Physiology 2009 107 1308–1315. (doi:10.1152/japplphysiol.00348.2009).
  97. Chevalier S, Goulet ED, Burgos SA, Wykes LJ, Morais JA. Protein anabolic responses to a fed steady state in healthy aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 66A 2011 681–688. (doi:10.1093/gerona/glr036).
  98. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. American Journal of Clinical Nutrition 2011 93 402–412. (doi:10.3945/ajcn.110.005611).
  99. Tessari P, Barazzoni R, Zanetti M. Differences in estimates of forearm protein synthesis between leucine and phenylalanine tracers following unbalanced amino acid infusion. Metabolism 1999 48 1564–1569. (doi:10.1016/S0026-0495(99)90246-9).
  100. Toth MJ, LeWinter MM, Ades PA, Matthews DE. Impaired muscle protein anabolic response to insulin and amino acids in heart failure patients: relationship to markers of immune activation. Clinical Science 2010 119 467. (doi:10.1042/CS20100110).
  101. Denne SC, Liechty EA, Liu YM, Brechtel G, Baron AD. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. American Journal of Physiology. Endocrinology and Metabolism 1991 261 E809–E814.
  102. Tessari P, Inchiostro S, Biolo G, Vincenti E, Sabadin L. Effects of acute systemic hyperinsulinemia on forearm muscle proteolysis in healthy man. Journal of Clinical Investigation 1991 88 27–33. (doi:10.1172/JCI115287).
  103. Arfvidsson B, Zachrisson H, Moller-Loswick AC, Hyltander A, Sandstrom R, Lundholm K. Effect of systemic hyperinsulinemia on amino acid flux across human legs in postabsorptive state. American Journal of Physiology. Endocrinology and Metabolism 1991 260 E46–E52.
  104. McNurlan MA, Essen P, Thorell A, Calder AG, Anderson SE, Ljungqvist O, Sandgren A, Grant I, Tjader I, Ballmer PE et al.. Response of protein synthesis in human skeletal muscle to insulin: an investigation with l-[2H5]phenylalanine. American Journal of Physiology 1994 267 E102–E108.
  105. Meek SE, Persson M, Ford GC, Nair KS. Differential regulation of amino acid exchange and protein dynamics across splanchnic and skeletal muscle beds by insulin in healthy human subjects. Diabetes 1998 47 1824–1835. (doi:10.2337/diabetes.47.12.1824).
  106. Bell JA, Fujita S, Volpi E, Cadenas JG, Rasmussen BB. Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases. American Journal of Physiology. Endocrinology and Metabolism 2005 289 E999–E1006. (doi:10.1152/ajpendo.00170.2005).
  107. Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E. Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. American Journal of Physiology. Endocrinology and Metabolism 2006 291 E745–E754. (doi:10.1152/ajpendo.00271.2005).
  108. Wilkes EA, Selby AL, Atherton PJ, Patel R, Rankin D, Smith K, Rennie MJ. Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. American Journal of Clinical Nutrition 2009 90 1343–1350. (doi:10.3945/ajcn.2009.27543).
  109. Moller-Loswick AC, Zachrisson H, Hyltander A, Korner U, Matthews DE, Lundholm K. Insulin selectively attenuates breakdown of nonmyofibrillar proteins in peripheral tissues of normal men. American Journal of Physiology. Endocrinology and Metabolism 1994 266 E645–E652.
  110. Fryburg DA, Jahn LA, Hill SA, Oliveras DM, Barrett EJ. Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. Journal of Clinical Investigation 1995 96 1722–1729. (doi:10.1172/JCI118217).
  111. Fukagawa N, Minaker K, Young V, Rowe J. Insulin dose-dependent reductions in plasma amino acids in man. American Journal of Physiology. Endocrinology and Metabolism 1986 250 E13–E17.
  112. Boirie Y, Short KR, Ahlman B, Charlton M, Nair KS. Tissue-specific regulation of mitochondrial and cytoplasmic protein synthesis rates by insulin. Diabetes 2001 50 2652. (doi:10.2337/diabetes.50.12.2652).
  113. Chow LS, Albright RC, Bigelow ML, Toffolo G, Cobelli C, Nair KS. Mechanism of insulin’s anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. American Journal of Physiology. Endocrinology and Metabolism 2006 291 E729–E736. (doi:10.1152/ajpendo.00003.2006).
  114. Gelfand RA, Barrett EJ. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. Journal of Clinical Investigation 1987 80 1. (doi:10.1172/JCI113033).
  115. Fryburg DA, Barrett EJ, Louard RJ, Gelfand RA. Effect of starvation on human muscle protein metabolism and its response to insulin. American Journal of Physiology. Endocrinology and Metabolism 1990 259 E477–E482.
  116. Heslin MJ, Newman E, Wolf RF, Pisters PW, Brennan MF. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. American Journal of Physiology 1992 262 E911–E918.
  117. Newman E, Heslin MJ, Wolf RF, Pisters PW, Brennan MF. The effect of insulin on glucose and protein metabolism in the forearm of cancer patients. Surgical Oncology 1992 1 257–267. (doi:10.1016/0960-7404(92)90086-Z).
  118. Short KR, Bigelow ML, Nair KS. Short-term prednisone use antagonizes insulin’s anabolic effect on muscle protein and glucose metabolism in young healthy people. American Journal of Physiology. Endocrinology and Metabolism 2009 297 E1260–E1268. (doi:10.1152/ajpendo.00345.2009).
  119. Barazzoni R, Short KR, Asmann Y, Coenen-Schimke JM, Robinson MM, Nair KS. Insulin fails to enhance mTOR phosphorylation, mitochondrial protein synthesis, and ATP production in human skeletal muscle without amino acid replacement. American Journal of Physiology. Endocrinology and Metabolism 2012 303 E1117–E1125. (doi:10.1152/ajpendo.00067.2012).

Un secolo di Insulina: Storia, sviluppi e peculiarità di un peptide incompreso[2° parte].

Per accedere alla prima parte clicca qui.

Le mistificazioni e i luoghi comuni sull’Insulina nel mondo del Fitness e BodyBuilding:

I luoghi comuni completamente o in buona parte errati sull’Insulina abbondano nel settore del Fitness e del BodyBuilding. Uno di questi luoghi comuni riguarda un’elevata assunzione di carboidrati e la sua presunta correlazione con livelli cronicamente (e sottolineo cronicamente) elevati di Insulina, i quali porterebbero il soggetto a ingrassare dal momento che la lipogenesi supererà costantemente la lipolisi (ricordate che l’aumento di grasso può avvenire solo se il tasso di lipogenesi supera quello di lipolisi). Tuttavia, nelle persone sane l’Insulina aumenta solo in risposta ai pasti. Ciò significa che la lipogenesi supera la lipolisi solo nelle ore successive al pasto (il cosiddetto periodo postprandiale). Durante i periodi di digiuno (come i periodi prolungati tra un pasto e l’altro o quando si dorme), la lipolisi supera la lipogenesi (cioè si ossidano i grassi). Nell’arco delle 24 ore, tutto si equilibra (a patto che non si assumano più calorie di quante se ne consumino), il che significa che non si ingrassa. Ecco un grafico che mostra come funziona:

Dopo i pasti, il grasso viene depositato con l’aiuto dell’Insulina. Tuttavia, tra i pasti e durante il sonno, il grasso viene perso. Il bilancio dei grassi sarà pari a zero nell’arco delle 24 ore se l’apporto energetico corrisponde al dispendio energetico.

Questo è ovviamente solo un grafico approssimativo, ma l’area rossa rappresenta la lipogenesi che si verifica in risposta a un pasto. L’area blu rappresenta la lipolisi che si verifica in risposta al digiuno tra i pasti e durante il sonno. Nell’arco delle 24 ore, questi valori si bilanciano, a patto che non si assumano più calorie di quante se ne consumino. Questo è vero anche se l’assunzione di carboidrati è elevata. Inoltre, se l’apporto energetico è inferiore al dispendio energetico, una dieta ad alto contenuto di carboidrati comporta una perdita di peso come qualsiasi altra dieta.

  • Insulina, HSL e ASP

Un altro luogo comune sull’Insulina riguarda la sua necessità per l’accumulo di grasso. Peccato che non sia così. Il corpo ha modi per immagazzinare e trattenere i grassi anche quando l’Insulina è bassa. Ad esempio, nelle cellule adipose è presente un enzima chiamato lipasi ormonosensibile (HSL). L’HSL aiuta a scomporre i Trigliceridi di deposito in acidi grassi liberi. L’Insulina sopprime l’attività dell’HSL e quindi la scomposizione dei Trigliceridi. Questo ha portato le persone a puntare il dito contro i carboidrati come causa dell’aumento di grasso.

Tuttavia, i grassi sopprimono l’HSL anche quando i livelli di Insulina sono bassi. Ciò significa che non è possibile perdere grasso anche quando l’apporto di carboidrati è basso, se si esagera con le calorie. Se non si mangiassero carboidrati ma 5.000 calorie di grassi, non si riuscirebbe comunque a perdere grasso anche se l’Insulina non sarebbe elevata. Questo perché l’elevato apporto di grassi sopprime l’HSL. Questo significa anche che, se si segue una dieta a basso contenuto di carboidrati, per perdere peso è necessario mangiare meno calorie di quelle che si consumano.

Non dimentichiamoci del ruolo della proteina ASP (Proteina Stimolante l’Acilazione) e della sua marcata azione stimolante sulla sintesi di triacilglicerolo negli adipociti umani e nei fibroblasti cutanei. L’ASP è anche nota per il suo aumento del trasporto del glucosio e per la sua azione inibitoria sulla lipasi ormono-sensibile insulino-indipendente. A causa di queste azioni, è legata alla patogenesi dell’obesità, essendo stata dimostrata la sua presenza a livelli elevati in pazienti con obesità, diabete mellito di tipo II e malattia coronarica.

Struttura della ASP (Proteina Stimolante l’Acilazione)

Ora, qualcuno potrebbe dire: “Provate a consumare 5.000 calorie di olio d’oliva e vedrete che risultati otterrete”. Beh, 5000 calorie di olio d’oliva non sono molto appetibili, quindi è ovvio che probabilmente non si riuscirà nell’impresa, soprattutto con regolarità. La stessa cosa accadrebbe consumando 5.000 calorie di puro zucchero da tavola.

Fermo restando che è ormai noto che l’Insulina sopprime acutamente l’appetito. Questo è stato dimostrato in decine e decine di esperimenti. Nonostante anche questa evidenza venga negata da alcuni.

  • Proteine e stimolo insulinico

Molti pensano che l’Insulina sia legata solo e soltanto al consumo di Carboidrati (eh Sears, quanti danni hai fatto…). Questo è probabilmente il più grande luogo comune in circolazione. I carboidrati hanno una cattiva reputazione a causa del loro effetto sull’Insulina, ma anche le proteine stimolano la secrezione di Insulina. Anzi, possono essere uno stimolo per l’Insulina altrettanto maggiore di quello dei carboidrati. Uno studio ha confrontato gli effetti di due pasti diversi sull’Insulina. Un pasto conteneva 21g di proteine e 125g di carboidrati. L’altro pasto conteneva 75g di proteine e 75g di carboidrati. Entrambi i pasti contenevano 675 calorie. Ecco un grafico della risposta Insulinica:

Confronto della risposta Insulinica tra un pasto a basso contenuto di proteine e alto contenuto di carboidrati e un pasto ad alto contenuto di proteine e basso contenuto di carboidrati.

Ecco un grafico della risposta glicemica:

Confronto della risposta glicemica a un pasto a basso contenuto di proteine e ad alto contenuto di carboidrati e a un pasto ad alto contenuto di proteine e basso contenuto di carboidrati.

Si può notare che, nonostante la risposta glicemica fosse molto più alta nel pasto con più carboidrati, la risposta insulinica non era più alta. In realtà, la risposta insulinica era leggermente più alta dopo il pasto ad alto contenuto proteico, anche se non era statisticamente significativa.

Alcuni potrebbero obiettare che la condizione di “basso contenuto di carboidrati” non era veramente tale perché conteneva 75g di carboidrati. Ma non è questo il punto. Il punto è che la condizione ad alto contenuto di carboidrati aveva quasi il DOPPIO dei carboidrati, con una risposta di glucosio più elevata, ma la secrezione di Insulina era leggermente inferiore. Le proteine erano altrettanto potenti nello stimolare l’Insulina quanto i carboidrati.

Risposta insulinica a pasti ad alto contenuto di proteine e di carboidrati.

Come potete notare nel grafico si osserva la tendenza a un picco di Insulina più rapido con la variabile ad alto contenuto proteico, con una risposta media di 45uU/mL a 20 minuti dal pasto, rispetto a circa 30uU/mL nella variabile ad alto contenuto di carboidrati.

Tornando al discorso accennato in precedenza, questa tendenza a una risposta insulinica più elevata era associata a una tendenza a una maggiore soppressione dell’appetito. I soggetti tendevano ad avere meno fame e più sazietà dopo il pasto ad alto contenuto proteico:

Confronto tra pasti a basso contenuto di proteine e ad alto contenuto di carboidrati e pasti ad alto contenuto di proteine e a basso contenuto di carboidrati e loro effetti su fame e sazietà.

Ecco i risultati di un altro studio che ha confrontato gli effetti di 4 diversi tipi di proteine sulla risposta insulinica a un pasto. Questo studio è interessante perché sono stati preparati frullati con le diverse proteine (si, hanno usato anche frullati di tonno). I frullati contenevano solo 11g di carboidrati e 51g di proteine. Ecco la risposta insulinica ai diversi frullati:

Risposta insulinica a 4 differenti fonti proteiche.

Si può notare che tutte queste proteine hanno prodotto una risposta insulinica, nonostante il fatto che i carboidrati nel frullato fossero bassi. La risposta insulinica è stata diversa anche tra le proteine, con il siero di latte che ha prodotto la risposta insulinica più elevata.

Ora, qualcuno potrebbe pensare che la risposta sia dovuta alla gluconeogenesi (un processo attraverso il quale il fegato converte le proteine in glucosio). L’idea è che le proteine vengano convertite in glucosio e che quindi aumentino i livelli di Insulina. Come ho già detto, si sostiene che questo comporta una risposta insulinica molto più lenta e prolungata, poiché il fegato impiega tempo a trasformare le proteine in glucosio. Tuttavia, non è così, perché la risposta insulinica è stata rapida, con un picco di 30 minuti e un rapido calo a 60 minuti:

Risposta insulinica alle diverse fonti proteiche.

Questa rapida risposta insulinica non era dovuta a variazioni della glicemia. Infatti, le proteine del siero del latte, che hanno provocato la maggiore risposta insulinica, hanno causato un calo della glicemia:

Risposta glicemica alle diverse fonti proteiche.

La risposta insulinica è stata associata alla soppressione dell’appetito. Infatti, le proteine del siero del latte, che avevano la risposta insulinica più alta, hanno causato la maggiore soppressione dell’appetito. Ecco un grafico che mostra l’apporto calorico dei soggetti quando hanno pranzato 4 ore dopo aver bevuto il frullato:

Apporto calorico di un pranzo consumato 4 ore dopo il consumo di varie proteine.

I soggetti hanno mangiato quasi 150 calorie in meno a pranzo quando hanno assunto proteine del siero di latte, che hanno anche provocato la maggiore risposta insulinica. In effetti, è stata riscontrata una fortissima correlazione inversa tra l’Insulina e l’assunzione di cibo (una correlazione di -0,93).

Ecco i dati di un altro studio che ha esaminato la risposta insulinica a un pasto che conteneva 485 calorie, 102g di proteine, 18g di carboidrati e quasi nessun grasso:

Risposta insulinica a un pasto ad alto contenuto proteico e a basso contenuto di carboidrati in persone magre e obese.

Si può notare che la risposta insulinica era esagerata nei soggetti obesi, probabilmente a causa della resistenza all’insulina. Ecco un grafico della risposta della glicemia ematica. Si può notare che non c’era alcuna relazione tra la risposta del glucosio e l’Insulina, come nello studio discusso in precedenza.

Risposta della glicemia a un pasto ad alto contenuto proteico e a basso contenuto di carboidrati in persone magre e obese.

Il fatto è che le proteine sono un potente stimolatore della secrezione di Insulina, e questa secrezione di Insulina non è correlata a variazioni della glicemia o della gluconeogenesi da parte delle proteine. In effetti, uno studio ha rilevato che la carne di manzo stimola la secrezione di Insulina tanto quanto il riso integrale. La risposta glicemica di 38 alimenti diversi poteva spiegare solo il 23% della variabilità della secrezione insulinica in questo studio. Quindi, dietro la secrezione di Insulina c’è molto di più dei soli carboidrati.

Come possono quindi le proteine provocare un rapido aumento dell’Insulina, come dimostrato dallo studio sulle proteine del siero di latte? Gli aminoacidi (i mattoni delle proteine) possono stimolare direttamente il pancreas a produrre Insulina, senza doverla prima convertire in glucosio. Per esempio, l’aminoacido Leucina stimola direttamente le cellule del pancreas a produrre Insulina e c’è una relazione diretta dose-risposta (cioè, più Leucina c’è, più Insulina viene prodotta).

Prima ho affermato che l’Insulina sopprime la lipolisi. Ebbene, alcuni pensano che il Glucagone aumenti la lipolisi per annullare questo effetto.

L’idea che il Glucagone aumenti la lipolisi si basa su tre elementi: il fatto che il tessuto adiposo umano ha recettori per il Glucagone, il fatto che il Glucagone aumenta la lipolisi negli animali e il fatto che è stato dimostrato che il Glucagone aumenta la lipolisi nelle cellule adipose umane in vitro (in una coltura cellulare). Tuttavia, ciò che accade in vitro non è necessariamente ciò che accade in vivo (nel corpo). Si tratta di un caso in cui i dati più recenti hanno ribaltato il vecchio pensiero. Le ricerche condotte con tecniche moderne hanno dimostrato che il Glucagone non aumenta la lipolisi nell’uomo. Altre ricerche che hanno utilizzato le stesse tecniche hanno mostrato risultati simili.

Va ricordato perché il Glucagone viene rilasciato in risposta alle proteine. Poiché le proteine stimolano la secrezione di Insulina, se non si consumano carboidrati con le proteine, esse causano un rapido calo della glicemia. Il Glucagone impedisce questo rapido calo di zuccheri nel sangue stimolando il fegato a produrre glucosio.

Adesso sappiamo che le proteine alimentari possono causare picchi di Insulina proprio come i carboidrati alimentari, e questi picchi non sono legati alla gluconeogenesi delle proteine (cioè alla loro conversione in zucchero). Sappiamo anche che questi picchi sono in parte responsabili della soppressione dell’appetito causata dalle proteine alimentari (grazie agli effetti dell’Insulina sul cervello che inibiscono l’appetito).

  • Picchi insulinici e aumento del peso

Vorrei approfondire un altro luogo comune riguardante l’Insulina e che interessa i rapidi picchi dell’ormone. Essi sono importanti nella regolazione della glicemia. E’ necessario quindi discutere le fasi della secrezione di Insulina. La secrezione di Insulina da parte del pancreas avviene in due fasi. La prima fase avviene molto rapidamente: il pancreas percepisce l’aumento del glucosio e l’Insulina viene rilasciata entro 1-2 minuti dall’aumento della glicemia. Questa risposta in fase rapida è il risultato del rilascio da parte del pancreas dell’Insulina immagazzinata. In genere si conclude entro 10 minuti. È stato riscontrato che questa risposta di fase rapida è compromessa nelle persone con alterata tolleranza al glucosio (persone che hanno risposte glicemiche ai pasti più elevate del normale e livelli di zucchero nel sangue a digiuno più elevati, ma che non sono diabetiche). Questa risposta in fase rapida è completamente assente nelle persone affette da diabete di tipo II.

Esiste una seconda fase che continua finché il glucosio è elevato. Questo rilascio di Insulina avviene attraverso la liberazione dell’Insulina immagazzinata e la creazione di nuova Insulina (l’Insulina viene creata da un precursore chiamato proinsulina, come abbiamo visto nella prima parte). Quando si infonde glucosio nel sangue di persone sane e di diabetici di tipo II, si ottengono risposte insuliniche di questo tipo:

Risposta insulinica alla somministrazione di glucosio per via endovenosa in persone sane e in diabetici di tipo II.

Si può notare che i diabetici mancano completamente della risposta di fase rapida che è presente negli individui sani.

Esiste un farmaco chiamato Exenatide (Byetta), che si è rivelato in grado di ripristinare questa risposta insulinica di fase rapida nei diabetici:

Risposte insuliniche di diabetici di tipo II e di individui sani, a cui è stato somministrato glucosio per via endovenosa. I cerchi rappresentano la risposta insulinica dei diabetici di tipo II quando viene loro somministrato un placebo. I quadrati rappresentano la risposta insulinica dei diabetici alla somministrazione di Exenatide. Si può notare che l’Exenatide ripristina la risposta insulinica in fase rapida. I cerchi neri rappresentano la risposta insulinica dei soggetti sani.

Il ripristino della risposta insulinica in fase rapida migliora la regolazione della glicemia nei diabetici:

Risposta glicemica a un pasto in diabetici di tipo II. I cerchi rappresentano i soggetti in trattamento con placebo. I triangoli e i cerchi scuri rappresentano i soggetti che assumono Exenatide. Si può notare che la glicemia è rimasta costante nei soggetti che assumevano Exenatide, mentre è aumentata gradualmente nei soggetti che assumevano il placebo.

Nel grafico sopra riportato si può notare che la glicemia è rimasta costante in risposta a un pasto nei soggetti che assumevano l’Exenatide, mentre è aumentata nel tempo nei soggetti che assumevano il placebo.

A molti piace attribuire la colpa dell’obesità e dell’aumento di peso all’Insulina, ma l’Exenatide, che ripristina i picchi di Insulina nei diabetici di tipo II, fa perdere peso:

Effetto del Exenatide (Byetta) sul peso corporeo.

Parte di questa perdita di peso è dovuta a un miglioramento del senso di sazietà. L’Exenatide è un farmaco che imita gli effetti di un ormone chiamato peptide glucagone-simile-1 (GLP-1). Il GLP-1 è un ormone che stimola l’Insulina a livello intestinale (noto come Incretina). Il GLP-1 potenzia la secrezione di Insulina, aumenta la sintesi di Insulina, aumenta l’espressione genica dell’Insulina e inibisce la secrezione di Glucagone (l’ormone antagonista dell’Insulina). Eppure l’Exenatide, che imita il GLP-1 e contribuisce a stimolare la secrezione di Insulina, fa perdere peso.

Il fatto è che i rapidi picchi di Insulina di per sé non sono un male. Le proteine causano rapidi picchi di Insulina, ma le proteine riducono l’appetito e aiutano a perdere peso. Il GLP-1 e i farmaci come l’Exenatide contribuiscono ai picchi di Insulina, ma riducono l’appetito e fanno perdere peso. Il problema è che le persone confondono i picchi di Insulina con i picchi di glucosio nel sangue. È ormai assodato che un rapido aumento e una rapida diminuzione del glucosio nel sangue possono contribuire alla fame. Poiché i rapidi aumenti della glicemia causano anche rapidi aumenti dell’Insulina, le persone finiscono per incolpare l’Insulina (e gli effetti dei carboidrati ad alto indice glicemico sull’Insulina) del problema.

  • Differenza del possibile impatto tra somministrazione esogena e secrezione endogena di Insulina sul peso corporeo

Un altro luogo comune sull’Insulina correla l’aumento di peso dei soggetti diabetici trattati con tale ormone agli aumenti di peso dei soggetti sani. Evidentemente queste persone non conoscono l’Amilina.

Molecola di Amilina

L’Amilina è un ormone che viene secreto dal pancreas contemporaneamente all’Insulina. L’Amilina riduce l’appetito e stimola la lipolisi (la scomposizione dei Trigliceridi in acidi grassi liberi).

I diabetici di tipo I non producono Amilina e nei diabetici di tipo II la secrezione di Amilina è compromessa. È stato riscontrato che la Pramlintide, un farmaco che imita gli effetti dell’Amilina, produce una perdita di peso nei diabetici.

Queste informazioni dimostrano che gli effetti dell’iniezione di Insulina in un diabetico non possono essere paragonati agli effetti delle variazioni fisiologiche dell’Insulina in un non diabetico, eppure molte persone fanno erroneamente questo confronto come se fossero simili.

  • Prodotti lattiero-caseari e secrezione insulinica

Una delle premesse che alcune persone fanno è che i carboidrati stimolino l’accumulo di grasso stimolando la secrezione di Insulina. Ma abbiamo già visto come questa premessa sia errata. In particolare, abbiamo visto come anche le proteine stimolino la secrezione di Insulina (a volte tanto quanto i carboidrati), ma non favoriscano l’aumento di peso o di grasso. Vi ho anche mostrato come il farmaco Exenatide ripristini la secrezione di Insulina in fase rapida nei diabetici, pur favorendo la perdita di peso.

Se l’ipotesi carboidrati/insulina fosse vera, dovremmo prevedere che gli alimenti estremamente insulinemici favoriscano in modo esclusivo l’aumento di peso. Molti non si rendono conto che i latticini sono tra gli alimenti più insulinemici in circolazione. Infatti, creano risposte insulinemiche molto più elevate di quanto ci si aspetterebbe in base al loro contenuto di carboidrati. Non solo, ma il lattosio, il carboidrato principale dei latticini, è in realtà a basso indice glicemico e produce un lento aumento della glicemia (il lattosio ha un indice glicemico di 46 rispetto al pane bianco che è di 100, per quello che vale). In effetti, l’indice glicemico di molti prodotti lattiero-caseari è piuttosto basso, con il latte intero a 39, il latte scremato a 37, il gelato a 51 e lo yogurt alla frutta a 41.

Nonostante le risposte glicemiche basse, i latticini creano risposte insuliniche molto elevate. Per esempio, in uno studio, i latticini hanno creato risposte insuliniche simili o superiori a quelle del pane bianco, nonostante la risposta glicemica per alcuni dei latticini fosse del 60% inferiore a quella del pane bianco. In questo studio, i ricercatori hanno confrontato le risposte glicemiche e insulinemiche tra pane bianco, una miscela a basso contenuto di glutine/lattosio, una miscela ad alto contenuto di glutine/lattosio, merluzzo con aggiunta di lattosio, latte, proteine del siero del latte con aggiunta di lattosio e formaggio con aggiunta di lattosio. Tutte le variabili contenevano 25g di carboidrati e 18,2g di proteine, tranne il pane bianco e le miscele a basso contenuto di glutine/lattosio, che contenevano 25g di carboidrati e 2,8g di proteine. Pertanto, il lattosio era il carboidrato in tutte le condizioni, ad eccezione del pane bianco.

Osservando l’area dell’Insulina sotto la curva (AUC) per le varie condizioni, si può notare che i prodotti lattiero-caseari hanno effettivamente creato risposte insuliniche maggiori rispetto al pane bianco, pur avendo quantità simili di carboidrati:

Risposta insulinica a prodotti lattiero-caseari e pane bianco.

È evidente che non è il lattosio il responsabile della maggiore risposta insulinica, perché le miscele glutine/lattosio e merluzzo/lattosio hanno dato risposte insuliniche simili o inferiori a quelle del pane bianco.

Anche la risposta glicemica non è responsabile della maggiore risposta insulinica. Infatti, la risposta glicemica era più bassa in tutte le condizioni rispetto al pane bianco, con il latte che creava la risposta glicemica più bassa ma la terza risposta insulinica più alta:

Risposta della glicemia ai latticini rispetto al pane bianco.

L’indice insulinogenico, che mette in relazione la quantità di secrezione di Insulina con la risposta del glucosio nel sangue, era significativamente più alto nei prodotti lattiero-caseari, indicando che i prodotti lattiero-caseari stimolavano una secrezione di Insulina molto maggiore di quella che ci si aspetterebbe in base alla risposta del glucosio nel sangue:

indice insulinogenico dei prodotti lattiero-caseari rispetto al pane bianco.

Questo non è l’unico studio che mostra gli effetti insulinemici dei latticini. In precedenza si è visto come le proteine del siero di latte, una proteina casearia, creino la risposta insulinica più elevata rispetto alle proteine non casearie. In uno studio condotto su diabetici di tipo II, l’inclusione di proteine del siero di latte in un pasto ha aumentato la risposta insulinica del 31-57%, mentre la risposta glicemica si è ridotta fino al 21%. In un altro studio, l’aggiunta di 400ml di latte a un pasto a base di pane ha aumentato la risposta insulinica del 65%, nonostante non vi sia stata alcuna variazione nella risposta glicemica. Nello stesso studio, l’aggiunta di 200 o 400ml di latte a un pasto a base di spaghetti ha aumentato la risposta insulinica del 300%; anche in questo caso, la risposta glicemica non ha subito variazioni. In effetti, bere latte con il pasto di spaghetti ha creato una risposta insulinica simile a quella del pane bianco.

Ecco i risultati di un altro studio che mostra gli indici glicemici e insulinemici del latte rispetto al pane bianco:

È chiaro che i prodotti lattiero-caseari stimolano la secrezione di grandi quantità di Insulina, quanto o più del pane bianco. Uno dei motivi per cui i latticini creano grandi risposte insuliniche è dovuto al loro contenuto di aminoacidi. Infatti, la risposta insulinica postprandiale dei latticini è correlata all’aumento degli aminoacidi a catena ramificata leucina, valina e isoleucina. Ho già sottolineato come la leucina stimoli direttamente il pancreas a produrre Insulina.

Un altro motivo per cui i latticini stimolano la secrezione di Insulina è il loro effetto su un ormone chiamato polipeptide insulinotropico glucosio-dipendente (GIP). Come il GLP-1, di cui ho scritto precedentemente, il GIP è un’incretina. Ciò significa che è un ormone prodotto dall’intestino che stimola la secrezione di Insulina. I latticini stimolano una maggiore produzione di GIP. Nello studio di cui ho parlato in precedenza, che ha messo a confronto il siero di latte, il latte e il formaggio con il pane bianco, il siero di latte e il formaggio hanno prodotto risposte alla GIP superiori del 21-67% rispetto al pane bianco:

Risposta del polipeptide insulinotropico glucosio-dipendente (GIP) agli alimenti a base di latte rispetto al pane bianco.

I dati sopra riportati illustrano uno dei problemi dell’ipotesi carboidrati/insulina… essa presuppone che i carboidrati siano lo stimolo principale della secrezione insulinica. Tuttavia, è chiaro che anche gli aminoacidi e le incretine svolgono un ruolo significativo nella secrezione di Insulina. E come ho sottolineato, la risposta glicemica di un alimento spiega solo il 23% della variazione della risposta insulinica. Pertanto, la secrezione di Insulina è molto più importante della risposta glicemica dovuta al consumo di carboidrati.

È quindi chiaro che i latticini sono estremamente insulinemici, più di molti altri alimenti ad alto contenuto di carboidrati. Pertanto, se l’ipotesi carboidrati/insulina fosse vera, si potrebbe prevedere che una dieta ricca di latticini dovrebbe favorire l’aumento di peso e di grasso. Tuttavia, gli studi non dimostrano alcuna relazione tra l’assunzione di latticini e l’aumento di peso. Per esempio, non c’è alcuna relazione tra l’assunzione di latticini e il BMI nelle donne giapponesi. Negli uomini statunitensi, non c’è alcuna relazione tra l’aumento del consumo di latticini e l’aumento di peso a lungo termine. Nelle donne in perimenopausa, un’elevata assunzione di latticini è in realtà inversamente associata all’aumento di peso (cioè, una maggiore assunzione di latticini è associata a un minore aumento di peso).

Sebbene si tratti di studi osservazionali, i risultati di studi controllati su animali ed esseri umani sono simili. In effetti, gli studi sugli animali mostrano un minore aumento di peso quando vengono nutriti con prodotti caseari. Nei topi, l’integrazione di yogurt determina un minore aumento di peso e di grasso rispetto ai controlli che seguono una dieta isocalorica. In un altro studio, i topi transgenici hanno perso peso con una dieta ipocalorica. I topi sono stati poi lasciati mangiare ad libitum (cioè quanto volevano). I topi alimentati con prodotti caseari hanno riacquistato meno grasso e peso durante la rialimentazione. In un terzo studio, l’assunzione di prodotti lattiero-caseari, ma non di un integratore di calcio, ha ridotto l’aumento di peso e il grasso corporeo nei topi alimentati con una dieta ad alto contenuto di grassi. In un quarto studio, le proteine dei latticini hanno attenuato l’aumento di grasso nei roditori alimentati con una dieta ad alto contenuto di grassi e zuccheri. In un quinto studio, una dieta a base di latticini ha attenuato l’aumento di peso settimanale nei ratti Sprague-Dawley.

Naturalmente, si tratta di studi sugli animali. E per gli esseri umani? In uno studio, i latticini a basso contenuto di grassi non hanno favorito l’aumento di peso, mentre quelli ad alto contenuto di grassi sì. È possibile che l’aumento di peso in questo studio sia stato causato semplicemente dall’eccesso di calorie e non dall’Insulina? In un altro studio, l’aumento dell’assunzione di latticini non ha influito sulla composizione corporea. In un terzo studio, l’aumento dell’assunzione di latticini non ha compromesso la perdita di peso. In uno studio di un anno, l’aumento dell’assunzione di latticini non ha influito sulle variazioni della massa grassa. In un follow-up di 6 mesi, un’elevata assunzione di latticini ha predetto livelli inferiori di massa grassa. In uno studio di 9 mesi, l’aumento dell’assunzione di latticini non ha influito sul mantenimento del peso, ma il gruppo ad alto contenuto di latticini ha evidenziato una maggiore ossidazione dei grassi.

Ora dovrebbe essere più che chiaro il fatto che le prove sono schiaccianti sulla questione che i prodotti lattiero-caseari non favoriscono l’aumento di peso e anzi lo inibiscono per via dell’effetto saziante. Questo nonostante il fatto che i latticini producano una risposta insulinica molto ampia, pari o superiore a quella di molti alimenti ad alto contenuto di carboidrati. Pertanto risulta chiaro che l’ipotesi carboidrati/insulina è errata.

Per concludere la serie di luoghi comuni sull’Insulina vi citerò quello che desterà maggiore incredulità…

Molti pensano che le cellule abbiano bisogno di Insulina per utilizzare il glucosio nel circolo ematico. Una delle prove a sostegno di questa tesi è rappresentata dal soggetto diabetico di tipo I. Quando un diabetico di tipo I non ha Insulina, la glicemia sale alle stelle. Questo perché, a quanto pare, il glucosio non riesce a entrare nelle cellule.

Tuttavia, lo scenario sopra descritto non è quello che si verifica in un diabetico di tipo I a cui è stata tolta l’Insulina. Il glucosio può entrare nelle cellule senza problemi. In realtà sta succedendo qualcos’altro. Un articolo pubblicato sul Journal of Anasthesia descrive in modo esauriente come l’Insulina sia stata fraintesa nel suo ruolo di regolazione della glicemia ematica.

Nel 1916, Sir Edward Schafer, professore di fisiologia del quale ho già parlato nella prima parte, pubblicò un libro intitolato “The Endocrine Organs”. In questo libro ipotizzò l’esistenza di quella che oggi chiamiamo Insulina:

I risultati dell’asportazione del pancreas e dell’innesto del pancreas si spiegano meglio ipotizzando che il tessuto delle isole produca un Autacoide che passa nel flusso sanguigno e agisce sul metabolismo dei carboidrati e sull’immagazzinamento dei carboidrati in modo tale da evitare un indebito accumulo di glucosio nel sangue. In via provvisoria sarà opportuno riferirsi a questa ipotetica sostanza come Insulina.

L’insulina sarebbe stata scoperta 5 anni dopo. Schafer ipotizzò anche che l’Insulina fosse creata da un precursore inattivo:

Va tuttavia precisato che non è ancora stato determinato se la sostanza attiva sia prodotta come tale nel pancreas o se esista come pro-insulina che viene convertita altrove in un autacoide attivo.

La pro-insulina fu scoperta quasi 50 anni dopo. Schafer era davvero un uomo in anticipo sui tempi.

Schafer evitava di usare il termine “ormone” per descrivere l’Insulina. Utilizzò invece i termini “autacoide” e “chalone”. Un autacoide è una sostanza con azione eccitatoria, cioè stimola l’azione del corpo. Un autacoide può essere considerato simile al pedale dell’acceleratore dell’auto; si preme il pedale e si stimola l’auto ad andare più veloce. Il chalone è una sostanza ad azione inibitoria, che rallenta le cose nel corpo. Il chalone può essere considerato simile al freno dell’auto. Schafer ipotizzò correttamente che l’Insulina agisse sia come autacoide che come chalone nell’organismo. Egli riteneva inoltre che l’Insulina agisse come chalone molto più che come autacoide nell’organismo. In altre parole, riteneva che le funzioni inibitorie dell’Insulina fossero molto più importanti di quelle eccitatorie o stimolatorie. Molti anni dopo si sarebbe dimostrato corretto.

Tuttavia, prima che a Schafer venisse data ragione, si verificò l'”età nera dell’endocrinologia”. Si tratta del periodo di tempo compreso tra il 1950 e il 1980, in cui gli scienziati estrapolavano conclusione che andavano ben oltre le loro effettive scoperte. Prendevano i dati di studi su animali o in vitro (ricerche condotte in provetta o in coltura) e poi ipotizzavano che la stessa cosa avvenisse nell’uomo in vivo (all’interno del corpo). Gli scritti come “Good Calories, Bad Calories” di Gary Taubes si basano pesantemente sulla ricerca di questo periodo, nonostante il fatto che gran parte di ciò che si pensava all’epoca sia stato ribaltato da ricerche migliori, o almeno modificato in modo significativo.

L’età nera dell’endocrinologia è quella che ha portato alla convinzione, oggi errata, che l’Insulina sia necessaria alle cellule per assorbire il glucosio. Gli esperimenti condotti negli anni Cinquanta dimostrarono che l’Insulina era in grado di stimolare l’assorbimento del glucosio da parte di campioni di muscolo e di grasso di ratto. Questi dati sono stati trasposti all’uomo e si è ipotizzato erroneamente che la mancanza di Insulina impedisca al glucosio di entrare nelle cellule e che quindi la glicemia salga a livelli pericolosi. Questo pensiero errato è stato insegnato nei libri di testo e nei corsi universitari di tutto il mondo per molti anni, dando vita a un vero e proprio dogma. Purtroppo è molto difficile superare una convinzione fortemente radicata, anche se negli anni ’70 è stato dimostrato che questo concetto di Insulina è sbagliato, continua a essere insegnato ancora oggi.

L’ipotesi errata secondo la quale la sospensione dell’Insulina provochi un’elevata glicemia perché “il glucosio non riesce a entrare nelle cellule” si basava sul presupposto che l’Insulina sia necessaria per l’assorbimento del glucosio da parte delle cellule, piuttosto che l’Insulina si limiti a migliorare l’assorbimento del glucosio. Quello che gli scienziati degli anni ’50 non hanno notato è che i tessuti possono assumere notevoli quantità di glucosio anche in assenza di Insulina.

Il glucosio entra nelle cellule attraverso una famiglia di trasportatori. Un trasportatore primario nelle cellule muscolari e adipose lo conosciamo più o meno tutti, si tratta del GLUT-4. L’Insulina stimola il GLUT-4 a spostarsi dall’interno della cellula alla superficie cellulare, dove il glucosio può legarsi al trasportatore GLUT-4 ed entrare nella cellula. Tuttavia, sulla superficie cellulare sono presenti numerosi trasportatori di glucosio, anche in assenza di Insulina. In effetti, ci sono abbastanza trasportatori sulla superficie cellulare per consentire alla cellula di ottenere abbastanza glucosio per sostenere il suo fabbisogno energetico. Pertanto, il trasporto di glucosio nelle cellule non è mai veramente dipendente dall’Insulina. L’Insulina favorisce l’assorbimento del glucosio nelle cellule, ma non è necessaria. Infatti, quando si elimina il Recettore dell’Insulina nei topi in modo che l’Insulina non possa stimolare l’assorbimento del glucosio nelle cellule muscolari o adipose (pur mantenendo intatto il Recettore dell’Insulina in altre cellule come il cervello e il fegato), gli animali non diventano diabetici e presentavano valori della glicemia ematica normali.

Gli studi sui traccianti metabolici ci hanno permesso di capire come funziona l’Insulina nell’uomo in vivo. Quando si toglie l’Insulina a un diabetico di tipo I, il glucosio nel sangue sale bruscamente. Tuttavia, non è perché il glucosio non riesce a entrare nelle cellule. In realtà, l’assorbimento del glucosio nelle cellule aumenta. Questo perché la concentrazione di glucosio nel sangue è talmente superiore a quella cellulare che il glucosio deve spostarsi all’interno delle cellule (ricordate che sulla superficie delle cellule ci sono già abbastanza trasportatori di glucosio anche in assenza di Insulina). Allora perché il glucosio nel sangue sale così tanto? Ricordiamo che la quantità di glucosio nel sangue è in funzione sia della quantità di glucosio che entra nel sangue (velocità di comparsa), sia della quantità di glucosio che esce dal sangue (velocità di scomparsa). In un diabetico a digiuno e senza Insulina, tutto il glucosio proviene dal fegato. Ricordiamo che il fegato contribuisce a mantenere i livelli di zucchero nel sangue a digiuno rilasciando glucosio; questo glucosio proviene sia dalla gluconeogenesi (la formazione di glucosio da fonti non glucidiche, come le proteine) sia dalla glicogenolisi (la degradazione del glicogeno immagazzinato nel fegato). L’Insulina agisce come un freno (un chalone, come lo ha definito il dottor Schafer) su questi processi. Pertanto, in assenza di Insulina, si verificano fenomeni di gluconeogenesi e glicogenolisi incontrollati. La glicemia elevata in un diabetico non controllato è quindi causata da una sovrapproduzione di glucosio da parte del fegato, non perché il glucosio non riesca a entrare nelle cellule.

