Limiti nello stimolo massimo della lipolisi da somministrazione di GH esogeno.

Introduzione alla questione:

Il più delle volte risulta inutile ribadire banalità largamente conosciute, ma in questo caso era d’obbligo sottolinearne il fatto dal momento che tornerà utile anche al fine di comprendere come la maggior parte dei (presunti) preparatori agisca quando si parla di PEDs.

Il GH, in modo particolare, è avvolto da dicerie di ogni genere. Dalle convinzioni sul momento in cui “inizia a funzionare” e la leggenda (fuori da ogni base fisiologica e attività espressiva iper-indotta iatrogenamente) del “assottiglia la pelle”. Ma la cosa di cui vorrei parlare riguarda i dosaggi. Nell’agonismo se ne sentono e vedono di tutti i tipi, dosaggi mostruosi da 10-20UI/die portatori di neuropatie croniche e probabili stati diabetici subclinici o patologici. La cosa triste è che tali dosaggi vengono indicati come “funzionali” solo perchè danno l’effetto ricercato che spesso e volentieri si confonde con quello indotto dallo svariato numero di farmaci cosomministrati e dalla additività tra questi. In poche parole: l’effetto lo avrebbero raggiunto comunque e nello stesso arco temporale utilizzando 1/10 della dose somministrata.

Si, mi dispiace infrangere le vostre fantasie ma il GH ha un limite nello stimolo massimo della lipolisi molto sottile…

GH e suo limite di dosaggio per il massimo stimolo lipolitico:

In effetti è stato calcolato un tetto massimo alla lipolisi indotta da una singola somministrazione di GH, ed è molto più bassa di quanto la maggior parte delle persone pensi.

Come riportato nello studio “Pharmacokinetics and acute lipolytic actions of growth hormone. Impact of age, body composition, binding proteins, and other hormonesvedere” nel quale si è valutata la farmacocinetica e l’azione lipolitica acuta del GH, si verificano significativi effetti dose-risposta confrontando l’area incrementale sotto la curva sia degli acidi grassi liberi che del 3-idrossi-butirrato nel sangue dopo la somministrazione di 0, 1 , e 3mcg/kg di GH, mentre non si osservano differenze tra le risposte dopo 3 e 6mcg/kg di GH.[1]

Questi dosaggi sono stati somministrati per via endovenosa.

1mg di Somatropina corrisponde a 3UI (Unità Internazionali) della medesima, come si può anche leggere nelle informazioni riferite al Norditropin presenti di seguito.[2]

Quindi, questo significa che per un soggetto di 100kg, la lipolisi è stimolata al massimo con circa 300mcg di Somatropina somministrata endovena, che equivale a 0,9UI di GH di grado farmaceutico IV (endovena).

Occorre quindi calcolare la dose sottocutanea corrispondente in base ai dati di confronto data dalla biodisponibilità e bioattività che abbiamo sugli esseri umani a cui è stato somministrato hGH.

Ovviamente i dosaggi somministrati endovena non sono rappresentativi di quali sarebbero i dosaggi ideali tramite il metodo di somministrazione molto più realistico e tollerabile quale è quello sottocutaneo. In uno studio, la disponibilità media stimata di hGH iniettato per via sottocutanea ha dimostrato di essere del 63% di quella di hGH somministrato per via endovenosa. dopo aver corretto le differenze nella dose di GH. [3] Un altro studio ha mostrato che la disponibilità di hGH iniettato per via sottocutanea è circa il 70% di quella di hGH somministrato per via endovenosa.[4]

Quindi, per un uomo di 100kg, i benefici della perdita di grasso sarebbero massimizzati per ogni somministrazione iniettando circa 1,35UI di GH (arrotondabili a massimo 2UI). Esiste infatti un periodo di refrattarietà durante il quale le cellule non danno risposta ad altro impulso lipolitico dato dal GH esogeno.

Conclusioni pratiche:

Di conseguenza, la risposta massima dello stimolo della lipolisi per somministrazione si aggira intorno a circa 1.5-2UI (3-4UI/die totali) in un individuo di 100Kg. Questo rispecchia in parte quanto osservato aneddoticamente ed annotato empiricamente con la somministrazione giornaliera di GH ad un dosaggio di 4UI/die divise in due somministrazioni uguali durante periodi di “Cut” in molti atleti di diverse categorie. Ciò vuole anche dire, però, che la maggior parte dei soggetti potrebbero avere risposte ottimali con la somministrazione di appena 2UI/die di GH. Parlo, ovviamente, di GH di grado farmaceutico, cioè equivalente al mcg al contenuto riportato in etichetta, non così abbondante nel mercato nero.

Le risposte temporali alla riduzione del grasso corporeo per azione del GH non sono dovute al dosaggio ma alla percentuale di grasso di partenza e alla distanza tra questo ed il punto percentuale prefissato da raggiungere oltre che dalla additività con altre molecole aventi effetti lipolitici e/o termogenici: più è breve e meno tempo di somministrazione sarà necessario. Ovviamente, i tempi di risposta sono maggiori rispetto ad atleti non trattati, mi pare ovvio e scontato. E, lo ripeto, vanno anche considerate nella somma dell’effetto le altre molecole co-somministrate e aventi attività lipolitica (diretta o indiretta) e/o termogenica.

Ma questo vale anche per le donne? Di questo me ne occuperò in un altro articolo ma vi anticipo già che in termini assoluti il dosaggio non ha variabili significative ma circostanze gestionali diverse.

Gabriel Bellizzi

Riferimenti:

1- https://www.ncbi.nlm.nih.gov/pubmed/12213188

2- https://www.novonordisk.com.au/content/dam/australia/affiliate/www-novonordisk-au/Health%20Care%20Professionals/Documents/Norppi16a_Mktg%20version.pdf

3- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014216/

4- https://www.ncbi.nlm.nih.gov/pubmed/8949572

Evidenze base per la pianificazione della “Peak Week”

Breve introduzione all’argomento:

Nel giugno 2021 è stato pubblicato un eccellente lavoro di Guillermo Escalante, Scott W. Stevenson, Christopher Barakat, Alan A. Aragon e Brad J. Schoenfeld che analizza le comuni pratiche applicate dai bodybuilder nella settimana precedente la gara (Peak Week) esponendone la logica applicativa in base alle evidenze scientifiche in nostro possesso.[Peak week recommendations for bodybuilders: an evidence based approach | BMC Sports Science, Medicine and Rehabilitation | Full Text (biomedcentral.com)] Ho deciso quindi di scrivere un articolo dettagliato sulla settimana pre-contest, utilizzando come base lo studio sopra citato e aggiungendo la mia ricerca personale, al fine di spiegarne le modalità di gestione migliori che, senz’altro, potranno tornare utili tanto agli atleti quanto ai preparatori.

Punto di partenza:

Il Bodybuilding è uno sforzo competitivo per il miglioramento della composizione corporea la quale verrà giudicata con parametri che comprendono la combinazione delle dimensioni muscolari, la simmetria, la “condizione” (bassi livelli di grasso corporeo) e presentazione sul palco. Per avere successo, i concorrenti devono presentare la loro forma fisica migliore durante il giorno (o i giorni) della competizione. I bodybuilder impiegano tipicamente periodi di 8-22 o più settimane di preparazione in cui la dieta e i programmi di esercizio vengono modificati dalla off season nel tentativo di perdere la maggior percentuale di grasso corporeo e guadagnare o mantenere la massa muscolare scheletrica [1,2,3,4,5,6 ,7,8,9,10]. Negli ultimi giorni di preparazione, i concorrenti implementano interventi per “tirare” il loro corpo nel tentativo di massimizzare l’estetica nel giorno della gara [11,12,13,14]. Gli interventi spesso utilizzati includono l’alterazione dei loro regimi di esercizio e l’assunzione di macronutrienti, acqua ed elettroliti con gli obiettivi di:

1-massimizzare il contenuto di glicogeno muscolare come mezzo per migliorare la “pienezza” muscolare (cioè il volume);

2-ridurre al minimo l’acqua sottocutanea (nel tentativo di sembrare “asciutti” anziché “acquosi”, migliorando così l’estetica muscolatura) e

3-ridurre al minimo il gonfiore addominale per mantenere un girovita più piccolo e ottimizzare le proporzioni fisiche e l’estetica generale [11, 12, 14,15 ,16,17].