Infatti, poiché l’Insulina non è presente, molti processi si attuano a ritmi elevati, completamente sregolati. L’Insulina normalmente inibisce la produzione di chetoni da parte del fegato; senza l’Insulina che rallenta la produzione di chetoni, questi ultimi vengono prodotti a ritmi elevati, dando luogo alla chetoacidosi diabetica. Ecco perché l’iperglicemia e la chetoacidosi si verificano contemporaneamente. Senza Insulina, si ha anche un’accelerazione della proteolisi (la scomposizione delle proteine) e della lipolisi (la scomposizione dei grassi). Gli aminoacidi elevati nel sangue forniscono ulteriore substrato al fegato per continuare a produrre grandi quantità di glucosio. Gli acidi grassi elevati forniscono al fegato il substrato per continuare a produrre grandi quantità di chetoni.

L’Insulina è quindi come un vigile urbano o un semaforo a un incrocio. Aiuta a rallentare e a controllare il traffico. Senza un semaforo o un vigile urbano, le auto attraversano l’incrocio senza controllo e si verificano incidenti stradali. Allo stesso modo, senza Insulina nell’organismo, la gluconeogenesi, la glicolisi, la proteolisi, la chetogenesi e la lipolisi procedono a ritmi elevati senza che nulla possa fermarle. Il risultato finale è l’iperglicemia, la chetoacidosi e infine la morte.

Quando si inietta l’Insulina in un diabetico non controllato, si frenano tutti i processi menzionati in precedenza. Si inibisce la produzione di glucosio da parte del fegato e la glicemia si abbassa. Poiché non c’è più iperglicemia, l’assorbimento di glucosio nelle cellule diminuisce. La lipolisi viene inibita, quindi la concentrazione di acidi grassi liberi scende quasi a zero. Poiché non ci sono più acidi grassi liberi per la produzione di chetoni, la produzione di chetoni rallenta. Anche la proteolisi viene inibita.

Gli studi sui traccianti metabolici hanno dimostrato ciò che Schafer aveva ipotizzato più di un secolo fa… che il ruolo principale dell’Insulina nell’organismo è inibitorio piuttosto che eccitatorio. Sebbene l’Insulina abbia certamente funzioni eccitatorie, non è principalmente un “ormone di stoccaggio” come molti sostengono. L’Insulina non è necessaria alle cellule per assorbire e immagazzinare il glucosio. Certamente ne favorisce l’assorbimento, ma c’è una grande differenza tra il favorire l’assorbimento e l’essere necessaria per l’assorbimento.

Naturalmente, questa ricerca ci dice solo cosa succede quando l’Insulina è presente rispetto a quando non è presente. Che dire della situazione normale di una persona sana, che ingerisce un pasto e vede un aumento del glucosio nel sangue? Cosa succede per riportare il glucosio alla normalità? E cosa succede in una persona diabetica di tipo II in questa situazione?

Un classico studio sui traccianti metabolici ha seguito cosa succede al glucosio quando viene assunto per via orale. In questo studio, ai diabetici di tipo II e ai soggetti sani di controllo è stato somministrato 1g di glucosio per chilogrammo di peso corporeo (quasi mezzo grammo per libbra). Utilizzando dei traccianti metabolici, i ricercatori hanno determinato non solo dove andava il glucosio, ma anche cosa succedeva alla produzione di glucosio da parte del fegato. I ricercatori hanno anche misurato i livelli di Insulina nel sangue.

Come prevedibile, il glucosio orale ha provocato un aumento del glucosio nel sangue e un corrispondente aumento dell’Insulina. Nelle persone sane, la produzione di glucosio da parte del fegato è stata drasticamente soppressa dall’aumento dell’Insulina. Infatti, la produzione di glucosio è diminuita del 70-80% a 75-105 minuti dall’ingestione del glucosio. Dopo 3,5 ore, la produzione di glucosio era ancora soppressa del 50%. Pertanto, uno dei modi in cui l’Insulina aiuta a controllare la glicemia dopo un pasto è quello di comunicare al fegato di smettere di produrre glucosio. Questo ha senso: non si vuole che il fegato produca glucosio quando il glucosio entra nel flusso sanguigno dall’apparato digerente.

Anche la produzione epatica di glucosio è stata soppressa nei diabetici di tipo II. Tuttavia, questa soppressione è stata compromessa. Tuttavia, questa soppressione era compromessa nei diabetici di circa il 40%. Si tratta di un caso di resistenza all’Insulina nel fegato dei diabetici; il fegato non risponde all’Insulina come dovrebbe (ricordiamo che l’Insulina sopprime la produzione epatica di glucosio) e quindi produce troppo glucosio. Nel documento gli autori affermano che:

…si può concludere che la sovrapproduzione di glucosio è un importante fattore determinante dell’iperglicemia diabetica, sia nello stato postassorbitivo che in quello postprandiale.

La produzione di glucosio da parte del fegato ci racconta solo metà della storia. Se da un lato l’Insulina inibisce la produzione di glucosio da parte del fegato, dall’altro aumenta la capacità dei tessuti di prelevare il glucosio dal sangue (ricordate che la migliora). Le cellule assorbono il glucosio in due modi… attraverso l’azione di massa del glucosio (cioè il gradiente di concentrazione, in cui la concentrazione di glucosio nel sangue è talmente superiore a quella delle cellule che il glucosio si sposta all’interno delle cellule) e attraverso la stimolazione dell’Insulina. In questo studio, l’assorbimento del glucosio nelle cellule era compromesso nei diabetici. Poiché il movimento del glucosio nelle cellule attraverso l’azione di massa è simile tra i diabetici e i soggetti sani, l’assorbimento ridotto del glucosio nei diabetici era dovuto all’insulino-resistenza nelle cellule. L’assorbimento del glucosio da parte dei tessuti era compromesso di circa il 27% nei diabetici.

Da questa ricerca emerge chiaramente che la risposta glicemica elevata di un diabetico di tipo II è dovuta sia a un’alterata risposta del fegato all’Insulina (per cui la produzione di glucosio è superiore a quella che dovrebbe essere), sia a un’alterata risposta delle cellule ad assorbire il glucosio dal sangue. Tuttavia, se si considerano le percentuali, la risposta alterata del fegato è maggiore di quella delle cellule. Un’altra ricerca pubblicata nello stesso anno ha mostrato una pari resistenza all’Insulina nel fegato e in altri tessuti, sebbene questa ricerca sia stata condotta con soggetti a digiuno. In quello studio, così come in quello di cui abbiamo parlato, è stata riscontrata una correlazione molto forte tra l’iperglicemia a digiuno e la produzione epatica di glucosio; ciò indica che, a digiuno, è la sovrapproduzione di glucosio da parte del fegato il fattore più importante nel causare l’iperglicemia in un diabetico. Da questa ricerca si evince anche che l’assorbimento di glucosio a digiuno è in realtà aumentato, non diminuito, nei diabetici di tipo II (proprio come nei diabetici di tipo I non controllati). Pertanto, l’iperglicemia a digiuno dei diabetici di tipo II e dei diabetici di tipo I non controllati è dovuta a una sovrapproduzione di glucosio da parte del fegato, non perché “il glucosio non riesce a entrare nelle cellule”. In un diabetico di tipo II, in risposta a un pasto, l’assorbimento del glucosio nelle cellule è compromesso, ma la resistenza all’Insulina nel fegato svolge comunque un ruolo importante.

Ciò che risulta chiaro da tutte queste ricerche è che le principali funzioni dell’Insulina nell’organismo sono inibitorie, agendo da freno su molti processi corporei. Sebbene l’Insulina stimoli l’immagazzinamento del glucosio e di altri nutrienti, questa funzione non è altrettanto importante di quella inibitoria. Pertanto, l’Insulina dovrebbe essere considerata più un vigile urbano che un ormone di stoccaggio.

Siete sconvolti ma consapevoli, oppure continuerete a vagare nel relativismo?

La conclusione è che l’Insulina non è il male assoluto, anzi, e le leggende e luoghi comuni che le ruotano intorno nel Fitness e BodyBuilding sono in definitiva sbagliati!

Per riassumere i punti chiave volti a demistificare i luoghi comuni sull’Insulina:

  • L’Insulina sopprime l’appetito, non lo aumenta.
  • Una dieta ad alto contenuto di carboidrati non causa livelli di Insulina cronicamente elevati.
  • Le proteine sono insulinemiche e, in alcuni casi, possono essere insulinemiche quanto i carboidrati.
  • Contrariamente a quanto si crede, il Glucagone non “annulla” la soppressione della lipolisi da parte dell’Insulina quando si ingeriscono proteine.
  • Gli effetti insulinemici delle proteine sono dovuti a un effetto stimolante diretto sul pancreas e non alla conversione delle proteine in glucosio.
  • La combinazione di proteine e carboidrati può produrre una maggiore secrezione di Insulina rispetto all’uno o all’altro da solo, eppure le diete ad alto contenuto di proteine e moderato-alto contenuto di carboidrati sono molto efficaci per la perdita di peso.
  • È stato dimostrato che le diete ad alto contenuto di carboidrati producono una perdita di peso quando le persone sono in deficit energetico.
  • I latticini sono estremamente insulinemici, tanto quanto il pane bianco, eppure non favoriscono l’aumento di peso in assenza di un surplus energetico. Questo dato è supportato da un numero molto elevato di studi, tra cui studi su animali, studi osservazionali e studi controllati randomizzati.
  • L’Insulina non è necessaria per l’accumulo di grasso
  • I livelli di Insulina non sono predittivi di aumento o perdita di peso nella maggior parte degli studi prospettici.
  • L’Exenatide ripristina il rilascio di Insulina in fase rapida nei diabetici, ma provoca una perdita di peso
  • Gli effetti dell’iniezione di Insulina non possono essere paragonati al normale rilascio fisiologico di Insulina, poiché l’Amilina è co-secreta con l’Insulina dal pancreas
  • L’Insulina funziona principalmente come ormone inibitorio piuttosto che come ormone di accumulo, agendo come freno su molti importanti processi fisiologici
  • Un diabetico di tipo I senza Insulina diventa iperglicemico a causa della sovrapproduzione di glucosio da parte del fegato, non perché il glucosio non riesca a entrare nelle cellule.
  • L’Insulina favorisce l’assorbimento del glucosio nelle cellule, ma non è necessaria per questo.
  • L’Insulina regola la glicemia dopo un pasto sia impedendo al fegato di produrre glucosio, sia favorendo l’assorbimento del glucosio nelle cellule.
  • A digiuno, l’Insulina regola la glicemia controllando la produzione di glucosio da parte del fegato e non influenzando l’assorbimento del glucosio nelle cellule.
  • Non ci si può limitare a considerare gli effetti temporanei dell’Insulina sulla lipolisi e sull’accumulo di glucosio. Bisogna considerare ciò che accade nell’arco delle 24 ore; il grasso corporeo non aumenta se non c’è un surplus energetico complessivo.

Tutto chiaro ora? Ecco, bravi, adesso però smettete di fare gli ortoressici isulinofobici!

Continua…

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  • Gli studi utilizzati per realizzare questo articolo provengono dalla serie di articoli scritti e pubblicati da James Krieger sul suo sito weightology.net e intitolati “INSULIN: AN UNDESERVED BAD REPUTATION”.

Un secolo di Insulina: Storia, sviluppi e peculiarità di un peptide incompreso[1° parte].

Introduzione:

Uno dei farmaci più incompresi e discussi nel BodyBuilding è sicuramente l’Insulina. Ciò è dovuto dal fatto che non esiste una vera scienza che funga da base per le modalità in cui i bodybuilder possano utilizzarla con criterio. Questo fa sì che tutte le conoscenze in possesso della maggior parte dei culturisti sull’uso dell’Insulina siano nulla più che “broscience”. Usando il termine “broscience” non intendo screditare una certa forma di conoscenza esperienziale. Infatti essa, se correttamente intesa nei suoi limiti, ha una certa importanza tanto che a volte capita che alcuni intuitivi atleti siano in grado di scoprire dettagli prima che questi vengano catalogati dalla letteratura scientifica e possono avere ragione anche quando la ricierca scientifica pecca nel design degli studi in cui vuole dimostrare una tesi (Holt 2009). Ma spesso e volentieri quello che i bodybuilder dicono sull’Insulina è una vera e propria stronzata. La pratica dell’uso di Insulina da parte dei bodybuilder si basa su un mucchio di studi mal intesi e su un mucchio di dicerie da guru che parlano di spiegazioni dal sapore pseudo-scientifico. Pochi di questi soggetti hanno una formazione scientifica o medica, per non parlare della competenza in endocrinologia. Alcuni di loro non hanno la minima idea di cosa stiano parlando, ma si comportano come se l’avessero. Come si fa a sapere a chi dare retta? Semplice! Conoscendo l’Insulina dalle basi alla pratica!

Ho quindi deciso, visto anche il centenario della sua scoperta, di scrivere una serie di articoli attraverso i quali vi accompagnerò lungo un secolo di storia dell’Insulina, dal suo isolamento alla sua applicazione medica passando, infine, al suo uso nel BodyBuilding.

In questa prima parte vedremo il lato accademico dell’Insulina…

Tanto tempo fa, tra due continenti…:

Nel 1869, studiando la struttura del pancreas al microscopio, Paul Langerhans, studente di medicina a Berlino, identificò alcuni ammassi di tessuto precedentemente inosservati, sparsi nella maggior parte del pancreas.[1] La funzione di questi “mucchietti di cellule”, in seguito noti come isolotti di Langerhans, rimase inizialmente sconosciuta, ma Édouard Laguesse suggerì in seguito che potessero produrre secrezioni che svolgono un ruolo regolatore nella digestione.[2] Anche il figlio di Paul Langerhans, Archibald, contribuì a comprendere questo ruolo regolatore.

Paul Langerhans (25 luglio 1847 – 20 luglio 1888) è stato un patologo, fisiologo e biologo tedesco, a cui si deve la scoperta delle cellule che secernono Insulina, che da lui prendono il nome di isole di Langerhans.

Nel 1889, il medico Oskar Minkowski, in collaborazione con Joseph von Mering, rimosse il pancreas da un cane sano per verificare il suo presunto ruolo nella digestione. Analizzando l’urina, trovarono dello zucchero, stabilendo per la prima volta una relazione tra il pancreas e il diabete. Nel 1901, un altro passo importante fu compiuto dal medico e scienziato americano Eugene Lindsay Opie, quando isolò il ruolo del pancreas alle isole di Langerhans: “Il diabete mellito, quando è il risultato di una lesione del pancreas, è causato dalla distruzione delle isole di Langerhans e si verifica solo quando questi corpi sono in parte o completamente distrutti”.[3][4][5]

Oskar Minkowski (13 gennaio 1858 – 18 luglio 1931) è stato un medico e fisiologo tedesco, titolare di una cattedra all’Università di Breslau e famoso soprattutto per le sue ricerche sul diabete. Era fratello del matematico Hermann Minkowski e padre dell’astrofisico Rudolph Minkowski.

Nei due decenni successivi i ricercatori fecero diversi tentativi di isolare le secrezioni delle isole pancreatiche. Nel 1906 George Ludwig Zuelzer ottenne un parziale successo nel trattamento di cani con estratti pancreatici, ma non fu in grado di continuare il suo lavoro. Tra il 1911 e il 1912, E.L. Scott dell’Università di Chicago sperimentò estratti acquosi di pancreas e notò “una leggera diminuzione della glicosuria”, ma non riuscì a convincere il suo direttore del valore del suo lavoro, che venne interrotto. Israel Kleiner dimostrò effetti simili alla Rockefeller University nel 1915, ma la Prima Guerra Mondiale interruppe il suo lavoro e non lo riprese.[6]

Georg Ludwig Zülzer (10 aprile 1870 a Berlino;16 ottobre 1949 a New York) è stato un medico internista tedesco che ha condotto ricerche nel campo del trattamento del diabete mellito. Sulla base della scoperta di Oskar Minkowski, alla fine del XIX secolo, che l’asportazione del pancreas nei cani scatenava il diabete mellito di tipo I, all’inizio del XX secolo Georg Ludwig Zülzer condusse esperimenti sull’uso di estratti di pancreas per il trattamento del diabete.

Nel 1916, Nicolae Paulescu sviluppò un estratto acquoso di pancreas che, iniettato in un cane diabetico, aveva un effetto normalizzante sui livelli di zucchero nel sangue. Dovette interrompere i suoi esperimenti a causa della Prima Guerra Mondiale e nel 1921 scrisse quattro articoli sul suo lavoro svolto a Bucarest e sui suoi test su un cane diabetico. Più tardi, nello stesso anno, pubblicò “Research on the Role of the Pancreas in Food Assimilation”.[7][8]

Nicolae Constantin Paulescu (30 ottobre 1869 (O.S.) – 17 luglio 1931) è stato un fisiologo, professore di medicina e politico rumeno, famoso soprattutto per i suoi lavori sul diabete, tra cui il brevetto della pancreina (un estratto pancreatico contenente Insulina). La “pancreina” era un estratto di pancreas bovino in soluzione salina, dopo di che alcune impurità venivano rimosse con acido cloridrico e idrossido di sodio. Paulescu fu anche cofondatore, insieme ad A. C. Cuza, dell’Unione Nazionale Cristiana e successivamente della Lega di Difesa Nazionale Cristiana in Romania. È stato anche un membro di spicco della Guardia di Ferro.

Il nome “Insulin” fu coniato da Edward Albert Sharpey-Schafer nel 1916 per un’ipotetica molecola prodotta dalle isole pancreatiche di Langerhans (in latino insula per isolotto o isola) che controlla il metabolismo del glucosio. All’insaputa di Sharpey-Schafer, Jean de Meyer aveva introdotto il termine molto simile “Insulina” nel 1909 per la stessa molecola.[9][10]

Sir Edward Albert Sharpey-Schafer (2 giugno 1850 – 29 marzo 1935) è stato un fisiologo inglese. È considerato un fondatore dell’endocrinologia: nel 1894 scoprì e dimostrò l’esistenza dell’adrenalina insieme a George Oliver e coniò il termine “endocrino” per le secrezioni delle ghiandole non duttili. Il metodo di respirazione artificiale di Schafer prende il nome da lui.
Schafer coniò il termine “insulin” dopo aver teorizzato che l’assenza di una singola sostanza prodotta dal pancreas fosse responsabile del diabete mellito.

Nell’ottobre del 1920, il canadese Frederick Banting giunse alla conclusione che le secrezioni digestive studiate originariamente da Minkowski stavano disgregando il secreto delle isole, rendendone impossibile l’estrazione. Chirurgo di formazione, Banting sapeva che l’ostruzione del dotto pancreatico avrebbe portato all’atrofia della maggior parte del pancreas, lasciando intatte le isole di Langerhans. Pensò che si sarebbe potuto ricavare un estratto relativamente puro dalle isole una volta che la maggior parte del resto del pancreas fosse stata eliminata. Si appuntò una nota: “Legare i dotti pancreatici del cane. Mantenere i cani in vita finché gli acini non degenerano lasciando gli isolotti. Cercare di isolare la secrezione interna di questi ultimi e alleviare la glicosuria.”[11][12]

Sir Frederick Grant Banting (14 novembre 1891 – 21 febbraio 1941), scienziato, medico, pittore e premio Nobel noto come co-scopritore dell’Insulina e del suo potenziale terapeutico.

Nella primavera del 1921, Banting si recò a Toronto per spiegare la sua idea a J.J.R. Macleod, professore di fisiologia all’Università di Toronto. Macleod era inizialmente scettico, poiché Banting non aveva un background di ricerca e non conosceva la letteratura più recente, ma accettò di mettere a disposizione di Banting uno spazio di laboratorio per testare le sue idee. Macleod fece anche in modo che due studenti universitari fossero gli assistenti di laboratorio di Banting quell’estate, ma Banting aveva bisogno di un solo assistente di laboratorio. Charles Best e Clark Noble lanciarono una moneta; Best vinse il lancio e prese il primo turno. Ciò si rivelò sfortunato per Noble, poiché Banting tenne Best per tutta l’estate e alla fine divise con Best metà del premio Nobel e il merito della scoperta.[13] Il 30 luglio 1921, Banting e Best riuscirono a isolare con successo un estratto (“isleton”) dalle isole di un cane e lo iniettarono in un cane diabetico, scoprendo che l’estratto riduceva la glicemia del 40% in 1 ora.[14][12]

Charles Herbert Best (27 febbraio 1899 – 31 marzo 1978) è stato uno scienziato medico americano-canadese, uno dei co-scopritori dell’insulina insieme al collega Banting.

Banting e Best presentarono i loro risultati a Macleod al suo ritorno a Toronto nell’autunno del 1921, ma Macleod sottolineò i difetti del disegno sperimentale e suggerì di ripetere gli esperimenti con un maggior numero di cani e con attrezzature migliori. Trasferì Banting e Best in un laboratorio migliore e iniziò a pagare a Banting uno stipendio con le sue borse di ricerca. Alcune settimane dopo, anche la seconda serie di esperimenti fu un successo e Macleod contribuì a pubblicare i risultati privatamente a Toronto nel novembre dello stesso anno. Bloccato dal lungo compito di legare i cani ai condotti pancreatici e di aspettare diverse settimane per estrarre l’Insulina, Banting ebbe l’idea di estrarre l’Insulina dal pancreas di un vitello fetale, che non aveva ancora sviluppato le ghiandole digestive. A dicembre, riuscirono a estrarre l’insulina anche dal pancreas di una mucca adulta. Macleod interruppe tutte le altre ricerche nel suo laboratorio per concentrarsi sulla purificazione dell’Insulina. Invitò il biochimico James Collip ad aiutarlo in questo compito e il team si sentì pronto per un test clinico entro un mese.[12]

John James Rickard Macleod (6 settembre 1876 – 16 marzo 1935) è stato un biochimico e fisiologo britannico. Ha dedicato la sua carriera a diversi argomenti di fisiologia e biochimica, ma si è interessato soprattutto al metabolismo dei carboidrati. È noto per il suo ruolo nella scoperta e nell’isolamento dell’Insulina durante il suo incarico di docente all’Università di Toronto, per il quale ricevette, insieme a Frederick Banting, il premio Nobel per la fisiologia o la medicina nel 1923. L’assegnazione del premio a Macleod fu all’epoca controversa, perché secondo la versione dei fatti di Banting, il ruolo di Macleod nella scoperta era trascurabile. Solo decenni dopo gli eventi, una revisione indipendente ha riconosciuto un ruolo molto più importante di quello attribuitogli all’inizio.

L’11 gennaio 1922, Leonard Thompson, un quattordicenne diabetico che giaceva in fin di vita al Toronto General Hospital, ricevette la prima iniezione di insulina.[15][16][17][18] Tuttavia, l’estratto era così impuro che Thompson ebbe una grave reazione allergica e le ulteriori iniezioni furono annullate. Nei 12 giorni successivi, Collip lavorò giorno e notte per migliorare l’estratto di pancreas di bue. Una seconda dose fu iniettata il 23 gennaio, eliminando la glicosuria tipica del diabete senza causare effetti collaterali evidenti. La prima paziente americana fu Elizabeth Hughes, figlia del Segretario di Stato americano Charles Evans Hughes.[19][20] Il primo paziente trattato negli Stati Uniti fu il futuro artista di xilografie James D. Havens;[21] il dottor John Ralston Williams importò l’Insulina da Toronto a Rochester, New York, per trattare Havens.[22]

Leonard Thompson (17 luglio 1908 – 20 aprile 1935) è la prima persona ad aver ricevuto un’iniezione di Insulina come trattamento per il diabete di tipo I.

Banting e Best non lavorarono mai bene con Collip, considerandolo una specie di intruso, e Collip lasciò il progetto poco dopo. Nella primavera del 1922, Best riuscì a migliorare le sue tecniche al punto da poter estrarre grandi quantità di Insulina su richiesta, ma la preparazione rimase impura. L’azienda farmaceutica Eli Lilly and Company aveva offerto assistenza non molto tempo dopo le prime pubblicazioni del 1921, e in aprile accettò l’offerta della Lilly. A novembre, il capo chimico della Lilly, George B. Walden, scoprì la precipitazione isoelettrica e fu in grado di produrre grandi quantità di Insulina altamente purificata. Poco dopo, l’Insulina fu messa in vendita al pubblico.

Cartella per Elizabeth Hughes Autore: Hughes, Elizabeth Evans Luogo/Data: [Toronto], 16 agosto 1922 Descrizione fisica: 1 carta 28 x 22 cm. Scopo e contenuto: Si tratta di una tabella utilizzata per tenere traccia del sangue, delle urine, della dieta in grammi e delle prescrizioni dietetiche in grammi. Si tratta di una pagina compilata a mano. Il grafico mostra che il 3 settembre la Hughes aveva preso 9 chili rispetto alla prima iniezione di Insulina del 17 agosto. Raccolta: Banting Posizione: MS. COLL. 76 (Banting), Box 8A, Folder 25B Fonte del titolo: Titolo basato sul contenuto della carta. Nota generale: le annotazioni sono di mano di Elizabeth Hughes. Si tratta di un campione dei moduli utilizzati per annotare le sue condizioni mediche da quando le fu diagnosticato il diabete. Informazioni sui diritti: Nessuna restrizione di accesso nota Deposito: Thomas Fisher Rare Book Library, Università di Toronto, Toronto, Ontario Canada, M5S 1A5, library.utoronto.ca/fisher Collezione: Parte della collezione Discovery and Early Development of Insulin link.library.utoronto.ca/insulin/

Verso la fine del gennaio 1922, le tensioni tra i quattro “co-scopritori” dell’insulina aumentarono e Collip minacciò brevemente di brevettare separatamente il suo processo di purificazione. John G. FitzGerald, direttore dell’istituzione sanitaria pubblica non commerciale Connaught Laboratories, intervenne quindi come paciere. L’accordo del 25 gennaio 1922 stabilì due condizioni fondamentali: 1) i collaboratori avrebbero firmato un contratto in cui si impegnavano a non sottoscrivere un brevetto con un’azienda farmaceutica commerciale durante un periodo iniziale di lavoro con Connaught; e 2) non sarebbero stati permessi cambiamenti nella politica di ricerca se non prima discussi tra FitzGerald e i quattro collaboratori.[23] Ciò contribuì a contenere il disaccordo e a vincolare la ricerca al mandato pubblico di Connaught.

John Gerald “Gerry” FitzGerald (9 dicembre 1882 a Drayton, Ontario – 20 giugno 1940) è stato un medico canadese e specialista della salute pubblica che ha contribuito in modo determinante al controllo della difterite, prima producendo e distribuendo gratuitamente l’antitossina e poi, nel 1924, utilizzando la produzione di massa per consentire l’uso diffuso del vaccino ideato da Gaston Ramon.

Inizialmente, Macleod e Banting erano particolarmente riluttanti a brevettare il loro processo per l’Insulina per motivi di etica medica. Tuttavia, rimaneva il timore che un terzo privato potesse dirottare e monopolizzare la ricerca (come aveva lasciato intendere Eli Lilly and Company[24]) e che sarebbe stato difficile garantire una distribuzione sicura senza una capacità di controllo della qualità. A tal fine, Edward Calvin Kendall fornì preziosi consigli. Egli aveva isolato la Tiroxina presso la Mayo Clinic nel 1914 e aveva brevettato il processo attraverso un accordo tra lui, i fratelli Mayo e l’Università del Minnesota, trasferendo il brevetto all’università pubblica.[25] Il 12 aprile, Banting, Best, Collip, Macleod e FitzGerald scrissero congiuntamente al presidente dell’Università di Toronto per proporre un accordo simile con l’obiettivo di assegnare un brevetto al Board of Governors dell’università.[26] La lettera sottolineava che:[27]
Il brevetto non sarebbe stato utilizzato per nessun altro scopo se non quello di impedire il conseguimento di un brevetto da parte di altre persone. Quando i dettagli del metodo di preparazione saranno pubblicati, chiunque sarà libero di preparare l’estratto, ma nessuno potrà assicurarsi un monopolio redditizio.

Edward Calvin Kendall (8 marzo 1886 – 4 maggio 1972) è stato un chimico americano. Nel 1950, Kendall ricevette il Premio Nobel per la Fisiologia o la Medicina insieme al chimico svizzero Tadeusz Reichstein e al medico della Mayo Clinic Philip S. Hench, per il loro lavoro sugli ormoni della ghiandola surrenale. Kendall non si concentrò solo sulle ghiandole surrenali, ma fu anche responsabile dell’isolamento della Tiroxina, un ormone della ghiandola tiroidea, e collaborò con il team che cristallizzò il Glutatione e ne identificò la struttura chimica.

La cessione al Consiglio superiore dell’Università di Toronto fu completata il 15 gennaio 1923, con il pagamento simbolico di 1 dollaro.[28] L’accordo è stato giudicato da The World’s Work del 1923 come “un passo avanti nell’etica medica”.[29] Ha ricevuto molta attenzione da parte dei media anche negli anni 2010 per quanto riguarda la questione dell’assistenza sanitaria e dell’accessibilità dei farmaci.

A seguito di ulteriori preoccupazioni riguardanti i tentativi di Eli Lilly di brevettare separatamente parti del processo di produzione, il vicedirettore di Connaught e capo della divisione Insulina Robert Defries ha stabilito una politica di pooling dei brevetti che avrebbe richiesto ai produttori di condividere liberamente qualsiasi miglioramento del processo di produzione senza compromettere l’accessibilità dei farmaci.[30]

Nel 1923 il comitato del Premio Nobel attribuì l’estrazione pratica dell’Insulina a un team dell’Università di Toronto e assegnò il Premio Nobel a due uomini: Frederick Banting e J.J.R. Macleod.[31] Essi ricevettero il Premio Nobel per la Fisiologia o la Medicina nel 1923 per la scoperta dell’Insulina. Banting, incredulo per la mancata menzione di Best,[32] condivise il premio con lui, mentre Macleod condivise immediatamente il suo con James Collip. Il brevetto dell’Insulina fu venduto all’Università di Toronto per un dollaro.

Altri due premi Nobel sono stati assegnati per lavori sull’Insulina. Il biologo molecolare britannico Frederick Sanger, che nel 1955 determinò la struttura primaria dell’Insulina, ricevette il Premio Nobel per la Chimica nel 1958.[33] Rosalyn Sussman Yalow ricevette il Premio Nobel per la Medicina nel 1977 per lo sviluppo del test radioimmunologico dell’Insulina.

Diversi premi Nobel hanno anche un legame indiretto con l’Insulina. George Minot, co-ricevente del Premio Nobel 1934 per lo sviluppo del primo trattamento efficace per l’anemia perniciosa, era affetto da diabete mellito di tipo I. Il dottor William Castle ha osservato che la scoperta dell’Insulina nel 1921, arrivata in tempo per mantenere in vita Minot, era quindi anche responsabile della scoperta di una cura per l’anemia perniciosa.[34] Dorothy Hodgkin ha ricevuto il Premio Nobel per la Chimica nel 1964 per lo sviluppo della cristallografia, la tecnica che ha utilizzato per decifrare la struttura molecolare completa dell’Insulina nel 1969.[35]

Dorothy Mary Crowfoot Hodgkin (nata Crowfoot; 12 maggio 1910 – 29 luglio 1994) è stata una chimica britannica vincitrice del premio Nobel che ha fatto progredire la tecnica della cristallografia a raggi X per determinare la struttura delle biomolecole, divenuta essenziale per la biologia strutturale.

Il lavoro pubblicato da Banting, Best, Collip e Macleod rappresentava la preparazione di un estratto purificato di Insulina adatto all’uso su pazienti umani.[36] Sebbene Paulescu avesse scoperto i principi del trattamento, il suo estratto salino non poteva essere usato sugli esseri umani; non fu menzionato nel Premio Nobel del 1923. Il professor Ian Murray fu particolarmente attivo nel lavorare per correggere “l’errore storico” contro Nicolae Paulescu. Murray era professore di fisiologia presso l’Anderson College of Medicine di Glasgow, in Scozia, capo del dipartimento di Malattie Metaboliche di un importante ospedale di Glasgow, vicepresidente della British Association of Diabetes e membro fondatore della International Diabetes Federation. Murray ha scritto:

Non è stato dato sufficiente riconoscimento a Paulescu, l’illustre scienziato rumeno, che all’epoca in cui l’équipe di Toronto stava iniziando le sue ricerche era già riuscito a estrarre l’ormone antidiabetico del pancreas e a dimostrarne l’efficacia nel ridurre l’iperglicemia nei cani diabetici.[37]

In una comunicazione privata, il professor Arne Tiselius, ex capo dell’Istituto Nobel, espresse la sua personale opinione che Paulescu fosse ugualmente degno del premio nel 1923.[38]

Arne Wilhelm Kaurin Tiselius (10 agosto 1902 – 29 ottobre 1971) è stato un biochimico svedese che ha vinto il Premio Nobel per la Chimica nel 1948 “per le sue ricerche sull’elettroforesi e sull’analisi di adsorbimento, in particolare per le sue scoperte sulla natura complessa delle proteine del siero”.

Analisi strutturale e sintesi di laboratorio:

L’Insulina purificata di origine animale era inizialmente l’unico tipo di Insulina disponibile per gli esperimenti e i diabetici. John Jacob Abel fu il primo a produrre la forma cristallizzata nel 1926.[39] La prova della natura proteica fu fornita per la prima volta da Michael Somogyi, Edward A. Doisy e Philip A. Shaffer nel 1924.[40] Fu pienamente dimostrata quando Hans Jensen e Earl A. Evans Jr. isolarono gli aminoacidi fenilalanina e prolina nel 1935.[41]

Da sinistra: il Dr. Michael Somogyi (7 marzo 1883 – 21 luglio 1971), professore ungherese-americano di biochimica presso la Washington University e l’ospedale ebraico di Saint Louis e Edward Adelbert Doisy (13 novembre 1893 – 23 ottobre 1986), biochimico americano.

La struttura aminoacidica dell’Insulina fu caratterizzata per la prima volta nel 1951 da Frederick Sanger,[42] e la prima Insulina sintetica fu prodotta simultaneamente nei laboratori di Panayotis Katsoyannis dell’Università di Pittsburgh e di Helmut Zahn dell’Università RWTH di Aquisgrana a metà degli anni Sessanta. [43][44][45][46][47] L’Insulina bovina cristallina sintetica è stata ottenuta da ricercatori cinesi nel 1965.[48] La struttura tridimensionale completa dell’Insulina è stata determinata mediante cristallografia a raggi X nel laboratorio di Dorothy Hodgkin nel 1969.[49]

Frederick Sanger (13 agosto 1918 – 19 novembre 2013), biochimico inglese che ha vinto due volte il Premio Nobel per la Chimica. Nel 1958 gli è stato assegnato il Premio Nobel per la Chimica “per il suo lavoro sulla struttura delle proteine, in particolare quella dell’Insulina”.

Il dottor Hans E. Weber scoprì la preproinsulina mentre lavorava come ricercatore presso l’Università della California Los Angeles nel 1974. Nel 1973-1974, Weber imparò le tecniche per isolare, purificare e tradurre l’RNA messaggero. Per studiare ulteriormente l’Insulina, ottenne tessuti pancreatici da un macello di Los Angeles e successivamente da animali dell’UCLA. Isolò e purificò l’RNA messaggero totale dalle cellule dell’isoletta pancreatica, che fu poi tradotto in oociti di Xenopus laevis e precipitato usando anticorpi anti-insulina. Quando la proteina totale tradotta è stata sottoposta a elettroforesi su gel di SDS-poliacrilammide e gradiente di saccarosio, sono stati isolati i picchi corrispondenti all’Insulina e alla proinsulina. Tuttavia, con sorpresa del Dr. Weber, è stato isolato un terzo picco corrispondente a una molecola più grande della proinsulina. Dopo aver riprodotto l’esperimento diverse volte, ha notato costantemente questo grande picco prima della proinsulina, che ha stabilito essere una molecola precursore più grande a monte della proinsulina. Nel maggio 1975, in occasione del meeting dell’American Diabetes Association a New York, Weber presentò oralmente il suo lavoro[50-146] e fu il primo a chiamare questa molecola precursore “preproinsulina”. In seguito a questa presentazione orale, Weber fu invitato a cena dal dottor Donald Steiner, un ricercatore che aveva contribuito alla caratterizzazione della proinsulina, per discutere del suo lavoro e delle sue scoperte. Un anno dopo, nell’aprile 1976, questa molecola fu ulteriormente caratterizzata e sequenziata da Steiner, facendo riferimento al lavoro e alla scoperta di Hans Weber.[51] La preproinsulina divenne una molecola importante per studiare il processo di trascrizione e traduzione.

La prima Insulina “umana” geneticamente ingegnerizzata e sintetica è stata prodotta con l’E. coli nel 1978 da Arthur Riggs e Keiichi Itakura presso il Beckman Research Institute della Città della Speranza in collaborazione con Herbert Boyer della Genentech.[52][53] La Genentech, fondata da Swanson, Boyer e Eli Lilly and Company, ha continuato nel 1982 a vendere la prima Insulina umana biosintetica disponibile in commercio con il marchio Humulin [La stragrande maggioranza dell’Insulina utilizzata in tutto il mondo è Insulina “umana” biosintetica o suoi analoghi].[54] Recentemente, un altro approccio è stato utilizzato da un gruppo pionieristico di ricercatori canadesi, che ha utilizzato una pianta di cartamo facilmente coltivabile, per la produzione di Insulina molto più economica.[55]

Herbert Wayne “Herb” Boyer (nato il 10 luglio 1936), biotecnologo americano, ricercatore e imprenditore nel campo delle biotecnologie. Insieme a Stanley N. Cohen e Paul Berg ha scoperto un metodo per indurre i batteri a produrre proteine estranee, dando così il via al campo dell’ingegneria genetica [tecnologia del DNA ricombinante].

L’Insulina ricombinante viene prodotta nel lievito (di solito Saccharomyces cerevisiae) o in E. coli.[56] Nel lievito, l’Insulina può essere ingegnerizzata come una proteina a catena singola con un sito di endoproteasi KexII (un omologo del PCI/PCII del lievito) che separa la catena A dell’Insulina da una catena B dell’Insulina troncata C-terminalmente. Una coda C-terminale sintetizzata chimicamente viene quindi innestata sull’Insulina mediante proteolisi inversa utilizzando la proteasi tripsina, poco costosa; in genere la lisina sulla coda C-terminale è protetta con un gruppo protettivo chimico per impedire la proteolisi. La facilità della sintesi modulare e la relativa sicurezza delle modifiche in quella regione spiega i comuni analoghi dell’Insulina con modifiche C-terminali (ad esempio lispro, aspart, glulisine). La sintesi Genentech e le sintesi completamente chimiche come quella di Bruce Merrifield non sono preferibili perché l’efficienza della ricombinazione delle due catene di Insulina è bassa, soprattutto a causa della competizione con la precipitazione della catena B dell’Insulina.

Da sinistra: diagramma di Richardson di un monomero di Insulina suina, che mostra la sua caratteristica struttura secondaria. Questa è la forma biologicamente attiva dell’insulina. A destra, il diagramma di Richardson di un esamero di Insulina suina. La sfera al centro è un atomo di zinco stabilizzante, circondato da residui di istidina coordinati. Questa è la forma in cui l’Insulina viene immagazzinata nelle cellule beta.

Caratteristiche dell’Insulina:

Grazie ad annali ricerche oggi sappiamo che l’Insulina è un ormone peptidico prodotto dalle cellule beta delle isole pancreatiche, codificato nell’uomo dal gene INS. È considerato il principale ormone anabolico dell’organismo sebbene la sua attività prevalente sia diretta alla riduzione del catabolismo.[57] Regola il metabolismo dei carboidrati, dei grassi e delle proteine promuovendo l’assorbimento del glucosio dal sangue nelle cellule epatiche, lipidiche e del muscolo-scheletrico [In questi tessuti il glucosio assorbito viene convertito in glicogeno attraverso la glicogenesi o in alcuni casi in grassi (trigliceridi) attraverso la lipogenesi o, nel caso del fegato, in entrambi].[58] La produzione e la secrezione di glucosio da parte del fegato sono fortemente inibite da alte concentrazioni di Insulina nel sangue.[59] L’Insulina circolante influisce anche sulla sintesi di proteine in un’ampia varietà di tessuti. È quindi un ormone anabolico, che promuove la conversione di piccole molecole nel sangue in grandi molecole all’interno delle cellule. Bassi livelli di Insulina nel sangue hanno l’effetto opposto, favorendo un diffuso catabolismo, soprattutto del grasso corporeo di riserva.

Le cellule beta sono sensibili ai livelli della glicemia nel sangue, per cui secernono Insulina nel sangue in risposta a livelli elevati di glucosio e inibiscono la secrezione di Insulina quando i livelli di glucosio sono bassi.[60] L’Insulina aumenta l’assorbimento e il metabolismo del glucosio nelle cellule, riducendo così il livello della glicemia ematica. Le cellule alfa vicine, prendendo spunto dalle cellule beta,[60] secernono Glucagone nel sangue in modo opposto: aumento della secrezione quando il glucosio nel sangue è basso e diminuzione della secrezione quando le concentrazioni di glucosio sono elevate. Il Glucagone aumenta il livello di glucosio nel sangue stimolando la glicogenolisi e la gluconeogenesi nel fegato.[58][60] La secrezione di Insulina e Glucagone nel sangue in risposta alla concentrazione di glucosio nel sangue è il meccanismo principale dell’omeostasi del glucosio.[60]

Schema della regolazione dell’Insulina in caso di glicemia elevata.

L’insulina è quindi prodotta esclusivamente nelle cellule beta delle isole pancreatiche nei mammiferi e nel corpo di Brockmann in alcuni pesci. L’Insulina umana è prodotta dal gene INS, situato sul cromosoma 11.[61] I roditori hanno due geni funzionali dell’Insulina: uno è l’omologo della maggior parte dei geni dei mammiferi (Ins2) e l’altro è una copia retroposta che include la sequenza del promotore ma che manca di un introne (Ins1) [La trascrizione del gene dell’Insulina aumenta in risposta all’aumento del glucosio nel sangue].[62] Ciò è controllato principalmente da fattori di trascrizione che legano sequenze enhancer nelle circa 400 paia di basi prima del sito di inizio della trascrizione del gene.[61][62]

I principali fattori di trascrizione che influenzano la secrezione insulinica sono PDX1, NeuroD1 e MafA.[63][64][65][66]

L’Insulina subisce un’ampia modificazione post-traslazionale lungo la via di produzione. La produzione e la secrezione sono ampiamente indipendenti; l’Insulina sintetizzata viene immagazzinata in attesa della secrezione. Sia il C-peptide che l’Insulina matura sono biologicamente attivi. I componenti cellulari e le proteine di questa immagine non sono in scala.