Sebbene i concorrenti possano utilizzare metodi naturali per raggiungere questi obiettivi, sappiamo benissimo che vi è un ampio uso segnalata di auto-prescrizione di farmaci per il miglioramento delle prestazioni/estetica [8, 18, 19, 20, 21].

Uno studio osservazionale ha raccolto informazioni sulle strategie nutrizionali della Peak Week e dei giorni di gara tra 81 bodybuilder natural (maschi= 59, femmine = 22) tramite un questionario di 34 elementi; l’indagine ha elencato le strategie di picco comunemente utilizzate e ha fornito spazio aggiuntivo per informazioni qualitative [11]. La stragrande maggioranza dei partecipanti (93,8%) ha riferito di aver utilizzato una strategia di picco la settimana prima della competizione (denominata appunto “Peak Week”), con la manipolazione di Carboidrati (CHO), Acqua e/o Sodio segnalata più comunemente [ 11]. L’obiettivo primario dichiarato della manipolazione dei CHO era massimizzare le concentrazioni di glicogeno muscolare utilizzando principi simili al carico dei CHO classico [11]. Inoltre, i concorrenti hanno manipolato l’assunzione di Acqua e/o Sodio nel tentativo di indurre un effetto diuretico/poliuria per eliminare l’acqua superflua.[11]

In un altro studio, i ricercatori hanno condotto interviste approfondite per identificare e descrivere diverse strategie dietetiche utilizzate da sette culturisti maschi natural durante la off season, la stagione, la Peak Week e il post-season [14]. Durante la Peak Week, sei partecipanti hanno riferito di aver utilizzato un regime di carico di carboidrati modificato per tentare di aumentare il contenuto di glicogeno. Inoltre, tutti i partecipanti hanno riferito di aver manipolato l’assunzione di acqua mentre tre hanno manipolato contemporaneamente l’assunzione di sodio nel tentativo di ridurre l’acqua corporea nella speranza di creare un aspetto più “asciutto”.[14]

Sebbene esistano molti protocolli delle Peak Week al fine di tentare il miglioramento dell’estetica, mancano ricerche sull’efficacia e la sicurezza dei metodi comunemente usati dai bodybuilder. Dal momento che lo studio in questione non tratta i bodybuilder supplementati farmacologicamente, aggiungerò delle note esplicative sui metodi aggiuntivi utilizzati da questi atleti.

Lo scopo di questo articolo è:

1-rivedere la letteratura attuale sui protocolli di picco più comunemente impiegati dai bodybuilder;

2-fornire raccomandazioni basate sull’evidenza per le strategie di picco pre-gara per concorrenti e preparatori.

Manipolazione dei Carboidrati:

La manipolazione dell’assunzione di Carboidrati è una popolare strategia di picco pre-gara diffusa tra i bodybuilder [11, 12, 14]. La strategia, generalmente adottata durante la settimana che precede la competizione, prevede la limitazione sostanziale dell’assunzione di Carboidrati per diversi giorni (spesso indicata come fase di esaurimento o scarica) seguita da un breve periodo di consumo elevato di Carboidrati, con l’obiettivo di ottenere una supercompensazione dei livelli di glicogeno quando i carboidrati sono “stoccati” [22]. I livelli di glicogeno muscolare a riposo con una dieta mista (normale) sono ~ 130mmol/kg di muscolo (peso umido) in individui allenati (un po’ più alti dei soggetti sedentari) [23], o circa 23g di glicogeno (unità di glucosio) per chilogrammo di tessuto muscolare. Il glicogeno muscolare è organizzato nella cellula in frazioni subcellulari [24] e immagazzinato come un complesso di glicogeno-glicogenina (“granulo”) [25] che crea un effetto osmotico il quale attira acqua nella cellula mentre il glicogeno viene immagazzinato [26, 27], aumentando così il volume delle cellule muscolari. Le prime ricerche hanno suggerito che ogni grammo di glicogeno muscolare immagazzinato è accompagnato da circa 3-4g di acqua intracellulare [28]. Questo è superiore al valore comunemente indicato di 2,7g di acqua per grammo di glicogeno, a volte arrotondato a 3g di acqua per grammo di glicogeno, derivato da studi sul fegato di ratto [29, 30]. Tuttavia, i livelli di glicogeno muscolare risultanti dopo il carico di glicogeno sono altamente variabili [31], forse a causa della complessità sottostante all’accumulo di glicogeno intramuscolare [25]. Allo stesso modo, mentre è chiaro che il carico di glicogeno può aumentare il contenuto di acqua intracellulare [31], lo spessore muscolare [15] e le stime della massa corporea magra (LBM) [32], l’entità relativa dell’idratazione intracellulare in grammi di acqua per grammo di glicogeno può variare così tanto da non essere statisticamente correlato con il contenuto di glicogeno.[30]