In uno stato di basso livello di glucosio, PDX1 (pancreatic and duodenal homeobox protein 1) si trova nella periferia nucleare in seguito all’interazione con HDAC1 e 2,[67] il che determina una sottoregolazione della secrezione insulinica.[68] Un aumento dei livelli di glucosio nel sangue provoca la fosforilazione di PDX1, che subisce una traslocazione nucleare e si lega all’elemento A3 all’interno del promotore dell’Insulina.[69] Dopo la traslocazione interagisce con i coattivatori HAT p300 e SETD7. PDX1 influisce sulle modificazioni degli istoni attraverso l’acetilazione, la deacetilazione e la metilazione. Si dice anche che sopprima il glucagone.[70]

NeuroD1, noto anche come β2, regola l’esocitosi dell’Insulina nelle cellule β pancreatiche inducendo direttamente l’espressione di geni coinvolti nell’esocitosi.[71] È localizzato nel citosol, ma in risposta all’elevato livello di glucosio viene glicosilato da OGT e/o fosforilato da ERK, il che provoca la traslocazione nel nucleo. Nel nucleo β2 eterodimerizza con E47, si lega all’elemento E1 del promotore dell’insulina e recluta il co-attivatore p300 che acetilerà β2. È in grado di interagire anche con altri fattori di trascrizione nell’attivazione del gene dell’Insulina.[71]

MafA viene degradato dai proteasomi quando i livelli di glucosio nel sangue sono bassi. L’aumento dei livelli di glucosio rende glicosilata una proteina sconosciuta. Questa proteina funziona come fattore di trascrizione per MafA in modo sconosciuto e MafA viene trasportata fuori dalla cellula. MafA viene poi traslocata di nuovo nel nucleo dove lega l’elemento C1 del promotore dell’insulina.[72][73]

Questi fattori di trascrizione lavorano in modo sinergico e complesso. L’aumento del glucosio nel sangue può, dopo un po’, distruggere le capacità di legame di queste proteine e quindi ridurre la quantità di Insulina secreta, causando il diabete. La diminuzione delle attività di legame può essere mediata dallo stress ossidativo indotto dal glucosio e si ritiene che gli antiossidanti prevengano la diminuzione della secrezione di Insulina nelle cellule β pancreatiche glucotossiche. Le molecole di segnalazione dello stress e le specie reattive dell’ossigeno inibiscono il gene dell’Insulina interferendo con i cofattori che legano i fattori di trascrizione e con i fattori di trascrizione stessi.[74]

Diverse sequenze regolatrici nella regione del promotore del gene dell’Insulina umana si legano ai fattori di trascrizione. In generale, le A-box si legano ai fattori Pdx1, le E-box a NeuroD, le C-box a MafA e gli elementi di risposta al cAMP a CREB. Esistono anche dei silenziatori che inibiscono la trascrizione.

L’insulina viene sintetizzata come molecola precursore inattiva, una proteina di 110 aminoacidi chiamata “preproinsulina”. La preproinsulina viene tradotta direttamente nel reticolo endoplasmatico ruvido (RER), dove il suo peptide segnale viene rimosso dalla peptidasi segnale per formare la “proinsulina”.[60] Durante il ripiegamento della proinsulina, le estremità opposte della proteina, chiamate “catena A” e “catena B”, vengono fuse insieme con tre legami disolfuro.[60] La proinsulina ripiegata passa quindi attraverso l’apparato di Golgi e viene impacchettata in vescicole secretorie specializzate [Nel granulo, la proinsulina viene scissa dalla proproteina convertasi 1/3 e dalla proproteina convertasi 2, rimuovendo la parte centrale della proteina, chiamata “peptide C”].[60] Infine, la carbossipeptidasi E rimuove due coppie di aminoacidi dalle estremità della proteina, dando origine all’Insulina attiva – le catene A e B dell’insulina, ora collegate da due legami disolfuro.[60]

Struttura primaria della preproinsulina.

L’Insulina matura risultante è impacchettata all’interno di granuli maturi in attesa di segnali metabolici (come leucina, arginina, glucosio e mannosio) e della stimolazione del nervo vagale per essere esocitata dalla cellula nella circolazione.[75]

È stato dimostrato che l’Insulina e le proteine ad essa correlate sono prodotte all’interno del cervello e che livelli ridotti di queste proteine sono collegati alla malattia di Alzheimer.[76][77][78]

Il rilascio di Insulina è stimolato anche dalla stimolazione del recettore beta-2 e inibito dalla stimolazione del recettore alfa-1. Inoltre, il Cortisolo, il Glucagone e l’Ormone della Crescita antagonizzano le azioni dell’Insulina nei periodi di stress. L’Insulina inibisce anche il rilascio di acidi grassi da parte della lipasi ormonosensibile nel tessuto adiposo.[79]

Contrariamente alla convinzione iniziale che gli ormoni fossero generalmente molecole chimiche di piccole dimensioni, l’Insulina, primo ormone peptidico di cui si conosce la struttura, si è rivelata piuttosto grande.[80] Una singola proteina (monomero) di Insulina umana è composta da 51 aminoacidi e ha una massa molecolare di 5808 Da. La formula molecolare dell’Insulina umana è C257H383N65O77S6.[81-44] Si tratta di una combinazione di due catene peptidiche (dimeri) denominate catena A e catena B, legate tra loro da due legami disolfuro. La catena A è composta da 21 aminoacidi, mentre la catena B è composta da 30 residui. I legami disolfuro di collegamento (intercatena) si formano sui residui di cisteina tra le posizioni A7-B7 e A20-B19. Esiste un ulteriore legame disolfuro (intracatena) all’interno della catena A tra i residui di cisteina nelle posizioni A6 e A11. La catena A presenta due regioni α-eliche in corrispondenza di A1-A8 e A12-A19 che sono antiparallele; mentre la catena B presenta un’α-elica centrale (che copre i residui B9-B19) affiancata dal legame disolfuro su entrambi i lati e da due foglietti β (che coprono B7-B10 e B20-B23).[80][82-45]

La struttura dell’Insulina. Il lato sinistro è un modello di riempimento dello spazio del monomero dell’insulina, ritenuto biologicamente attivo. Il carbonio è verde, l’idrogeno bianco, l’ossigeno rosso e l’azoto blu. A destra c’è un diagramma a nastro dell’esamero dell’insulina, che si ritiene essere la forma immagazzinata. Un’unità monomerica è evidenziata con la catena A in blu e la catena B in ciano. Il giallo indica i legami disolfuro e le sfere magenta sono ioni di zinco.

La sequenza aminoacidica dell’insulina è fortemente conservata e varia solo leggermente tra le specie. L’insulina bovina differisce da quella umana solo per tre residui aminoacidici e quella suina per uno. Anche l’insulina di alcune specie di pesci è abbastanza simile a quella umana da essere clinicamente efficace nell’uomo. L’insulina di alcuni invertebrati ha una sequenza molto simile a quella dell’insulina umana e ha effetti fisiologici simili. Il C-peptide della proinsulina, tuttavia, differisce molto di più tra le specie; è anch’esso un ormone, ma secondario.[82]

L’Insulina viene prodotta e immagazzinata nell’organismo sotto forma di esamero (un’unità di sei molecole di insulina), mentre la forma attiva è il monomero. L’esamero ha una dimensione di circa 36000 Da. Le sei molecole sono legate insieme come tre unità dimeriche per formare una molecola simmetrica. Una caratteristica importante è la presenza di atomi di zinco (Zn2+) sull’asse di simmetria, che sono circondati da tre molecole d’acqua e da tre residui di istidina in posizione B10.[68][82]

L’esamero è una forma inattiva con stabilità a lungo termine, che serve a mantenere l’insulina altamente reattiva protetta, ma prontamente disponibile. La conversione esamero-monomero è uno degli aspetti centrali delle formulazioni di insulina per iniezione. L’esamero è molto più stabile del monomero, il che è auspicabile per motivi pratici; tuttavia, il monomero è un farmaco che reagisce molto più rapidamente, poiché la velocità di diffusione è inversamente correlata alla dimensione delle particelle. Un farmaco a reazione rapida significa che le iniezioni di insulina non devono precedere di ore i pasti, il che a sua volta offre alle persone con diabete una maggiore flessibilità negli orari giornalieri.[83] L’Insulina può aggregarsi e formare foglietti beta fibrillari interdigitati. Ciò può causare amiloidosi da iniezione e impedisce la conservazione dell’insulina per lunghi periodi.[84]

Le cellule beta delle isole di Langerhans rilasciano insulina in due fasi. Il rilascio della prima fase avviene rapidamente in risposta all’aumento dei livelli di glucosio nel sangue e dura circa 10 minuti. La seconda fase è un rilascio lento e prolungato di vescicole di nuova formazione, innescato indipendentemente dallo zucchero, che raggiunge il suo picco tra le 2 e le 3 ore. Le due fasi del rilascio di insulina suggeriscono che i granuli di insulina sono presenti in diverse popolazioni dichiarate o “pool”. Durante la prima fase dell’esocitosi dell’insulina, la maggior parte dei granuli predisposti all’esocitosi viene rilasciata dopo l’internalizzazione del calcio. Questo pool è noto come Readily Releasable Pool (RRP). I granuli RRP rappresentano lo 0,3-0,7% della popolazione totale di granuli contenenti insulina e si trovano immediatamente adiacenti alla membrana plasmatica. Durante la seconda fase dell’esocitosi, i granuli di insulina richiedono la mobilizzazione dei granuli verso la membrana plasmatica e una precedente preparazione per essere rilasciati.[85] Pertanto, la seconda fase del rilascio di insulina è regolata dalla velocità con cui i granuli si preparano al rilascio. Questo pool è noto come pool di riserva (RP). L’RP viene rilasciato più lentamente dell’RRP (RRP: 18 granuli/min; RP: 6 granuli/min).[86] Un ridotto rilascio di insulina nella prima fase può essere il primo difetto rilevabile delle cellule beta che predice l’insorgenza del diabete di tipo 2.[87] Il rilascio nella prima fase e la sensibilità all’insulina sono predittori indipendenti del diabete.[88]

La descrizione del rilascio della prima fase è la seguente:

  • Il glucosio entra nelle β-cellule attraverso il trasportatore del glucosio, GLUT 2. A bassi livelli di zucchero nel sangue poco glucosio entra nelle β-cellule; ad alte concentrazioni di glucosio nel sangue grandi quantità di glucosio entrano in queste cellule.[89]
  • Il glucosio che entra nella β-cellula viene fosforilato a glucosio-6-fosfato (G-6-P) dalla glucochinasi (esochinasi IV) che non è inibita dal G-6-P come le esochinasi di altri tessuti (esochinasi I-III). Ciò significa che la concentrazione intracellulare di G-6-P rimane proporzionale alla concentrazione di zucchero nel sangue.[89]
  • Il glucosio-6-fosfato entra nella via glicolitica e poi, attraverso la reazione della piruvato deidrogenasi, nel ciclo di Krebs, dove vengono prodotte più molecole di ATP ad alta energia dall’ossidazione dell’acetil CoA (substrato del ciclo di Krebs), con conseguente aumento del rapporto ATP:ADP all’interno della cellula.[90]
  • Un aumento del rapporto ATP:ADP intracellulare chiude il canale del potassio SUR1/Kir6.2 sensibile all’ATP (vedi recettore delle sulfoniluree). Questo impedisce agli ioni potassio (K+) di lasciare la cellula per diffusione facilitata, portando a un accumulo di ioni potassio intracellulare. Di conseguenza, l’interno della cellula diventa meno negativo rispetto all’esterno, portando alla depolarizzazione della membrana della superficie cellulare.
  • In seguito alla depolarizzazione, si aprono i canali degli ioni calcio (Ca2+) voltaggio-gati, consentendo agli ioni calcio di spostarsi nella cellula per diffusione facilitata.
  • La concentrazione citosolica di ioni calcio può anche essere aumentata dal rilascio di calcio dai depositi intracellulari attraverso l’attivazione dei recettori rianodinici.[91]
  • La concentrazione di ioni calcio nel citosol delle cellule beta può essere aumentata anche, o in aggiunta, attraverso l’attivazione della fosfolipasi C derivante dal legame di un ligando extracellulare (ormone o neurotrasmettitore) a un recettore di membrana accoppiato a proteine G. La fosfolipasi C scinde il fosfolipide di membrana, il fosfatidil inositolo 4,5-bisfosfato, in inositolo 1,4,5-trifosfato e diacilglicerolo. L’inositolo 1,4,5-trisfosfato (IP3) si lega quindi a proteine recettoriali nella membrana plasmatica del reticolo endoplasmatico (ER). Ciò consente il rilascio di ioni Ca2+ dall’ER attraverso canali IP3-gated, che aumentano la concentrazione citosolica di ioni calcio indipendentemente dagli effetti di un’elevata concentrazione di glucosio nel sangue. La stimolazione parasimpatica delle isole pancreatiche opera attraverso questa via per aumentare la secrezione di insulina nel sangue.[92]
  • L’aumento significativo della quantità di ioni calcio nel citoplasma delle cellule provoca il rilascio nel sangue dell’Insulina precedentemente sintetizzata e immagazzinata nelle vescicole secretorie intracellulari.

Questo è il meccanismo principale di rilascio dell’insulina. Altre sostanze note per stimolare il rilascio di insulina sono gli aminoacidi arginina e leucina, il rilascio parasimpatico di acetilcolina (che agisce attraverso la via della fosfolipasi C), le sulfoniluree, la colecistochinina (CCK, anch’essa attraverso la fosfolipasi C),[93-56] e le incretine di derivazione gastrointestinale, come il peptide glucagone-simile-1 (GLP-1) e il peptide insulinotropico glucosio-dipendente (GIP).

Il polipeptide insulinotropico glucosio-dipendente (GIP), noto anche come polipeptide inibitore gastrico o peptide inibitore gastrico (abbreviato anche in GIP), è un ormone inibitore della famiglia delle secretine. Pur essendo un debole inibitore della secrezione acida gastrica, il suo ruolo principale è quello di stimolare la secrezione di Insulina. La GIP, insieme al peptide glucagone-simile-1 (GLP-1), appartiene a una classe di molecole denominate incretine.

Il rilascio di insulina è fortemente inibito dalla noradrenalina, che porta a un aumento dei livelli di glucosio nel sangue durante lo stress. Sembra che il rilascio di catecolamine da parte del sistema nervoso simpatico abbia influenze contrastanti sul rilascio di insulina da parte delle cellule beta, perché il rilascio di Insulina è inibito dai recettori α2-adrenergici[94] e stimolato dai recettori β2-adrenergici.[95] L’effetto netto della noradrenalina dai nervi simpatici e dell’epinefrina dalle ghiandole surrenali sul rilascio di insulina è l’inibizione dovuta alla dominanza dei recettori α-adrenergici.[96]

Quando il livello di glucosio scende al valore fisiologico abituale, il rilascio di insulina da parte delle cellule β rallenta o si arresta. Se il livello di glucosio nel sangue scende al di sotto di questo valore, soprattutto a livelli pericolosamente bassi, il rilascio di ormoni iperglicemizzanti (in particolare il glucagone dalle cellule alfa dell’isolotto di Langerhans) forza il rilascio di glucosio nel sangue dalle scorte di glicogeno del fegato, integrato dalla gluconeogenesi se le scorte di glicogeno si esauriscono. Aumentando il glucosio nel sangue, gli ormoni iperglicemizzanti prevengono o correggono l’ipoglicemia pericolosa per la vita.

L’evidenza di un alterato rilascio di insulina nella prima fase può essere osservata nel test di tolleranza al glucosio, dimostrato da un livello di glucosio nel sangue sostanzialmente elevato a 30 minuti dall’ingestione di un carico di glucosio (75 o 100 g di glucosio), seguito da un lento calo nei 100 minuti successivi, per rimanere al di sopra di 120 mg/100 ml dopo due ore dall’inizio del test. In una persona normale il livello di glucosio nel sangue è corretto (e può anche essere leggermente sovracorretto) alla fine del test. Il picco insulinico è una “prima risposta” all’aumento del glucosio nel sangue; questa risposta è individuale e specifica per la dose, anche se in passato si è sempre ritenuto che fosse specifica solo per il tipo di alimento.

Anche durante la digestione, in genere una o due ore dopo un pasto, il rilascio di insulina da parte del pancreas non è continuo, ma oscilla con un periodo di 3-6 minuti, passando dal generare una concentrazione di insulina nel sangue superiore a circa 800 pmol/l a meno di 100 pmol/l (nei ratti).[97] Si pensa che questo avvenga per evitare la sottoregolazione dei recettori dell’Insulina nelle cellule bersaglio e per aiutare il fegato a estrarre l’insulina dal sangue [Questa oscillazione è importante da considerare quando si somministrano farmaci insulino-stimolanti, poiché idealmente si dovrebbe ottenere una concentrazione ematica oscillante del rilascio di insulina, e non una concentrazione elevata costante].[97] Ciò può essere ottenuto somministrando l’insulina in modo ritmico nella vena porta, con una somministrazione attivata dalla luce o con il trapianto di cellule dell’isoletta nel fegato.[98][99][100]

Il livello di Insulina nel sangue può essere misurato in unità internazionali, come µIU/mL o in concentrazione molare, come pmol/L, dove 1 µIU/mL equivale a 6,945 pmol/L.[101] Un livello ematico tipico tra i pasti è di 8-11 μIU/mL (57-79 pmol/L).[102]

Gli effetti dell’insulina sono avviati dal suo legame con un recettore, il recettore dell’insulina (IR), presente nella membrana cellulare. La molecola del recettore contiene una subunità α e una subunità β. Due molecole si uniscono per formare il cosiddetto omodimero. L’insulina si lega alla subunità α dell’omodimero, che è rivolta verso il lato extracellulare delle cellule. Le subunità β hanno un’attività enzimatica tirosin-chinasica che viene attivata dal legame con l’insulina. Questa attività provoca l’autofosforilazione delle subunità β e successivamente la fosforilazione di proteine all’interno della cellula, note come substrati del recettore dell’insulina (IRS). La fosforilazione dell’IRS attiva una cascata di trasduzione del segnale che porta all’attivazione di altre chinasi e di fattori di trascrizione che mediano gli effetti intracellulari dell’insulina.[103]

Recettore dell’Insulina (IR).

La cascata che porta all’inserimento dei trasportatori di glucosio GLUT4 nelle membrane cellulari delle cellule muscolari e adipose e alla sintesi di glicogeno nel fegato e nel tessuto muscolare, nonché alla conversione del glucosio in trigliceridi nel fegato, nell’adipe e nel tessuto della ghiandola mammaria in allattamento, opera attraverso l’attivazione, da parte dell’IRS-1, della fosfoinositolo 3 chinasi (PI3K). Questo enzima converte un fosfolipide della membrana cellulare, il fosfatidilinositolo 4,5-bisfosfato (PIP2), in fosfatidilinositolo 3,4,5-trifosfato (PIP3), che a sua volta attiva la protein chinasi B (PKB). La PKB attivata facilita la fusione degli endosomi contenenti GLUT4 con la membrana cellulare, con conseguente aumento dei trasportatori GLUT4 nella membrana plasmatica.[104] La PKB fosforila anche la glicogeno sintasi chinasi (GSK), inattivando così questo enzima.[104] Ciò significa che il suo substrato, la glicogeno sintasi (GS), non può essere fosforilato e rimane de-fosforilato, e quindi attivo. L’enzima attivo, la glicogeno sintasi (GS), catalizza la fase limitante della sintesi del glicogeno dal glucosio. Defosforilazioni simili interessano gli enzimi che controllano il tasso di glicolisi che porta alla sintesi dei grassi attraverso il malonil-CoA nei tessuti che possono generare trigliceridi, nonché gli enzimi che controllano il tasso di gluconeogenesi nel fegato. L’effetto complessivo di queste de-fosforilazioni enzimatiche finali è che, nei tessuti in grado di effettuare queste reazioni, viene stimolata la sintesi di glicogeno e di grassi a partire dal glucosio, mentre viene inibita la produzione di glucosio da parte del fegato attraverso la glicogenolisi e la gluconeogenesi.[105] Anche la scomposizione dei trigliceridi da parte del tessuto adiposo in acidi grassi liberi e glicerolo viene inibita.[104]

Struttura del GLUT4. Il GLUT4 contiene anche un dominio UBX. Si tratta di regioni regolatrici dell’ubiquitina che possono contribuire alla segnalazione cellulare.

Una volta prodotto il segnale intracellulare derivante dal legame dell’insulina con il suo recettore, è necessario interrompere la segnalazione. Come menzionato di seguito nella sezione sulla degradazione, l’endocitosi e la degradazione del recettore legato all’insulina è un meccanismo principale per terminare la segnalazione.[106] Inoltre, la via di segnalazione viene terminata anche dalla de-fosforilazione dei residui di tirosina nelle varie vie di segnalazione da parte delle tirosina fosfatasi. Le serina/treonina chinasi sono anche note per ridurre l’attività dell’insulina.

La struttura del complesso insulina-recettore dell’insulina è stata determinata con le tecniche della cristallografia a raggi X.[107]

Una volta che la molecola di Insulina si è agganciata al recettore e ha svolto la sua azione, può essere rilasciata nell’ambiente extracellulare o essere degradata dalla cellula. I due siti principali per l’eliminazione dell’Insulina sono il fegato e il rene.[108] Viene scomposta dall’enzima proteina-disolfuro reduttasi (Glutatione),[109] che rompe i legami disolfuro tra le catene A e B. Il fegato elimina la maggior parte dell’Insulina durante il transito di primo passaggio, mentre il rene elimina la maggior parte dell’Insulina nella circolazione sistemica. La degradazione comporta normalmente l’endocitosi del complesso insulino-recettore, seguita dall’azione di enzimi degradanti l’Insulina. Si stima che una molecola di Insulina prodotta endogenamente dalle cellule beta venga degradata entro circa un’ora dal suo rilascio iniziale in circolo (emivita dell’Insulina ~ 4-6 minuti).[109][110]

Struttura del Glutatione.

Le azioni dell’Insulina a livello del metabolismo umano globale comprendono:

  • Aumento dell’assorbimento di alcune sostanze da parte delle cellule, in particolare del glucosio nei muscoli e nel tessuto adiposo (circa i due terzi delle cellule del corpo)[111]
  • Aumento della replicazione del DNA e della sintesi proteica attraverso il controllo dell’assorbimento degli aminoacidi.
  • Modifica dell’attività di numerosi enzimi.

Le azioni dell’Insulina (indirette e dirette) sulle cellule comprendono:

  • Stimola l’assorbimento del glucosio – L’Insulina diminuisce la concentrazione di glucosio nel sangue inducendo l’assunzione di glucosio da parte delle cellule. Ciò è possibile perché l’insulina provoca l’inserimento del trasportatore GLUT4 nelle membrane cellulari dei tessuti muscolari e adiposi, permettendo al glucosio di entrare nella cellula.[112]
  • Aumento della sintesi dei grassi – l’insulina costringe le cellule grasse ad accogliere il glucosio nel sangue, che viene convertito in trigliceridi; la diminuzione dell’insulina provoca l’inverso.[111]
  • Aumento dell’esterificazione degli acidi grassi – costringe il tessuto adiposo a produrre grassi neutri (cioè trigliceridi) dagli acidi grassi; la diminuzione dell’insulina provoca l’inverso.[111]
  • Diminuzione della lipolisi – costringe a ridurre la conversione dei depositi di lipidi delle cellule adipose in acidi grassi e glicerolo nel sangue; la diminuzione dell’insulina provoca l’effetto inverso.[111]
  • Sintesi indotta di glicogeno – Quando i livelli di glucosio sono elevati, l’insulina induce la formazione di glicogeno attraverso l’attivazione dell’enzima esochinasi, che aggiunge un gruppo fosfato al glucosio, ottenendo così una molecola che non può uscire dalla cellula. Allo stesso tempo, l’insulina inibisce l’enzima glucosio-6-fosfatasi, che rimuove il gruppo fosfato. Questi due enzimi sono fondamentali per la formazione del glicogeno. Inoltre, l’insulina attiva gli enzimi fosfofruttochinasi e glicogeno sintasi, responsabili della sintesi del glicogeno.[113]
  • Diminuzione della gluconeogenesi e della glicogenolisi – diminuisce la produzione di glucosio da substrati non glucidici, principalmente nel fegato (la maggior parte dell’insulina endogena che arriva al fegato non lascia mai il fegato); la diminuzione dell’insulina causa la produzione di glucosio da parte del fegato a partire da substrati diversi.[111]
  • Diminuzione della proteolisi – diminuzione della scomposizione delle proteine[111]
  • Diminuzione dell’autofagia – diminuzione del livello di degradazione degli organelli danneggiati. I livelli postprandiali inibiscono completamente l’autofagia[114].
  • Aumento dell’assorbimento di aminoacidi – costringe le cellule ad assorbire gli aminoacidi circolanti; la diminuzione dell’insulina inibisce l’assorbimento.[111]
  • Tono muscolare arterioso – costringe i muscoli della parete arteriosa a rilassarsi, aumentando il flusso sanguigno, soprattutto nelle microarterie; la diminuzione dell’Insulina riduce il flusso permettendo a questi muscoli di contrarsi.[115]
  • Aumento della secrezione di acido cloridrico da parte delle cellule parietali dello stomaco.[citazione necessaria]
  • Aumento dell’assorbimento di potassio – costringe le cellule che sintetizzano glicogeno (una sostanza molto spugnosa e “umida”, che aumenta il contenuto di acqua intracellulare e i relativi ioni K+)[116] ad assorbire il potassio dai fluidi extracellulari; la mancanza di insulina inibisce l’assorbimento. L’aumento dell’assorbimento cellulare di potassio da parte dell’insulina abbassa i livelli di potassio nel plasma sanguigno. Ciò potrebbe avvenire attraverso la traslocazione indotta dall’insulina della Na+/K+-ATPasi sulla superficie delle cellule muscolari scheletriche.[117][118]
  • Diminuzione dell’escrezione renale di sodio.[119]

L’Insulina influenza anche altre funzioni corporee, come la compliance vascolare e la cognizione. Una volta che l’Insulina entra nel cervello umano, migliora l’apprendimento e la memoria, in particolare la memoria verbale.[120] Il potenziamento della segnalazione cerebrale dell’Insulina mediante la somministrazione intranasale di insulina migliora anche la risposta termoregolatoria e glucoregolatoria acuta all’assunzione di cibo, suggerendo che l’insulina a livello nervoso centrale contribuisce al coordinamento di un’ampia varietà di processi omeostatici o regolatori nel corpo umano. [121] L’insulina ha anche effetti stimolanti sull’ormone di rilascio delle gonadotropine dall’ipotalamo, favorendo così la fertilità.[122]

Una nota interessante riguarda il fatto che l’Insulina è un importante regolatore del metabolismo degli endocannabinoidi (EC) e il trattamento con insulina ha dimostrato di ridurre gli EC intracellulari, il 2-arachidonoilglicerolo (2-AG) e l’anandamide (AEA), che corrispondono a cambiamenti di espressione sensibili all’insulina negli enzimi del metabolismo degli EC. Negli adipociti insulino-resistenti, i modelli di espressione degli enzimi indotti dall’insulina sono disturbati in modo coerente con un’elevata sintesi di EC e una ridotta degradazione di EC. I risultati suggeriscono che gli adipociti insulino-resistenti non riescono a regolare il metabolismo delle EC e diminuiscono i livelli intracellulari di EC in risposta alla stimolazione insulinica, per cui gli individui obesi insulino-resistenti presentano un aumento delle concentrazioni di EC.[123][124] Questa disregolazione contribuisce all’eccessivo accumulo di grasso viscerale e al ridotto rilascio di adiponectina dal tessuto adiposo addominale, nonché all’insorgenza di diversi fattori di rischio cardiometabolici associati all’obesità e al diabete di tipo II.[125]

Continua…

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  1. Sharma NC (2021-10-01). “WHO adds new drugs to its essential medicines’ list”mint. Retrieved 2021-10-09.
  2.  Sakula A (July 1988). “Paul Langerhans (1847-1888): a centenary tribute”Journal of the Royal Society of Medicine81 (7): 414–5. doi:10.1177/014107688808100718PMC 1291675PMID 3045317.
  3. Petit H. “Edouard Laguesse (1861–1927)”Museum of the Regional Hospital of Lille (in French). Retrieved 25 July 2018.
  4.  Opie EL (1901). “Diabetes Mellitus Associated with Hyaline Degeneration of the islands of Langerhans of the Pancreas”. Bulletin of the Johns Hopkins Hospital12 (125): 263–64. hdl:2027/coo.31924069247447.
  5.  Opie EL (1901). “On the Relation of Chronic Interstitial Pancreatitis to the Islands of Langerhans and to Diabetes Mellitus”Journal of Experimental Medicine5 (4): 397–428. doi:10.1084/jem.5.4.397PMC 2118050PMID 19866952.
  6.  Opie EL (1901). “The Relation of Diabetes Mellitus to Lesions of the Pancreas. Hyaline Degeneration of the Islands of Langerhans”Journal of Experimental Medicine5 (5): 527–40. doi:10.1084/jem.5.5.527PMC 2118021PMID 19866956.
  7.  The American Institute of Nutrition (1967). “Proceedings of the Thirty-first Annual Meeting of the American Institute of Nutrition”. Journal of Nutrition92 (4): 509. doi:10.1093/jn/92.4.507.
  8.  Paulesco NC (August 31, 1921). “Recherche sur le rôle du pancréas dans l’assimilation nutritive”Archives Internationales de Physiologie17: 85–109.
  9.  Lestradet H (1997). “Le 75e anniversaire de la découverte de l’insuline”Diabetes & Metabolism23 (1): 112.
  10.  de Leiva A, Brugués E, de Leiva-Pérez A (2011). “The discovery of insulin: Continued controversies after ninety years”. Endocrinología y Nutrición (English Edition)58 (9): 449–456. doi:10.1016/j.endoen.2011.10.001.
  11.  Vecchio I, Tornali C, Bragazzi NL, Martini M (2018-10-23). “The Discovery of Insulin: An Important Milestone in the History of Medicine”Frontiers in Endocrinology9: 613. doi:10.3389/fendo.2018.00613PMC 6205949PMID 30405529.
  12.  Banting FG (31 October 1920). “Note dated Oct 31/20 from loose leaf notebook 1920/21”University of Toronto Libraries.
  13.  Jump up to:a b c Rosenfeld L (December 2002). “Insulin: discovery and controversy”Clinical Chemistry48 (12): 2270–88. doi:10.1093/clinchem/48.12.2270PMID 12446492.
  14. Wright JR (December 2002). “Almost famous: E. Clark Noble, the common thread in the discovery of insulin and vinblastine”CMAJ167 (12): 1391–96. PMC 137361PMID 12473641.
  15.  Krishnamurthy K (2002). Pioneers in scientific discoveries. Mittal Publications. p. 266. ISBN 978-81-7099-844-0. Retrieved 26 July 2011.
  16.  Bliss M (July 1993). “Rewriting medical history: Charles Best and the Banting and Best myth” (PDF). Journal of the History of Medicine and Allied Sciences48 (3): 253–74. doi:10.1093/jhmas/48.3.253PMID 8409364.
  17.  Toronto star weekly (14 Jan 1922). “Work on diabetes shows progress against disease”University of Toronto Libraries.
  18.  Fletcher AA (November 1962). “Early clinical experiences with insulin”Canadian Medical Association Journal87: 1052–5. PMC 1849803PMID 13945508.
  19.  Banting FG (Dec 1921 – Jan 1922). “Patient records for Leonard Thompson”University of Toronto Libraries.
  20.  Zuger A (October 4, 2010). “Rediscovering the First Miracle Drug”The New York Times. Retrieved 2010-10-06. Elizabeth Hughes was a cheerful, pretty little girl, five feet tall, with straight brown hair and a consuming interest in birds. On Dr. Allen’s diet her weight fell to 65 pounds, then 52 pounds, and then, after an episode of diarrhea that almost killed her in the spring of 1922, 45 pounds. By then she had survived three years, far longer than expected. And then her mother heard the news: Insulin had finally been isolated in Canada.
  21.  Banting FG (16 August 1922). “Chart for Elizabeth Hughes”University of Toronto Libraries.
  22.  Woodbury DO (February 1963). “Please save my son!”University of Toronto Libraries.
  23.  Marcotte B (November 22, 2010). “Rochester’s John Williams a man of scientific talents”Democrat and ChronicleRochester, New YorkGannett Company. pp. 1B, 4B. Archived from the original on November 23, 2010. Retrieved November 22, 2010.
  24.  University of Toronto Board of Governors Insulin Committee (25 Jan 1922). “Memorandum in reference to the co-operation of the Connaught Antitoxin Laboratories in the researches conducted by Dr. Banting, Mr. Best and Dr. Collip under the general direction of Professor J.J.R. Macleod to obtain an extract of pancreas having a specific effect on blood sugar concentration”University of Toronto Libraries.
  25.  Bliss M (2007). The discovery of insulin (25th anniversary ed.). Chicago: University of Chicago Press. p. 132. ISBN 9780226058993OCLC 74987867The Lilly company would be delighted to work with Toronto, Clowes wrote, and hinted, perhaps intentionally, perhaps not, that Toronto could be bypassed: “I have thus far refrained from starting work in our laboratories on the field of this question as I was anxious to avoid in any way intruding on the field of yourself and your associates until you had published your results. I feel, however, that the matter is now one of such immediate importance that we should take up the experimental end of the question without delay, preferably cooperating with you and your associates…”
  26. Kendall EC (10 April 1922). “Letter to Dr. J. J. R. Macleod 10/04/1922”University of Toronto Libraries: Discovery and Early Development of Insulin.
  27.  Macleod JJ (28 April 1924). “Statement read by J. J. R. Macleod at the Insulin Committee meeting regarding patents and royalties 28/04/1924”University of Toronto Libraries: The Discovery and Early Development of Insulin.
  28.  Bliss M (2007). The discovery of insulin (25th anniversary ed.). Chicago: University of Chicago Press. pp. 131–133. ISBN 9780226058993OCLC 74987867.
  29.  Banting FG, Best C, Collip JS (15 January 1923). “Assignment to the Governors of the University of Toronto”University of Toronto Libraries: Discovery and Early Development of Insulin.
  30.  “Copy of the article: A step forward in medical ethics”University of Toronto Libraries: The Discovery and Early Development of Insulin. The World’s Work. February 1923.
  31. Kjeldsen T (September 2000). “Yeast secretory expression of insulin precursors” (PDF). Applied Microbiology and Biotechnology54 (3): 277–86. doi:10.1007/s002530000402PMID 11030562S2CID 9246671. Archived from the original (PDF) on 2017-09-27.
  32.  “The Nobel Prize in Physiology or Medicine 1923”. The Nobel Foundation.
  33. Stretton AO (October 2002). “The first sequence. Fred Sanger and insulin”Genetics162 (2): 527–32. 
  34. Felman A (22 November 2018). “Who discovered insulin?”Medical News Today.
  35. Tsou CL (2015). 对人工合成结晶牛胰岛素的回忆 [Memory on the research of synthesizing bovine insulin]. 生命科学 [Chinese Bulletin of Life Science] (in Simplified Chinese). 27 (6): 777–79.
  36.  Castle WB (1962). “The Gordon Wilson Lecture. A Century of Curiosity About Pernicious Anemia”Transactions of the American Clinical and Climatological Association73: 54–80. PMC 2249021PMID 21408623.
  37.  Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA (March 1922). “Pancreatic Extracts in the Treatment of Diabetes Mellitus”Canadian Medical Association Journal12 (3): 141–46. PMC 1524425PMID 20314060.
  38.  Drury MI (July 1972). “The golden jubile of insulin”. Journal of the Irish Medical Association
  39. Bliss M (2007). The discovery of insulin (25th anniversary ed.). Chicago: University of Chicago Press. p. 181. ISBN 9780226058993OCLC 74987867.
  40.  Abel JJ (February 1926). “Crystalline Insulin”Proceedings of the National Academy of Sciences of the United States of America12 (2): 132–6. Bibcode:1926PNAS…12..132Adoi:10.1073/pnas.12.2.132PMC 1084434PMID 16587069.
  41. Somogyi M, Doisy EA, Shaffer PA (May 1924). “On the Preparation of Insulin” (PDF). Journal of Biological Chemistry60 (1): 31–58. doi:10.1016/S0021-9258(18)85220-6.
  42.  Jensen H, Evans EA (1935-01-01). “Studies on Crystalline Insulin Xviii. the Nature of the Free Amino Groups in Insulin and the Isolation of Phenylalanine and Proline from Crystalline Insulin” (PDF). Journal of Biological Chemistry108 (1): 1–9. doi:10.1016/S0021-9258(18)75301-5.
  43.  Sanger F, Tuppy H (September 1951). “The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates”The Biochemical Journal49 (4): 463–81. doi:10.1042/bj0490463PMC 1197535PMID 14886310.; Sanger F, Tuppy H (September 1951). “The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates”The Biochemical Journal49 (4): 481–90. doi:10.1042/bj0490481PMC 1197536PMID 14886311.; Sanger F, Thompson EO (February 1953). “The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates”The Biochemical Journal53 (3): 353–66. doi:10.1042/bj0530353PMC 1198157PMID 13032078.; Sanger F, Thompson EO (February 1953). “The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates”The Biochemical Journal53 (3): 366–74. doi:10.1042/bj0530366PMC 1198158PMID 13032079.
  44.  Katsoyannis PG, Fukuda K, Tometsko A, Suzuki K, Tilak M (1964). “Insulin Peptides. X. The Synthesis of the B-Chain of Insulin and Its Combination with Natural or Synthetis A-Chin to Generate Insulin Activity”. Journal of the American Chemical Society86 (5): 930–32. doi:10.1021/ja01059a043.
  45.  Kung YT, Du YC, Huang WT, Chen CC, Ke LT (November 1965). “Total synthesis of crystalline bovine insulin”. Scientia Sinica14 (11): 1710–6. PMID 5881570
  46.  Marglin A, Merrifield RB (November 1966). “The synthesis of bovine insulin by the solid phase method”. Journal of the American Chemical Society88 (21): 5051–2. doi:10.1021/ja00973a068PMID 5978833.
  47.  Costin GE (January 2004). “What is the advantage of having melanin in parts of the central nervous system (e.g. substantia nigra)?”IUBMB Life. Time Inc. 56 (1): 47–9. doi:10.1080/15216540310001659029PMID 14992380.
  48.  Wollmer A, Dieken ML, Federwisch M, De Meyts P (2002). Insulin & related proteins structure to function and pharmacology. Boston: Kluwer Academic Publishers. ISBN 978-1-4020-0655-5.
  49.  Tsou CL (2015). 对人工合成结晶牛胰岛素的回忆 [Memory on the research of synthesizing bovine insulin]. 生命科学 [Chinese Bulletin of Life Science] (in Simplified Chinese). 27 (6): 777–79.
  50.  Jump up to:a b Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DC, et al. (June 1971). “Atomic positions in rhombohedral 2-zinc insulin crystals”. Nature231 (5304): 506–11. Bibcode:1971Natur.231..506Bdoi:10.1038/231506a0PMID 4932997S2CID 4158731.
  51.  Weber, H.E. (1975) Diabetes 24, 405. (see figure)
  52. “First Successful Laboratory Production of Human Insulin Announced”News Release. Genentech. 1978-09-06. Archived from the original on 2016-09-27. Retrieved 2016-09-26.
  53.  Jump up to:a b c Tof I (1994). “Recombinant DNA technology in the synthesis of human insulin”. Little Tree Publishing. Retrieved 2009-11-03.
  54.  Jump up to:a b Aggarwal SR (December 2012). “What’s fueling the biotech engine-2011 to 2012”. Nature Biotechnology30 (12): 1191–7.
  55. Chan SJ, Keim P, Steiner DF. Cell-free synthesis of rat preproinsulins: Characterization and partial amino acid sequence determination. Proc Natl Acad Sci. USA 1976;73:1964-1968.
  56.  “Safflowers may provide new insulin source | CTV News”.
  57. GRCh38: Ensembl release 89: ENSG00000254647 – Ensembl, May 2017
  58.  Jump up to:a b c GRCm38: Ensembl release 89: ENSMUSG00000000215 – Ensembl, May 2017
  59.  “Human PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  60.  “Mouse PubMed Reference:”National Center for Biotechnology Information, U.S. National Library of Medicine.
  61.  “Insulin | Meaning of Insulin by Lexico”Lexico Dictionaries | English.
  62. Fu Z, Gilbert ER, Liu D (January 2013). “Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes”Curr Diabetes Rev9 (1): 25–53. doi:10.2174/157339913804143225PMC 3934755PMID 22974359.
  63.  Bernardo AS, Hay CW, Docherty K (November 2008). “Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell” (PDF). review. Molecular and Cellular Endocrinology294 (1–2): 1–9. doi:10.1016/j.mce.2008.07.006PMID 18687378S2CID 28027796.
  64.  Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A (March 2015). “Pancreatic β-cell identity, glucose sensing and the control of insulin secretion”. review. The Biochemical Journal466 (2): 203–18. doi:10.1042/BJ20141384PMID 25697093S2CID 2193329.
  65.  Rutter GA, Tavaré JM, Palmer DG (June 2000). “Regulation of Mammalian Gene Expression by Glucose”. review. News in Physiological Sciences15 (3): 149–54. doi:10.1152/physiologyonline.2000.15.3.149PMID 11390898.
  66.  Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS (April 2006). “Regulation of the insulin gene by glucose and d acids”. review. The Journal of Nutrition136 (4): 873–76. doi:10.1093/jn/136.4.873PMC 1853259PMID 16549443.
  67.  Vaulont S, Vasseur-Cognet M, Kahn A (October 2000). “Glucose regulation of gene transcription”. review. The Journal of Biological Chemistry275 (41): 31555–58. doi:10.1074/jbc.R000016200PMID 10934218.
  68.  Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T (2011). “Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus”Molecular Medicine17 (5–6): 378–90. doi:10.2119/molmed.2011.00021PMC 3105132PMID 21274504.
  69.  Wang W, Shi Q, Guo T, Yang Z, Jia Z, Chen P, Zhou C (June 2016). “PDX1 and ISL1 differentially coordinate with epigenetic modifications to regulate insulin gene expression in varied glucose concentrations”Molecular and Cellular Endocrinology428: 38–48. doi:10.1016/j.mce.2016.03.019PMID 26994512.
  70.  Wang X, Wei X, Pang Q, Yi F (August 2012). “Histone deacetylases and their inhibitors: molecular mechanisms and therapeutic implications in diabetes mellitus”Acta Pharmaceutica Sinica B2 (4): 387–95. doi:10.1016/j.apsb.2012.06.005.
  71.  Jump up to:a b Andrali SS, Sampley ML, Vanderford NL, Ozcan S (October 2008). “Glucose regulation of insulin gene expression in pancreatic beta-cells”. review. The Biochemical Journal415 (1): 1–10. doi:10.1042/BJ20081029PMID 18778246.
  72.  Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, Katakami N, Matsuhisa M (July 2009). “Role of MafA in pancreatic beta-cells”. Advanced Drug Delivery Reviews61 (7–8): 489–96. doi:10.1016/j.addr.2008.12.015PMID 19393272.
  73.  Aramata S, Han SI, Kataoka K (December 2007). “Roles and regulation of transcription factor MafA in islet beta-cells”Endocrine Journal54 (5): 659–66. doi:10.1507/endocrj.KR-101PMID 17785922.
  74.  Kaneto H, Matsuoka TA (October 2012). “Involvement of oxidative stress in suppression of insulin biosynthesis under diabetic conditions”International Journal of Molecular Sciences13 (10): 13680–90. doi:10.3390/ijms131013680PMC 3497347PMID 23202973.
  75.  Jump up to:a b Najjar S (2001). “Insulin Action: Molecular Basis of Diabetes”. Encyclopedia of Life Sciences. John Wiley & Sons. doi:10.1038/npg.els.0001402ISBN 978-0470016176.
  76.  Gustin N (2005-03-07). “Researchers discover link between insulin and Alzheimer’s”EurekAlert!. American Association for the Advancement of Science. Retrieved 2009-01-01.
  77.  de la Monte SM, Wands JR (February 2005). “Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease” (PDF). Journal of Alzheimer’s Disease7 (1): 45–61. doi:10.3233/JAD-2005-7106PMID 15750214.
  78. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (February 2005). “Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes?” (PDF). Journal of Alzheimer’s Disease7 (1): 63–80.
  79. Stryer L (1995). Biochemistry (Fourth ed.). New York: W.H. Freeman and Company. pp. 773–74. ISBN 0-7167-2009-4.
  80. Weiss M, Steiner DF, Philipson LH (2000). “Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships”. In Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al. (eds.). Endotext. MDText.com, Inc. PMID 25905258. Retrieved 2020-02-18.
  81. “Insulin human”PubChem. Retrieved 26 February 2019.
  82.  Jump up to:a b c Fu Z, Gilbert ER, Liu D (January 2013). “Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes”Current Diabetes Reviews9 (1): 25–53. doi:10.2174/157339913804143225PMC 3934755PMID 22974359.
  83.  Dunn MF (August 2005). “Zinc-ligand interactions modulate assembly and stability of the insulin hexamer — a review”. Biometals18 (4): 295–303. doi:10.1007/s10534-005-3685-yPMID 16158220S2CID 8857694.
  84.  Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D (November 2009). “Molecular basis for insulin fibril assembly”Proceedings of the National Academy of Sciences of the United States of America106 (45): 18990–5. Bibcode:2009PNAS..10618990Idoi:10.1073/pnas.0910080106PMC 2776439PMID 19864624.
  85.  Omar-Hmeadi M, Idevall-Hagren O (March 2021). “Insulin granule biogenesis and exocytosis”Cellular and Molecular Life Sciences78 (5): 1957–1970. doi:10.1007/s00018-020-03688-4PMC 7966131PMID 33146746.
  86.  Bratanova-Tochkova TK, Cheng H, Daniel S, Gunawardana S, Liu YJ, Mulvaney-Musa J, et al. (February 2002). “Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion”Diabetes51 (Suppl 1): S83–S90. doi:10.2337/diabetes.51.2007.S83PMID 11815463.
  87.  Gerich JE (February 2002). “Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes?”Diabetes51 (Suppl 1): S117–S121. doi:10.2337/diabetes.51.2007.s117PMID 11815469.
  88.  Lorenzo C, Wagenknecht LE, Rewers MJ, Karter AJ, Bergman RN, Hanley AJ, Haffner SM (September 2010). “Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis Study (IRAS)”Diabetes Care33 (9): 2098–2103. doi:10.2337/dc10-0165PMC 2928371PMID 20805282.
  89.  Jump up to:a b Schuit F, Moens K, Heimberg H, Pipeleers D (November 1999). “Cellular origin of hexokinase in pancreatic islets”The Journal of Biological Chemistry (published 1999). 274 (46): 32803–09. doi:10.1074/jbc.274.46.32803PMID 10551841.
  90. Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, Prentki M (July 1997). “Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells”The Journal of Biological Chemistry (published 1997). 272 (30): 18572–79. doi:10.1074/jbc.272.30.18572PMID 9228023.
  91. Santulli G, Pagano G, Sardu C, Xie W, Reiken S, D’Ascia SL, Cannone M, Marziliano N, Trimarco B, Guise TA, Lacampagne A, Marks AR (May 2015). “Calcium release channel RyR2 regulates insulin release and glucose homeostasis”The Journal of Clinical Investigation125 (5): 1968–78. doi:10.1172/JCI79273PMC 4463204PMID 25844899.
  92.  Stryer L (1995). Biochemistry (Fourth ed.). New York: W.H. Freeman and Company. pp. 343–44. ISBN 0-7167-2009-4.
  93.  Cawston EE, Miller LJ (March 2010). “Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor”British Journal of Pharmacology159 (5): 1009–21. doi:10.1111/j.1476-5381.2009.00489.xPMC 2839260PMID 19922535.
  94.  Nakaki T, Nakadate T, Kato R (August 1980). “Alpha 2-adrenoceptors modulating insulin release from isolated pancreatic islets”. Naunyn-Schmiedeberg’s Archives of Pharmacology313 (2): 151–53. doi:10.1007/BF00498572PMID 6252481S2CID 30091529.
  95.  Layden BT, Durai V, Lowe WL Jr (2010). “G-Protein-Coupled Receptors, Pancreatic Islets, and Diabetes”Nature Education3 (9): 13.
  96.  Sircar S (2007). Medical Physiology. Stuttgart: Thieme Publishing Group. pp. 537–38. 
  97. Hellman B, Gylfe E, Grapengiesser E, Dansk H, Salehi A (2007). “[Insulin oscillations—clinically important rhythm. Antidiabetics should increase the pulsative component of the insulin release]”Läkartidningen (in Swedish). 
  98. Sarode BR, Kover K, Tong PY, Zhang C, Friedman SH (November 2016). “Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot”Molecular Pharmaceutics13 (11): 3835–3841. doi:10.1021/acs.molpharmaceut.6b00633PMC 5101575PMID 27653828.
  99.  Jain PK, Karunakaran D, Friedman SH (January 2013). “Construction of a photoactivated insulin depot” (PDF). Angewandte Chemie52 (5): 1404–9. doi:10.1002/anie.201207264PMID 23208858. Archived from the original (PDF) on 2019-11-02. Retrieved 2019-11-03.
  100. Rowlett R (13 June 2001). “A Dictionary of Units of Measurement”. The University of North Carolina at Chapel Hill. Archived from the original on 2013-10-28.
  101.  Iwase H, Kobayashi M, Nakajima M, Takatori T (January 2001). “The ratio of insulin to C-peptide can be used to make a forensic diagnosis of exogenous insulin overdosage”. Forensic Science International115 (1–2): 123–127. doi:10.1016/S0379-0738(00)00298-XPMID 11056282.
  102.  Jump up to:a b “Handbook of Diabetes, 4th Edition, Excerpt #4: Normal Physiology of Insulin Secretion and Action”Diabetes In Control. A free weekly diabetes newsletter for Medical Professionals. 2014-07-28. Retrieved 2017-06-01.
  103.  McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (April 2005). “Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis”The EMBO Journal24 (8): 1571–83. doi:10.1038/sj.emboj.7600633PMC 1142569PMID 15791206.
  104.  Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB (October 2000). “Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A”Proceedings of the National Academy of Sciences of the United States of America97 (22): 11960–75. Bibcode:2000PNAS…9711960Fdoi:10.1073/pnas.220413597PMC 17277PMID 11035810.
  105.  Jump up to:a b Stryer L (1995). Biochemistry (Fourth ed.). New York: W.H. Freeman and Company. pp. 351–56, 494–95, 505, 605–06, 773–75.
  106. Najjar S (2001). “Insulin Action: Molecular Basis of Diabetes”. Encyclopedia of Life Sciences. John Wiley & Sons.
  107. Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GK, Smith BJ, Watson CJ, Záková L, Kletvíková E, Jiráček J, Chan SJ, Steiner DF, Dodson GG, Brzozowski AM, Weiss MA, Ward CW, Lawrence MC (January 2013).
  108. Koh HE, Cao C, Mittendorfer B (January 2022). “Insulin Clearance in Obesity and Type 2 Diabetes”International Journal of Molecular Sciences23 (2): 596. doi:10.3390/ijms23020596PMC 8776220PMID 35054781.
  109.  “EC 1.8.4.2”iubmb.qmul.ac.uk. Retrieved 25 July 2022.
  110. Duckworth WC, Bennett RG, Hamel FG (October 1998). “Insulin degradation: progress and potential”Endocrine Reviews19 (5): 608–24. doi:10.1210/edrv.19.5.0349PMID 9793760.
  111.  Palmer BF, Henrich WL. “Carbohydrate and insulin metabolism in chronic kidney disease”UpToDate, Inc.
  112. Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA (August 2011). “Insulin effects in muscle and adipose tissue”. Diabetes Research and Clinical Practice93 (Suppl 1): S52–59. 
  113.  “Handbook of Diabetes, 4th Edition, Excerpt #4: Normal Physiology of Insulin Secretion and Action”Diabetes In Control. A free weekly diabetes newsletter for Medical Professionals. 2014-07-28. Retrieved 2017-06-01.
  114. “Physiologic Effects of Insulin”http://www.vivo.colostate.edu. Retrieved 2017-06-01.
  115.  Bergamini E, Cavallini G, Donati A, Gori Z (October 2007). “The role of autophagy in aging: its essential part in the anti-aging mechanism of caloric restriction”. Annals of the New York Academy of Sciences1114 (1): 69–78. Bibcode:2007NYASA1114…69Bdoi:10.1196/annals.1396.020PMID 17934054S2CID 21011988.
  116. Zheng C, Liu Z (June 2015). “Vascular function, insulin action, and exercise: an intricate interplay”Trends in Endocrinology and Metabolism26 (6): 297–304. doi:10.1016/j.tem.2015.02.002PMC 4450131PMID 25735473.
  117.  Kreitzman SN, Coxon AY, Szaz KF (July 1992). “Glycogen storage: illusions of easy weight loss, excessive weight regain, and distortions in estimates of body composition” (PDF). The American Journal of Clinical Nutrition56 (Suppl 1): 292S–93S. doi:10.1093/ajcn/56.1.292SPMID 1615908. Archived from the original (PDF) on 2012-10-18.
  118.  Benziane B, Chibalin AV (September 2008). “Frontiers: skeletal muscle sodium pump regulation: a translocation paradigm”American Journal of Physiology. Endocrinology and Metabolism295 (3): E553–58. doi:10.1152/ajpendo.90261.2008PMID 18430962S2CID 10153197.
  119.  Clausen T (September 2008). “Regulatory role of translocation of Na+-K+ pumps in skeletal muscle: hypothesis or reality?”American Journal of Physiology. Endocrinology and Metabolism295 (3): E727–28, author reply 729. doi:10.1152/ajpendo.90494.2008PMID 18775888S2CID 13410719.
  120.  Gupta AK, Clark RV, Kirchner KA (January 1992). “Effects of insulin on renal sodium excretion”. Hypertension19 (Suppl 1): I78–82. doi:10.1161/01.HYP.19.1_Suppl.I78PMID 1730458.
  121.  Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (November 2004). “Intranasal insulin improves memory in humans” (PDF). Psychoneuroendocrinology29 (10): 1326–1334. doi:10.1016/j.psyneuen.2004.04.003PMID 15288712S2CID 20321892.
  122.  Benedict C, Brede S, Schiöth HB, Lehnert H, Schultes B, Born J, Hallschmid M (January 2011). “Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men”Diabetes.
  123. D’Eon TM, Pierce KA, Roix JJ, Tyler A, Chen H, Teixeira SR (May 2008). “The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids”Diabetes57 (5): 1262–68. doi:10.2337/db07-1186PMID 18276766.
  124.  Gatta-Cherifi B, Cota D (February 2016). “New insights on the role of the endocannabinoid system in the regulation of energy balance”International Journal of Obesity40 (2): 210–19. doi:10.1038/ijo.2015.179PMID 26374449S2CID 20740277.
  125.  Di Marzo V (August 2008). “The endocannabinoid system in obesity and type 2 diabetes”Diabetologia51 (8): 1356–67. 