Una panoramica semplificata del metabolismo del glicogeno a riposo e durante l’esercizio. Il sarcolemma separa l’interno della cellula muscolare dal liquido interstiziale che circonda la cellula. A riposo (lato sinistro), il consumo di carboidrati stimola il rilascio di insulina dal pancreas. Le molecole di insulina si legano ai recettori dell’insulina incorporati nel sarcolemma. Quel legame innesca una cascata di risposte intracellulari che provocano il movimento dei trasportatori del glucosio GLUT4 dall’interno della cellula muscolare nel sarcolemma, consentendo al glucosio di spostarsi nella cellula. Una volta all’interno della cellula muscolare, le molecole di glucosio sono pronte per essere stoccate sotto forma di glicogeno. La glicogenina è un enzima che forma il centro delle particelle di glicogeno, consentendo la formazione iniziale di filamenti di glicogeno. Durante l’esercizio (lato destro), i trasportatori GLUT4 si spostano nel sarcolemma senza l’assistenza dell’Insulina, favorendo l’assorbimento del glucosio nella cellula. Contemporaneamente, la degradazione del glicogeno aumenta in risposta ai cambiamenti nella concentrazione dei metaboliti all’interno della cellula. Le molecole di glucosio dal sangue e quelle rilasciate dal glicogeno vengono ossidate per produrre le molecole di adenosina trifosfato (ATP) necessarie per sostenere la contrazione muscolare.

Sebbene la ricerca controllata sull’argomento sia limitata a ciò che è ottimale per i bodybuilder, le prove attuali sembrano indicare un potenziale beneficio della manipolazione dei carboidrati come strategia di picco. Una serie di casi esaminati da Bamman et al., i quali hanno esaminato sei bodybuilder maschi, ha fornito il supporto iniziale di un effetto benefico [1]. Secondo quanto riferito, i bodybuilder si sono impegnati in un protocollo di carico di carboidrati tre giorni prima della competizione (assunzione media di ~ 290g/giorno). Le misurazioni degli ultrasuoni effettuate 24-48 ore in questo periodo di carico di carboidrati hanno mostrato un aumento del 4,9% dello spessore del muscolo bicipite brachiale rispetto alle misurazioni ottenute sei settimane prima. Sebbene questi risultati sembrino suggerire che il protocollo di carico di carboidrati sia stato efficace nel migliorare in modo acuto la dimensione muscolare, va notato che il lungo intervallo tra le sessioni di test rende impossibile trarre conclusioni sulla causalità a questo proposito. Inoltre, gli autori dello studio non hanno valutato l’assunzione di carboidrati durante la fase di esaurimento dei carboidrati, offuscando ulteriormente gli effetti diretti del protocollo di carico. Pertanto, sebbene i risultati siano intriganti, il livello di prove a sostegno può essere considerato basso.

Le posizioni intracellulari del glicogeno nel muscolo-scheletrico. Immagine © Human Kinetics. I valori per la distribuzione del glicogeno provengono da Schweitzer et al (2017).

Un recente studio quasi sperimentale di de Moraes et al. [15] getta una luce più obiettiva sull’argomento. Ventiquattro bodybuilder dilettanti di alto livello sono stati divisi in base al fatto se avessero o meno manipolato i carboidrati come strategia di picco; il gruppo che ha manipolato i carboidrati ha impiegato una fase di esaurimento di tre giorni (che porta immediatamente al giorno del peso) seguita da una fase di carico di 24 ore (che porta al giorno della gara). Lo spessore muscolare è stato misurato sia al momento del peso che il giorno della gara. Inoltre, le foto dei concorrenti scattate in questi momenti sono state mostrate a un gruppo di giudici federati di bodybuilding, che hanno valutato soggettivamente il loro fisico; da notare, i giudici erano ciechi alle pratiche nutrizionali dei concorrenti. I risultati hanno mostrato un aumento del 3 % della dimensione muscolare della parte superiore delle braccia per coloro che hanno manipolato l’assunzione di carboidrati prima della competizione rispetto a nessun cambiamento in coloro che non lo hanno fatto. Inoltre, solo il gruppo che ha manipolato l’assunzione di carboidrati ha mostrato miglioramenti nelle misure estetiche soggettive, come determinato dall’ispezione visiva delle foto. Una potenziale limitazione dello studio è che i soggetti non sono stati sottoposti a test anti-doping prima della competizione; pertanto, non è noto se l’uso di steroidi anabolizzanti e/o altre sostanze sintetiche (ad es. synthol) possa aver influenzato i risultati. Gli studi futuri dovrebbero accertare tramite autovalutazione, poligrafo e/o analisi del sangue lo stato di libero/migliorato dei soggetti ed escludere o confrontare i risultati in base all’uso di steroidi da parte del soggetto nonché all’uso di altri farmaci che possono influenzare il bilancio idrico.

Recentemente, Schoenfeld ed Escalante hanno condotto un caso di studio in cui hanno seguito un bodybuilder natural di alto livello nel corso della sua preparazione al contest [33]. A partire dalla settimana prima della data della competizione, il concorrente ha ridotto notevolmente l’assunzione di carboidrati a < 50g/giorno per 3 giorni (domenica, lunedì, martedì) e poi ha eseguito una ricarica dei carboidrati a una quantità > 450g/giorno nei successivi 2 giorni (Mercoledì e giovedì). Simile alla ricerca precedente, la valutazione ecografica ha mostrato che la strategia di picco aumentava notevolmente lo spessore muscolare. In questo particolare caso di studio, gli aumenti sono stati del 5% negli arti superiori e del ~ 2 % negli arti inferiori; a causa delle limitate prove disponibili, è difficile fornire un motivo razionale per cui c’era una differenza tra i gruppi muscolari. Dati i risultati soggettivi riportati da de Moraes et al. [15], si può dedurre che questi risultati erano probabilmente significativi dal punto di vista della concorrenza.

Quando si considera la totalità della ricerca attuale, l’evidenza suggerisce che la manipolazione dei carboidrati è una valida strategia di picco per aumentare il volume della massa muscolare il giorno della gara; tuttavia, l’evidenza dovrebbe essere considerata preliminare data la relativa scarsità di studi pubblicati sull’argomento. Inoltre, la strategia può portare a un aumento dei sintomi gastrointestinali come dolore addominale, bruciore di stomaco, stitichezza e diarrea [15], che a loro volta possono influenzare negativamente la capacità di eseguire in modo ottimale la preparazione al giorno della gara e il contest stesso. Pertanto, i concorrenti dovrebbero sperimentare la strategia con almeno 2-4 settimane di anticipo per determinarne gli effetti a livello individuale e apportare le modifiche necessarie secondo necessità.

Manipolazione di acqua e sodio:

Acqua e sodio sono frequentemente manipolati dai bodybuilder, indipendentemente o contemporaneamente, impiegando una varietà di strategie che comportano il “carico” e la limitazione di entrambi [11], con l’obiettivo di ridurre al minimo l’acqua sottocutanea per massimizzare la definizione del muscolo scheletrico sottostante [8, 11, 12 , 14, 19, 20]. È noto che diversi bodybuilder si auto-prescrivono diuretici farmaceutici per facilitare il processo [8, 19,20,21, 34, 35]. I bodybuilder possono anche impiegare queste strategie per scendere a classi di peso inferiori, il che può fornire un vantaggio competitivo se il concorrente è in grado di recuperare parte del peso sotto forma di volume intramiocellulare (“riempimento” tramite glicogeno e/o stoccaggio di trigliceridi intramiocellulari) prima della competizione. Sebbene l’acqua e il sodio siano due componenti dietetici separati, è fondamentale comprendere che la manipolazione di una variabile influenza l’altra; quindi, esamineremo insieme queste due variabili.