“High-Low responders” nell’ipertrofia muscolare ormone-correlata: tra questione di espressività recettoriale e mutazioni geniche [Parte 1°].

Introduzione alla questione “High-Low gainer/responder”:

I fattori alla base dell’eterogeneità dell’ipertrofia muscolare in seguito all’allenamento contro-resistenza (RET) rimangono in gran parte sconosciuti. E la questione ormonale connessa è senza dubbio una parte poco conosciuta e spesso fraintesa.

Tutti i frequentatori di sala pesi, improvvisati o meno, hanno sentito parlare almeno una volta di “High gainers/responders” e di “Low gainers/responders” in riferimento alla possibilità individuale di aumento dell’ipertrofia muscolo-scheletrica. In teoria, possiamo classificare 7 tipi di “gainers/responders” diversi:

Se si osserva il modello di distribuzione normale (curva gaussiana), si possono creare sette diversi livelli di “guadagnatori”.

1.Non-Responders.

Coloro che guadagneranno una quantità insignificante di muscoli, anche se stanno facendo tutto correttamente. Queste persone sono estremamente rare e rappresentano circa lo 0,1% della popolazione.


2. Very Low Responders.
Coloro che sono in grado di aggiungere solo una piccola quantità di muscoli nel corso della loro carriera… e a un ritmo faticosamente lento. Anche loro non sono comuni: rappresentano circa il 2,1% della popolazione. È probabile che possano guadagnare solo 2.5-5Kg di muscoli durante la loro carriera di sollevatori (da 1.5 a 3Kg per le donne).

3. Low Responders.
Insieme ai non-responder e ai very low responders, questi soggetti completano la categoria dei veri hardgainer. Questi soggetti hanno guadagni muscolari molto lenti e di solito devono accettare di aggiungere una buona quantità di grasso per aumentare la massa muscolare. Sono i più comuni hardgainer, circa il 13,6% della popolazione. Possono guadagnare 5-10Kg di muscoli nel corso della loro carriera di sollevatori (3-6Kg per le donne).

4. Normal Responders.
È molto probabile che voi facciate parte di questa categoria. Questo gruppo rappresenta quasi il 70% della popolazione. Anche se ci saranno differenze nel potenziale di crescita muscolare all’interno di questo gruppo, tutti possono guadagnare una discreta quantità di muscoli se si allenano, mangiano e riposano correttamente. Gli uomini di questa categoria possono sperare di aumentare la massa muscolare tra i 10 e i 18Kg rispetto al loro peso da adulti senza allenamento. Le donne si avvicinano a 6-9Kg.

5. Easy Gainers.
Nel corso della loro carriera di sollevatori, questo gruppo può guadagnare il 15-20% di muscoli in più – 2.5-4Kg in più rispetto a un normale responder. Inoltre, possono aumentare più velocemente. Il loro potenziale di aumento muscolare potrebbe essere di 15-20Kg (8-11Kg per le donne). Rappresentano circa il 13,6% della popolazione.

6. Very Easy Gainers.
Questi soggetti spesso appaiono muscolosi già prima di iniziare ad allenarsi in sala pesi. E quando iniziano ad allenarsi, rispondono rapidamente e possono guadagnare un altro 10% di muscoli, per un potenziale di crescita muscolare totale di circa 16-24Kg (9-12Kg per le donne).

7. Freaks.
Questi soggetti sono sempre muscolosi e/o forti (e spesso esplosivi) prima ancora di mettere piede in palestra. Sono i “veri naturl” che, prima di iniziare ad assumere PEDs finiscono per assomigliare a chi ne fa già uso. Ma rappresentano lo 0,1% della popolazione, il che significa che la maggior parte degli “influencer” che affermano di avere una buona genetica e non di usare farmaci, stanno mentendo.

Nota: la quantità di potenziale di crescita muscolare può sembrare bassa, ma è chiaro che non sto parlando di peso corporeo. Ogni chilo di aumento muscolare porta normalmente a un aumento di 0,25-0,5 chili di “qualcos’altro” senza aggiungere grasso corporeo. Un aumento muscolare di 13.5Kg porterebbe in realtà a un aumento della massa magra da 16.8Kg a 20.4Kg sulla bilancia.

Ma quali sono le determinanti genetiche che separano una “High gainer/responder” da un “Low gainer/responder”?

In ordine di importanza teorica:

  • GENOTIPO ACTN3
    Senza entrare troppo nel merito, esistono due genotipi ACTN3 “puri”: ACTN3 RR e ACTN3 XX. Esistono anche tipi misti. Il tipo di ACTN3 determina diversi elementi che svolgono un ruolo importante nel potenziale di crescita muscolare.

Rapporto tra fibre a contrazione rapida e lenta. Un maggior numero di fibre a contrazione rapida significa un maggior potenziale di crescita e di forza.
Livello di attivazione del mTOR. Più si riesce ad attivare l’mTOR dopo l’allenamento e i pasti, più si aumenta la sintesi proteica e più si può crescere.
Riparazione del danno muscolare. Più lenta è la riparazione, meno ci si può allenare proficuamente e più è difficile far crescere nuovo tessuto contrattile.
Il tipo ACTN3 RR presenta un maggior numero di fibre a contrazione rapida, una maggiore attivazione del mTOR e una rapida riparazione del danno muscolare. Tutto ciò favorisce una crescita muscolare più rapida.

All’opposto, ACTN3 XX significa meno fibre a contrazione rapida, minore attivazione del mTOR e riparazione lenta dei danni muscolari. Ma hanno un VO2 max naturale più elevato e sono più resistenti all’affaticamento muscolare.

  • Espressione della Miostatina

Sicuramente molti di voi avranno visto le foto degli esemplari di Belgian Blue,  una razza di bovini da carne del Belgio la cui caratteristica peculiare sono le accentuate masse muscolari. Non si tratta di un esperimento in cui le mucche vengono sottoposte a dosi massicce di steroidi anabolizzanti, ma semplicemente di una razza di bovini nati senza la capacità di produrre Miostatina.

La Miostatina è una miochina (una proteina rilasciata dai muscoli). Agisce come un fattore limitante nella quantità di muscoli che si possono sviluppare. Più ci si avvicina al proprio potenziale genetico, più la Miostatina limiterà la crescita muscolare.

Alcune persone hanno naturalmente livelli di Miostatina più elevati, quindi il loro tasso di crescita muscolare totale risulta inferiori con un tasso catabolico più accentuato.

Le persone con meno Miostatina possono sviluppare più muscoli e più rapidamente. Sembra anche che siano più a rischio di strappi muscolari.

  • Numero, densità e sensibilità recettoriale
    Sebbene diversi fattori possano influenzare i livelli di Testosterone, IGF-1 e Ormone della Crescita (alimentazione, stress, sonno, ecc.), alcune persone hanno un numero e potenziale di espressività dei recettori ormone specifici (es. AR) maggiore rispetto alla norma. “Natural” o “Doped”, in entrambi i casi, le persone con questa caratteristica hanno un maggiore potenziale di crescita muscolare grazie a una maggiore sintesi proteica indotta dalla risposta ormone-recettoriale.

Questi articoli saranno però incentrati sull’analisi dei due fattori ormone-genici determinanti l’ipertrofia del muscolo-scheletrico: l’espressività recettoriale e la mutazione del gene della Miostatina.

In questa 1° parte tratterò dell’espressione recettoriale.

Introduzione al “Fattore Recettoriale”:

In un interessante studio del 2018 [1] Sono stati esaminati gli ormoni circolanti, gli ormoni intramuscolari e le variabili correlate agli ormoni intramuscolari in uomini allenati alla resistenza prima e dopo 12 settimane di RET. L’eliminazione a ritroso e la regressione delle componenti principali hanno valutato la significatività statistica degli ormoni anabolici circolanti proposti (ad esempio, Testosterone, Testosterone libero, Deidroepiandrosterone, Diidrotestosterone, Fattore di Crescita Insulino-Simile-1, Fattore di Crescita Insulino-Simile-1 libero, Ormone Luteinizzante e Ormone della Crescita) e i cambiamenti della massa muscolare indotti dalla RET (n = 49). Sono stati utilizzati immunoblots e immunodosaggi per valutare i livelli di Testosterone libero intramuscolare, i livelli di Diidrotestosterone, l’espressione della 5α-reduttasi e il contenuto del Recettore degli Androgeni nei soggetti che hanno risposto in modo più elevato (HIR; n = 10) e più basso (LOR; n = 10) alle 12 settimane di RET. Nessun ormone misurato prima dell’esercizio, dopo l’esercizio, prima dell’intervento o dopo l’intervento è risultato costantemente significativo o selezionato nel modello finale per la variazione di: area trasversale di tipo 1 (CSA), CSA di tipo 2 o massa grassa e ossea (LBM). L’analisi delle componenti principali non ha portato a una grande riduzione delle dimensioni e la regressione delle componenti principali non è stata più efficace delle analisi di regressione non aggiustate. Nessun ormone misurato nel sangue o nel muscolo è risultato diverso tra HIR e LOR. L’enzima steroidogenico 5α-reduttasi è aumentato dopo la RET nell’HIR (P < 0,01) ma non nel LOR (P = 0,32). Il contenuto di recettori per gli androgeni è rimasto invariato con la RET, ma è stato più elevato in ogni momento nell’HIR. A differenza del Testosterone libero intramuscolare, del Diidrotestosterone o della 5α-reduttasi, è stata riscontrata una relazione lineare tra il contenuto dei recettori degli androgeni e la variazione della LBM (P < 0,01), del CSA di tipo 1 (P < 0,05) e del CSA di tipo 2 (P < 0,01) sia prima che dopo l’intervento. Questi risultati indicano che il contenuto intramuscolare di recettori per gli androgeni, ma non gli ormoni circolanti o intramuscolari (o gli enzimi che ne regolano la produzione intramuscolare), influenzano l’ipertrofia del muscolo scheletrico dopo la RET in giovani uomini precedentemente allenati.

Variabili nell’ipertrofia indotta da RET e livelli ormonali:

Esiste una sostanziale variabilità individuale nell’ipertrofia muscolare scheletrica indotta da RET (Hubal et al., 2005; Davidsen et al., 2011). Si ritiene che l’aumento post-esercizio degli ormoni circolanti, presumibilmente anabolici (ad esempio, T, GH e IGF-1), sia causale nel determinare l’ipertrofia muscolare scheletrica indotta da RET (Kraemer et al., 2017; Mangine et al., 2017). Tuttavia, esistono sostanziali prove contrarie di un ruolo causale, o addirittura correlato (cioè che condivide una varianza comune) di tali ormoni sia nell’aumento della sintesi proteica muscolare indotto da RET (West et al., 2009) sia nell’ipertrofia (West et al., 2010; West e Phillips, 2012; Mitchell et al., 2013; Morton et al., 2016; Mobley et al., 2018).

È plausibile che, al contrario degli ormoni circolanti a livello sistemico, l’androgenesi locale intramuscolare possa mediare l’ipertrofia muscolare indotta da RET, come è stato proposto per gli uomini anziani (Sato et al., 2014). Inoltre, l’aumento del contenuto di recettori androgeni intramuscolari indotto da RET è stato significativamente correlato all’ipertrofia muscolare indotta da RET (Ahtiainen et al., 2011; Mitchell et al., 2013). Pertanto, è possibile che un aumento degli androgeni intramuscolari e/o dei loro recettori, attraverso un meccanismo autocrino, sia importante nel determinare l’ipertrofia indotta da RET.

Lo scopo dello studio di base trattato in questo articolo [1] è stata quella di determinare se l’eterogeneità dell’ipertrofia del muscolo scheletrico indotta da RET, misurata mediante indici multipli, fosse associata agli ormoni circolanti, agli ormoni intramuscolari, al contenuto di enzimi steroidogenici intramuscolari o al contenuto di recettori per gli androgeni. Sono stati eseguite ulteriori analisi statistiche e intramuscolari sui dati di uno studio precedente condotto su uomini sani e allenati contro-resistenza (n = 49; Morton et al., 2016). Per esplorare ulteriormente la relazione tra ormoni sistemici e ipertrofia, è stato utilizzato l’eliminazione a ritroso e la regressione delle componenti principali sulle concentrazioni di ormoni sistemici sia a riposo che dopo l’esercizio contro-resistenza con gli indici di ipertrofia come variabili di esito separate in tutti i partecipanti. Per valutare l’importanza dell’androgenesi intramuscolare, abbiamo completato un’analisi solo sui rispondenti più alti (HIR – quintile superiore) e più bassi (LOR – quintile inferiore) che comprendeva la valutazione del T intramuscolare, del DHT, dell’espressione della 5α-reduttasi e del contenuto del recettore degli androgeni. Coerentemente con il lavoro precedente (West et al., 2010; West e Phillips, 2012; Mitchell et al., 2013; Morton et al., 2016), i ricercatori hanno ipotizzato che gli ormoni sistemici circolanti non fossero correlati a nessuna misura di ipertrofia; tuttavia, hanno ipotizzato, visti i risultati precedenti (Ahtiainen et al., 2011; Mitchell et al., 2013), che il contenuto di recettori per gli androgeni fosse associato all’ipertrofia indotta da RET.

Partecipanti e intervento con allenamento contro-resistenza:

Quarantanove giovani uomini allenati alla resistenza (eseguendo RET almeno 2 giorni/settimana [range 3-6 giorni/settimana] per 4 ± 6 anni) si sono offerti volontari per questo studio. In breve, i partecipanti sono stati assegnati in modo casuale a un gruppo ad alte ripetizioni (HR) o a basse ripetizioni (LR). Il gruppo HR ha eseguito tutti gli esercizi con una resistenza relativamente leggera [∼30-50% del loro massimo di ripetizioni (RM)] fino al cedimento volitivo (20-25 ripetizioni) e il gruppo LR ha eseguito tutti gli esercizi con una resistenza relativamente pesante (∼75-90% RM), anch’essi fino al cedimento volitivo (8-12 ripetizioni). Ogni partecipante è stato sottoposto a un intervento RET di 12 settimane in cui ha eseguito RET su tutto il corpo per 4 giorni a settimana e ha ricevuto 30g di proteine isolate del siero di latte due volte al giorno (BioPRO; Davisco Foods International, Le Sueur, MN, Stati Uniti).

Prelievo di sangue e analisi ormonali:

Il giorno del test pre e post intervento è stato eseguito dopo un digiuno notturno alla stessa ora del giorno per ogni partecipante. Ogni partecipante ha eseguito un allenamento acuto contro-resistenza nell’ambito del gruppo designato (HR o LR) e il sangue è stato prelevato da un catetere endovenoso inserito in una vena antecubitale. Due provette vacutainer da 4 ml (Becton, Dickinson and Company, Franklin Lakes, NJ, Stati Uniti) sono state prelevate prima dell’esercizio e dopo 0, 15, 30 e 60 minuti dall’esercizio. Una provetta da 4 mL è stata lasciata coagulare per 30 minuti a temperatura ambiente per isolare successivamente il siero e l’altra è stata eparinizzata per isolare successivamente il plasma. L’analisi del campione di sangue è stata eseguita in cieco per: Cortisolo (nM), LH (IU/L), Lattato (mM), DHEA (ng/mL), T (ng/mL), T libero (fT; ng/dL; cioè, Testosterone non legato alla globulina legante gli ormoni sessuali o all’albumina nel sangue), DHT (ng/mL) e GH (ng/mL) utilizzando test immunometrici a chemiluminescenza in fase solida a due siti (Immulite 2000 Immunoassay System; Siemens Healthineers, Erlangen, Germania) e IGF-1 (μg/dL) e IGF-1 libero (fIGF-1; ng/mL) utilizzando radio-immunoassaggi (Diagnostics Products Corporation, Los Angeles, CA, Stati Uniti). L’AUC a 60 minuti dall’esercizio di resistenza è stata calcolata per ciascun ormone, utilizzando la regola trapezoidale, con punti temporali a 0, 15, 30 e 60 minuti.

Regressioni a scalare:

I dati di HR e LR sono stati eliminati a causa della mancanza di differenze tra i gruppi per quanto riguarda gli ormoni circolanti e gli esiti (Morton et al., 2016). Gli esiti considerati sono stati CSA delle fibre di tipo 1, CSA delle fibre di tipo 2 e massa corporea (LBM) priva di grasso e ossa. Ciascun risultato in ciascun momento della misurazione (ossia, la variazione, i valori assoluti prima e dopo l’intervento) è stato regredito rispetto agli ormoni di ciascun punto temporale: AUC pre-intervento a riposo, AUC post-esercizio pre-intervento, AUC post-intervento a riposo e AUC post-esercizio post-intervento. Per scegliere il modello finale è stata utilizzata l’eliminazione a ritroso, con il criterio di eliminazione Akaike Information Criterion (AIC). I valori di AUC post-esercizio utilizzati nell’analisi non hanno sottratto le concentrazioni a riposo. Tuttavia, abbiamo eseguito l’analisi con le concentrazioni a riposo sottratte dai valori grezzi dell’AUC e non abbiamo riscontrato differenze sostanziali nei risultati.

Analisi immunoblot:


Come descritto in precedenza (Aizawa et al., 2010), dopo l’omogenizzazione, la concentrazione proteica del surnatante risultante è stata determinata mediante un saggio proteico di Bradford e le proteine muscolari (sia citoplasmatiche che nucleari, 20μg di proteine) sono state separate su gel di SDS-poliacrilammide al 10% e poi trasferite su membrane di polivinilidene difluoruro (Millipore, Billerica, MA, Stati Uniti). Le membrane sono state bloccate per 1 ora con tampone bloccante (5% latte scremato in soluzione salina tamponata con fosfato e 0,1% Tween 20) e quindi incubate per 12 ore a 4°C con anticorpi primari contro il recettore degli androgeni (#3202, Cell Signaling Technology, Beverly, MA, Stati Uniti) e la 5α-reduttasi (H00006715, Abnova, Taipei, Taiwan) diluiti a 1:1000 in tampone bloccante. Le membrane sono state lavate tre volte con PBST prima di essere incubate per 1 ora con un anticorpo secondario coniugato con perossidasi di rafano e immunoglobulina anti-rabbit (#7074, Cell Signaling Technology, Beverly, MA, Stati Uniti) diluito a 1:3000 nel tampone di blocco. Le membrane sono state poi lavate tre volte con PBST. Le proteine sono state rilevate con un sistema di chemiluminescenza potenziata plus (GE Healthcare Biosciences) e visualizzate su un imager LAS4000 (GE Healthcare Biosciences). L’intensità delle bande è stata quantificata utilizzando ImageJ versione 1.46 (National Institutes of Health, Bethesda, MD, Stati Uniti).

Test immunoenzimatici per gli ormoni intramuscolari:


Il campione di muscolo è stato omogeneizzato con lo stesso metodo dell’analisi immunoblot. I livelli di T e DHT nel muscolo scheletrico sono stati determinati utilizzando un kit per il dosaggio immunoenzimatico, dopo essere stati diluiti 200 volte con ciascun tampone di dosaggio come precedentemente descritto (Horii et al., 2016). Gli anticorpi policlonali immobilizzati sono stati sollevati contro il T (Cayman Chemical, Ann Arbor, MI, Stati Uniti) e il DHT (IBL Hamburg, Germania) prima dell’aggiunta di anticorpi secondari alla perossidasi di rafano. La densità ottica a 450 nm è stata qualificata su un lettore di micropiastre (BioLumin 960; Molecular Dynamics, Tokyo, Giappone) e le analisi sono state eseguite in duplicato. Il valore del coefficiente di variazione era 3,0 e r2 = 0,974 nel presente studio. I ricercatori che hanno eseguito le analisi intramuscolari (KS e SF) non erano ciechi rispetto ai campioni HIR e LOR.

Analisi delle componenti principali e regressione:


I dati sono stati centrati e scalati prima di eseguire l’analisi delle componenti principali (PCA) sugli ormoni di ciascun momento della misurazione (riposo pre-intervento, AUC post-esercizio pre-intervento, riposo post-intervento e AUC post-esercizio post-intervento). Lo scopo della PCA è quello di utilizzare la trasformazione ortogonale per creare un insieme di nuove variabili lineari e non correlate (componenti principali), di cui viene preso un sottoinsieme che rappresenta effettivamente la maggior parte della variabilità osservata nei dati originali. In definitiva, queste componenti principali sono combinazioni lineari delle variabili originali (ad esempio, gli ormoni) che vengono poi utilizzate come covariate nelle analisi di regressione. Presentiamo qui la PCA sotto forma di scree plot. L’eliminazione a ritroso è stata eseguita sulle componenti principali (cioè la regressione delle componenti principali) utilizzando l’AIC come criterio di adattamento del modello. La PCA e la regressione delle componenti principali sono state eseguite in R (R Core Team, 2017).

High- vs. Low-Responders:

Le biopsie del muscolo scheletrico del vasto laterale di ciascun partecipante e la DXA sono state utilizzate per valutare la variazione della CSA delle fibre (sia di tipo 1 che di tipo 2) e della LBM, rispettivamente, come descritto in dettaglio altrove (Morton et al., 2016). La determinazione dell’HIR e del LOR è stata effettuata classificando individualmente (da 1 a 49) la variazione di ciascun risultato per ogni partecipante e quindi calcolando la media della classifica di ciascun partecipante per tutti e tre i risultati (CSA di tipo 1, CSA di tipo 2 e LBM). Con una probabilità di errore di tipo II (alfa) di 0,05, una probabilità di errore di tipo I (beta) di 0,20 e una differenza attesa relativamente moderata nelle variazioni della massa muscolare indotte dalla RET tra HIR e LOR (dimensione dell’effetto, f = 0,60), il calcolo delle dimensioni del campione a priori richiedeva 18 partecipanti (nove in ciascun gruppo). Pertanto, il quintile superiore (n = 10) dei partecipanti classificati è stato classificato come HIR e il quintile inferiore (n = 10) dei partecipanti classificati è stato classificato come LOR. Le analisi statistiche tra HIR e LOR sono state eseguite utilizzando SPSS (versione 22.0, Chicago, IL, Stati Uniti). Il CSA di tipo 1, il CSA di tipo 2, la LBM e tutti i dati relativi agli ormoni intramuscolari sono stati analizzati utilizzando un’analisi della varianza a due fattori (gruppo × tempo) a misure ripetute (ANOVA) con il gruppo (HIR vs. LOR) e il tempo (pre- e post-intervento) come variabili sperimentali. Se indicato, sono stati eseguiti t-test indipendenti a due code per valutare eventuali differenze tra i gruppi in uno specifico punto temporale (ad esempio, la T intramuscolare pre-intervento). Le correlazioni tra i risultati intramuscolari e la variazione di CSA di tipo 1, CSA di tipo 2 e LBM sono state eseguite in SPSS (versione 22.0, Chicago, IL, Stati Uniti). La significatività statistica è stata accettata quando P < 0,05. I dati sono presentati come diagrammi a riquadro e a baffi (comprendenti la mediana [linea], la media [croce], l’intervallo interquartile [riquadro] e i valori minimo e massimo [baffi]) nelle Figure 1 e 3 e media ± SD nel testo e nelle tabelle.

Variazione della massa muscolare in tutti i partecipanti (in alto) e in HIR e LOR (in basso). Pannelli superiori: La variazione di (A) CSA di tipo 1, (B) CSA di tipo 2 e (C) LBM di tutti i 49 partecipanti. Pannelli inferiori: La variazione di (D) CSA di tipo 1, (E) CSA di tipo 2 e (F) LBM classificata in HIR e LOR. I valori sono presentati come mediana (linee) con intervallo interquartile (riquadri), range (minimo e massimo) e media (croce). ∗Differenza significativa tra soggetti ad alta e bassa risposta (P < 0,01). Pannelli A-C adattati da Morton et al. (2016).
  • Risultati dello studio

Cambiamenti nella massa muscolare con allenamenti contro-resistenza:


Sono stati reclutati 56 partecipanti e 49 hanno completato l’intero intervento (HR: n = 24, LR: n = 25; 23 ± 2 anni, 86 ± 5 kg, 181 ± 6 cm). Due persone hanno abbandonato il gruppo LR a causa di un trasferimento di lavoro e di un infortunio non legato all’intervento, mentre cinque persone hanno abbandonato il gruppo HR a causa di un cambiamento di sede o di un infortunio non legato all’intervento. Dodici settimane di RET hanno portato a un aumento della CSA di tipo 1 (665 ± 149 μm2), della CSA di tipo 2 (978 ± 189 μm2) e della LBM (1,22 ± 1,37 kg, P < 0,01; Figure 1A-C, rispettivamente; Morton et al., 2016). Non sono state riscontrate differenze tra i gruppi di ripetizioni (HR contro LR – vedi Morton et al., 2016) per nessuno dei risultati.

Regressioni a scalare:


Per ciascun risultato (variazione di CSA di tipo 1, CSA di tipo 2 e LBM) nessuna delle AUC post-esercizio (Tabella 1) o delle concentrazioni a riposo (Tabella 2) di qualsiasi ormone misurato prima o dopo l’intervento è risultata costantemente significativa (cioè significativa con più risultati o in più momenti di misurazione) nei modelli finali. Inoltre, i valori dei coefficienti di determinazione (cioè R2) erano bassi (<0,25) per tutti gli esiti in ogni momento della misurazione, indicando che la variazione osservata nella risposta ipertrofica può essere spiegata solo in minima parte da qualsiasi modello adattato. Risultati simili sono stati riscontrati valutando il CSA di tipo 1, il CSA di tipo 2 e la LBM prima e dopo l’intervento rispetto alle concentrazioni ormonali a riposo (Tabella supplementare 1).

Regressione ad eliminazione all’indietro finale tra l’AUC dell’ormone sistemico post-esercizio e la variazione di CSA di tipo 1, CSA di tipo 2 e LBM.
Risultati finali della regressione ad eliminazione all’indietro tra gli ormoni a riposo e la variazione di CSA di tipo 1, CSA di tipo 2 e LBM.

Analisi delle componenti principali:


L’analisi delle componenti principali è stata eseguita su predittori centrati e scalari ed è qui presentata (vedi figure) come scree plot per l’AUC post-esercizio pre-intervento, l’AUC post-esercizio post-intervento, le concentrazioni a riposo pre-intervento e le concentrazioni a riposo post-intervento. Come illustrato dagli scree plot a bassa pendenza, nessuna componente principale è risultata particolarmente efficace nello spiegare la varianza nel set di dati originale.

I diagrammi di scree illustrano la proporzione di varianza degli ormoni spiegata da ciascuna componente principale. I pannelli includono le componenti principali derivate dagli ormoni sistemici misurati: (A) pre-intervento post-esercizio, (B) post-intervento post-esercizio, (C) pre-intervento a riposo e (D) post-intervento a riposo. La linea orizzontale tratteggiata indica il punto di cut-off in cui le componenti principali di cui sopra hanno spiegato ≥80% di varianza tra l’insieme dei dati originali degli ormoni.


I ricercatori hanno scelto di mantenere il numero di componenti principali che spiegano ≥80% della varianza dei predittori originali, il che ha portato a sette componenti principali incluse in ciascuna delle regressioni a scalare a componenti principali. L’esecuzione della regressione a componenti principali (indipendentemente dal fatto che gli ormoni siano stati valutati a riposo, dopo l’esercizio, prima dell’intervento o dopo l’intervento) ha rivelato che nessuna componente principale è stata costantemente significativa o inclusa in nessuno dei modelli finali e che l’R2 finale non ha mai superato lo 0,25 ed è stato inferiore allo 0,05. Questi risultati indicano che la variazione osservata nella risposta ipertrofica alla RET può essere spiegata solo in minima parte da uno qualsiasi dei modelli adattati.

High- vs. Low-Responders:

C’è stata una differenza significativa tra HIR e LOR nella variazione della CSA di tipo 1 (HIR: 2106 ± 412, LOR: -520 ± 450 μm2), della CSA di tipo 2 (HIR: 2642 ± 756, LOR: -373 ± 593 μm2) e della LBM (HIR: 2,1 ± 0,8, LOR: 0,6 ± 0,8 kg, P ≤ 0,001; Figure 1D-F). Non c’erano differenze nel numero di partecipanti di ciascun gruppo di allenamento (HIR: quattro e sei e LOR: sei e quattro da HR e LR, rispettivamente).

Non vi è stata alcuna differenza nella concentrazione ormonale a riposo tra HIR e LOR, ad eccezione della concentrazione a riposo post-intervento di LH (HIR: 3,67 ± 0,63; LOR 4,59 ± 1,15 UI/L, P < 0,01) e lattato (HIR: 0,52 ± 0,05; LOR: 0,55 ± 0,07 mM, P = 0,02), che erano maggiori nel LOR. Non c’è stata differenza nell’AUC post-esercizio per nessun ormone tra HIR e LOR, ad eccezione del cortisolo pre-intervento post-esercizio, che era più alto nell’HIR (HIR: 576 ± 100; LOR: 508 ± 199 nM; P < 0,001).