In un’indagine precedentemente citata sulle strategie delle Peak Week e dei giorni di gara utilizzate dai bodybuilder natural, la manipolazione dell’acqua è stata la seconda strategia più popolare implementata (dietro la manipolazione dei carboidrati) [11]. I ricercatori hanno riferito che i concorrenti hanno implementato il carico dell’acqua (65,4%), la restrizione dell’acqua (32,1%) o entrambi (25%) per ottenere un aspetto “asciutto”. La quantità di acqua consumata durante la fase di carico variava da 4 a 12L al giorno ed era tipicamente seguita da restrizioni idriche di 10-24 ore prima della competizione. Oltre alla manipolazione dell’acqua, i ricercatori hanno anche riferito che i concorrenti utilizzavano la restrizione di sodio (13,6 %), il carico di sodio (18,5 %), o entrambi (6,2 %) senza un ordine temporale coerente per il regime di carico/restrizione del sodio (un errore limitante); tuttavia, la manipolazione del sodio veniva generalmente praticata tre o quattro giorni prima della competizione. È stato segnalato anche l’uso del tè al dente di leone per le sue presunte proprietà diuretiche.

Nello studio precedentemente discusso di Mitchell et al. [14], i ricercatori hanno riferito che il 100% dei partecipanti (n = 7) ha utilizzato la pratica del carico e del taglio dell’acqua durante la Peak Week. Questa strategia prevedeva di bere >10L di acqua al giorno all’inizio della settimana e quindi di ridurre l’assunzione ogni giorno successivo prima della competizione. La teoria alla base di questa pratica era quella di consumare quantità superflue di acqua per aumentare naturalmente l’escrezione di liquidi nel tentativo di espellere preferenzialmente l’acqua sottocutanea; tuttavia, i partecipanti hanno riferito che i risultati di questa strategia erano in gran parte non significativi [14]. Dei sette partecipanti che hanno manipolato l’acqua durante la Peak Week, tre (42,8%) hanno anche manipolato il sodio per aiutare a rimuovere l’acqua sottocutanea [14]. Hanno riferito di aumentare notevolmente l’assunzione di sodio per i primi tre giorni della Peak Week, seguita da una completa restrizione dell’assunzione di sale per i tre giorni prima della competizione; tuttavia, i risultati sono stati incoerenti e i partecipanti hanno dichiarato che non avrebbero manipolato il sodio in futuro [14]. Si noti che la decisione unanime dei partecipanti di abbandonare queste strategie di manipolazione dell’acqua e del sodio suggerisce che probabilmente non le avevano né eseguite né perfezionate in precedenza (ad esempio, come prova o durante la Peak Week per un’altra competizione).