Ormoni intramuscolari:


Non sono state riscontrate differenze nei valori pre-intervento, post-intervento o nella variazione di T o DHT intramuscolare tra HIR e LOR (Figure 3A,B, rispettivamente). Il cambiamento nell’espressione della 5α-reduttasi è stato significativo nell’HIR (pre: 1457 ± 450, post: 1957 ± 543 AU, P < 0,01) ma non nel LOR (pre: 1748 ± 559, post: 1994 ± 840 AU, P = 0,32; Figura 3C). Il contenuto di recettori per gli androgeni intramuscolari prima dell’intervento (HIR: 10827 ± 2789, LOR: 7759 ± 1323 AU, P < 0,01) e dopo l’intervento (HIR: 11406 ± 2789, LOR: 7801 ± 1189 AU, P = 0,01; Figura 3D) era significativamente maggiore in HIR rispetto a LOR. Non c’è stato alcun cambiamento nel contenuto dei recettori degli androgeni intramuscolari prima e dopo l’intervento (Δ319 ± 1314 AU, P = 0,75) e c’è stata una relazione lineare tra il contenuto dei recettori degli androgeni dei partecipanti prima e dopo l’intervento (r = 0,92). Non sono state riscontrate correlazioni significative tra il T, il DHT o la 5α-reduttasi intramuscolare prima dell’intervento, dopo l’intervento e la variazione della CSA di tipo 1, della CSA di tipo 2 o della LBM (P > 0,05; Tabella supplementare 5). Al contrario, il contenuto di recettori per gli androgeni prima dell’intervento, dopo l’intervento e la media tra il contenuto di recettori per gli androgeni prima e dopo l’intervento sono stati significativamente correlati con la variazione della LBM (pre: r = 0,76, P < 0,01; post: r = 0,75, P < 0,01; media: r = 0. 77, P < 0,01), CSA di tipo 1 (pre: r = 0,51, P = 0,03; post: r = 0,49, P = 0,04; media: r = 0,51, P = 0,03) e CSA di tipo 2 (pre: r = 0,61, P < 0,01; post: r = 0,65, P < 0,01; media: r = 0,64, P < 0,01; Tabella supplementare 5 e Figura 4). I dati di un partecipante sono stati rimossi dalle analisi di regressione che includevano la variazione della LBM perché identificati come outlier statistici attraverso il metodo di regressione robusta e rimozione degli outlier con un coefficiente dell’1% (Motulsky e Brown, 2006). La posizione di questo partecipante è stata indicata nella Figura seguente a scopo illustrativo.

Correlazioni tra il contenuto di recettori androgeni intramuscolari prima dell’intervento e le variazioni della massa muscolare. Le correlazioni sono presentate nei pannelli per: (A) CSA di tipo 1 (r = 0,51, P = 0,03), (B) CSA di tipo 2 (r = 0,61, P < 0,01) e (C) LBM (r = 0,76, P < 0,01). In (C), l’outlier che è stato rimosso dall’analisi correlazionale tra il contenuto di recettori per gli androgeni prima dell’intervento e la LBM è incluso nella figura come una “×”.

Punto della situazione:

Il risultato principale del presente studio, coerente con il lavoro precedentemente svolto dai ricercatori, è che nessun ormone sistemico condivide una varianza significativa con i cambiamenti indotti da RET nella CSA delle fibre muscolari scheletriche o nella massa muscolare scheletrica negli uomini allenati contro-resistenza. Sono stati estesi questi risultati alle concentrazioni ormonali locali misurate nel muscolo, che non hanno mostrato un’associazione significativa con alcun indice di ipertrofia. E’ stato riscontrato che gli HIR presentavano un aumento del contenuto di 5α-reduttasi dopo 12 settimane di RET e un contenuto di recettori degli androgeni significativamente più alto, che non cambiava con la RET, rispetto ai LOR sia prima che dopo la RET. La conclusione di ciò è che né la disponibilità sistemica né quella locale muscolare di ormoni influenzano l’ipertrofia muscolo-scheletrica indotta dalla RET in giovani uomini sani. Coerentemente con i lavori precedenti, i ricercatori propongono invece che l’entità dell’ipertrofia muscolare scheletrica indotta da RET sia modulata in parte dal contenuto intramuscolare di recettori per gli androgeni e probabilmente da altre variabili intramuscolari.

Ormoni circolanti e allenamento contro-resistenza:


Recenti pubblicazioni (Kraemer et al., 2017; Mangine et al., 2017) e linee guida (Ratamess et al., 2009) sostengono che gli ormoni circolanti sono meccanicamente e direttamente correlati e predittivi dei cambiamenti della massa muscolare scheletrica indotti dal RET, nonostante l’esistenza di prove che dimostrano il contrario (West et al., 2010; West e Phillips, 2012; Mitchell et al., 2013; Morton et al., 2016; Mobley et al., 2018). In uno studio precedente a quello attualmente trattato, i ricercatori hanno eseguito 120 correlazioni, ciascuna su 49 partecipanti, tra 10 diversi ormoni e varie misure di variazione della massa e della forza muscolare. Hanno riscontrato che solo l’aumento del Cortisolo dopo l’esercizio era correlato con le variazioni del CSA di tipo 2 (pre-intervento: r = -0,34, P = 0,02; post-intervento: r = -0,31, P = 0,04) (Morton et al., 2016). Altri hanno trovato correlazioni significative tra l’aumento post-esercizio del GH circolante (McCall et al., 1999) e del T (Ahtiainen et al., 2003; Brook et al., 2016) con le variazioni della massa muscolare, ma queste correlazioni sono state eseguite su campioni composti da meno di 11 partecipanti, che potrebbero dare origine a correlazioni spurie. Qui sono state eseguite altre 48 regressioni graduali su 49 partecipanti, 10 ormoni e tre risultati distinti legati all’ipertrofia, tra cui la dimensione delle fibre muscolari. E’ stato riscontrato che nessun ormone era costantemente significativo, né alcun modello finale aveva un elevato coefficiente di determinazione, cioè tutti i valori di R2 erano inferiori a 0,25. Inoltre, la PCA non era efficace nel determinare le correlazioni con l’ipertrofia. Inoltre, la PCA non è stata efficace nel ridurre la varianza totale dei dati ormonali originali e non c’è stato alcun modello di regressione con le componenti principali utilizzate come covariate che spiegasse una proporzione significativa della variabilità in qualsiasi risultato. Esistono oggi prove sostanziali che suggeriscono che gli ormoni sistemici circolanti misurati a riposo (McCall et al., 1999; Morton et al., 2016; Mobley et al., 2018) e/o dopo l’esercizio (Ahtiainen et al., 2003; West et al., 2010; West e Phillips, 2012; Mitchell et al., 2013; Morton et al., 2016) non condividono alcuna varianza comune e non sono quindi né correlati né predittivi dei cambiamenti della massa muscolare indotti dal RET in giovani partecipanti sani.

Uno studio (Mangine et al., 2017) ha utilizzato un modello di equazione strutturale ai minimi quadrati parziali (PLS-SEM) e ha riportato che un modello con punteggi ormonali compositi (T, GH, IGF-1, insulina e cortisolo) e una misura composita di ipertrofia (CSA e spessore muscolare del vasto laterale e del retto femorale) ha prodotto un coefficiente di determinazione significativo (R2= 0,73). L’interpretazione di questo risultato è che il punteggio ormonale composito era correlato a un punteggio composito di ipertrofia. L’aspetto preoccupante di questa interpretazione è che il modello senza T (il miglior predittore ormonale del modello) aveva ancora un coefficiente di determinazione sostanziale (R2 = 0,43) con il punteggio composito di ipertrofia ed era statisticamente significativo. In effetti, la rimozione individuale degli altri ormoni (GH, IGF-1, insulina e cortisolo) ha mostrato un effetto trascurabile sulla varianza condivisa del modello, eppure il modello senza il suo “migliore” ormone predittivo, il T, ha rappresentato quasi il 60% della varianza osservata con tale ormone presente nel modello. Mentre gli autori sostengono che le interazioni inspiegabili tra gli ormoni siano la ragione della varianza del modello senza T, è stato suggerito che è più probabile che i pesi PLS capitalizzino il caso per esagerare le correlazioni (Goodhue et al., 2012). Sebbene riteniamo che il PLS-SEM sia utile per l’esame di grandi insiemi di dati, vi sono limitazioni sostanziali all’interpretazione quando si utilizzano campioni di piccole dimensioni (n = 26) (Goodhue et al., 2012). La definizione di PLS come metodo SEM appropriato è stata messa in discussione anche per quanto riguarda la stima e l’inferenza (Rönkkö e Evermann, 2013) e il coefficiente di determinazione (ad esempio, R2) è un parametro inadeguato per valutare l’adattamento del modello PLS-SEM, poiché stimatori incoerenti possono produrre modelli con R2 elevato. Di conseguenza, non tutti i modelli ben adattati sono predittivi (Henseler et al., 2014) e non tutti i modelli predittivi sono ben adattati (McIntosh et al., 2014).

High- vs. Low-Responders  e allenamento contro-resistenza:

Per indagare sui potenziali determinanti dell’eterogeneità dell’ipertrofia muscolare scheletrica indotta da RET (Hubal et al., 2005; Davidsen et al., 2011; Morton et al., 2016), i ricercatori hanno suddiviso 49 partecipanti in HIR (n = 10) e LOR (n = 10) in base alla variazione di tre indicatori della massa muscolare scheletrica (CSA di tipo 1, CSA di tipo 2 e LBM). Nonostante le grandi differenze tra i gruppi in ogni risultato, non ci sono state differenze significative in nessun ormone circolante prima o dopo l’esercizio fisico, misurato sia prima che dopo l’intervento. Considerando che gli ormoni steroidei sono liposolubili (ad esempio, si diffondono attraverso il sarcolemma in base al loro gradiente di concentrazione), non sorprende che anche il T e il DHT intramuscolari misurati prima e dopo l’intervento non fossero diversi tra HIR e LOR. La mancanza di differenze negli ormoni circolanti e intramuscolari tra HIR e LOR dimostra che né l’apporto di ormoni al muscolo né il trasferimento di ormoni steroidei all’interno del muscolo sono fasi limitanti in individui giovani e sani.

Il contenuto di recettori per gli androgeni era significativamente più alto sia prima che dopo l’intervento nell’HIR rispetto al LOR ed era correlato alle variazioni della massa muscolare. Sebbene un altro gruppo non abbia riscontrato alcuna differenza nel contenuto di recettori degli androgeni tra HIR e LOR (Mobley et al., 2018), è importante riconoscere le differenze nel disegno dello studio (ad esempio, partecipanti non allenati rispetto a quelli allenati) e nelle misure di esito (ad esempio, analisi dei cluster basata sullo spessore muscolare rispetto a un punteggio aggregato di DXA e CSA delle fibre) tra loro e il lavoro dei ricercatori, rispettivamente. La funzione del recettore degli androgeni è quella di traslocare nel nucleo e modificare l’espressione dei geni bersaglio [rivisto altrove (Beato e Klug, 2000)], molti dei quali sono bersagli noti coinvolti nella crescita e nello sviluppo del muscolo scheletrico (Wyce et al., 2010). Infatti, quando i recettori degli androgeni vengono eliminati nei topi maschi, si verifica una significativa riduzione della massa e della forza muscolare (MacLean et al., 2008). È importante notare che la maggior parte degli ormoni steroidei ha un’elevata affinità con i propri recettori steroidei. Ad esempio, la costante di dissociazione del recettore degli androgeni nei confronti del T e del DHT è di soli ∼0,2-0,5 nM (Wilson e French, 1976). Nel presente studio, a riposo, la molarità del T sierico (HIR: 28 ± 7; LOR: 31 ± 7 nM), della fT sierica (HIR: 0,5 ± 0,01; LOR: 0,5 ± 0,01 nM) e del DHT sierico (HIR e LOR: 0,7 ± 0,2 nM) superavano tutti 0,2-0,5 nM. Dato che non c’era alcuna differenza negli ormoni circolanti o intramuscolari tra HIR e LOR, insieme all’elevata affinità di legame tra androgeno e recettore degli androgeni, sembra probabile che sia a riposo che dopo l’esercizio i recettori androgeni esistenti siano stati saturati nel muscolo scheletrico. Si ipotizza che, sebbene l’apporto di androgeni possa essere un passo limitante per l’ipertrofia muscolare indotta da RET negli uomini ipogonadici (Bhasin et al., 1997; Kvorning et al., 2013), il contenuto di recettori per gli androgeni sia la variabile più importante nell’accrescimento di proteine del muscolo scheletrico mediato dagli androgeni indotti da RET negli uomini sani (Diver et al., 2003).

Limitazioni:

I ricercatori hanno eseguito 120 correlazioni in uno studio precedente (Morton et al., 2016) e 48 regressioni graduali in questo caso (24 sui dati originali e 24 sulle componenti principali). L’applicazione di analisi multiple sugli stessi dati è stata un’operazione di data mining intenzionale per dimostrare la mancanza di capacità degli ormoni circolanti e intramuscolari a riposo o dopo l’esercizio fisico di prevedere le variazioni della massa muscolare scheletrica al basale o indotte dalla RET. Avrebbero potuto eseguire ulteriori statistiche per tenere conto dei test multipli, ma questo non sarebbe stato informativo perché nessuno dei loro modelli spiegava molta varianza (come valutato dai valori di R2, che non superavano lo 0,25). Riconoscono inoltre che, pur avendo incluso un campione di grandi dimensioni (n = 49) per l’analisi degli ormoni sistemici, essi si sono limitati a un campione relativamente più piccolo (n = 20) per il confronto tra HIR e LOR. Ammettono pienamente che, nel caso della correlazione con il recettore degli androgeni, quella che presentano è una stima gonfiata a causa della scelta di misurare solo i soggetti con risposta più alta e più bassa al loro protocollo di allenamento. Hanno condotto la loro analisi in questo modo per illustrare la differenza nell’ipertrofia muscolare indotta da RET e per indagare l’influenza delle variabili ormonali circolanti e intramuscolari su due gruppi distinti. Sebbene fossero limitati dalla quantità di tessuto raccolto, è giusto criticare il fatto che la loro analisi correlazionale sarebbe stata più eloquente se avessero incluso tutti i partecipanti e se avessero eseguito analisi aggiuntive [ad esempio, frazioni nucleari e citoplasmatiche del contenuto di recettori degli androgeni e espressioni geniche multiple (Cheung et al., 2017)]. Per questo motivo, il lavoro futuro potrà concentrarsi sulla biologia specifica che regola la regolazione e la funzione del recettore degli androgeni. Altri hanno ipotizzato che l’analisi con spettrometria di massa (rispetto ai test immunologici) sia necessaria per rilevare piccole concentrazioni intramuscolari di ormoni steroidei (Handelsman e Wartofsky, 2013); tuttavia, l’intento dei ricercatori era quello di analizzare i loro campioni utilizzando metodi simili a quelli che altri hanno utilizzato nella scienza dell’esercizio fisico, che possono essere diversi da quelli dell’endocrinologia clinica. Riconoscono che l’uso della DXA per misurare i cambiamenti nella LBM non è il gold standard, motivo per cui hanno scelto di includere anche i cambiamenti nella CSA delle fibre di tipo 1 e 2 per determinare i loro HIR e LOR (Buckinx et al., 2018). Per quanto riguarda la loro interpretazione, è ingenuo suggerire che la segnalazione degli androgeni sia esclusivamente operativa attraverso la loro tendenza a legarsi a un recettore androgenico [rivisto altrove (Herbst e Bhasin, 2004; Dubois et al., 2012)]. Sebbene la regolazione trascrizionale (ad esempio, la segnalazione dei recettori degli androgeni) sia qui evidenziata come un potente modulatore dei cambiamenti nella massa muscolare indotti da RET, è anche chiaro che la regolazione post-trascrizionale è almeno altrettanto importante per la sintesi proteica (Schwanhausser et al, 2011), come è stato evidenziato da recenti risultati (Figueiredo et al., 2015; Robinson et al., 2017; Mobley et al., 2018) e review (Chaillou et al., 2014; McGlory et al., 2017). Infine, sebbene vi sia un’influenza genetica alla base dell’ipertrofia muscolare scheletrica indotta da RET, vi sono ancora molte considerazioni ambientali, ad esempio il consumo di proteine alimentari adeguate (Morton et al., 2017), un apporto calorico e stimolo allenante adeguato che modulano l’ipertrofia muscolare indotta da RET.

Riflessioni conclusive sul presente studio:

Ricapitolando, i ricercatori hanno eseguito l’eliminazione a ritroso e la regressione delle componenti principali su una coorte relativamente ampia (n = 49) di uomini allenati contro-resistenza, concludendo che l’AUC post-esercizio (cioè l’esposizione ormonale netta transitoria acuta) e le concentrazioni ormonali a riposo misurate nel sangue non condividono una varianza comune con le variazioni della massa muscolare indotte dalla RET. In altre parole, le concentrazioni ormonali sistemiche non sono correlate o in qualche modo predittive delle variazioni della massa muscolare indotte da RET. L’analisi dei sottoinsiemi dei soggetti con risposta più alta e più bassa ha rivelato che il contenuto di recettori per gli androgeni, e non i livelli di androgeni intramuscolari, non cambia con il RET nei partecipanti allenati, ma è significativamente più alto negli HIR rispetto ai LOR. Questo studio, insieme ad altri (Bamman et al., 2007; Petrella et al., 2008; Davidsen et al., 2011; Eynon et al., 2013), fornisce la prova che l’aumento relativo della massa muscolare scheletrica in seguito alla RET è sostenuto da fattori locali intramuscolari e non da concentrazioni ormonali sistemiche.

Questo è quanto suggerito dall’osservazione di soggetti in stato fisiologico. Individui trattati con dosi esogene sovrafisiologiche di AAS sarebbero teoricamente soggetti alle medesime limitazioni presenti nel confronto tra HIR e LOR dello studio. Questa limitazione sembra essere data dall’espressione dei AR (Recettori degli Androgeni) nel muscolo scheletrico. Sebbene dosi sovrafisiologiche di AAS causino un aumento del numero dei AR presenti nel muscolo scheletrico, tale espressione è comunque soggetta ad una regolazione genica con variabili soggettive di potenziale. Tali variabili sono teoricamente evincibili dall’osservazione degli atleti allenati contro-resistenza, specie Bodybuilder, e della loro differenza di potenziale indipendente nella sua massima espressione. Tale potenziale è diverso tra HIR e LOR sia in fisiologia che in condizione di trattamento farmacologico, indipendentemente dalla dose di AAS utilizzata.

Continua…

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

1- https://www.frontiersin.org/articles/10.3389/fphys.2018.01373/full

ACE-031: il “recettore esca” per la Miostatina.

Introduzione alla molecola:

L’ACE-031 può rientrare a pieno titolo nel “club” delle molecole PEDs semisconosciute. Un peptide praticamente unico nel panorama “doped”, sicuramente promettente, specie nel BodyBuilding, ma del quale se ne parla poco.

Nel 2013 sembrava che la ricerca sul ACE-031 fosse stata definitivamente interrotta, nonostante funzionasse piuttosto bene.

Le aziende farmaceutiche Acceleron Pharma e Shire misero in pausa la ricerca sull’inibitore della Miostatina ACE-031 [Acceleronpharma.com 2 maggio 2013]. E questo evento risultò piuttosto strano. In un comunicato stampa congiunto rilasciato qualche tempo dopo il sopra citato annuncio, Muscle & Nerve aveva pubblicato uno studio che dimostrava che l’ACE-031 è un composto che un culturista supplementato farmacologicamente aggiungerebbe volentieri al suo “arsenale”.

L’ACE-031 iniettabile è un recettore sintetico dell’Attivina di Tipo IIB. Anche le cellule muscolari hanno questo recettore. È destinato a proteine come la Miostatina, il GDF11 e l’Attivina A e B. Se la Miostatina si lega al recettore dell’Attivina di Tipo IIB, la crescita delle fibre muscolari si riduce. Nelle circostanze “giuste” la Miostatina arriva addirittura a degradare il muscolo-scheletrico.

Se si somministra l’ACE-031, questo non accade o, comunque, l’effetto viene marcatamente ridotto. Il recettore sintetico dell’Attivina di Tipo IIB si lega con il tristemente noto peptide Miostatina impedendo a quest’ultimo di legarsi al sito recettore della cellula e compiere la sua attività di riduzione ipertrofica e degradazione del tessuto muscolo-scheletrico.

ACE-031 e “recettori esca”:

Come accennato pocanzi, l’ACE-031 non è altro che un “recettore esca”. Un recettore esca è un recettore in grado di riconoscere e legare in modo efficiente specifici fattori di crescita o citochine, ma non è strutturalmente in grado di segnalare o attivare il complesso recettoriale previsto. Agisce come un inibitore, legando un ligando e impedendogli di legarsi al suo recettore abituale. I recettori esca partecipano a un metodo comune di inibizione del segnale e sono anche abbondanti nei tessuti maligni, costituendo un argomento significativo nella ricerca sul cancro.[1]

“Recettori esca”: si legano ai ligandi e inibiscono la segnalazione attraverso i recettori veri e propri.


IL1R2 è stato uno dei primi recettori esca identificati.[2] [3] Lega IL1A e IL1B e inibisce il loro legame con IL1R1, impedendo la risposta infiammatoria che è generalmente promossa dal legame delle interleuchine di tipo 1 con il recettore 1 dell’interleuchina di tipo I.[4]

Un altro membro di questa categoria è il recettore DcR3, conosciuto anche come TNFRSF6, che si trova principalmente nei tessuti maligni umani.[5] Agisce come recettore esca per i membri delle citochine TNF: FasL, LIGHT e TL1A, inibendo la capacità delle citochine di segnalare la morte cellulare o l’apoptosi.

TNFRSF6

Il VEGFR-1 è una tirosin-chinasi recettoriale che modula negativamente l’angiogenesi agendo come recettore esca.[6] La caratteristica di “esca” del VEGFR-1 è necessaria per lo sviluppo e l’angiogenesi normali. Il VEGFR-1 inibisce l’attività del VEGFR-2 sequestrando il VEGF, impedendo così al VEGFR-2 di legarsi al VEGF.

Quindi eccoci di nuovo con ACE-031. Esso è stato studiato in quanto è un recettore esca ingegnerizzato con attività inibitoria della Miostatina potenzialmente utile nel tentativo di trattare i bambini affetti da distrofia muscolare di Duchenne (DMD). Il recettore ACE-031 circola al di fuori della membrana della fibra muscolare. Poiché questo recettore si lega alla Miostatina, riduce la quantità di questo peptide che può legarsi al recettore nativo nella membrana (ActRIIB), impedendo alla Miostatina di fornire il segnale che limita la crescita muscolare e ne promuove il catabolismo.[7]

I principali studi su ACE-031:

Nel 2007 Acceleron Pharma aveva grandi aspettative su ACE-031. All’epoca l’azienda aveva condotto solo studi sugli animali. Tuttavia, nel marzo 2013 AP ha pubblicato uno studio sull’uomo in cui 48 donne sane di età compresa tra 45 e 75 anni hanno ricevuto una singola iniezione con 0.02, 0.05, 0.1, 0.3, 1 o 3 mg di ACE-031 per kg di peso corporeo. Il composto ha circolato per alcune settimane nell’organismo dei soggetti trattati. L’emivita è stata stimata essere di 10-15 giorni.
Tuttavia, questa singola iniezione ha prodotto una crescita muscolare. La dose di 3mg/kg ha mostrato un aumento del volume muscolare del 5%. La massa magra è aumentata del 3% [poco più di un chilo] e sembra anche diminuire la massa grassa.

L’iniezione ha ridotto la Leptina e aumentato la concentrazione di Adiponectina. Ciò suggerisce che l’ACE-031 riduce la massa grassa.

Inoltre, è aumentato l’inibitore della Miostatina, i livelli di fosfatasi alcalina specifica per le ossa [BSAP] nel sangue e si è ridotto quello del telopeptide C-terminale del collagene di tipo 1 [CTX]. Ciò suggerisce che l’ACE-031 rende le ossa più forti. Negli studi sugli animali con RAP-031, la versione per topi di ACE-031, Acceleron è riuscita a dimostrare questi effetti. [Endocrinology. 2010 Sep; 151 (9) :4289-300].

Se si legge lo studio su Muscle & Nerve, ci si chiede perché mai la Acceleron abbia interrotto lo sviluppo di ACE-031. E perché non agisce legalmente contro tutti gli store online che si puliscono le terga con i brevetti di Acceleron e vendono l’ACE-031 a un prezzo al quale una normale azienda farmaceutica non può trarre alcun profitto.[Muscle Nerve. 2013 Mar; 47 (3) :416-23.]

La risposta si trova in un messaggio sul sito web dell’Associazione per la Distrofia Muscolare. [Quest.mda.org 2 maggio 2013] In esso si legge che nel 2011, durante uno studio [NCT01099761] in cui i ricercatori somministravano l’ACE 031 a bambini affetti da malattie muscolari, sono emersi effetti collaterali che hanno costretto i ricercatori a interrompere lo studio.

“Gli eventi avversi che i partecipanti alla sperimentazione hanno subito – piccoli sanguinamenti del naso e delle gengive e dilatazione dei vasi sanguigni della pelle – non sono stati considerati di per sé pericolosi. Tuttavia, le aziende e le agenzie regolatorie coinvolte affermano di aver bisogno di comprendere appieno questi eventi prima di continuare gli studi clinici sull’ACE-031”. “

Un altro strano effetto collaterale è stato rivelato nello studio pubblicato su Muscle & Nerve. È emerso che la somministrazione di ACE-031 abbia ridotto fortemente la concentrazione di FSH nelle donne partecipanti. I ricercatori non ne conoscono la causa e le possibili conseguenze.

Sembrava che ACE-031 fosse stato definitivamente accantonato dalla ricerca fino alla pubblicazione nel 2017 di uno studio sul recettore esca , sempre su Muscle Nerve [Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial]. L’ACE-031 è stato somministrato per via sottocutanea ogni 2-4 settimane a ragazzi affetti da DMD [distrofia muscolare di Duchenne] in uno studio randomizzato, in doppio cieco, controllato con placebo, a dose crescente. L’obiettivo primario era la valutazione della sicurezza. Gli obiettivi secondari comprendevano la caratterizzazione della farmacocinetica e della farmacodinamica.

L’ACE-031, durante lo studio, non è stato associato a eventi avversi gravi o molto gravi. Lo studio è stato interrotto dopo il secondo regime di dosaggio a causa di potenziali problemi di sicurezza legati a epistassi e teleangectasie. È stata rilevata una tendenza al mantenimento della distanza del test del cammino di 6 minuti (6MWT) nei gruppi ACE-031 rispetto al calo osservato nel gruppo placebo (non statisticamente significativo), nonché una tendenza all’aumento della massa magra e della densità minerale ossea (BMD) e alla riduzione della massa grassa.

Anche in questo studio, l’uso dell’ACE-031 ha dimostrato tendenze per gli effetti farmacodinamici sulla massa magra, sulla massa grassa, sulla BMD e sul 6MWT (6-minute walk test). Ma, come successo in precedenza, gli eventi avversi non correlati ai muscoli hanno contribuito alla decisione di interrompere lo studio. Nonostante l’inibizione della Miostatina è un approccio terapeutico promettente per la DMD.

Neanche lo studio su MYO-029, il miostatinblokker della Wyeth, ha avuto successo. Nel 2008 uno studio deludente ha dimostrato che gli adulti con distrofia muscolare, dopo la somministrazione di MYO-029, non sono diventati più forti. [Ann Neurol. 2008 May, 63 (5) :561-71] e la Wyeth ha interrotto lo sviluppo del MYO-029.

Uso nel BodyBuilding e conclusioni:

Ora sappiamo che questo “recettore esca” può favorire lo sviluppo del muscolo-scheletrico legandosi alla Miostatina ed impedendo a questa di esercitare la sua azione di controllo e catabolismo muscolare. Sappiamo inoltre che gli studi effettuati su esseri umani sono stati promettenti ma non sufficientemente sicuri da permetterne uno sviluppo completo. I casi di epistassi e teleangectasie hanno spinto i ricercatori ad interrompere la ricerca. Ma come spesso accade, ogni qualvolta nel panorama scientifico si affaccia una molecola potenzialmente vantaggiosa per lo sportivo, e per il BodyBuilder in particolare, anche se la ricerca si interrompe non si può dire lo stesso per quella svolta illegalmente da improvvisate cavie umane. E questo evento si è verificato anche per l’ACE-031.

Partendo dalle prove emerse durante gli studi, sappiamo che una dose di 3mg/Kg ha comportato un aumento del volume muscolare del 5%, un aumento della massa muscolare del 3% e sembra portare anche a una riduzione della massa grassa. La molecola sembra ridurre la concentrazione di Leptina, condizione che potrebbe portare ad uno scompenso nella regolazione fame/sazietà, ed un aumento dell’Adiponectina, la quale è correlata ad un miglioramento della sensibilità all’Insulina. 

Prove sul campo raccolte negli ultimi anni, hanno permesso di quantificare i dosaggi mediamente efficaci per un Bodybuilder e i tempi di somministrazione: 1-3mg per chilogrammo di peso corporeo ogni 15 giorni è risultato essere il range standard per ottenere i migliori risultati possibili. Per quanto concerne la lunghezza del trattamento, si presume che l’uso debba essere circoscritto in un arco temporale di circa 5-6 settimane, limite di conservazione che non dovrebbe essere superato. 

Ricordo che il principale effetto collaterale di ACE-031 è la dilatazione dei vasi sanguigni. Tuttavia, questo effetto collaterale, se contenuto, non sembra avere svantaggi. Inoltre, l’uso di ACE-031 può causare epistassi e gengive sanguinanti. Non sono noti altri effetti collaterali. I soggetti emofiliaci sono a forte rischio emorragico potenziale con l’uso di ACE-031.

Anche se dovrebbe essere scontato, ribadisco il fatto che nessuno sta invitando all’uso sperimentale ed illegale di una molecola della quale, oltretutto, si sa poco. Le informazioni ivi presenti sono a puro scopo divulgativo e non rappresentano in alcun modo prescrizioni mediche e affini.

Gabriel Bellizzi

Riferimenti:

  1. Decoy Receptor”. Encyclopedia of Cancer. Springer Berlin Heidelberg. 2012. p. 1070. 
  2. McMahan, CJ; Slack, JL; Mosley, B (1991). “A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types”The EMBO Journal10 (10): 2821–2832. 
  3. Re, F; Muzio, M; De Rossi, M; et al. (1994). “The type II “receptor” as a decoy target for interleukin 1 in polymorphonuclear leukocytes: characterization of induction by dexamethasone and ligand binding properties of the released decoy receptor”The Journal of Experimental Medicine179 (2): 739–743. 
  4. “IL1R2 interleukin 1 receptor, type II [ Homo sapiens (human) ]”ncbi.nlm.nih.gov. National Center for Biotechnology Information. 2015.
  5. Ashkenazi, Avi (1 June 2002). “Targeting death and decoy receptors of the tumour-necrosis factor superfamily”. Nature Reviews Cancer2 (6): 420–430. 
  6. Meyer, Rosana D.; Mohammadi, Moosi; Rahimi, Nader (13 January 2006). “A Single Amino Acid Substitution in the Activation Loop Defines the Decoy Characteristic of VEGFR-1/FLT-1*”The Journal of Biological Chemistry.
  7. Attie, Kenneth M (21 November 2012). “A single ascending-dose study of muscle regulator ace-031 in healthy volunteers”. Muscle and Nerve.

Adipotide – ascesa e caduta di un farmaco sperimentale.

Introduzione:

Come ben sappiamo, la maggior parte dei farmaci con potenziale sulla perdita di peso agiscono sul aumento della lipolisi e/o della termogenesi, ma anche sulla soppressione dell’appetito che può essere presente insieme alle prima citate reazioni iatrogene nella medesima molecola. Ma esiste un farmaco che si differenzia di molto dalle molecole classicamente utilizzate per la riduzione del peso/grasso. Questo farmaco non è molto conosciuto e fino a poco tempo fa era in fase di test su scimmie rhesus obese: si dice che “uccida” le cellule adipose. I ricercatori dell’Università del Texas pensavano che il farmaco potesse un giorno aiutare a combattere l’obesità negli esseri umani.

Infatti, basti pensare che nel giro di soli 20 anni (dal 1990 al 2010), si è verificato un drammatico aumento dell’obesità negli Stati Uniti e i tassi rimangono alti. Nel 2010, nessuno stato degli Stati Uniti aveva una prevalenza di obesità inferiore al 20%. Circa un adulto su tre e un bambino su sei sono obesi. L’obesità è oggi epidemica negli Stati Uniti e una delle principali cause di morte, attribuibile a malattie cardiache, cancro e diabete. L’Europa non se la passa sicuramente bene. Sulla base dell’indice di massa corporea, nel 2019 il 45% degli adulti europei era normopeso, mentre il 53% era in sovrappeso, con un 17% in condizione di obesità.

Nonostante gli sforzi significativi nell’ultimo decennio, pochissimi farmaci sono stati sviluppati con successo per il trattamento dei pazienti obesi. Attualmente, solo due farmaci approvati dalla Food and Drug Administration (FDA) per la perdita di peso sono disponibili negli Stati Uniti: il soppressore dell’appetito Fentermina e l’inibitore della digestione e assorbimento dei grassi Orlistat. L’Orlistat (Xenical) è un farmaco per la perdita di peso a lungo termine. Questo farmaco riduce la digestione e l’assorbimento dei grassi alimentari nello stomaco e nell’intestino. Altri tentativi di trattare l’obesità si sono concentrati prevalentemente su farmaci volti a sopprimere l’appetito o ad aumentare il metabolismo, ma questi sforzi sono stati ostacolati dai loro effetti collaterali. Sfortunatamente, per una persona nella media è comune riprendere peso indipendentemente dai metodi di trattamento dell’obesità applicati.

Un gruppo di ricercatori ha progettato un farmaco, il peptidomimetico ligando-diretto CKGGRAKDC-GG-D(KLAKLAK)2 (chiamato Adipotide), che è un peptide sintetico che innesca la morte del adipocita. Il farmaco agisce sul tessuto adiposo bianco. Il tessuto adiposo bianco è, per fare un esempio, il tipo di grasso malsano che si accumula sottocute e a livello viscerale.

Caratteristiche del Adipotide:

Più nello specifcio, sto parlando del Prohibitin-targeting peptide 1 (noto anche come prohibitin-TP01 e TP01; nome commerciale Adipotide), un peptidomimetico con sequenza CKGGRAKDC-GG-D(KLAKLAK)2. È un farmaco sperimentale proapoptotico[1] che ha dimostrato di causare una rapida perdita di peso nei topi[2] e nelle scimmie rhesus. [3] Il suo meccanismo d’azione è quello di colpire i vasi sanguigni specifici che riforniscono di sangue il tessuto adiposo, causare il restringimento dei vasi e l’apoptosi delle cellule adipose alimentate da quei vasi.[4] Il TP01 è progettato per legarsi a due recettori, il ANXA2 e quello della prohibitina, che sono specifici dei vasi sanguigni che riforniscono il tessuto adiposo bianco.[5]

Sequenza amminoacidica: Cys-Lys-Gly-Gly-Arg-Ala-Lys-Asp-Cys—Gly-Gly–(Lys-Leu-Ala-Lys-Leu-Ala-Lys)2
Formula Molecolare: C152H252N44O42
Peso Molecolare : 2611.41 g/mol

Studi sul Adipotide:

In precedenti ricerche precliniche, i topi obesi hanno perso circa il 30% del loro peso corporeo con questo peptidomimetico.[6] Scimmie di tre specie diverse hanno mostrato cambiamenti prevedibili e reversibili nella funzione del tubulo prossimale renale.[6] I livelli di grasso corporeo complessivo e addominale sono scesi, con effetti collaterali reversibili nel Peso, BMI e circonferenza addominale che hanno continuato a scendere per tre settimane dopo la fine del trattamento prima di iniziare lentamente a invertire il trend durante la quarta settimana del periodo di follow-up. Le scimmie negli studi non hanno mostrato segni di nausea o di evitamento del cibo. L’effetto renale era dose-dipendente, prevedibile e reversibile. Questa è una scoperta potenzialmente importante poiché gli effetti collaterali spiacevoli hanno limitato l’uso di farmaci approvati che riducono l’assorbimento dei grassi nell’intestino.

Nota: le barre nere sono in riferimento ai topi trattati con Adipotide.

Nel complesso, questi dati nei primati stabiliscono che l’Adipotide avrebbe potuto divenire un prototipo di una nuova classe di farmaci candidati che possono essere utili per trattare l’obesità negli esseri umani.


Comunque sia l’Adipotide risulta funziona prendendo di mira le cellule che si trovano nel tessuto adiposo bianco, come affermato da Steven Reinberg a USA Today. L’Adipotide uccide il grasso “interagendo con recettori specifici nei vasi sanguigni degli adipociti e innescando l’espressione di una proteina sintetica che fa morire le cellule. In seguito, quelle cellule morte vengono riassorbite dal corpo e metabolizzate.


Le scimmie trattate con questo peptide sono risultate più magre, almeno. In sole quattro settimane, le scimmie obese hanno perso l’11% del loro peso corporeo.[7] Le scimmie hanno anche perso il 27% del loro grasso addominale, come affermato da Tim Barribeau a io9. Attenzione però: le scimmie che erano già magre non hanno perso nemmeno un chilo, il che significa che la molecola potrebbe mirare solo al grasso extra, o subisce una riduzione nell’attività recettoriale (es. riduzione del numero e densità dei recettori target), senza intaccare la messa grassa essenziale alla sopravvivenza.


I test sono risultati senza dubbio promettenti per l’uso negli esseri umani. Di solito, i farmaci “bruciagrassi” sono testati sui topi. I ricercatori credono che questa ricerca sia particolarmente “rilevante perché è stata fatta con i primati”, ha affermato Jennifer Booton a Fox Business. Inoltre, le scimmie più grasse nello studio erano diventate corpulente grazie al loro stesso eccesso di cibo e alla mancanza di esercizio; proprio come molti umani obesi.

Come accennato in precedenza, uno studio su animali ha mostrato che l’Adipotide può portare a una significativa e rapida perdita di peso distruggendo l’apporto di sangue alle cellule adipose. Il farmaco in questione ha aiutato le scimmie rhesus obese a perdere in media l’11% del loro peso corporeo dopo quattro settimane di trattamento. Il farmaco, che funziona sulla base di un trattamento del cancro, mira alle proteine sulla superficie dei vasi sanguigni che alimentano gli adipociti bianchi e li distrugge rilasciando una molecola di sintesi che innesca un processo naturale di morte cellulare. I ricercatori guidati da scienziati dell’Università del Texas hanno prima studiato l’efficacia del nuovo farmaco su topi obesi che ha causato una diminuzione del 30% del loro peso corporeo. La prova successiva è stata effettuata su 15 scimmie in quanto le loro somiglianze con l’uomo li rendono un buon modello per prevedere la possibile efficacia e gli effetti collaterali di un farmaco nell’uomo, anche se sempre in maniera marginale. Dopo quattro settimane, i 10 primati che hanno ricevuto un’iniezione quotidiana di Adipotide hanno perso in media il 38,7% del loro grasso corporeo totale, rispetto al 14,8% degli altri cinque esemplari che sono stati trattati con placebo. Le scimmie trattate hanno anche perso il 27% del loro grasso addominale, come riportato dagli scienziati nella rivista Science Translational Medicine. [8] Anche l’indice di massa corporea (BMI) e la circonferenza addominale (giro vita) sono stati ridotti, mentre tutte e tre le misure erano invariate nelle scimmie del gruppo di controllo non trattate. Le scimmie macaco Rhesus sono state selezionate dalla colonia per lo studio in base alla loro condizione di obesità, contribuendo a fornire un modello di prova perfetto per l’obesità umana e di trattamento del diabete di tipo II.[4] Da notare, a proposito, è che il trattamento con Adipotide ha anche portato ad una migliore sensibilità all’insulina.[9]

A. Mostra la variazione del fabbisogno di insulina (area sotto la curva) per i gruppi trattati (rosso) e di controllo (blu). L’AUC è stata calcolata da un test IVGTT.
B. Mostra l’indice insulinogenico prima e dopo nei gruppi di trattamento (rosso) e di controllo (blu). I gruppi trattati mostrano una drastica riduzione della secrezione di insulina.
C. Variazione del consumo di cibo nei gruppi trattati (rosso) e di controllo (blu).

“Lo sviluppo di questo composto per uso umano fornirebbe un modo non chirurgico per ridurre effettivamente il tessuto adiposo bianco accumulato, in contrasto con gli attuali farmaci per la perdita di peso che tentano di controllare l’appetito o prevenire l’assorbimento del grasso alimentare”, ha affermato Renata Pasqualini, co-autore senior dello studio. I precedenti tentativi di trattare l’obesità si sono concentrati principalmente su farmaci volti a sopprimere l’appetito o a causare un aumento del metabolismo, ma questi sforzi sono stati ostacolati dai loro effetti collaterali. Il nuovo farmaco progettato dal gruppo MD Anderson include un agente che si lega a una proteina sulla superficie dei vasi sanguigni che supportano il grasso bianco e un peptide sintetico che innesca la morte delle cellule adipose, non appena il loro approvvigionamento di sangue cessa, le cellule adipose vengono riassorbite e metabolizzate. Il professor Wadih Arap, co-autore senior, ha affermato: “L’obesità è un importante fattore di rischio per lo sviluppo del cancro, più o meno l’equivalente dell’uso del tabacco, ed entrambi sono potenzialmente reversibili”.

Dallo studio su scimmie rhesus, la risonanza magnetica conferma che la perdita di peso deriva da una marcata diminuzione del volume del tessuto adiposo bianco. (A) La variazione percentuale del volume di grasso è stata determinata quantificando il volume con immagini di risonanza magnetica assiale T1-pesata. La variazione è rappresentata come variazione percentuale rispetto al basale (giorno 1) ed è significativamente diminuita alla fine del trattamento e alla fine del recupero (test di Mann-Whitney-Wilcoxon, P = 0,02 e P = 0,04, rispettivamente). Le barre di errore indicano il SEM (controllo, n = 3; trattato, n = 6). (B) Un modello a effetti misti dei dati nel tempo indica la significatività della diminuzione della percentuale di grasso per i gruppi trattati rispetto a quelli di controllo (P < 0,0001). (C) Immagini sagittali e assiali pesate in T1 rappresentative di uno degli animali trattati. L’intervallo del livello di finestra è indicato dalla barra colorata sulla destra. Le immagini assiali sono prese in corrispondenza della sezione trasversale indicata dalla linea bianca tratteggiata nell’immagine sagittale. Una diminuzione del contenuto di grasso è rappresentata da una diminuzione del livello della finestra (cioè dell’intensità della visualizzazione dell’immagine).

Come risultato delle sfide nello sviluppo di farmaci per la perdita di peso, attualmente c’è solo un farmaco per l’obesità approvato dalla FDA (e non solo) sul mercato, Alli, che riduce la digestione e l’assorbimento dei grassi alimentari. “Non ci può essere alcun dubbio sulla necessità di nuove strategie in merito”, ha detto Wadih Arap. “E questo rappresenta un salto di qualità in termini di una nuova strategia per il trattamento dell’obesità”. Pasqualini e il Dr. Wadih Arap, suo marito e anche un ricercatore del M.D. Anderson, sono stati in grado di sviluppare il farmaco per l’obesità dopo aver ideato una tecnica per “mappare” le varie reti di vasi sanguigni nel corpo umano. Durante più di un decennio di ricerca, hanno identificato i piccoli pezzi di proteina che si legano con le varie reti di vasi sanguigni nel corpo. In sostanza, quindi, hanno identificato lo “ZIP codes” per ciascuno di questi tipi di vasi sanguigni, e hanno sintetizzato agenti con “ZIP codes” per i vasi sanguigni delle cellule adipose che possono spegnerli. Il loro lavoro ha dimostrato che le diverse cellule hanno dei vasi sanguigni con “firme molecolari” distinte che i ricercatori paragonano ai codici postali. I ricercatori hanno teorizzato di poter privare i tumori del loro approvvigionamento di sangue combinando una terapia letale con una molecola che ha individuato il CAP dei vasi sanguinei in determinate cellule cancerose bloccandone il rifornimento di ossigeno e substrati energetici. Dopo aver identificato lo “ZIP codes” che pensavano potessero funzionare nel cancro alla prostata, si sono interrogati sulla possibilità di colpire i vasi che alimentano gli adipociti bianchi. [10]

Se iniettato su base giornaliera, i ricercatori ritengono che l’Adipodide potrebbe aiutare le persone a perdere il 40% del loro grasso corporeo in sole quattro settimane. Il team americano dietro il nuovo farmaco affermò che la loro formulazione fosse più sicura dei precedenti farmaci dietetici, che sono stati vietati per timori di sicurezza negli ultimi anni, poiché lavora direttamente sul corpo piuttosto che sul SNC.

Nonostante i riscontri positivi avuti su topi e scimmie, la ricerca sul Adipotide è stata interrotta nel 2019.[11] Tale decisione può essere riconducibile al potenziale effetto collaterale a carico dei reni, sebbene tale effetto fosse stato ridimensionato dalle dichiarazioni dei ricercatori per via della sua facile reversibilità.

Conclusioni:

Ora, sappiamo che l’Adipotide agisce sui vasi sanguinei degli adipociti bianchi causando una cessazione del flusso sanguineo e, di conseguenza, del rifornimento cellulare di ossigeno e substrati energetici: il risultato è l’apoptosi cellulare. Ma, come ho precedentemente riportato, sebbene la sua somministrazione in scimmie abbia portato ad una perdita del’11% del peso corporeo totale e il 27% della massa grassa addominale, la sua sperimentazione è stata praticamente interrotta nel 2019, nonostante l’espressione degli effetti collaterali fosse stata descritta come facilmente reversibile e non preoccupante (vedi funzione renale).

L’Adipotide non è un peptide sconosciuto agli atleti, soprattutto nella sottocultura del BodyBuilding. Sono circa 11 anni che se ne parla, anche se la discussione è sempre stata di nicchia rispetto ad altre molecole. Ed è proprio perchè se ne sa poco che bisogna fare dei dovuti chiarimenti.

Se si analizza con attenzione lo studio svolto su scimmie rhesus se ne può notare l’esatto significato dei dati, e su come questi potrebbero darci un idea su eventuali vantaggi e svantaggi di utilizzo.

Ad una coorte di scimmie (n = 15) sono stati somministrati tre livelli di dose di Adipotide (0,25, 0,43 e 0,75 mg/kg) al giorno per 28 giorni. Le scimmie rhesus magre che hanno ricevuto Adipotide (0,25 e 0,43 mg/kg) non hanno perso peso. Le scimmie del gruppo con la dose più alta hanno mantenuto il peso precedente allo studio o hanno mostrato una lieve perdita di peso.

Nelle scimmie sottoposte a necroscopia 24 ore dopo la dose finale di Adipotide, sono state osservate lesioni associate al rene che sono risultate dipendenti dalla dose; tali lesioni non erano presenti nel gruppo di controllo . Le lesioni osservate sono state classificate da minime a lievi nel gruppo a bassa dose, da minime a lievi nella maggior parte delle scimmie a dose media e da minime a moderate nel gruppo ad alta dose. Le lesioni primarie sono state classificate come degenerative/necrotiche (necrosi monocellulare) e reattive/rigenerative. Nelle scimmie sottoposte a necrosi alla fine del periodo di recupero, è stata osservata una degenerazione tubulare minima con poche cellule degenerate in una scimmia del gruppo a dose media e in due scimmie del gruppo ad alta dose. La rigenerazione tubulare e la necrosi tubulare (singola cellula con poche cellule necrotiche) erano minime in tutte le scimmie dopo il recupero. Pertanto, l’effetto collaterale principale dell’Adipotide è un danno renale relativamente lieve, prevedibile e reversibile e un’alterazione della funzione tubulare. L’accumulo anomalo di lipidi (compresa la steatosi epatica) non è stato osservato in nessuna delle scimmie che hanno ricevuto Adipotide.

E’ emerso, valutando dose-risposta ed effetti collaterali, che la dose ottimale era di 0.43mg/Kg peso per le scimmie rhesus, e non per l’uomo! La dose conservativa per l’uomo non è nota. Se dovessimo rapportare il dosaggio usato per le scimmie ad un dosaggio per l’uomo, utilizzando l’apposita formula, esso risulterebbe pari a circa 0.14mg/Kg per 28 giorni.

Valutazione antropometrica di scimmie rhesus obese trattate a dose fissa (0,43 mg/kg, sottocutaneo al giorno) di Adipotide. (Da A a C) La variazione percentuale media rispetto al basale del peso corporeo, della circonferenza addominale e dell’IMC è stata calcolata settimanalmente durante gli intervalli di trattamento (28 giorni) e di recupero (28 giorni) per ogni animale che ha ricevuto Adipotide o soluzione salina. Nel gruppo di trattamento, è stata osservata una marcata diminuzione (A) del peso corporeo medio (10,6%), (B) dell’IMC (10,0%) e (C) della circonferenza addominale (8,4%) rispetto alle misurazioni di base. Le barre di errore indicano il SEM (controllo, n = 5; trattato, n = 10). (Da D a F) Questi risultati erano statisticamente significativi (modello a effetti misti, P < 0,0001 per ogni variabile). Durante un periodo di recupero di 4 settimane, la diminuzione del peso corporeo, della circonferenza addominale e del BMI ha iniziato a invertirsi lentamente.

Va notato, inoltre, che l’effetto sensibile di perdita di grasso si è notato solo nelle scimmie in sovrappeso, mentre in quelle magre la differenza è stata irrisoria. Ciò significa che, se tale peptide venisse usato da un soggetto in sovrappeso o obeso l’effetto potrebbe essere decisamente più significativo sul totale della body fat presente alla fine della terapia rispetto all’inizio paragonato a, per esempio, un bodybuilder con il 10% di bf. Sto parlando del PARAGONE DEL TOTALE DELLA BODY FAT ALL’INIZIO E ALLA FINE DELLA TERAPIA INDIPENDENTEMENTE DALLA PERCENTUALE. in soldoni, è ovvio che uno con il 20% di bf avrà una perdita ponderale maggiore di uno con il 10%, partendo con più grasso… ecco, non mi sto riferendo a questo.

Questa differenza di risposta può essere spiegata attraverso meccanismi di controllo recettoriali che portano ad una sottoregolazione maggiore quanto più la percentuale di grasso e bassa.

Ovviamente non sto consigliando a nessuno di diventare una cavia da esperimenti, d’altronde non sappiamo praticamente nulla sugli effetti collaterali nell’uomo e sul loro grado anche qualora combaciassero in buona parte con quelli osservati nelle scimmie.

Gabriel Bellizzi

Riferimenti:

  1. “Prohibitin-targeting peptide 1”NCI Drug Dictionary. National Cancer Institutes. 2 February 2011.
  2. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (June 2004). “Reversal of obesity by targeted ablation of adipose tissue”. Nature Medicine. Nature Publishing Group. 10 (6): 625–32.
  3.  “Blood vessel mapping reveals four new ‘ZIP codes'”. medicalxpress. 24 October 2011. Retrieved 10 November 2011.
  4. Barnhart KF, Christianson DR, Hanley PW, Driessen WH, Bernacky BJ, Baze WB, et al. (November 2011). “A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys”Science Translational Medicine3 (108): 108ra112.
  5. Staquicini FI, Cardó-Vila M, Kolonin MG, Trepel M, Edwards JK, Nunes DN, et al. (November 2011). “Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients”Proceedings of the National Academy of Sciences of the United States of America
  6. Experts Applaud a Cancer Drug for Immediate Weight Loss | News Tonight.
  7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425411/
  8. PressTV – Experimental drug can help weight Loss.
  9. WTOP Mobile.
  10. Arrowhead Research Corp : The Wall Street Journal: Drug Offers Hope in Obesity Fight | 4-Traders.
  11.  “Prohibitin targeting peptide 1”Adis Insight. Springer Nature Switzerland AG.

AAS e memoria muscolare – l'”ipotesi dei guadagni muscolari permanenti” –

Introduzione:

La capacità di riacquisire la condizione della massa muscolare precedente a un periodo di deallenamento o inattività fisica è noto come “memoria muscolare”. Quindi, se un soggetto ha avuto una condizione muscolare ottimale (vedi muscoli più ipertrofici) in passato, ciò lo aiuterà a riportarli nuovamente nelle precedenti condizioni una volta ripreso un regolare stimolo allenante. Il concetto di memoria muscolare si basa in buona parte su qualcosa chiamato permanenza mio-nucleare. Il ‘mio’ in ‘mionucleare’ si riferisce al ‘muscolo’ e il ‘nucleare’ si riferisce alla parola ‘nucleo’: un organello della cellula. Prima di esplorare ulteriormente il concetto di memoria muscolare, e come gli AAS si leghino a questo, cerchiamo prima di rispolverare un po’ di concetti utili sui nuclei muscolari o mionuclei.

Informazioni di base sui nuclei muscolari/mionuclei:

Le cellule muscolo-scheletriche sono le singole cellule contrattili all’interno di un muscolo e sono spesso definite fibre muscolari.[1] Un singolo muscolo come il bicipite in un giovane individuo di sesso maschile adulto contiene circa 253.000 fibre muscolari.[2] 

Sezione 3D di una fibra del muscolo-scheletrico

Le fibre muscolo-scheletriche sono le uniche cellule muscolari multinucleate con i nuclei spesso indicati come mionuclei . Ciò si verifica durante la miogenesi con la fusione di mioblasti, ciascuno dei quali contribuisce a un nucleo.[3] La fusione dipende da proteine ​​muscolo-specifiche note come fusogeni chiamate myomaker e myomerger .[4] 

Molti nuclei sono necessari alla cellula muscolo-scheletrica per le grandi quantità di proteine ​​ed enzimi necessari per essere prodotti per il normale funzionamento della cellula. Una singola fibra muscolare può contenere da centinaia a migliaia di nuclei.[5]  Una fibra muscolare ad esempio nel bicipite umano con una lunghezza di 10cm può avere fino a 3000 nuclei.[5]  A differenza di una cellula non muscolare in cui il nucleo è posizionato centralmente, il mionucleo è allungato e si trova vicino al sarcolemma . I mionuclei sono disposti in modo abbastanza uniforme lungo la fibra con ciascun nucleo che ha il proprio dominio mionucleare dove è responsabile del supporto del volume del citoplasma in quella particolare sezione della miofibra.[4,5] 

Un gruppo di cellule staminali muscolari conosciute come cellule miosatelliti, anche cellule satelliti che si trovano tra la membrana basale e il sarcolemma delle fibre muscolari, sono normalmente quiescenti ma possono essere attivate dall’esercizio o anche condizioni patologiche per fornire mionuclei aggiuntivi per la crescita o la riparazione muscolare.[6] 

Detto più semplicemente, i muscoli sono costituiti da un insieme di fibre muscolari. Ogni fibra muscolare, o cellula muscolare, contiene più nuclei, l’organello di una cellula che contiene il DNA ed è il luogo dove avviene il processo di trascrizione dei geni. La maggior parte degli altri tipi di cellule umane contiene solo un nucleo, o in alcuni casi addirittura nessun nucleo (globuli rossi/Eritrociti). Per dare un’idea di quanti nuclei si stia parlando: le fibre muscolari di ratto contengono da 44 a 116 nuclei per millimetro di lunghezza della fibra, con le fibre muscolari di tipo 1 che contengono più nuclei per millimetro delle fibre muscolari di tipo 2.[7] Il numero sembra più basso negli esseri umani, come riportato da un ricercatore il quale segnala la presenza di circa 30 nuclei per millimetro di lunghezza della fibra nel muscolo del bicipite brachiale.[8] Come tali, le fibre muscolari possono contenere migliaia di mionuclei, dato che possono estendersi per diversi centimetri di lunghezza.

Poiché i nuclei cellulari delle fibre muscolari non sono in grado di dividersi (cioè sono differenziati terminalmente), le fibre muscolari dipendono dalle cellule satelliti circostanti per l’aggiunta di nuovi nuclei. Essenzialmente, le cellule satelliti sono cellule staminali delle fibre muscolari che si trovano schiacciate tra il sarcolemma (la membrana cellulare di una fibra muscolare) e la lamina basale (uno strato di matrice extracellulare che è avvolto intorno al sarcolemma). Sono stati scoperti e descritti per la prima volta da Alexander Mauro nella letteratura scientifica nel 1961.[9] Usando un microscopio elettronico, egli vide delle cellule “incastrate” tra il sarcolemma delle fibre muscolari di rana e la lamina basale. Le descrisse aventi una scarsità di citoplasma, con il nucleo che costituisce quasi l’intero volume della cellula satellite. Ha continuato a speculare sull’origine e sul ruolo delle cellule satelliti, toccando brevemente l’idea che potrebbero essere coinvolte nella risposta al trauma inflitto a una fibra muscolare. Cosa che, in effetti, sono.[10]

La micrografia elettronica di una cellula satellite di mammifero dall’articolo di Alexander Mauro del 1961. Descritta con le sue stesse parole: Sezione trasversale di una fibra muscolo-scheletrica del sartorio di ratto, fornita per gentile concessione del Dr. G. Palade. Le membrane plasmatiche apposte della cellula satellite (sp) e della cellula muscolare (mp) sono viste al confine interno della cellula satellite. La membrana basale (bm) può essere vista estendersi sul “gap” tra la membrana plasmatica della cellula muscolare e la cellula satellite. Incorporazione in metacrilato. Colorato con PbOH. × 22,000′. © The Rockefeller University Press. J Biophys Biochem Cytol 1961, 9:493-495.
  • L’ipotesi del dominio mionucleare e la permanenza mionucleare

La scoperta delle cellule satelliti e il loro ruolo nella rigenerazione muscolare fanno sorgere la domanda sulla misura in cui le cellule satelliti sono coinvolte nell’ipertrofia. Un’ipotesi chiamata “ipotesi del dominio mionucleare” si è agganciata a questo quesito. Essa postula che un mionucleo controlla una quantità limitata di citoplasma, e quindi, affinché la crescita muscolare abbia luogo, i mionuclei devono essere aggiunti alla fibra muscolare per sostenerla. Tre osservazioni chiave hanno sostenuto questa ipotesi, vale a dire:

  1. L’esposizione alle radiazioni γ rende le cellule satellite incapaci di dividersi e inibisce fortemente l’ipertrofia da sovraccarico nei modelli animali, mantenendo intatto il metabolismo cellulare o la sintesi proteica [11].
  2. I prodotti (organelli, membrane e proteine strutturali) derivati da un nucleo rimangono localizzati nelle sue vicinanze [12].
  3. Il rapporto citoplasma/mionucleo rimane abbastanza costante [13].

Questo implicherebbe un aumento del numero di mionuclei con la crescita di una fibra muscolare (ipertrofia), mentre diminuirebbe con una perdita di dimensioni della stessa (atrofia). Tuttavia, vari studi su animali suggeriscono che i mionuclei non si perdono durante l’atrofia.[14] Così è nato il paradigma della permanenza mionucleare: una volta che i mionuclei sono guadagnati con l’ipertrofia, non vengono persi di nuovo con il deallenamento. Questo potrebbe potenzialmente permettere alle fibre muscolari di ricrescere in modo più efficiente durante il successivo riallenamento e quindi servire come un meccanismo di “memoria muscolare”.

Il concetto di memoria muscolare basato sulla permanenza mionucleare illustrato da Bruusgaard et al.

AAS e permanenza mionucleare:

E gli AAS? Ciò che è chiaro è che l’uso di AAS aumenta il numero di mionuclei. Dosaggi crescenti di Testosterone Enantato portano ad un aumento del numero di mionuclei per mm di fibra muscolare.[15] Questo effetto non è poi così sorprendente: si osserva semplicemente questo effetto con praticamente tutte le modalità di induzione ipertrofica.

Ma che dire della loro permanenza? Questi mionuclei permangono una volta che la massa muscolare diminuisce di nuovo? In un esperimento su animali, da me già riportato anni fa, topi femmina sono stati trattati con Testosterone Propionato per 2 settimane, che ha portato a un aumento del 66% del numero di mionuclei e un aumento del 77% della fibra muscolare CSA [16]. La massa muscolare è tornata alla normalità dopo la successiva interruzione della somministrazione di Testosterone, ma il numero di mionuclei è rimasto elevato per almeno 3 mesi. 3 mesi potrebbe non sembrare molto, ma sulla scala temporale di un topo lo sono: i topi che hanno usato per lo studio vivono per circa 2 anni. Comunque, dopo questi 3 mesi, quando i topi sono stati sottoposti a sovraccarico per induzione ipertrofica, la CSA delle fibre muscolari è aumentata del 30% dopo 6 giorni, mentre quella dei topi di controllo non è aumentata significativamente. Dopo questo, la massa muscolare è aumentata in parallelo tra entrambi i gruppi, ma la CSA era ancora più alta del 20% nel gruppo che era stato precedentemente trattato con Testosterone dopo 14 giorni. Anche se questo non prova un nesso causale tra il numero più alto di mionuclei e l’ipertrofia, è comunque un’osservazione interessante.

Si noti come il gruppo che è stato trattato con Testosterone per 2 settimane, circa 3 mesi prima ha mostrato un forte aumento della massa muscolare rapidamente ottenuto in risposta al sovraccarico.

E negli esseri umani? Due studi hanno valutato questo e sono stati portati all’attenzione da Alexander Kolliari-Turner, uno studente con dottorato di ricerca presso la School of Sport and Health Sciences of the University of Brighton nel Regno Unito. Una è una tesi di master e l’altra è una tesi di dottorato.

Nella tesi di dottorato di Anders Eriksson [17], sono stati reclutati quattro gruppi di soggetti. Un gruppo di soggetti sedentari che fungeva da controllo (gruppo C), un gruppo di PowerLifter natural (gruppo P), un gruppo di powerlifter che usano AAS (gruppo PAS), e un gruppo di PowerLifter che hanno precedentemente usato AAS (gruppo PREV). I mionuclei per fibra muscolare sono stati determinati nei muscoli vasto laterale e trapezio. Il gruppo PREV aveva interrotto l’uso di AAS da almeno un anno (con una media di 8 anni). Infatti, l’area delle fibre muscolari misurata nel gruppo PREV era paragonabile a quella del gruppo P, e notevolmente più piccola di quella del gruppo PAS.

La distribuzione del dominio nucleare (nr. di nuclei per fibra diviso per l’area della fibra) per gruppo si trova nell’immagine qui sotto. Se ci fosse una permanenza dei mioonuclei, ci si aspetterebbe un dominio nucleare più piccolo, cioè più nuclei rispetto all’area delle fibre, nel gruppo PREV rispetto agli altri gruppi.

Chiaramente questo non è il caso del vasto laterale, ma è il caso del trapezio. È difficile dire cosa causa questa apparente discrepanza tra i due muscoli. O qualche proprietà che differisce tra i due muscoli, o il suo modo di utilizzo dopo la cessazione dell’uso di AAS, forse ha portato a apparente permanenza mionucleare nel muscolo trapezio.

Va notato, tuttavia, che questo era uno studio trasversale con un piccolo numero di soggetti (32 in totale). L’ideale sarebbe avere uno studio prospettico che valuti questo, anche se ciò è estremamente difficile su lunghi periodi di tempo, in quanto potrebbe richiedere almeno un anno o più prima che i cambiamenti diventino evidenti. In alternativa, anche uno studio trasversale con un gruppo di soggetti più grande sarebbe piuttosto interessante. Indipendentemente da ciò, questo presta una certa credibilità alla permanenza dei mionuclei negli esseri umani come risultato dell’uso di steroidi anabolizzanti in muscoli selezionati.

In una tesi di laurea di Lindholm et al. sono stati reclutati tre gruppi di soggetti: attuali consumatori di AAS (gruppo CAS), ex consumatori di AAS (gruppo FAS) e controllo allenati alla resistenza (gruppo CON) [18]. Gli ex consumatori di AAS avevano smesso di usarli per una media di 6,5 anni. In questo studio, sono state prese solo biopsie del muscolo vasto laterale. In particolare, non c’erano differenze significative nella CSA delle fibre muscolari tra i tre gruppi. Questo è senza dubbio il risultato delle dimensioni relativamente piccole del gruppo (34 soggetti in totale; un errore di tipo 2).

Una piccola, ma significativa, differenza nel dominio mio-nucleare è stata trovata tra le fibre muscolari di tipo 2 del gruppo FAS rispetto al gruppo CON, come si può vedere nella figura sottostante:

Questo suggerisce una permanenza mionucleare? Forse. La differenza era piccola e può essere facilmente spiegata anche dalla natura trasversale dello studio (e non c’era alcuna differenza rispetto agli attuali utilizzatori di AAS).

Le prove finora sono scarse. In ogni caso, quando si guarda alla permanenza mionucleare in generale, l’evidenza generale indica che questa regge a breve termine, ma mancano prove per il lungo termine [19]. Inoltre, non è chiaro se la permanenza mionucleare possa aiutare o meno il ritorno alla condizione muscolo-scheletrica precedente. E visti i dati di cui sopra, il dibattito sul fatto che l’uso di AAS porti o meno alla manifestazione della memoria muscolare come risultato della permanenza mionucleare, è tutt’altro che risolto.

Conclusione:

Come osservazione conclusiva: c’è anche un concetto di memoria muscolare basato su qualcosa di diverso dalla permanenza mionucleare, vale a dire, la memoria epigenetica.[20] In breve, questa si riferisce a modifiche apportate al DNA senza influenzare la sua sequenza nucleotidica, quindi senza cambiare il codice genetico. Ciò comporta l’aggiunta (o la rimozione) di gruppi metilici ai nucleotidi di Citosina e Adenina o modifiche degli istoni (ad esempio, metilazione o acetilazione di residui di aminoacidi delle proteine istoniche). Il risultato di ciò è che influisce sull’espressione genica. Questo potrebbe forse essere trattato in un futuro articolo, dato che più ricerche vengono gradualmente pubblicate su questa nuova ed interessante strada ipotetica.

A proposito di “memoria epigenetica”: questa figura illustra un modello di sviluppo della persistenza batterica basato sulla presenza di un potenziale effetto di “memoria” epigenetica che include l’eredità stabile di certi modelli di metilazione del DNA. Lo stato di metilazione del DNA cellulare potrebbe portare alla conservazione di alcuni profili di espressione genica che favoriscono la dormienza, conservati in alcune cellule dopo il risveglio dalla dormienza. Cinetica di uccisione bifasica adattata da. (A) Popolazione originale di cellule metabolicamente attive che potrebbero contenere un’intrinseca eterogeneità fenotipica. (B) Quando incontra lo stress, la maggior parte delle cellule metabolicamente attive muore, mentre una piccola frazione di cellule entra nello stato di persistenza. La popolazione di persister può essere in qualche modo eterogenea, cioè formata da diversi percorsi (stocastico contro specifico). (C) Dopo gli stimoli nutrizionali/la rimozione dello stress, alcuni persister si risvegliano. Qui, la maggior parte dei persister inizia rapidamente la crescita e si divide in cellule regolari e metabolicamente attive. Tuttavia, alcune cellule potrebbero sperimentare un effetto di “memoria” epigenetica. Qui, lo stato di metilazione del DNA di alcuni siti che si trovano a monte di regioni codificanti regolate per esprimere tratti che favoriscono la dormienza potrebbe essere mantenuto dopo la replicazione del DNA. (D) A livello di popolazione totale, la popolazione finale dopo il risveglio potrebbe essere ugualmente suscettibile allo stress come la popolazione originale in (A). Tuttavia, a livello di singola cellula, alcune cellule potrebbero contenere un effetto di “memoria” legato alla dormienza, basato sull’eredità di alcuni tratti epigenetici dipendenti dalla metilazione del DNA. (E) L’esistenza di un effetto di “memoria” epigenetica potrebbe potenzialmente aumentare la frequenza dei persister nel tempo durante ripetuti cicli di stress.

Gabriel Bellizzi

Riferimenti:

  1. “Structure of Skeletal Muscle | SEER Training”training.seer.cancer.gov.
  2. Klein, CS; Marsh, GD; Petrella, RJ; Rice, CL (July 2003). “Muscle fiber number in the biceps brachii muscle of young and old men”. Muscle & Nerve28 (1): 62–8.
  3. Cho, CH; Lee, KJ; Lee, EH (August 2018). “With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing”BMB Reports51 (8): 378–387.
  4. Prasad, V; Millay, DP (8 May 2021). “Skeletal muscle fibers count on nuclear numbers for growth”. Seminars in Cell & Developmental Biology119: 3–10.
  5. Snijders, T; Aussieker, T; Holwerda, A; Parise, G; van Loon, LJC; Verdijk, LB (July 2020). “The concept of skeletal muscle memory: Evidence from animal and human studies”Acta Physiologica
  6. Quarta, M; Cromie, M; Chacon, R (20 June 2017). “Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss”Nature Communications.
  7. Tseng, Brian S., Christine E. Kasper, and V. Reggie Edgerton. “Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers.” Cell and tissue research 275.1 (1994): 39-49.
  8. Schmalbruch H. Skeletal Muscle. Berlin: Springer-Verlag; 1985.
  9. Mauro, Alexander. “Satellite cell of skeletal muscle fibers.” The Journal of Cell Biology 9.2 (1961): 493-495.
  10. Forcina, Laura, et al. “An overview about the biology of skeletal muscle satellite cells.” Current genomics 20.1 (2019): 24-37.
  11. Rosenblatt, J. David, David Yong, and David J. Parry. “Satellite cell activity is required for hypertrophy of overloaded adult rat muscle.” Muscle & nerve 17.6 (1994): 608-613.
  12. Pavlath, Grace K., et al. “Localization of muscle gene products in nuclear domains.” Nature 337.6207 (1989): 570-573.
  13. Allen, David L., Roland R. Roy, and V. Reggie Edgerton. “Myonuclear domains in muscle adaptation and disease.” Muscle & nerve 22.10 (1999): 1350-1360.
  14. Gundersen, Kristian, and Jo C. Bruusgaard. “Nuclear domains during muscle atrophy: nuclei lost or paradigm lost?.” The Journal of physiology 586.11 (2008): 2675-2681.
  15. Sinha-Hikim, Indrani, et al. “Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men.” American Journal of Physiology-Endocrinology and Metabolism 285.1 (2003): E197-E205.
  16. Egner, Ingrid M., et al. “A cellular memory mechanism aids overload hypertrophy in muscle long after an episodic exposure to anabolic steroids.” The Journal of physiology 591.24 (2013): 6221-6230.
  17. Eriksson, Anders. Strength training and anabolic steroids: a comparative study of the trapezius, a shoulder muscle and the vastus lateralis, a thigh muscle, of strength trained athletes. PhD Diss. 2006.
  18. Lindholm, Jesper Bøgh, et al. Effects of Long-Term Supplementation of Androgen Anabolic Steroids on Human Skeletal Muscle – Evidence for Muscle Memory? Master’s Thesis, 2019.
  19. Snijders, Tim, et al. “The concept of skeletal muscle memory: Evidence from animal and human studies.” Acta Physiologica 229.3 (2020): e13465.
  20. Seaborne, Robert A., et al. “Human skeletal muscle possesses an epigenetic memory of hypertrophy.” Scientific reports 8.1 (2018): 1-17.

GH e cadenza di somministrazione: giornaliera o a giorni alterni?

Introduzione:

In questi anni di divulgazione scientifica applicata allo Sport e in particolar modo al BodyBuilding, ho trattato il GH sotto l’aspetto delle modalità d’uso per specifico periodo di preparazione (“Bulk” o “Cut“), ho parlato della sua capacità soppressiva sulla secrezione di GH endogeno, del suo impatto sulla funzione tiroidea e sui limiti della lipolisi da esso indotta. Mancava però qualcosa. E questo “qualcosa” comprendeva una questione dibattuta nei forum da anni: iniezioni di GH “die” o “EOD”?

Come di mia consuetudine, mi servirò della letteratura scientifica ad oggi disponibile per trattare nel modo più accurato ed esaustivo, rimanendo pur sempre comprensibile da chi non avvezzo alla biochimica e all’endocrinologia, il tema annoso della cadenza di somministrazione del GH.

Iniziamo subito andando ad esaminare la “genesi del dibattito” …

La genesi del dibattito in uno studio:

Il trattamento dei bambini con bassa statura idiopatica mediante iniezioni giornaliere di GH umano (hGH) è seguito, dopo la sua sospensione, da una decelerazione della crescita con livelli sierici normali di GH e IGF-I.

Il studio ivi riportato [1] è stato progettato per capire e prevenire la decelerazione della crescita. I ricercatori hanno ipotizzato che questo fenomeno sia dovuto alla tolleranza a livello dell’organo bersaglio, che la tolleranza si sviluppi in risposta alla farmacocinetica non fisiologica dell’hGH iniettato quotidianamente, e che la terapia con hGH a giorni alterni lo prevenga.

Trentotto bambini prepuberi con bassa statura idiopatica, di età 3.3-9.0 anni, sono stati esaminati. Le loro altezze erano meno di -2 SD score, il tasso di crescita era superiore al 10 ° percentile per l’età, l’età ossea era inferiore al 75% dell’età cronologica, e la concentrazione sierica stimolata di GH era maggiore di 10 μg/litro.

I bambini sono stati abbinati per sesso, altezza e punteggio SD della velocità di crescita per ricevere hGH giornaliero o a giorni alterni alla stessa dose settimanale di 6 mg/m2 per un periodo di 2 anni. Le velocità di crescita medie del 1° e 2° anno erano rispettivamente 3.4 e 2.3 SD score per il gruppo di terapia giornaliera e 3.0 e 2.0 SD score per il gruppo a giorni alterni (P = NS).

Velocità di crescita dei bambini trattati con GH a giorni alterni (▨) o con un regime giornaliero di GH graphic prima, durante e 2 anni dopo l’interruzione della terapia. I valori sono la media ± SD. *, P < 0,05; **, P < 0,01.

Nei 6 mesi iniziali dopo la sospensione della terapia, la velocità di crescita è decelerata fino a un nadir di -3,9 SD score nel gruppo di terapia giornaliera, mentre è decelerata nel gruppo del giorno alternato a solo -0,2 SD score (P < 0,01).

Velocità di crescita pre-trattamento e cumulativa a 4 anni dei bambini trattati con GH a giorni alterni (▨) o con un regime giornaliero di GH graphic. I valori sono la media ± SD. *, P < 0.002.

Durante tutti i 2 anni di interruzione della terapia, quest’ultimo gruppo ha mantenuto tassi di crescita medi da -0,2 a -1,2 SD score, simili alle loro velocità di pretrattamento. Il gruppo giornaliero ha recuperato lentamente per riprendere il loro tasso medio di pretrattamento solo alla quarta valutazione semestrale fuori dalla terapia.

Avanzamento annuale della crescita ossea nei bambini trattati con GH a giorni alterni (▨) o con un regime giornaliero di GH graphic prima, durante e 2 anni dopo l’interruzione della terapia. I valori sono la media ± SD.

La velocità di crescita cumulativa a 4 anni (2 anni con e 2 anni senza terapia) del gruppo a giorni alterni era maggiore di quella del gruppo a terapia giornaliera (media, 0,9 contro 0,3 SD score; P < 0,002). Alla fine del periodo di terapia di 4 anni, la previsione di altezza da adulto del gruppo a giorni alterni era maggiore di quella del gruppo giornaliero di una media di 6,5 cm (P = 0,06).

Punteggio SD dell’altezza dei bambini trattati con GH a giorni alterni (▨) o con un regime giornaliero di GH graphic prima, durante e 2 anni dopo l’interruzione della terapia. I valori sono la media ± SD. *, P < 0,05; **, P < 0,01.

Caratteristiche cliniche di 20 pazienti che hanno ricevuto iniezioni giornaliere di hGH, rispetto a 18 pazienti che hanno ricevuto una terapia di GH a giorni alterni a una dose settimanale identica per metro quadrato di superficie corporea. 1= Test di stimolazione dell’Arginina.

Discussione oggettiva sui dati appresi:

Si tratta senza dubbio di uno studio molto approfondito e ben controllato, durato quattro anni e pubblicato sul The Journal of Clinical Endocrinology & Metabolism. Esso mostra chiaramente che le iniezioni di hGH a giorni alterni (EOD) sono molto più vantaggiose a lungo termine delle iniezioni quotidiane.

Le iniezioni quotidiane sembrano abbassare drasticamente la sensibilità del corpo alla propria secrezione di GH, e al GH esogeno. Lo studio comprendeva bambini con bassa statura idiopatica, ma i risultati possono essere estrapolati e trasposti, almeno in buona parte, a soggetti in fisiologia, e cioè non carenti di hGH e che possono utilizzare hGH esogeno periodicamente per Anti-Aging e Bodybuilding, per esempio.

Come abbiamo visto, i 38 bambini sono stati divisi in due gruppi:

  • Gruppo I: ha ricevuto iniezioni giornaliere di hGH;
  • Gruppo II: ha ricevuto iniezioni di hGH a giorni alterni.

È importante notare che il dosaggio settimanale totale di hGH era lo stesso per entrambi i gruppi. Entrambi i gruppi hanno ricevuto la terapia di hGH in modo contiguo per due anni. La loro crescita naturale è stata seguita per altri due anni dopo la fine della terapia hGH.

Sono stati tutti misurati a intervalli di tre mesi durante il periodo di quattro anni – due anni con la terapia di hGH e due anni dopo. Il GH sierico è stato misurato con un kit RIA a doppio anticorpo.

Durante la terapia con hGH, entrambi i gruppi hanno accelerato la loro crescita in modo sostanziale:

  • Gruppo I: ricevendo le iniezioni giornaliere di hGH nel primo e secondo anno la velocità di crescita era di 3.4 e 2.3 SD;
  • Gruppo II: ricevendo le iniezioni di hGH a giorni alterni aveva un tasso nella velocità di crescita di 3.0 e 2.0 SD per il primo e il secondo anno, rispettivamente.

Nel corso dei sei mesi iniziali dopo il termine della terapia, la velocità di crescita è decelerata ad un basso nadir pari a -3.9 SD di punteggio per il gruppo di terapia a somministrazione giornaliera, mentre è decelerato nel gruppo di terapia a giorni alterni di solo -0.2 SD di punteggio.

Durante i 2 anni seguenti la fine della terapia, quest’ultimo gruppo al quale sono state somministrate iniezioni EOD ha mantenuto tassi di crescita da -0.2 a -1.2 di punteggio SD, che è simile al loro punteggio SD prima del trattamento con hGH esogeno. Il gruppo giornaliero ha anch’esso mostrato un recuperato, seppur molto lentamente, alla quarta valutazione semestrale dopo la conclusione della terapia. La velocità di crescita cumulativa di 4 anni – 2 anni con e 2 anni senza terapia – del gruppo a giorni alterni era maggiore di quella del gruppo con terapia giornaliera: media, 0.9 contro 0.3 SD score.

Alla fine del periodo di terapia di 4 anni, la previsione dell’altezza adulta del gruppo a giorni alterni era maggiore di quella del gruppo giornaliero di una media di 6,5 cm – che è più di 2,5 in altezza.

Per dirlo il più semplicemente possibile, per tradurre ciò che può significare tutto ciò per un bodybuilder, l’uso giornaliero di hGH darà solo trascurabilmente migliori risultati a breve termine. Tuttavia, l’uso di hGH a giorni alterni darà risultati radicalmente migliori a lungo termine e un recupero molto migliore. Ciò significa che il corpo può tornare all’omeostasi molto più velocemente.

I due gruppi hanno ottenuto lo stesso dosaggio settimanale totale di hGH, così che il gruppo “EOD” è stato trattato con iniezioni che comprendevano il totale del giorno successivo (es. 4UI/die e 8UI/EOD), ovvero il doppio di UI del gruppo trattato ogni giorno, ma con un totale settimanale identico! I ricercatori hanno riportato che la dose era di minore importanza rispetto al programma delle iniezioni. La terapia di hGH quotidiana per 3 anni ha causato una crescita subnormale che persiste per 1,5 anni (molto male).

Può essere che il problema non sia legato tanto ai livelli di secrezione di hGH o IGF-1, ma piuttosto alla diminuita sensibilità del corpo ad esso. La parte interessante è che i livelli sierici di GH e i livelli sierici di IGF-I e IGF-binding protein sono rimasti inalterati, o relativamente mutati.

La secrezione endogena di GH del corpo riprende in pochi giorni, anche dopo una terapia di hGH a lungo termine.

L’ipotesi dei ricercatori è che la tolleranza può essere insita nella trasduzione del segnale del GH in organi bersaglio selettivi in risposta alla scomparsa del modello unico pulsatile di GH sierico durante la terapia con GH esogeno. Ciò è dovuto al fatto che il GH assunto tramite iniezioni SubQ (sottocutanea) non corrisponde alla pulsatilità di rilascio del GH del corpo.

Pulsatilità circadiana del GH negli uomini (in altro) e nelle donne (in basso).

La somministrazione giornaliera SubQ di GH si traduce in un profilo di GH sierico non fisiologico, con livelli di picco a 3-4 ore e un lento declino nel corso delle successive 12-24 ore. Questo modello può essere considerato come una somministrazione continua, piuttosto che i naturali impulsi di GH fisiologici del corpo con una frequenza di circa otto impulsi al giorno.

Farmacocinetica GH esogeno somministrato per via parenterale sottocutanea.

Supponendo che la sindrome da astinenza sia legata alla tolleranza che potrebbe essersi sviluppata verso l’hGH o l’IGF-I, si è cercato di prevenirla con un trattamento a giorni alterni. Inoltre, le dosi di hGH utilizzate in terapia spesso stimolano l’IGF-I a livelli sierici sovrafisiologici, suggerendo che i tessuti bersaglio del IGF-I possono ovviamente essere sovrastimolati rispetto al normale. Il meccanismo sembra, quindi, risiedere nell’azione del hGH e del IGF-I nei confronti di loro tessuti bersaglio. E’ stato dimostrata, fino a prova contraria, quindi, che la terapia a giorni alterni con hGH nei bambini con un asse GH-IGF-I intatto impedisce la sindrome da astinenza.

Legame GH-GHR (Recettore del GH) e seguenti pathways.

I ricercatori collegano l’analogia con un’altra sindrome di tolleranza e astinenza endocrina: “la terapia a giorni alterni con glucocorticosteroidi previene la tolleranza a quell’ormone in misura sostanziale. È interessante notare che la sindrome da astinenza da glucocorticoidi può verificarsi anche mentre l’asse ipotalamo-ipofisi-surrene è intatto, indicando che la tolleranza ai glucocorticoidi si è sviluppata a livello dell’organo bersaglio”.

Conclusioni:

Adesso sappiamo che le iniezioni giornaliere di GH abbassano drasticamente la sensibilità del corpo all’attività dell’ormone a livello dei tessuti bersaglio, sia durante l’uso di GH esogeno sia post utilizzo (bassa risposta ai propri impulsi di GH endogeno).

Come abbiamo potuto constatare, la desensibilizzazione si è verificata, a parità di dosaggio settimanale, in risposta alla somministrazione quotidiana, a differenza del protocollo EOD.

Lo stesso GH ha una breve emivita quando viene iniettato per via endovenosa, la via di somministrazione ottimale, ma l’iniezione IM o subQ porta a un rilascio lento e prolungato e a un’elevazione al di sopra dei livelli basali per 12-24 ore, che comporta una stimolazione cronica dei recettori. Questo porta a una drammatica desensibilizzazione del tessuto bersaglio che può persiste per un lungo periodi di tempo.

Per maggiori benefici, la somministrazione di hGH in ambito Bodybuilding, che sia per la crescita muscolare, la lipolisi e l’antiaging dovrebbe aderire al dosaggio a giorni alterni per massimizzare i risultati e prevenire la tolleranza nei recettori dei tessuti bersaglio. Il dosaggio EOD per ridurre la tolleranza – mantenendo una maggiore sensibilità sia all’HGH esogeno che alla produzione endogena del corpo – ha dimostrato di produrre risultati a lungo termine molto migliori rispetto alla somministrazione quotidiana.

Repetita iuvant: La somministrazione EOD mantiene una maggiore sensibilità sia all’HGH esogeno che alla produzione endogena dell’organismo post utilizzo rispetto alle iniezioni quotidiane, mentre il dosaggio settimanale rimane lo stesso.