Altre ricerche supportano i risultati degli studi di cui sopra. Probert et al. ha condotto un sondaggio su 382 bodybuilder competitivi insieme a interviste personali di 30 dei partecipanti e ha riferito che i bodybuilder si sono spesso impegnati in pratiche di deplezione del sodio e disidratazione nei giorni precedenti la competizione [12]. Sebbene i partecipanti abbiano riconosciuto i rischi di queste strategie, le hanno minimizzate come pratiche temporanee ma necessarie [12]. In effetti, i casi clinici documentano condizioni potenzialmente pericolose per la vita dovute a pratiche estreme di manipolazione dell’acqua e del sodio [19, 20]. In un caso, un bodybuilder maschio di 35 anni si è presentato al pronto soccorso dopo essersi sentito debole, stordito e aver avvertito crampi muscolari dolorosi mentre posava durante una gara di bodybuilding; i test hanno rivelato onde T di picco sull’elettrocardiogramma (ECG), iperkaliemia (alti livelli di potassio), iponatriemia (bassi livelli di sodio nel sangue), intossicazione da acqua e rabdomiolisi [20]. Il bodybuilder ha riferito di aver bevuto 12 litri di acqua al giorno per sette giorni prima della competizione insieme a 100 mg al giorno di Spironolattone (un diuretico da prescrizione risparmiatore di potassio) e scarico del sale per due giorni prima della competizione; è stato curato, stabilizzato e dimesso con successo [20]. In un altro caso, un bodybuilder professionista di 26 anni è stato trasportato al pronto soccorso il giorno dopo una gara a causa di palpitazioni cardiache e incapacità di stare in piedi a causa della difficoltà nel muovere le estremità [19]. Ha riferito l’assunzione orale di 2 × 80mg di Furosemide (un diuretico da prescrizione) 48 e 24 ore prima della competizione con l’obiettivo di migliorare la definizione muscolare; ha perso 5-6 kg di peso corporeo a causa della nicturia [19]. I test hanno rivelato ipokaliemia grave (bassi livelli di potassio; al contrario dell’iperkaliemia nel caso di studio discusso in precedenza probabilmente dovuto all’uso di un diuretico dell’ansa rispetto a un diuretico risparmiatore di potassio), iperglicemia (livelli elevati di glucosio nel sangue), iperlattatemia (alti livelli di lattato nel sangue) e tachicardia sinusale con onde U pronunciate all’ECG compatibili con ipokaliemia [19]. Sebbene l’ipokaliemia sia una condizione potenzialmente pericolosa per la vita, il bodybuilder è stato trattato con successo e dimesso la mattina successiva [19].

Nonostante le varie strategie riportate dai bodybuilder per manipolare l’acqua e il sodio allo scopo di sembrare “pieni e asciutti”, le prove attuali non indicano che queste pratiche siano specificamente efficaci e/o sicure. Inoltre, sebbene diverse strategie di manipolazione dell’acqua e del sodio siano state pubblicate da un certo numero di preparatori di bodybuilding che hanno lavorato con bodybuilder di grande successo [16, 17, 36], né l’efficacia né la sicurezza di queste diverse metodologie sono state valutate scientificamente. Quindi, i principi fisiologici della regolazione dei fluidi corporei devono essere considerati quando si tenta di formulare strategie per promuovere un aspetto “pieno e asciutto”, e queste strategie possono essere discordanti con quelle attualmente utilizzate dai bodybuilder e/o suggerite dai loro preparatori.

Il contenuto di acqua corporea totale (TBW) rappresenta circa il 60 % del peso corporeo medio di una persona ed è costituito da acqua intracellulare (ICW) (~ 67 %) e acqua extracellulare (ECW) (~ 33 %). L’ECW è ulteriormente compartimentato nel fluido interstiziale che circonda le cellule (~ 25 %) e il plasma sanguigno (~ 8 %) [37, 38]. Quindi, dal punto di vista di un bodybuilder, ridurre al minimo il fluido interstiziale extracellulare che circonda i miociti, in particolare l’acqua sottocutanea, preservando o aumentando l’ICW intramiocellulare rappresenta lo scenario ideale per un aspetto “pieno e asciutto”, cioè, per cui l’aspetto della muscolarità è massimizzato . Sebbene questo concetto possa sembrare un compito semplice da realizzare manipolando solo l’acqua e il sodio, potrebbero essere necessarie altre strategie incentrate sull’ottimizzazione del volume intramiocellulare (cioè quelle mirate al glicogeno intramiocellulare, ai trigliceridi e al contenuto di potassio) insieme alla manipolazione dell’acqua. e sodio per migliorare l’aspetto della muscolosità.

Compartimenti dei fluidi corporei. Nell’uomo adulto “medio”, i domini del fluido intracellulare (ICF) e del fluido extracellulare (ECF) sono costituiti da circa il 57 e il 43% dell’acqua corporea totale (TBW). Il compartimento ECF è ulteriormente suddiviso in liquido interstiziale (ISF)/linfa, plasma, tessuto osseo e connettivo, tessuto adiposo e acqua transcellulare. Il muscolo scheletrico predomina l’ICF. Le percentuali sono percento di TBW. GR, globuli rossi.