Praticamente, il doppio dosaggio di HGH dovrebbe essere somministrato in un giorno con un intervallo di circa 8 ore. Ad esempio al mattino e alla sera e il giorno successivo dovrebbe essere omesso, e così via. Questa somministrazione previene la tolleranza nei recettori del GH e massimizza i risultati a lungo termine.
Si prega di notare che il dosaggio settimanale rimane lo stesso.

Un esempio di somministrazione “EOD” potrebbe essere il seguente:

L’hGH assunto per 12-16 settimane o più a 8 UI ogni due giorni, diviso in 4 UI a digiuno subito dopo il risveglio e altre 4 UI prese otto ore dopo. Questo approccio è abbastanza conservativo e può essere ottimale. La dose può essere ulteriormente suddivisa, se lo si desidera, per ridurre il totale delle UI iniettate in qualsiasi momento (es. 2UI appena sveglio – 2UI pre-workout – 2UI 4h dopo – 2UI prima di andare a dormire).

Ovviamente, si può estendere oltre i quattro mesi, e prendere più UI al giorno. L’approccio sopra esposto è di 8UI EOD, quindi è equivalente ad una assunzione giornaliera di 4UI, che è la media utilizzata dalla maggior parte degli utilizzatori di PEDs.

Bisogna però mettere da parte gli assolutismi, dal momento che lo studio in questione ha preso in considerazione l’altezza negli adolescenti, non la massa magra in culturisti adulti, o gli effetti Anti-Aging in adulti di mezza età, quindi è ancora una questione di sperimentazione sul campo ed estrapolazione se i risultati possono essere applicati a questi sottogruppi di utilizzatori. Comunque sia, è vero che i bodybuilder non sono bambini, né carenti di hGH idiopatico, ma la risposta sottoregolativa dei recettori del GH sono una possibilità. Vi ricordo che la “GH resistenza” esiste.

Poiché i dosaggi settimanali rimangono gli stessi, così come la durata dell’uso di hGH, il solo cambiamento del protocollo “die” a quello “EOD” varrebbe la pena di essere testato, dato che sembra statisticamente una pratica migliore rispetto al protocollo ordinario/giornaliero.

Vorrei concludere con il rendere noto che “l’ho usato tutti i giorni per mesi e mi sono tirato!” è una affermazione vuota di significato reale e realmente applicabile al discorso qui trattato: vantaggio di una somministrazione a giorni alterni di GH! Oltretutto, caro il mio bongo, dubito fortemente che tu stessi utilizzando solo GH, e che le altre molecole da te cosomministrate non abbiano avuto, a diverso grado, un impatto sulla massa grassa! Inoltre, dato ciò, non puoi affermare né uno svantaggio né una parità d’effetto delle due metodiche di cadenza nella somministrazione… a meno che tu non abbia testato tale pratica su un numero sufficiente di persone, dividendole in due gruppi trattati con una o l’altra modalità e, con la minore presenza possibile di bias, tu abbia potuto valutare oggettivamente i risultati…

Gabriel Bellizzi

Riferimenti:

1- https://academic.oup.com/jcem/article/87/8/3573/2846550?login=false

Impatto degli aumenti nei livelli fisiologici del Testosterone sulla composizione corporea.

Introduzione:

Con il nuovo anno riprendo la pubblicazione degli articoli e lo faccio trattando un argomento che spesso, direttamente o indirettamente, è emerso nelle discussioni tra clienti e colleghi.

Il Testosterone è senza dubbio l’ormone simbolo per l’uomo della strada, preso dalla frenesia del mondo moderno e dal raggiungimento di obbiettivi tanto futili quanto irrealistici. Lo so che ve lo state domandando e la risposta è “si”. Questa entrata filosofica è perfetta per introdurre una questione legata al Androgeno per eccellenza.

Tanto per fare un esempio: quanti rimedi da banco vi sono stati proposti per migliorare i livelli plasmatici di Testosterone? Tra Tribulus Terrestris, Maca e Boro il conto è presto perso. E quanti di questi supplementi OTC hanno dato reali risultati? Misurabili, quantificabili con i livelli di partenza e che si sono tradotti in significativi miglioramenti della composizione corporea? …

La necessità di un ottimale apporto di Zinco, Vitamina D e altri macro e microelementi implicati nella biosintesi androgena, nella Testosterone:Estradiolo ratio ecc… non sono di certo messi in dubbio. Ad esserlo è il marketing, è l’affermazione sensazionalistica che va sempre con cura soppesata e valutata in concreto.

Ma, ipotizzando un miglioramento dei livelli di Testosterone endogeno rispetto al basale di partenza, ed entro l’intervallo di riferimento standard (es. per gli uomini dai 240 ai 950ng/dl dopo i 18 anni), garantite da trattamenti iatrogeni, quanto può incidere ciò nel miglioramento della composizione corporea?…

L’articolo che segue si basa sulle informazioni raccolte nella Research Review di James Krieger.

Iniziamo dalla letteratura scientifica

È assodato che l’uso AAS, che comporta la somministrazione di dosi sovrafisiologiche di Testosterone o ormoni correlati, provoca marcati aumenti delle dimensioni muscolari, ben oltre ciò che può essere ottenuto di base fisiologica dal soggetto, anche se questi guadagni addizionali sono limitati geneticamente. Nonostante ciò, mentre è assodato che dosi sovrafisiologiche di Testosterone, suoi derivati e analoghi aumenteranno significativamente i potenziali guadagni ipertrofici, questo non ci dice se le variazioni del Testosterone all’interno di un normale intervallo fisiologico possano avere qualche impatto. C’è una vasta gamma di livelli ematici di Testosterone da un uomo all’altro. Ad esempio, in uno studio nel quale sono stati presi in esame 456 uomini sani e non obesi di età compresa tra 19 e 39 anni, l’intervallo delle concentrazioni di Testosterone nel sangue (misurato al mattino dopo un digiuno notturno) era il seguente:

Lo studio di cui sopra è stato eseguito su un campione di individui della  Framingham Heart Study Generation 3. Tuttavia, gli intervalli di concentrazione di Testosterone possono variare a seconda della popolazione e del dosaggio utilizzato per misurare il Testosterone. Anche i laboratori variano molto nei loro intervalli di riferimento. Travison et al. hanno estrapolato i dati da quattro importanti studi di coorte e hanno utilizzato modelli statistici per stabilire intervalli di riferimento che potrebbero essere applicati in diversi laboratori. Ecco la gamma di concentrazioni di Testosterone nel sangue che hanno stabilito:

Indipendentemente dall’intervallo di riferimento utilizzato, non c’è dubbio che vi sia un’ampia variazione nei livelli di Testosterone tra gli uomini, anche tra gli uomini sani e non obesi (poiché, come ben sappiamo, l’obesità è associata a un livello di Testosterone inferiore). Ciò solleva la questione se le variazioni in un intervallo normale possano influire sensibilmente sui guadagni muscolari. Un uomo con livelli di Testosterone naturalmente più alti riesce ad avere un maggior margine ipertrofico muscolare rispetto ad un uomo con livelli più bassi, anche se entrambi gli uomini sono all’interno di un intervallo normale? La risposta a questa domanda può avere particolare rilevanza per gli uomini che invecchiano. Il Testosterone diminuisce con l’età, ed è un altro dato di fatto, sebbene l’attività contro resistenza e una alimentazione sana possono rallentarne il declino. Ad esempio, ecco i dati dello studio French Telecom, che mostra il calo del Testosterone in tutti i percentili con l’età degli uomini.

Percentili di distribuzione plasmatica del Testosterone in un campione di 1.408 uomini caucasici dello studio Telecom, Parigi, Francia, 1985-1987

Ancora una volta, si può vedere l’ampia variazione nei livelli fisiologici di Testosterone, che vanno da 350-400ng/dL nel 5° percentile 850-1000ng/dL nel 95° percentile. Il declino continua negli anni ’60, ’70 e oltre. Ecco i dati che mostrano i livelli medi di Testosterone nei decenni di durata della vita; questi dati sono tratti da sei studi:

Testosterone totale (ng/ml) per fascia di età (moltiplicare per 100 per ottenere ng/dL); dati da 6 diversi studi.

Poiché anche la massa muscolare diminuisce con l’età e poiché gli uomini con bassi livelli di Testosterone mostrano tassi di perdita muscolare più rapidi rispetto agli uomini con livelli più alti, potremmo ipotizzare che gli uomini più anziani potrebbero trarre beneficio dal portare il Testosterone nell’intervallo fisiologico medio-alto.

Pertanto, tutti questi dati sollevano una serie di domande importanti:

  • I livelli di Testosterone di base sono correlati alla risposta all’allenamento?
  • Il Testosterone estremamente basso compromette la massa muscolare e i guadagni muscolari?
  • Le variazioni all’interno del normale range fisiologico influiscono sulla massa muscolare?
  • Se i livelli di Testosterone sono bassi o al limite, portare i livelli fino alla fascia media o superiore aiuta a migliorare la massa muscolare?
  • Se le variazioni nel normale range fisiologico hanno un impatto sulle condizioni muscolari negli uomini, hanno lo stesso impatto anche nelle donne?

Diamo un’occhiata alla ricerca per poter cercare di dare una risposta a queste domande.

I livelli basali di Testosterone sono correlati con la risposta all’allenamento?

Un modo per esaminare se esiste una relazione tra Testosterone in range fisiologico e guadagni muscolari è quello di guardare le risposte all’allenamento di un insieme di individui e vedere se i livelli di Testosterone di base sono correlati alla quantità di muscoli guadagnata da ciascuna persona. McCall et al. non hanno trovato alcuna correlazione tra i livelli basali di Testosterone e i cambiamenti nella dimensione muscolare in giovani uomini allenati a livello amatoriale. Tuttavia, Ahtiainen et al. hanno trovato una forte correlazione tra i livelli di Testosterone di base e il miglioramento della forza isometrica massima in 21 settimane. Ma la correlazione con l’ipertrofia non è stata affrontata.

Data la relazione tra l’ipertrofia e l’espressione di forza isometrica, potremmo ipotizzare che ci fosse una relazione tra il Testosterone di base e l’ipertrofia in questo studio, ma non è possibile saperlo con certezza.

In uno studio di Bhasin et al., uomini con infezione da HIV con Testosterone basso (<349ng/dL) sono stati assegnati in modo casuale a gruppo placebo, solo allenamento contro-resistenza, solo iniezioni di Testosterone o Testosterone e allenamento contro-resistenza combinati.

I livelli di Testosterone al basale non erano correlati con la variazione della massa magra (FFM) e non c’erano differenze significative nel guadagno assoluto di FFM tra uomini che avevano livelli di Testosterone <275ng/dL e uomini che avevano livelli di 275-350ng/dL .

E’ possibile anche confrontare i guadagni muscolari tra maschi e femmine, poiché gli uomini hanno 10 volte più Testosterone delle donne. Se i livelli di Testosterone di base fossero correlati con la risposta all’allenamento, ci aspetteremmo che gli uomini abbiano maggiori guadagni rispetto alle donne. Tuttavia, quando uomini e donne vengono sottoposti a programmi di allenamento contro-resistenza, mentre i guadagni muscolari assoluti sono maggiori negli uomini, i guadagni muscolari relativi (cioè i guadagni percentuali) sono per lo più simili.

Nel complesso, questi dati limitati suggerirebbero che i livelli di Testosterone non influiscono realmente sui guadagni. Tuttavia, si tratta di dati trasversali e non sono realmente progettati per affrontare la questione se le variazioni del Testosterone fisiologico abbiano un impatto sui guadagni di massa muscolare.

Pertanto, è necessario esaminare alcune ricerche in cui i livelli di Testosterone vengono direttamente manipolati.

Livelli di Testosterone estremamente bassi compromettono la massa muscolare e i guadagni muscolari?

Un modo per esaminare l’impatto del Testosterone sui guadagni muscolari è vedere cosa succede quando si sopprime la produzione di Testosterone. Maura et al. ha somministrato a giovani uomini il Lupron, un farmaco antiandrogeno che sopprime la produzione naturale di Testosterone. I livelli di Testosterone sono scesi da 535ng/dL a 31ng/dL dopo 10 settimane. Pertanto, la media dei soggetti trattati con Lupron aveva livelli di Testosterone simili a quelli di una donna.

La massa magra è diminuita di 2,1 kg e la sintesi proteica dell’intero corpo è diminuita del 13%. Naturalmente, non c’era alcun tipo di allenamento in questo studio. Forse l’allenamento con i pesi potrebbe interagire con questa risposta.

Kvorning et al. hanno somministrato a giovani uomini il Goserelin, che sopprime la produzione naturale di Testosterone, o un placebo. Gli uomini, che avevano una minima esperienza di allenamento contro-resistenza, si sono impegnati in un programma di allenamento della forza di 8 settimane. I livelli di Testosterone sono scesi da 651ng/dL a 57ng/dL, e poi 31ng/dL nel gruppo che ha ricevuto il Goserelina.

La soppressione del Testosterone non ha compromesso i miglioramenti nelle prestazioni del 10-RM rispetto al placebo. Tuttavia, i miglioramenti nella forza isometrica erano significativamente inferiori con il Goserelina.

I miglioramenti nella massa magra delle gambe erano significativamente inferiori per il gruppo Goserelina e anche la massa corporea magra totale tendeva verso quella direzione (valore P di 0,07, dove 0,05 è considerato significativo). L’aumento medio della massa magra è stato di 1kg maggiore nel gruppo placebo rispetto al gruppo Goserelina. La differenza nella massa magra della gamba era di 0,2kg.

Pertanto, questo studio ha dimostrato che la soppressione della produzione di Testosterone ha compromesso i guadagni di massa magra, ma la differenza non era marcata, pari a circa 1kg di differenza complessiva nei guadagni di massa magra in 8 settimane.

Non sono state eseguite misurazioni dirette della dimensione muscolare, sebbene le grandi differenze nei guadagni di forza isometrica probabilmente indichino che i guadagni muscolari erano inferiori con la soppressione del Testosterone. Quindi, questi dati suggerirebbero che c’è un impatto del Testosterone sul guadagno muscolare, pur essendo di piccola entità.

Molecola di Goserelina. La Goserelina è un agonista delle gonadotropine iniettabile (agonista GnRH), conosciuta anche come agonista dell’Ormone di Rilascio dell’Ormone Luteinizzante (LHRH). 

Quindi le variazioni all’interno dell’intervallo fisiologico normale influiscono sulla massa muscolare?

Nessuna delle ricerche discusse finora può davvero dirci se le variazioni all’interno del normale range fisiologico possono avere un impatto sulla massa muscolare. Ci sono tre modi in cui è possibile rispondere a questa domanda. Il primo modo è guardare ai dati trasversali. Più semplicemente si tratta di prendere grandi gruppi di uomini e di dividerli in categorie in base ai loro livelli di Testosterone. Quindi si osserva se la massa muscolare differisce tra gli uomini in diverse categorie o se i livelli di Testosterone sono correlati ai livelli di massa muscolare.

  • He et al. hanno esaminato 270 uomini sedentari dell’HERITAGE Family Study. Dopo aver controllato per età e ascendenza, il Testosterone non era correlato alla massa magra. È interessante notare, tuttavia, che era correlato negativamente con l’indice di massa magra (FFM diviso per altezza al quadrato, simile all’IMC), il che significa che le persone con un indice FFM più elevato avevano livelli più bassi di Testosterone. Questo significa che avere più Testosterone significa in realtà avere meno muscoli? No! Questi dati sono confusi dal fatto che alcuni degli uomini erano obesi e che l’indice di massa corporea più elevato e le percentuali di grasso corporeo più elevate erano associate a un livello di Testosterone più basso. Ecco i livelli di testosterone per quartili di BMI; è possibile notare che i livelli di Testosterone diminuiscono all’aumentare dell’IMC.

Poiché gli uomini obesi hanno anche più FFM, questo può far credere che ci sia una relazione negativa tra FFM e livelli di Testosterone. Ciò di cui si ha bisogno per comprendere la questione è una ricerca che esamini la relazione negli individui non obesi.

Testosterone per quartili di BMI negli uomini. 1 nmol/L = 0,0347 ng/dL

Poiché gli uomini obesi hanno anche più FFM, questo può far sembrare che ci sia una relazione negativa tra FFM e livelli di Testosterone. Ciò di cui si necessita per comprendere la questione è una ricerca che esamini la relazione negli individui non obesi.

  • Van Den Beld et al. non hanno trovata alcuna relazione tra Testosterone e massa magra negli uomini anziani (età 73-94 anni).
  • Mouser et al. hanno raccolto dati sul Testosterone e sulla composizione corporea di 252 uomini nel National Health And Nutrition Examination Survey (NHANES) del 1999-2000 di età compresa tra 18 e 85 anni. Uomini che non rientravano nell’intervallo normale per il Testosterone (da 240 a 950ng/dL). ) non sono stati inclusi nell’analisi. Gli uomini sono stati suddivisi in quartili in base ai loro livelli di Testosterone. Gli uomini hanno mostrato quantità progressivamente più elevate di massa magra nella parte inferiore del corpo con livelli crescenti di Testosterone, anche dopo aver aggiustato la media per età, razza, presenza di diabete, partecipazione auto-riferita all’attività fisica, proteina C-reattiva e assunzione di proteine ​​​​nella dieta. I quartili 3 e 4 erano statisticamente significativi rispetto al quartile 1. Un modello in qualche modo simile è emerso per la parte superiore del corpo, sebbene non vi fosse alcuna differenza tra il quartile 3 e 4.

Questi dati hanno mostrato che gli uomini nel 3° quartile avevano il 14,2% in più di massa magra nell’area inferiore e il 5,6% in più di massa magra in quella superiore rispetto agli uomini nel 1° quartile. Gli uomini del 4° quartile avevano il 22,1% in più di massa magra nell’area inferiore e il 5,6% in più di massa magra in quella superiore rispetto agli uomini del 1° quartile. Se si prendesse un ipotetico uomo nel 1° quartile con 17kg di massa magra nell’area inferiore, si potrebbe prevedere che un uomo nel 3° quartile possa avere 19,4kg e un uomo nel 4° quartile 20,6kg. Pertanto, questi dati hanno mostrato che gli uomini nell’estremità superiore dell’intervallo fisiologico del Testosterone avevano una massa corporea magra maggiore rispetto agli uomini nell’estremità inferiore, anche tenendo conto di altre variabili che potrebbero influenzare il Testosterone.

I dati trasversali di Mouser indicano che esiste potenzialmente una relazione tra i livelli di Testosterone nell’intervallo fisiologico e la massa magra di cui si dispone. Tuttavia, un problema con i dati trasversali è che non possono stabilire causa ed effetto. Un altro modo in cui è possibile affrontare la questione se le variazioni all’interno di un intervallo fisiologico influiscano sulla massa muscolare è sopprimere la produzione naturale di Testosterone usando farmaci, quindi somministrare dosi diverse di Testosterone e osservare se c’è un effetto dose-risposta. Ci sono quattro studi che hanno fatto questo.

  • Shalendar Bhasin et al. hanno somministrato a giovani uomini sani un agonista dell’ormone di rilascio delle gonadotropine (GnRH) per sopprimere la secrezione endogena di Testosterone. Hanno quindi somministrato agli uomini iniezioni settimanali di 25, 50, 125, 300 o 600mg di Testosterone Enantato per 20 settimane. Ecco i livelli ematici medi di Testosterone per le diverse dosi; come prevedibile, i livelli ematici sono aumentati con l’aumentare delle dosi e le dosi da 300 e 600mg hanno ovviamente portato a livelli di Testosterone al di sopra del normale intervallo fisiologico.

C’è stato un aumento dose-dipendente della massa magra; maggiori livelli ematici di Testosterone hanno portato a maggiori aumenti della FFM.

Anche il volume muscolare della coscia è aumentato in modo dose-dipendente.

La variazione della massa magra e la variazione del volume muscolare del quadricipite erano significativamente correlate con i livelli ematici di Testosterone.

Nel complesso, questo studio ha mostrato un effetto dose-risposta del Testosterone sulla dimensione muscolare, anche all’interno dell’intervallo fisiologico. Infatti, il solo passaggio dalla fascia bassa del fisiologico (306ng/dL) alla fascia media (542ng/dL) ha comportato un aumento della massa magra di 2,8 kg.

  • Bhasin ha ripetuto lo stesso esperimento in uomini più anziani di età compresa tra 60 e 75 anni. I risultati erano molto simili; i grafici seguenti mostrano gli effetti dose-risposta negli uomini più anziani.
  • Un terzo studio di Shalendar Bhasin ha coinvolto un design simile. La secrezione naturale di Testosterone è stata soppressa utilizzando il Lupron in uomini sani di età compresa tra 18 e 50 anni. Agli uomini sono state quindi somministrate dosi di 50, 125, 300 o 600 mg/settimana di Testosterone Enatnato, con o senza un inibitore della 5α-reduttasi (un farmaco che blocca la conversione del Testosterone in Diidrotestosterone [DHT]). I risultati sono stati ancora una volta simili, con una maggiore massa magra all’aumentare dei livelli ematici di Testosterone.
  • Finkelstein et al. hanno somministrato la Goserelina a 198 uomini sani di età compresa tra 20 e 50 anni per sopprimere i loro livelli di Testosterone. Sono stati quindi assegnati in modo casuale a ricevere giornalmente un gel placebo, o 1,25g, 2,5g, 5g o 10g di un gel contenente Testosterone per 16 settimane. Altri 202 uomini sono stati sottoposti allo stesso protocollo, tranne per il fatto che hanno ricevuto anche un inibitore dell’Aromatasi (Anastrozolo) per sopprimere la conversione del Testosterone in Estradiolo. C’è stato un effetto dose-risposta delle diverse dosi di Testosterone sui livelli ematici del ormone in questione, che vanno da al di sotto dell’intervallo normale fisiologico per le dosi di 0 e 1,25g, fino all’estremità superiore dell’intervallo fisiologico per la dose di 10g. Le barre nere rappresentano il gruppo trattato con Anastrozolo, mentre le barre rosse rappresentano il gruppo non trattato con Anastrozolo.
Livelli di Testosterone nel sangue con diverse dosi di un gel contenente Testosterone, dopo la soppressione del Testosterone endogeno con Goserelina. Le barre rosse rappresentano un gruppo che ha ricevuto Anastrozolo, un inibitore dell’aromatasi, per ridurre la conversione del Testosterone in Estradiolo. Dati da Finkelstein et al., NEJM, 2013

I cambiamenti nella massa magra e nell’area muscolare della coscia hanno mostrato un po’ di effetto dose-risposta, anche se non così chiaro come gli quanto osservato negli articoli di Bhasin che hanno utilizzato somministrazione per iniezioni. Nessuna dose di Testosterone ha provocato una significativa perdita di massa magra, mentre la dose più alta ha portato al guadagno maggiore di questa, sebbene molte delle differenze non fossero statisticamente significative. I numeri uguali non indicano differenze statisticamente significative rispetto ad altre barre.

C’era un’enorme quantità di variazione nel modo in cui gli individui rispondevano al Testosterone, come si può vedere in questo grafico a dispersione.

Un terzo modo per esaminare se le variazioni in un intervallo fisiologico influiscono sui guadagni muscolari è vedere se portare il +stosterone al limite molto superiore dell’intervallo normale (come quello che si verifica negli studi sui contraccettivi maschili di Testosterone) influisce sulla massa magra. Herbst et al. ha studiato l’impatto del testosterone esogeno (100 mg di testosterone enathnato a settimana) su uomini sani con normali livelli di testosterone. I livelli di testosterone sono aumentati da 570 ng/dL a 734 ng/dL (il livello subito prima dell’iniezione successiva), con un picco di 1196 ng/dL (24 ore dopo l’iniezione). Pertanto, il livello di picco era al limite molto superiore del range di normalità e il minimo era nella parte superiore del normale. Massa magra aumentata di 2,5 kg. Nel complesso, questi tre corpi di prove (dati trasversali, dati sulla risposta alla dose e dati sui contraccettivi maschili) indicano che le variazioni all’interno dell’intervallo fisiologicamente normale influiscono sulla massa magra che si trasporta. Ora, qui c’è una differenza tra quanta massa magra porti e quanto guadagnerai da un programma di allenamento (ne parleremo più avanti), ma sembra esserci un effetto. Il che ci porta alla nostra prossima domanda…

Se i livelli di Testosterone sono bassi o al limite del limite basso, portare i livelli fino al livello medio o superiore aiuta a migliorare la condizione della massa muscolare?

Partendo dal precedente quesito, cosa succede se si prendono delle persone con bassi livelli di Testosterone e li si aumenta i livelli con iniezioni di Testosterone esogeno? Fortunatamente c’è la ricerca a darci una risposta.

  • Urban et al. hanno reclutato 6 uomini sani e anziani con un’età media di 67 anni. I loro livelli di Testosterone erano di 480ng/dL o meno e sono stati somministrati loro iniezioni di Testosterone per 4 settimane per raggiungere livelli simili a quelli degli uomini più giovani. Sia la forza muscolare che la sintesi proteica muscolare sono migliorate, suggerendo che aumentare i livelli all’interno dell’intervallo fisiologico può aiutare a migliorare le condizioni della massa e la forza muscolare. Una limitazione è che la massa muscolare non è stata direttamente misurata; sono state determinate solo la sintesi proteica muscolare e la forza.
  • Sullivan et al. hanno reclutato 71 uomini di età compresa tra 65 e 93 anni e li hanno assegnati in modo casuale a uno di 4 gruppi:

Esercizio a bassa resistenza (3 x 8 con 20% del 1-RM) + Placebo

Esercizio a bassa resistenza + 100 mg/settimana di Testosterone

Esercizio di resistenza ad alta intensità (3 x 8 all’80% del 1-RM) + Placebo

Esercizio di resistenza ad alta intensità + 100 mg/settimana di Testosterone

Le iniezioni di Testosterone hanno più che raddoppiato i livelli del ormone rispetto al placebo, portando i livelli alla fascia alta del normale (804 ng/dL contro 304 ng/dL). Anche i guadagni nell’area della sezione trasversale dei muscoli a metà coscia sono stati più del doppio con le iniezioni di Testosterone rispetto al placebo. I guadagni di forza erano molto più alti nella condizione di esercizio a bassa resistenza quando veniva somministrato Testosterone rispetto al placebo. Tuttavia, quando l’allenamento era ad alta intensità, non c’era più un beneficio significativo del Testosterone, indicando che il carico di allenamento aveva un impatto maggiore sulla forza rispetto al Testosterone in questo studio.

  • Bhasin et al. hanno trattato uomini ipogonadici (età 19 – 47 anni) con 100mg di Testosterone Enantato a settimana per 10 settimane. I livelli medi di Testosterone al basale sono aumentati da 72ng/dL (leggermente al di sopra dell’intervallo per una donna media) a 767ng/dL alla settimana 10. La massa magra è aumentata di 5kg, la dimensione del tricipite è aumentata del 12% e la dimensione del quadricipite è aumentata del 8%.
  • Bhasin et al. hanno reclutato uomini con infezione da HIV con bassi livelli di Testosterone e li hanno trattati con una crema topica di Testosterone per 12 settimane. I livelli di Testosterone sono migliorati da 258ng/dL a 367ng/dL. La massa magra è aumentata di 1,4kg.
  • In un altro studio del Dr. Bhasin, uomini con infezione da HIV con bassi livelli di Testosterone (<349 ng/dL) sono stati assegnati in modo casuale a uno dei 4 seguenti gruppi:
  • Placebo
  • Testosterone Enatnato (100 mg/settimana)
  • Allenamento di resistenza
  • Testosterone + allenamento di resistenza

Il trattamento con Testosterone ha aumentato i livelli ematici da una media di 201 – 205ng/dL a 311 – 337ng/dL. La massa magra è aumentata di 4kg nel gruppo solo Testosterone, 2kg nel gruppo solo allenamento e 1,6kg nel gruppo allenamento + Testosterone. Il volume muscolare della coscia è aumentato di 40cm³ nel gruppo solo Testosterone, 62cm³ nel gruppo solo allenamento e 44cm³ nel gruppo combinato. Non è chiaro il motivo per cui non vi è stato alcun effetto combinato nel gruppo allenamento + Testosterone.

  • Sattler e colleghi hanno somministrato a uomini anziani (età media 71 anni) 5 o 10g al giorno di Testosterone transdermico (formulazione per somministrazione sulla pelle). Gli uomini trattati avevano livelli ematici di Testosterone di 550ng/dL o meno (la concentrazione media era 385 nel gruppo 5g/die e 350 nel gruppo 10g/die). Le concentrazioni medie di Testosterone sono aumentate di 150ng/dl nel gruppo 5g/die (aumentando i livelli a circa 535ng/dl) e 500ng/dl nel gruppo 10g (aumentando i livelli a circa 850ng/dl). La massa corporea magra è aumentata di 1kg nel gruppo 5g/die e di 1,6kg nel gruppo 10g/die.
  • Basaria et al. hanno reclutato uomini con Testosterone basso (<350 ng/dL) a causa dell’abuso di oppiacei e hanno somministrato loro un 5g/die di gel contenente Testosterone. Il testosterone medio è aumentato da 243ng/dL a 790ng/dL. La massa magra aumentata di 1kg.
  • Storer et al. hanno reclutati uomini di età superiore ai 59 anni con livelli di Testosterone tra 100 e 400ng/dL. Agli uomini è stato somministrato 7,5g di un gel contenente Testosterone o un placebo al giorno per 3 anni. Il Testosterone ematico è aumentato da 307 ng/dL a 567 ng/dL nel gruppo gel. La massa corporea magra è aumentata di 0,7kg.
  • Brodsky e colleghi hanno osservato gli effetti della somministrazione di Testosterone negli uomini con livelli di questo ormone inferiori a 200 ng/dL. I livelli di Testosterone sono aumentati gradualmente da 106 ng/dL a 576 ng/dL in 4 mesi. E da 432 ng/dL in 6 mesi. Queste erano le concentrazioni più basse osservate prima di ogni iniezione. Le iniezioni sono state somministrate ogni 2 settimane; l’ultimo livello di Testosterone misurato è stato una settimana dopo l’ultima iniezione ed era di 1277ng/dL, appena al di sopra del range fisiologico. La massa magra è aumentata di 8,7kg. La sintesi proteica muscolare mista è aumentata del 56% e la sintesi proteica miofibrillare è aumentata del 46%. La sintesi proteica muscolare totale in tutto il corpo è aumentata del 71-87% (da circa 2,4 grammi all’ora a 4,3 grammi all’ora).
  • Snyder et al. hanno somministrato a uomini con Testosterone basso (a causa di una malattia) un cerotto cutaneo con Testosterone per 3 anni. I livelli di Testosterone sono aumentati da 78ng/dL a 407ng/dL. La massa magra è aumentata di 3,1kg.
  • Wang e colleghi hanno somministrato a uomini con bassi livelli di Testosterone un cerotto o uno dei due diversi gel (50mg o 100 mg/giorno) per 90 giorni. Il Testosterone è aumentato da 236 ng/dL a 417 ng/dL nel gruppo cerotto, da 236 ng/dL a 552 ng/dL nel gruppo del gel da 50mg e da 248 ng/dL a 791 ng/dL nel gruppo del gel da 100mg. La massa corporea magra è aumentata rispettivamente di 1,2 kg, 1,3 kg e 2,7 kg in questi gruppi.
  • In un altro studio di Wang, agli uomini con bassi livelli di Testosterone (<300 ng/dL) sono state somministrate varie dosi di gel di Testosterone per un massimo di 42 mesi. I livelli totali sono aumentati di circa 260 ng/dL e sono rimasti nell’intervallo medio-basso normale per la durata dello studio. La massa magra è aumentata di 2,9kg.
  • Tenover ha reclutato uomini di età compresa tra 57 e 76 anni, con livelli di Testosterone inferiori a 400 ng/dL, e ha iniettato loro 100 mg di Testosterone Enantato a settimana. I livelli ematici medi sono aumentati da 334 ng/dl a 568 ng/dl. La massa magra è aumentata di 1,8kg.
  • Snyder e colleghi hanno assegnato casualmente a uomini di età superiore ai 65 anni un cerotto di Testosterone o a un placebo. I livelli di Testosterone sono aumentati da 367 ng/dL a 625 ng/dL in 6 mesi. La massa magra è aumentata di 1,6 kg in 6 mesi.
  • Ferrando et al. hanno reclutato uomini di età pari o superiore a 60 anni e con livelli di Testosterone nel sangue inferiori a 480 ng/dL somministrando loro Testosterone Enatnato o un placebo su base settimanale per 6 mesi. Il livello medio basale di Testosterone era 363 ng/dL. Le iniezioni di Testosterone sono state regolate individualmente per cercare di mantenere un livello ematico tra 490 e 807 ng/dL, sebbene ciò non abbia avuto un successo totale e molti individui abbiano riscontrato livelli leggermente superiori a tale obiettivo. Il livello medio a 6 mesi era di 882 ng/dL. La massa magra è aumentata di 4,2 kg, mentre è diminuita di 2 kg nel gruppo placebo. Il volume muscolare delle gambe è aumentato di 488 ml, mentre è diminuito di 96 ml nel gruppo placebo. Il Testosterone ha anche determinato un aumento dell’equilibrio netto delle proteine ​​muscolari, a causa di una diminuzione del catabolismo delle proteine ​​muscolari.
  • Dias et al. hanno reclutato uomini di età compresa tra 65-82 anni e livelli di Testosterone <350 ng/dL assegnandoli in modo casuale a un placebo, Anastrozolo (un inibitore dell’Aromatasi) o un gel di Testosterone. Inibendo l’enzima Aromatasi, l’enzima che converte il Testosterone in Estradiolo, è possibile aumentare efficacemente i livelli di Testosterone, ed è una cosa largamente risaputa. L’Anastrozolo ha aumentato il Testosterone da 272 ng/dL a circa 500 ng/dL a 6 mesi; la massa magra è aumentata di 1,5kg. Il Testosterone somministrato attraverso il gel ha aumentato i livelli dell’ormone da 300 ng/dL a circa 650 ng/dL e la massa magra non ha raggiunto un aumento statisticamente significativo (0,9 kg).
  • Magnusson e colleghi hanno randomizzato soggetti diabetici di tipo 2 di età compresa tra 50 e 70 anni trattandoli con un Testosterone gel o un placebo per 6 mesi. I livelli di Testosterone sono aumentati da 205 ng/dL a 637 ng/dL e la massa magra è aumentata di 1,9 kg.
  • Ribeiro e Abucham hanno somministrato a uomini ipogonadici Clomifene Citrato, il quale causa un aumento del Testosterone endogeno legandosi ai recettori degli estrogeni ipotalamici. Legandosi ai recettori degli estrogeni, induce il cervello a percepire che non ci siano così tanti estrogeni nel corpo per garantire l’omeostasi. Questo porta ad un aumento di GnRH seguito da LH e FSH. L’LH (Ormone Luteinizzante), stimola le cellule di Leydig nei testicoli a sintetizzare più Testosterone. I livelli di Testosterone nei “responder” sono aumentati da 201 ng/dL a 435 ng/dL dopo 3 mesi e la massa magra è aumentata di 1 kg.
  • Liu et al. hanno reclutato uomini più anziani con bassi livelli di Testosterone e somministrato loro iniezioni di gonadotropina corionica umana (HCG). L’HCG, mimando l’LH, stimola i testicoli a sintetizzare Testosterone. Il Testosterone è aumentato da 320 ng/dL a circa 720 ng/dL e la massa magra è aumentata di 2 kg.
  • Bayram et al. hanno somministrato a uomini ipogonadici iniezioni di HCG. Il Testosterone è aumentato da 39 ng/dl (nell’intervallo) a 512 ng/dl, con un aumento di 473 ng/dl. La massa magra è aumentata di 2,8 kg.
  • In uno studio di Casaburi et al., uomini con BPCO e basso livello di Testosterone (≤400 ng/dL) sono stati assegnati in modo casuale a uno dei 4 gruppi:

-Placebo
-Testosterone Enantato (100 mg/week)
-Resistance Training
-Testosterone + Resistance Training

Le iniezioni di Testosterone hanno aumentato i livelli ematici da 302 ng/dL nel gruppo senza allenamento a 595 ng/dL e da 408 ng/dL a 656 ng/dL nel gruppo con allenamento. La massa magra è aumentata di 2,3 kg nel gruppo solo Testosterone, 0,2 kg nel gruppo solo resistance training e 3,29 kg nel gruppo Testosterone + resistance training. Va notato che l’allenamento è stato eseguito solo nella parte inferiore del corpo. Se si osservano i guadagni di massa magra delle gambe, erano 1,07kg nel gruppo solo Testosterone, 0,49 kg nel gruppo solo resistance training e 1,41 kg nel gruppo combinato.

Ecco un riassunto di tutti questi studi appena discussi, in cui i livelli bassi o al limite del livello di Testosterone sono stati aumentati in un intervallo fisiologico utilizzando iniezioni o sistemi di somministrazione transdermica. Puoi vedere che tutti hanno mostrato impatti positivi sulla massa magra. Alcuni hanno avuto aumenti relativamente piccoli del Testosterone (come circa 100-250 ng/dL) e hanno mostrato aumenti significativi della massa magra di circa 1-2 kg. In alcuni di questi studi, i soggetti si trovavano nella fascia più bassa del range di normalità (piuttosto che al di sotto del range di riferimento), e anche con quei soggetti, portare i livelli fino alla fascia medio-alta del range fisiologico ha avuto benefici positivamente apprezzabili.

E’ possibile vedere che i guadagni di massa magra con le iniezioni ( righe arancioni) tendono ad essere maggiori rispetto alla somministrazione transdermica ( righe grigie). Ciò è probabilmente legato al fatto che le iniezioni causano un picco iniziale di Testosterone che può essere all’estremità superiore dell’intervallo fisiologico, se non superare leggermente l’intervallo fisiologico.

Tipicamente, in questi studi, il Testosterone viene misurato 1-2 settimane dopo l’iniezione, rappresentando il minimo o il livello più basso di Testosterone. Pertanto, i livelli finali di Testosterone non rappresentano i livelli di picco raggiunti. Si può vedere questa differenza quando si guarda lo studio di Brodsky et al, dove il livello di picco, misurato 1 settimana dopo l’iniezione, era tre volte superiore al livello più basso, misurato 2 settimane dopo l’iniezione. Pertanto, tutti questi studi sulla terapia sostitutiva del Testosterone (TRT) dimostrano un beneficio nella massa magra dallo spostamento al di sotto dell’intervallo fisiologico, o dall’estremità inferiore dell’intervallo fisiologico, all’intervallo fisiologico medio o alto. Pertanto, sembra che anche il passaggio da una fascia bassa della gamma fisiologica a quella superiore abbia un vantaggio.

Testosterone più alto = Muscolo basale più alto, solo tassi di guadagno leggermente maggiori.

Nel complesso, i dati trasversali, gli studi dose-risposta, gli studi sui contraccettivi maschili e gli studi su TRT (compresi quelli in cui il Testosterone al basale era ancora normale) mostrano che le variazioni del Testosterone all’interno dell’intervallo fisiologico hanno un impatto sulla massa magra e muscolare. Questo significa che qualcuno con un livello di Testosterone più alto guadagnerà più velocemente di qualcuno con un livello più basso? Non proprio. Quando si guarda il corpo delle prove, il maggiore impatto del Testosterone sembra essere sul mantenimento di un certo livello di base della massa muscolare, piuttosto che sul tasso di guadagno muscolare. Ad esempio, i malati di cancro alla prostata sono spesso sottoposti a terapia di deprivazione di androgeni, in cui i loro livelli di Testosterone sono stati soppressi. In questo studio, il Testosterone medio era 45,7 ng/dL (all’interno dell’intervallo di una donna), rispetto a 430 ng/dL per i controlli. La sintesi proteica muscolare a riposo e a stomaco pieno era più bassa nei pazienti deprivati ​​di androgeni. Tuttavia, quando l’alimentazione è stata combinata con l’allenamento contro-resistenza, la risposta alla sintesi proteica muscolare non era statisticamente diversa dai controlli (sebbene la media grezza fosse ancora leggermente inferiore).

Tassi di sintesi proteica muscolare in soggetti di controllo rispetto a pazienti in terapia di deprivazione androgenica (ADT). La sintesi proteica muscolare è significativamente più bassa a riposo e anche dopo un pasto (FED). Tuttavia, dopo l’allenamento contro-resistenza, la sintesi proteica muscolare non è significativamente diversa dai controlli dopo un pasto (EX-FED).

Questo è supportato anche quando si confrontano i guadagni muscolari tra maschi e femmine. Gli uomini hanno 10 volte più Testosterone delle donne, con maggiori livelli di base di massa muscolare, ed è risaputo. Tuttavia, quando uomini e donne vengono sottoposti a programmi di allenamento contro-resistenza, mentre i guadagni muscolari assoluti sono maggiori negli uomini, i guadagni muscolari relativi (cioè i guadagni percentuali) sono per lo più simili.

Mentre il guadagno percentuale nello studio di cui sopra era leggermente favorito negli uomini, non lo era di molto. Tuttavia, il guadagno assoluto è stato quasi il doppio di quello negli uomini rispetto alle donne. Pertanto, un aumento del 15% della massa muscolare negli uomini sarà generalmente maggiore su base assoluta rispetto alle donne, poiché gli uomini hanno una linea di base più ampia.

Una terza linea di supporto a questo concetto viene dal famoso studio Bhasin del 1996 sugli steroidi anabolizzanti. In questo studio di 10 settimane, uomini normali sono stati assegnati in modo casuale a uno dei quattro gruppi:

  • Placebo senza allenamento
  • Testosterone senza allenamento
  • Placebo con allenamento contro-resistenza
  • Testosterone con allenamento contro-resistenza.

Il testosterone è stato somministrato in dosi sovrafisiologiche (600 mg/settimana). I livelli di testosterone sono stati elevati a 2828 – 3244 ng/dL con le iniezioni, rispetto ai livelli normali di 453 – 667 ng/dL nel gruppo placebo. L’iniezione di testosterone, senza allenamento, ha comportato un aumento della massa magra di 3,2 kg. Il solo allenamento ha comportato un aumento della massa magra di 2 kg. Quando l’allenamento è stato combinato con l’iniezione di testosterone, l’aumento di massa magra è stato di 6,1 kg. La dimensione del muscolo quadricipite è aumentata in modo simile nel gruppo testosterone + nessun allenamento e nel gruppo solo allenamento, mentre i guadagni sono stati raddoppiati nel gruppo testosterone + allenamento.

La cosa interessante qui è che, quando guardi questi dati, puoi vedere che c’era principalmente un effetto additivo, piuttosto che sinergico, del testosterone e dell’allenamento. La FFM è aumentata di 3,2 kg con il solo testosterone. È aumentato di 2 kg solo con l’allenamento. Quando sommi queste due quantità, ottieni 3,2 + 2 = 5,2 kg, che è ragionevolmente vicino al guadagno di 6,1 kg osservato nel gruppo combinato. In altre parole, solo circa 0,9 kg potrebbero essere spiegati da un effetto sinergico tra testosterone e allenamento. Puoi anche vedere un effetto simile per l’aumento delle dimensioni del quadricipite. Il cambiamento nella dimensione del quadricipite era più o meno lo stesso nei gruppi solo testosterone e solo allenamento, ed era per lo più additivo nel gruppo combinato. Ancora una volta, solo una piccola parte del cambiamento nella dimensione del quadricipite potrebbe essere spiegata da un effetto sinergico tra testosterone e allenamento.

Questo è simile ai dati osservati quando osserviamo uomini e donne. I maggiori livelli di testosterone negli uomini non aumentano molto il tasso di guadagno rispetto alle donne; è solo che dà agli uomini una linea di base più alta per cominciare, e quindi i guadagni assoluti sono maggiori. Se ci fosse un forte effetto sinergico tra testosterone e allenamento, allora i guadagni relativi negli uomini sarebbero significativamente maggiori rispetto alle donne, ma ovviamente non è così.

Una quarta evidenza viene dallo studio di Casaburi e colleghi sugli uomini con BPCO, di cui si è brevemente accennato in precedenza. In questo studio è stato eseguito solo l’allenamento delle gambe. I guadagni di massa magra delle gambe nel gruppo combinato allenamento+testosterone erano 1,41 kg, che è vicino alla somma dei guadagni sperimentati dal gruppo solo testosterone (1,07 kg) e il gruppo solo allenamento (0,49 kg). Questo suggerisce ancora una volta che gli effetti del testosterone e dell’allenamento di resistenza sono per lo più additivi e non sinergici.

Pertanto, i tuoi livelli di testosterone influenzano la quantità di muscoli che porti in giro, indipendentemente dal fatto che ti alleni o meno. Quindi, quando inizi ad allenarti, la tua reattività all’allenamento è per lo più simile indipendentemente dal fatto che tu abbia livelli di testosterone bassi o alti. Potrebbe essere un po’ meno con un testosterone più basso, ma l’impatto maggiore è sulla tua linea di base.

Ad esempio, supponiamo che tu abbia una massa magra di base di 50 kg e che tu abbia un livello di testosterone nella fascia bassa (diciamo circa 300 ng/dL). Guadagni il 10% in 6 mesi, ovvero 5 kg.

Ora, prendi la stessa situazione, ma la persona ha un testosterone di base a 600 ng/dL. La tua massa magra di base ora potrebbe essere di 52 kg. Guadagni ancora il 10% in 6 mesi, ovvero 5,2 kg. Pertanto, il guadagno relativo è simile. Tuttavia, il punto di partenza e il guadagno assoluto sono maggiori a causa del testosterone più alto.

Consideriamo un altro esempio. Diciamo che una persona segue un qualche tipo di sostituzione del testosterone, aumentando il testosterone da 250 ng/dL a 500 o 600 ng/dL. Quella persona inizialmente sperimenterà alcuni guadagni relativi superiori al normale, mentre si muove verso la sua nuova linea di base per il suo nuovo livello di testosterone. Ti sembrerà di guadagnare da “principiante”. Tuttavia, una volta che quella persona ha raggiunto la sua nuova linea di base, i suoi guadagni relativi saranno simili a quando aveva un testosterone più basso.

Quantificare l’impatto delle variazioni del Testosterone fisiologico sulla massa magra
Quindi sappiamo che le variazioni del testosterone fisiologico influiscono sulla quantità di muscoli che hai. Ma quanto? Se passi da 300 ng/dL a 600 ng/dL, quanta massa magra in più puoi aspettarti di avere?

Per rispondere a questa domanda, torniamo agli studi dose-risposta di Shalendar Bhasin di cui abbiamo discusso in precedenza. Possiamo prendere i dati dai tre studi ed eseguire una regressione su di essi per vedere come cambia la massa magra al variare dei livelli di testosterone all’interno dell’intervallo fisiologico.

Ecco la linea di regressione per i dati di Bhasin et al. 2001, 2005 e 2012. Ho usato solo punti dati in cui il testosterone si trovava all’interno di un intervallo fisiologico o appena al di fuori di esso (da 176 ng/dL a 1345 ng/dL). Sono 11 punti dati. Per ogni aumento di 100 ng/dL di testosterone, la massa magra aumenta di 0,6 kg. L’R al quadrato per la vestibilità del modello era 0,85, il che è molto buono.

Variazione della massa magra in relazione al cambiamento del Testosterone rispetto al basale, entro un intervallo di variazione da -340 ng/dL a +691 ng/dL. Pendenza della linea = 0,006, il che significa un ulteriore 0,6 kg in FFM per ogni aumento di 100ng/dL del Testosterone. R-Quadrato = 0,85. Dati di Bhasin et al. 2001, 2005 e 2012.

Il valore di 0,6 kg di FFM per ogni aumento di 100 ng/dL è in accordo con uno studio dose-risposta di Huang e colleghi su donne isterectomizzate. Hanno anche scoperto che la FFM aumenta di 0,6 kg per ogni aumento di 100 ng/dL di testosterone.

Possiamo anche eseguire una regressione sui dati che ho discusso in precedenza da Finkelstein e colleghi, in cui i livelli di testosterone sono stati soppressi e quindi ai soggetti sono state somministrate diverse dosi di un gel di testosterone. Sebbene i numeri effettivi della massa magra non siano stati riportati da questo studio, possiamo stimarli dai valori di base riportati e dalle variazioni percentuali. Per ogni aumento di 100 ng/dL di testosterone, la massa magra aumenta di 0,3 kg. L’R al quadrato per la vestibilità del modello è 0,70, il che è buono.

Cambiamento nella massa magra in relazione al cambiamento nel Testosterone dal basale. Pendenza della linea = 0,003, il che significa un ulteriore 0,3 kg in FFM per ogni aumento di 100ng/dL del Testosterone. R-Quadrato = 0,70. Dati da Finkelstein et al. 2013.

Mentre potremmo anche provare a eseguire una regressione su alcuni degli studi discussi in cui i livelli di testosterone erano bassi e portati in un intervallo normale fisiologico, il problema con questi è che tutti usavano diversi metodi di somministrazione per il testosterone (iniezione vs gel vs. . patch), che possono avere dinamiche diverse in termini di come vengono modificati i livelli ematici. Inoltre, il problema con il tentativo di aggregare diversi studi di iniezione è che variano nel tempo in cui misurano il testosterone e variano anche in termini di frequenza delle iniezioni. Puoi avere una misurazione del testosterone molto diversa se misuri 1 settimana dopo un’iniezione, rispetto a 2 settimane.

Tuttavia, possiamo dare un’occhiata a studi in cui è stato somministrato un farmaco che ha stimolato la produzione naturale di testosterone; tali studi possono imitare meglio il modo in cui la massa magra risponde alle variazioni dei livelli di testosterone endogeno. Dias et al. dato agli uomini Anastrozolo, un inibitore dell’Aromatasi. Inibendo l’Aromatasi, l’enzima che converte il Testosterone in Estrogeno, puoi aumentare efficacemente i livelli di Testosterone. In teoria, questi livelli di Testosterone sarebbero relativamente stabili, poiché rappresenterebbero livelli di testosterone endogeno piuttosto che testosterone esogeno da iniezione o somministrazione transdermica. L’Anastrozolo ha aumentato il testosterone da 272 ng/dL a circa 500 ng/dL a 6 mesi e la massa magra è aumentata di 1,5 kg. Sono circa 0,6 kg di FFM per ogni aumento di 100 ng/dL, il che è in accordo con le nostre analisi precedenti. Ribeiro e Abucham hanno somministrato agli uomini ipogonadici Clomifene Citrato, che aumenta il Testosterone endogeno (i livelli all’interno del corpo, rispetto a quello esogeno come da un’iniezione o da una crema) legandosi ai recettori degli ipotalamici degli Estrogeni. Legandosi ai recettori degli estrogeni, induce il cervello a pensare che non ci siano così tanti estrogeni nel corpo. Questo porta il cervello a pompare più ormone Luteinizzante (LH), che poi stimola i testicoli a produrre più testosterone. I livelli di testosterone nei soggetti responsivi sono aumentati da 201 ng/dL a 435 ng/dL dopo 3 mesi e la massa magra è aumentata di 1 kg. Sono 0,4 kg per ogni aumento di 100 ng/dL di testosterone. Liu et al. iniettato HCG in uomini che avevano bassi livelli di testosterone al limite; L’HCG è un ormone che stimola i testicoli a produrre più testosterone. Il testosterone è aumentato da 320 ng/dL a circa 720 ng/dL, un aumento di 400 ng/dL. Massa magra aumentata di 2 kg. Sono 0,5 kg di massa magra per ogni 100 ng/dL di aumento del testosterone, che è ancora una volta in accordo con il range che abbiamo stabilito. Infine, Bayram et al. uomini ipogonadici iniettati con HCG. Il testosterone è aumentato da 39 ng/dL a 512 ng/dL, un aumento di 473 ng/dL. Massa magra aumentata di 2,8 kg. Sono 0,6 kg per ogni aumento di 100 ng/dL. Pertanto, questi 4 studi suggeriscono un aumento di 0,5 – 0,6 kg di massa magra per ogni aumento di 100 ng/dL di testosterone, che è in accordo con le regressioni di Bhasin e Huang.

Mettendo insieme tutto questo, i dati suggeriscono che la massa magra aumenterà di 0,7 – 1,3 libbre (0,3 – 0,6 kg) per ogni aumento di 100 ng/dL dei livelli ematici di testosterone all’interno dell’intervallo fisiologico. Quindi, se passassi da 300 ng/dL a 600 ng/dL, questo sarebbe 0,9 – 1,8 kg o circa 2,1 – 4 libbre.

Ora, tieni presente che ci sono dei limiti a questa analisi. In primo luogo, si basa su medie; i risultati individuali possono essere diversi. Ad esempio, come accennato in precedenza, Finkelstein et al. hanno mostrato un’ampia variazione nel modo in cui i soggetti hanno risposto a diversi livelli di testosterone. In secondo luogo, si basa su analisi tra soggetti; ciò che accade all’interno delle persone può essere diverso da ciò che si osserva tra le persone. Terzo, parte di esso si basa su iniezioni di testosterone esogeno. Il problema è che, con le iniezioni, i livelli medi di testosterone nel sangue saranno superiori a quelli misurati. Questo perché, quando inietti il ​​testosterone, ottieni un grande picco nei livelli ematici e poi decade lentamente nell’arco di 1-2 settimane. I ricercatori di solito misurano il testosterone alla depressione del decadimento dopo l’iniezione, di solito 1-2 settimane dopo. Questa limitazione diventa evidente quando si osservano alcuni dei dati dose-risposta di Bhasin. Ad esempio, nello studio Bhasin 2001, gli uomini che hanno ricevuto 125 mg di testosterone iniettato hanno guadagnato 3,4 kg di massa magra, ma il livello di testosterone nel sangue misurato di 542 ng/dL era simile al livello di base naturale dei soggetti prima che avessero il loro testosterone livelli soppressi. Pertanto, i loro livelli medi di testosterone erano probabilmente molto più alti di 542 ng/dL.

Sebbene questo sia certamente un grosso limite nell’analisi, va anche ricordato che, con la regressione, stiamo valutando principalmente le differenze nella massa magra tra diversi livelli di testosterone, piuttosto che la relazione con un particolare livello assoluto. In altre parole, stiamo osservando come la massa magra cambia per un cambiamento di 100 ng/dl nel testosterone, piuttosto che come la massa magra si riferisce, ad esempio, a un livello ematico di 500 ng/dl. Quindi, anche se i livelli di testosterone sono dovuti a iniezioni esogene, e anche se i livelli medi sono molto più alti di quelli misurati alla depressione, il rapporto tra i livelli non dovrebbe cambiare drasticamente. Va anche notato che il rapporto di 0,6 kg/100 ng/dL riscontrato negli studi Bhasin ha retto nelle donne a cui sono state somministrate dosi molto più basse. Tuttavia, è ancora una limitazione che deve essere considerata.

Una cosa interessante da notare è che le variazioni all’interno di un intervallo fisiologico possono avere un impatto maggiore rispetto alle variazioni al di fuori dell’intervallo fisiologico. In altre parole, la massa magra non aumenta in modo lineare con l’aumento dei livelli di testosterone. Quando superi l’intervallo fisiologico, la pendenza della relazione diminuisce e il testosterone non ha lo stesso impatto. Ciò diventa evidente quando guardiamo di nuovo alla nostra regressione dei tre studi Bhasin, ma questa volta includiamo i dati che sono ben al di sopra dell’intervallo normale fisiologico.

Puoi vedere che la curva si adatta meglio ai dati rispetto alla linea retta. La pendenza per la linea retta è 0,002, il che significa che la massa magra è aumentata di 0,2 kg per ogni 100 ng/dL di testosterone, che è inferiore agli 0,6 kg che abbiamo osservato con gli stessi dati in precedenza. Anche l’adattamento del modello non è altrettanto buono (R-quadrato = 0,77). Questo perché i livelli estremamente elevati di testosterone attenuano la relazione. Ogni aumento di 100 ng/dL di testosterone non ha un effetto così forte a intervalli soprafisiologici rispetto al normale intervallo fisiologico. Questo è supportato anche quando diamo un’occhiata allo studio Bhasin del 1996 sul testosterone ad alte dosi che ho menzionato prima. Il testosterone nel sangue è aumentato di circa 2326 ng/dL nel gruppo con solo testosterone e la massa magra è aumentata di 3,2 kg. Questo è un aumento di 0,13 kg per ogni aumento di 100 ng/dL di testosterone, che non è lontano dall’aumento di 0,2 kg menzionato in precedenza quando abbiamo incluso alte dosi di testosterone.

E le donne?

Le donne hanno livelli di Testosterone molto più bassi rispetto agli uomini e ci sono dati limitati per stabilire intervalli di riferimento sulle donne. Uno dei problemi è che alcuni test di laboratorio tradizionali per il Testosterone, come i radioimmunodosaggi (RIA), non sono abbastanza sensibili da misurare con precisione il Testosterone nelle donne. Misurazioni accurate del testosterone nelle donne richiedono tecniche sensibili come la cromatografia liquida-spettrometria di massa tandem (LC-MS/MS). Esistono alcuni dati che stabiliscono intervalli di riferimento utilizzando questa tecnica. Ecco i dati di Haring e colleghi che mostrano i percentili più bassi e più alti per le donne in premenopausa di età compresa tra 20 e 49 anni (si noti che sto mescolando alcuni dei dati di distribuzione effettivi per ottenere il 25° e il 75° percentile, con i loro modelli di regressione quantile per ottenere il 2,5° e 97,5° percentile, ma per i nostri scopi va benissimo).

Simile agli uomini, il testosterone diminuisce con l’età.

Testosterone misurato da GC-MS / MS in 985 donne. Dati da Haring et al., J Clin Endocrinol Metab, 2012. 1 nmol/L = 0,0347 ng/dL

È stato anche riscontrato che le donne che assumevano contraccettivi orali o terapia ormonale sostitutiva avevano in media livelli di testosterone più bassi, sebbene l’intervallo percentile superiore fosse più alto. Il 25° percentile per queste donne era 10 ng/dL (vs 13) e il 75° percentile era 56 ng/dL (vs 47).

Testosterone per età nelle donne, confrontando le donne trattate con contraccettivi orali o HRT a quelle che non lo sono. Dati da Haring et al., J Clin Endocrinol Metab, 2012. 1 nmol/L = 0,0347 ng/dL

Rari et al. non ha riscontrato alcuna relazione tra testosterone totale e massa magra nelle donne anziane (età 67-94 anni), ma ha osservato una relazione significativa tra testosterone libero e massa magra (il testosterone libero è la forma che non è legata ad alcuna proteina, da qui il termine “libero”).

Possiamo anche esaminare i dati in cui alle donne con bassi livelli di testosterone è stato somministrato testosterone esogeno. Anche in questo caso, i dati sono limitati, ma ci sono alcuni studi.

Cambiamento nella massa magra con diverse dosi di Testosterone nelle donne in menopausa isterectomizzate. Dati da Huang et al, Menopausa, 2014. Solo la dose di 25mg ha determinato un aumento statisticamente significativo. La massa magra è aumentata di 0,6kg per ogni aumento di 100ng/dL del Testosterone, che è al di fuori del normale intervallo fisiologico per le donne (13 – 56 ng/dL).

Questi dati suggeriscono che è necessario aumentare i livelli ematici di testosterone ben al di fuori di un intervallo normale fisiologico (verso la fascia molto bassa di un maschio) nelle donne in post-menopausa per ottenere aumenti misurabili della massa magra e della funzione sessuale. Nel complesso, questi dati indicano che le variazioni del testosterone nelle donne, all’interno del normale range fisiologico, hanno un impatto misurabile molto piccolo, se non nullo, sul muscolo. Ciò non sorprende se consideriamo l’aumento di 0,3 – 0,6 kg per ogni aumento di 100 ng/dL di testosterone di cui abbiamo discusso. L’intervallo normale per le femmine va da 13 a 56 ng/dL, un intervallo di soli 43 ng/dL. Ciò equivale solo a un quarto di chilogrammo (mezza libbra) o meno nelle donne.

Tiriamo le somme

Quando esaminiamo l’intero corpo di prove, è chiaro che le variazioni nei livelli fisiologici di Testosterone influiscono sulla quantità di muscoli che il soggetto ha, ma avranno un impatto minimo sui guadagni relativi (%). Riassumendo: I dati trasversali, gli studi dose-risposta e gli studi TRT supportano tutti variazioni all’interno dell’intervallo normale in quanto hanno un impatto sulla massa magra e sui muscoli-scheletrici. Le variazioni nei livelli ematici di Testosterone influiscono sul livello “base” dei muscoli, ma hanno un impatto minimo sui guadagni relativi (%). Quindi, avere livelli di Testosterone più alti significa avere un livello base più alto di massa muscolare. Mentre i guadagni relativi saranno per lo più simili, i guadagni assoluti saranno più alti a causa della linea di base più elevata. Gli impatti del Testosterone e dell’allenamento contro-resistenza sulla massa magra e sui muscoli-scheletrici sono principalmente additivi piuttosto che sinergici. La massa magra al basale aumenta di circa 0,7 – 1,3 libbre o 0,3 – 0,6 kg per ogni aumento di 100 ng/dL del Testosterone fisiologico; questo si basa su medie e dati tra soggetti, quindi i risultati individuali possono variare considerevolmente. Ci sono anche limitazioni a questa analisi, come il fatto che parte di essa si basa su dati dose-risposta provenienti da iniezioni, che potrebbero non riflettere accuratamente i cambiamenti nei livelli endogeni. L’impatto del Testosterone sulla FFM è attenuato a livelli sovrafisiologici (>1500 ng/dL); La FFM di base aumenta di circa 0,1-0,2 kg per ogni 100 ng/dL per quei livelli. Le variazioni del Testosterone nelle donne, all’interno del normale range fisiologico, hanno un impatto minimo o nullo sul muscolo-scheletrico. Quindi, sì, i soggetti di sesso maschile con un livello di Testosterone più alto hanno un vantaggio in termini assoluti sulla massa muscolare. Questi dati indicano anche che gli uomini che invecchiano, con livelli di Testosterone al limite o bassi, possono ottenere un beneficio nella costruzione muscolare da terapie progettate per aumentare i livelli di Testosterone in range fisiologici, sia da fonti esogene (come iniezioni o gel) sia da fonti che stimolano la produzione di Testosterone (come il Clomifene). , HCG o inibitori dell’Aromatasi), anche se si allenano già con i pesi.

Però, attenzione a fare comparazioni fuori luogo: la fisiologia e quello che può manifestare non è paragonabile alle sue alterazioni fuori range… nel bene e nel male…

Gabriel Bellizzi

Riferimenti:

Dilatazione addominale [“GH Gut”] nel Bodybuilding: analisi sulla causalità della condizione.

Introduzione al “GH Gut” – tra ipotesi e conclusioni affrettate – :

Non molto tempo fa parlai di “piaga della ginecomastia” nel Bodybuilding agonistico e non, evidenziando quanta poca cura nella gestione estrogenica vi fosse (e vi sia) nel ambiente culturistico, sia da parte dei singoli atleti che (cosa assai più importante e grave) dei preparatori o presunti tali. Ora, però, in linea di coerenza con la denuncia di una così grave deturpazione estetico-salutistica, mi accingo a trattare un altro problema, frutto dell’ignoranza, che affligge il Bodybuilding agonistico, mi riferisco alla così detta “GH Gut” o “Palumboismo” (definizione nata dal nome del famoso bodybuilder Dave Palumbo che fu uno dei primi a mostrare tale deturpazione estetica).

Dave Palumbo (da sinistra a destra): anni 90 (pre-“GH Gut”) Vs primi anni 2000 .

Come molti di voi già sapranno, con il termine “GH Gut” ci si riferisce ad una condizione caratterizzata da una pronunciata dilatazione addominale in un soggetto (bodybuilder) con una “bf” sensibilmente bassa .

Le ipotesi sulla causa scatenante tale condizione si sono susseguite nel tempo comprendendo assurdità e letture conclusioni semplicistiche.

Una di queste ipotesi venne diffusa anche grazie ai libri del compianto A.L.Rea, il quale affermava già nel suo libro “Chemichal Muscle Enhancement” , senza esternazione di validità di ipotesi, che la causa del “GH Gut” fosse l’ipertrofia gastrointestinale. Argomentava la sua affermazione dicendo che nel tratto gastrointestinale vi fosse un numero maggiore di recettori per l’IGF-1 rispetto al tessuto muscolo-scheletrico. Peccato però che la regolazione dell’ipertrofia/iperplasia gastrointestinale sia strettamente controllata, e che ogni sovra-stimolazione rientra in breve tempo attraverso meccanismi omeostatici come la sotto-regolazione dei recettori per l’IGF-1.[1] Inoltre, una crescita così spropositata della componente viscerale causerebbe gravi problemi di funzionalità organica (per esempio, occlusione intestinale data dall’alterata motilità gastrica) molto prima che l’atleta riesca a mostrare alterazioni visivamente così accentuate e calcare il palco.

Un altra ipotesi fantasiosa, e tutta “nostrana”, afferma che la suddetta condizione è conseguenza di un accumulo massivo di grasso viscerale il quale, notoriamente, è correlato all’insulinoresistenza (IR). Purtroppo però tale tesi è viziata da un errore di computo ed esso risiede nella reale correlazione tra soggetti sottoposti a somministrazione di PEDs i quali possono ridurre l’accumulo di grasso viscerale e aumentarne la sua mobilitazione anche in condizione di non ottimale IR, e il raggiungimento di un tale deposito di grasso intra-organico (oltretutto in ipocalorica) degno di un grande obeso (IMC maggiore di 40 kg/m²) capace di causare una così prominente dilatazione addominale.[2] Oltretutto, le analisi DEXA  (il gold standard per la valutazione della composizione corporea) non hanno mai mostrato una presenza così invasiva di grasso viscerale in questo tipo di atleti.

Ma allora quale è la causa del “GH Gut” nel Bodybuilding? Diciamo che per rispondere a questa domanda bisogna dire che è cosa semplice trovare “l’arma del delitto” (dieta ipercalorica in cronico, abuso di GH e Insulina) mentre il capire come si è arrivati al risultato finale è più difficile da individuare… ma ve lo spiegherò…

Le cause del “GH Gut”:

La causa del “GH Gut” nel Bodybuilding, tralasciando ovviamente il discorso del gonfiore addominale ansia-correlato, è di triplice natura:

  • Alimentazione ipercalorica;
  • Abuso cronico di GH;
  • Abuso cronico di Insulina.

Questi tre fattori, anche se presi singolarmente, possono causare una condizione di insulino-resistenza che, se protratta e cronicizzata, può sfociare in una condizione patologica denominata “gastroparesi”.[3]

La gastroparesi è una complicanza cronica del diabete, o marcata IR correlata anche da abuso di GH, espressione della presenza di una neuropatia che provoca un rallentato svuotamento gastrico dopo un pasto solido, in assenza di cause meccaniche ostruttive. In pratica, i muscoli dello stomaco non funzionano in modo corretto.

Quindi, l’abuso di GH e Insulina possono anche causare indirettamente il “GH Gut”, ma il meccanismo con il quale lo provocano è molto diverso da quello che la maggior parte di voi crede.

Non è raro, infatti, che un bodybuilder di grandi dimensioni assuma in “Bulk” più di 8000Kcal nel tentativo di aumentare la massa muscolare. Nel frattempo, lo stesso bodybuilder potrebbe assumere GH e/o Insulina creando, nel medio/lungo termine un peggioramento sostanziale della resistenza all’insulina con comparsa di sintomi pre-diabetici.

Inoltre, quando l’intestino è sottoposto ad una sovrabbondanza di cibo, può svilupparsi un accumulo di batteri nell’intestino tenue e la salute dell’organo viene compromessa mentre il corpo tenta di rimediare alla situazione. Una sovrabbondanza di batteri nell’intestino tenue porta a gonfiore e gas significativi e ad una consequenziale ed evidente distensione addominale. A differenza dell’intestino crasso (colon), l’intestino tenue non ha solitamente un gran numero di batteri. E, come già detto in precedenza, quando un bodybuilder consuma troppe calorie, può iniziare a diventare resistente all’insulina e l’abuso di GH e Insulina contribuiscono all’aggravarsi di ciò acutizzando lo stato di iperglicemia e alterazione del metabolismo glucidico e lipidico.

Quando si instaura una condizione di insulino-resistenza e vi sono livelli di glicemia ematica cronicamente elevati, lo svuotamento gastrico viene ritardato e l’intestino inizia a perdere la capacità di contrarsi in modo altrettanto efficace. Di conseguenza, il transito intestinale è gravemente compromesso.

Se la velocità del transito intestinale è influenzata negativamente dall’instaurarsi di un insulino-resistenza marcata, può verificarsi un riflusso batterico dal colon nell’intestino tenue, dove viene colonizzato da batteri del colon. Ciò si traduce in una eccessiva proliferazione batterica nell’intestino tenue e, in definitiva, in un peggioramento del “GH Gut”. Man mano che la resistenza all’insulina peggiora, la motilità intestinale viene parallelamente ostacolata, aggravando il problema.

Normalmente, forti contrazioni muscolari autonome (quindi non percepibili) spingono il cibo ingerito attraverso il tratto digestivo. In caso di gastroparesi, i muscoli della parete dello stomaco lavorano poco o niente; ciò impedisce allo stomaco di svuotarsi correttamente e completamente interferendo con i processi della digestione e causando un marcato gonfiore addominale.

La gastroparesi si associa in genere a scarso controllo dei valori della glicemianeuropatiaretinopatia e nefropatia.

Non è sempre chiaro che cosa determini la comparsa di gastroparesi. Sembrano essere coinvolti molti meccanismi e/o eventuali interazioni tra di essi: fluttuazioni croniche dei valori della glicemianeuropatia, anomalie in alcune cellule interstiziali poste tra lo stomaco e l’intestino (Cellule interstiziali di Cajal), utilizzo di farmaci incretino-mimetici per normalizzare i picchi glicemici postprandiali e forse – secondo alcuni autori – fattori psicosomatici.
In molti casi si pensa che la gastroparesi sia causata da un danno a un nervo (neuropatia) che controlla i muscoli dello stomaco (nervo vago). Il nervo vago consente di gestire i complessi processi del tratto digestivo. Un nervo vago danneggiato non riesce a inviare i segnali ai muscoli dello stomaco. Ciò può far sì che il cibo rimanga nello stomaco più a lungo, invece di muoversi normalmente verso l’intestino tenue per essere digerito. Il nervo vago può essere danneggiato da malattie, come il diabete (neuropatia diabetica), abuso di GH e/o Insulina, o da un intervento chirurgico allo stomaco.

Locazione e innervazioni del Nervo Vago.

I medici usano diversi test per diagnosticare la gastroparesi  ed escludere condizioni che possano causare sintomi simili (diagnosi differenziale). I test possono includere:

  1. La misurazione dello svuotamento gastrico. Ci sono diverse metodiche per valutarla, dirette ed indirette.
  2. L’endoscopia del tratto gastrointestinale superiore. Un’endoscopia può aiutare a escludere altre condizioni che possano causare un ritardo dello svuotamento gastrico.

Quindi, per  trattare la gastroparesi è necessario prima di tutto identificare la condizione di base che l’ha provocata. Per esempio, se il diabete o la cronicizzazione subclinica del IR è la causa della gastroparesi, il medico darà indicazioni per controllare Insulina basale, Glicemia a digiuno e dopo i pasti, Emoglobina Glicata e test della curva del Glucosio e Insulina.[4][5] La terapia della gastroparesi ha come obiettivo il controllo dei sintomi e il mantenimento di un adeguato stato nutrizionale; purtroppo questa finalità appare spesso difficile e insoddisfacente in termini di risultati. Molti culturisti con gastroparesi  hanno un introito calorico inferiore rispetto a quello di mantenimento e/o un deficit sia di macro che di micronutrienti. L’introito calorico necessario in questi casi può essere calcolato moltiplicando 33 kcal con il peso corporeo attuale in chilogrammi.
Il trattamento di fondo consiste nell’assunzione di piccoli pasti a basso contenuto di fibre, con l’aggiunta, se necessario, di farmaci procinetici o farmaci antiemetici.

Due delle più note molecole appartenenti alla classe dei farmaci procinetici (Betanecolo) e antiemetici (Clorpromazina).

Un dietista/nutrizionista potrà selezionare tutti gli alimenti che siano più facili da digerire, a seconda dei casi.[6] Da tenere presente che grassi e fibre tendono a ritardare lo svuotamento gastrico per questo potrebbe essere utile limitarne il consumo in base alle esigenze pertanto che la condizione perdura. Lo specialista potrebbe consigliare anche alcuni comportamenti idonei, per esempio:

  • mangiare piccoli pasti, a piccoli intervalli;
  • consumare poche fibre;
  • scegliere alimenti a basso contenuto di grassi;
  • evitare frutta e verdura fibrosa, come le arance e i broccoli, che possono provocare bezoari;
  • provare a frullare i cibi e a consumare più zuppe;
  • bere acqua durante ogni pasto;
  • muoversi dopo aver mangiato.
Un bezoario è un agglomerato compatto di materiale parzialmente digerito o non digerito, che si verifica in genere nello stomaco. I bezoari gastrici possono verificarsi in tutte le fasce di età e spesso si verificano in pazienti con disturbi del comportamento, svuotamento gastrico anormale o alterazione dell’anatomia gastrointestinale. Molti bezoari sono asintomatici, ma alcuni causano l’insorgenza di sintomi. Alcuni bezoari possono essere sciolti chimicamente, altri richiedono la rimozione endoscopica e alcuni altri richiedono anche l’intervento chirurgico.

È imperativo cercare di ottimizzare il controllo dei valori glicemici per minimizzare i sintomi acuti della gastroparesi e migliorare lo svuotamento gastrico così da influenzare positivamente la regressione della condizione. L’iperglicemia ritarda lo svuotamento gastrico anche in assenza di neuropatia o miopatia; inoltre, può inibire l’effetto di accelerazione dei farmaci procinetici. Per cui è importante mettere in atto insieme al proprio specialista di riferimento delle strategie d’intervento per minimizzare i picchi iperglicemici postprandiali.


farmaci per il trattamento della gastroparesi[7]possono includere:

  1. Farmaci per controllare la nausea e il vomito (antiemetici)
  2. Farmaci per stimolare i muscoli dello stomaco (procinetici). Gli effetti collaterali di questi farmaci sono importanti e questo andrà considerato insieme al medico.

In caso di inefficacia di questi farmaci, come ulteriore terapia sono stati proposti dei trattamenti sperimentali, per esempio l’impiego della tossina botulinica, al fine di ridurre il tono neuromuscolare e di conseguenza lo spasmo del piloro, o degli analoghi della somatostatina, per ridurre l’entità della secrezione gastrica e altre molecole.

Altri farmaci procinetici sono in corso di studio: agonisti della motilina, agonisti della grelina, nuovi agonisti 5-HT4.
Nei casi gravi, che non rispondono alla terapia medica, può rendersi necessario il ricorso a terapie più invasive, come la nutrizione enterale mediante digiunostomia endoscopica, la gastrectomia, la digiunostomia o altri tipi di intervento chirurgico.

Strutture chimiche degli agenti procinetici (agonisti dei recettori 5-HT4). (A) Velusetrag, un agonista del recettore 5-HT4, aumenta significativamente il transito intestinale e del colon. (B) La Prucalopride, un derivato diidro-benzofurancarbossammide di prima classe, è un agonista altamente selettivo del recettore 5-HT4. (C) Tegaserod, il primo agonista del recettore 5-HT4 per il trattamento IBS-C a breve termine nelle donne. (D) Naronapride, un agonista del recettore 5-HT4 altamente selettivo, accelera significativamente il transito globale del colon.

Un trattamento non farmacologico alternativo alla chirurgia, recentemente proposto per la terapia della gastroparesi, è rappresentato dalla gastrostimolazione elettrica (GES) a mezzo di elettrodi posizionati sulla parete muscolare dello stomaco, i cui risultati appaiono molto incoraggianti. La GES migliora nausea, vomito, qualità della vita e stato nutrizionale nei pazienti con gastroparesi refrattaria.

La gastroparesi può causare diverse complicazioni, per esempio:

  • Perdita di peso e malnutrizione. La gastroparesi può rendere difficile assorbire e digerire in modo corretto le sostanze nutrienti.
  • Crescita eccessiva di batteri nello stomaco. Il residuo alimentare che rimane nello stomaco può iniziare a fermentare e a rompere l’equilibrio locale tra batteri buoni (microbiota) e cattivi.
  • Frazioni di cibo non digerito che formano masse solide (bezoari) e rimangono nello stomaco. I bezoari possono causare nausea e vomito e possono anche essere pericolosi.
  • Fluttuazioni della glicemia. La gastroparesi anche se non causa il diabete, può determinare ed essere suscettibile alle variazioni nei livelli di zucchero nel sangue.
Alterazioni del microbiota intestinale, specie se marcate, oltre a causare disturbi gastrointestinali come gonfiore addominale da fenomeni fermentativi, può portare a disturbi di natura psicologica i quali possono peggiorare in forma di risposta somatica la dilatazione addominale.

Un altro dato che dimostra la reale infondatezza del mito dell’ipertrofia/iperplasia gastrointestinale è rappresentato anche dalla piuttosto semplice reversibilità della condizione, un fattore che molte persone che predicano questo mito sembra non prendere in considerazione nonostante ci siano stati molti Bodybuilder professionisti di successo che hanno sfoggiato una prominente dilatazione addominale sul palco per poi tornare successivamente con linee decisamente più armoniose. I loro organi si sono improvvisamente rimpiccioliti e riorganizzati? Con tutta probabilità, la risposta è no. Il loro addome non sporgeva perchè le viscere lo spingevano dall’interno verso l’esterno, era semplicemente una conseguenza che rispecchia una salute intestinale compromessa (che causava gonfiore) e distensione da gastroparesi.

Nota: anche condizioni di forte ansia possono peggiorare o causare una sensibile dilatazione addominale durante la Peak Week e il giorno del contest. Il controllo dello stress è essenziale per evitare che ciò si presenti.

Ben Pakulski è un ottimo esempio da utilizzare per sfatare la teoria della crescita intestinale attribuita alla condizione del “GH Gut”. Per questo atleta è stato sufficiente abbandonare l’obbiettivo di un aumento drastico dell’ipertrofia ed è stato in grado di tenere sotto controllo la sua salute intestinale, risolvendo completamente il suo precedentemente mostrato “GH Gut”. Se i suoi organi fossero davvero cresciuti, non sarebbe stato in grado di liberarsene così facilmente e rapidamente.

Ben Pakulski “Reverse GH Gut”

Ben Pakulski ha evidentemente perso un po’ di massa muscolare tra i suoi spettacoli precedenti, durante i quali mostrava una marcata dilatazione addominale, e i suoi spettacoli più recenti nei quali aveva una fantastica posa in vacuum e nessun problema di dilatazione, e questo può essere attribuito esclusivamente alla sua decisione di non perseguire più volumi muscolari enormi mangiando un monte calorico estremamente alto e abusando di GH e/o Insulina. Questo è quello che stava facendo in precedenza quando aveva orribili problemi di dilatazione addominale, mentre cercava di rimanere competitivo con i colleghi “freak”.

Roelly Winklaar è un altro ottimo esempio di bodybuilder di alto livello che ha risolto la sua condizione di “GH Gut” ed è stato in grado di continuare a fare progressi. Può essere attribuito al suo uso di un bustino? Decisamente no. La mia ipotesi è che abbia più a che fare con i cambiamenti nella dieta e nella supplementazione farmacologica. Se date un’occhiata ai vecchi spettacoli di Roelly, potrete vedere chiaramente che era uno dei peggiori casi di “GH Gut”. Ma, ciò nonostante, ora può quasi riuscire a fare il vacuum sul palco.

Roelly Winklaar “Reverse GH Gut” (da sinistra a destra: forma presentata nel 2015 e nel 2018).

E’ corretto specificare che un bodybuilder può letteralmente passare dall’avere la possibilità di esibire un ottimo vacuum all’avere una estreme dilatazione addominale / GH Gut durante la notte semplicemente consumando quantità eccessive di carboidrati, con conseguente effetto fermentativo il quale è legato ad una compromissione della salute intestinale prima di salire sul palco, senza contare l’effetto dell’iperglicemia sulla gastroparesi prima esposto. Questo è il motivo per cui si vedono bodybuilder presentarsi sul palco con un enorme dilatazione addominale, e poi una settimana dopo presentarsi in un altro contest con il problema completamente risolto.

Ci sono molti altri casi di “GH Gut” nel mondo del Bodybuilding, ma quello di Phil Heath ha attirato più attenzione di tutti a causa delle sue vittorie all’Olympia che molti pensavano di non aver meritato.

Non credo che l’ernia di Phil Heath sia stata la causa dei suoi problemi di dilatazione addominale. Probabilmente l’ernia ha giocato un ruolo sul suo controllo addominale, ma resta il fatto che il suo addome è dilatato da alcuni anni e credo che la radice del problema sia la salute intestinale compromessa e metabolica. Credo anche che Phil Heath stia mostrando i primi segni di insulino-resistenza cronica, chiamata anche “palumboismo”.

Phil Heath al Mr. Olympia nel 2012 (a sinistra) e nel 2018 (a destra).

Se confrontate Phil Heath nel 2012 con Phil Heath nel 2018, l’unica differenza evidente è il suo addome. Il risultato di ciò è con molta probabilità l’insieme dell’abuso di GH e/o Insulina e il consumo eccessivo di cibo per raggiungere maggiori dimensioni muscolari per rimanere in cima alla competizione, o per lo meno questa è l’ipotesi che considero più probabile.

Phil Heath nel 2018 e nel 2020.

Conclusioni sul problema:

Da quanto detto fino a questo punto, sappiamo che la condizione denominata “GH Gut” non è legata ad una massiva crescita viscerale data dagli aumenti di IGF-1, e non è nemmeno causata da un drastico accumulo di grasso viscerale. Sappiamo infatti che la condizione è legata ad alterazioni della salute intestinale e da uno stato di gastroparesi legata al peggioramento del IR correlata ad iperalimentazione e abuso di GH e/o Insulina.

Il GH, l’MK-677, IGF-1 e suo varianti non causano di per se la condizione detta “GH Gut”, ma possono contribuire al suo instaurarsi se usate in cronico e, soprattutto, in concomitanza di regimi alimentari ipercalorici.

La prevenzione del “GH Gut” si basa, quindi, su una alimentazione ben calibrata e non estremamente elevata in carboidrati (specie nei periodi di refeed pre-contest), nell’evitamento dell’abuso di GH e/o Insulina e il controllo della glicemia ematica e dello stato del IR tramite rapporto glicemia basale:Insulina basale (a digiuno) e, in aggiunta, anche un test della tolleranza al glucosio con curva insulinica.

La conoscenza di questi fattori dovrebbe essere sufficiente a far desistere coloro i quali, pur non potendo raggiungere dimensioni da “freak”, per esempio, si ostinano a voler abusare pesantemente della farmacologia pensando che essa sia “la chiave”… Per tutti coloro che soffrono già di questa condizione, possono usufruire di questo articolo come input per uscirne e tornare a preparazioni generalmente più salubri ed esteticamente considerabili affini alla cultura fisica.

Gabriel Bellizzi

Riferimenti:

  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372868/?fbclid=IwAR2T2Tv6ah5KM8jdzhncb1syjY8gbbike0ycQwnorGoboZsdyKCZpVGVUqk
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299450/
  3. https://medical-dictionary.thefreedictionary.com/gastroparesis
  4.  Lee AA, Hasler WL – Diabetes and the StomachCurr Treat Options Gastroenterol. 2017 Dec;15(4):441-459
  5. Vanormelingen C, Tack J, Andrews CN – Diabetic gastroparesisBr Med Bull 2013;105:213-30
  6. Aljarallah BM – Management of diabetic gastroparesisSaudi J Gastroenterol 2011 Mar-Apr;17(2):97-104
  7. Krishnasamy S, Abell TL – Diabetic Gastroparesis: Principles and Current Trends in Management. Diabetes Ther. 2018 Jun 22. doi: 10.1007/s13300-018-0454-9.