Durante la normale omeostasi fluido-elettrolitica, il compartimento extracellulare contiene la maggior parte del sodio (Na+), cloruro (Cl-) e bicarbonato (HCO3-), mentre il compartimento intracellulare contiene la maggior parte dell’acqua, potassio (K+) e fosfato ( PO43−) [39]. Sebbene entrambi i compartimenti contengano tutti i suddetti composti, la quantità di ciascuno varia tra i compartimenti in modo tale che la concentrazione totale di soluti (osmolarità) sia la stessa [39]. I meccanismi omeostatici controllano l’equilibrio idrico ed elettrolitico per garantire che la TBW e l’osmolarità corporea totale (TBO) rimangano equilibrate e l’acqua si ridistribuisca tra i compartimenti intracellulari ed extracellulari in modo tale che l’osmolarità dei fluidi corporei si avvicini alla TBO [37]. Infatti, Costill et al. hanno studiato le perdite muscolari di acqua ed elettroliti mentre i partecipanti pedalavano in una camera ambientale calda per perdere il 2,2 (% (fase 1), il 4,1 % (fase 2) e il 5,8 % (fase 3) del loro peso corporeo in un periodo stimato di 5,5 ore [40] . Quando i partecipanti hanno perso il 2,2% del loro peso corporeo entro la prima  ~ 1,5 h nella fase 1, il 30% dell’acqua persa era ICW mentre il 70% era ECW [40]. Tuttavia, il rapporto tra ICW ed ECW perso è diventato 52 % ICW/48 % ECW allo stadio 2 (~ 3.5 h mark) e 50 % ICW/50 % ECW allo stadio 3 (~ 5.5 h mark) [40]. Gli autori hanno affermato che la grande perdita di ICW nel muscolo allo stadio 1 può essere spiegata dalla significativa perdita di contenuto di glicogeno muscolare (che contiene acqua) dalla pre-disidratazione a 115 mmol/kg fino a 76 mmol/kg; tuttavia, i livelli di contenuto di glicogeno muscolare sono scesi a una velocità molto inferiore a 73 mmol/kg allo stadio 2 e 61 mmol/kg allo stadio 3 quando il rapporto o ICW:ECW si è stabilizzato [40]. Pertanto, il rapporto tra la perdita ECW e ICW sembra rimanere vicino a 1:1 poiché i livelli di glicogeno si stabilizzano nel tempo e vengono raggiunti livelli più elevati di disidratazione. Pertanto, sembra che la ritenzione del glicogeno muscolare, evitando l’esercizio che si basa fortemente sull’uso del glicogeno, possa essere importante se i metodi di perdita di acqua devono effettuare una perdita favorevole di ECW rispetto a ICW (ECW > ICW) in modo tale che la dimensione muscolare venga mantenuta mentre l’ECW interstiziale viene preferibilmente perso, migliorando l’aspetto della “definizione” muscolare. Allo stesso modo, l’immagazzinamento e la ritenzione del glicogeno muscolare dipendono fortemente dalla disponibilità di potassio (un catione intracellulare primario – vedi sopra) [41,42,43,44,45,46], quindi sembra che garantire un’adeguata assunzione di potassio durante le procedure di carico di carboidrati e disidratazione sia fondamentale per ottimizzare l’aspetto scenico.

È importante sottolineare che se le alterazioni dell’osmolarità plasmatica (attraverso i cambiamenti nell’acqua corporea totale e degli elettroliti) raggiungono una soglia fisiologica, allora una complessa rete neuroendocrina in tutto il corpo, nel cervello, vasi sanguigni, reni e ghiandole endocrine, risponderà per stabilizzarlo [47] . L’osmolarità plasmatica è influenzata dalle variazioni (aumento o diminuzione) della concentrazione di soluti (cioè sodio) nel sangue nonché dalle variazioni del volume del fluido; il volume del fluido è influenzato dall’acqua corporea totale (TBW) [48]. L’osmolarità plasmatica può aumentare per un’eccessiva perdita di acqua o per un aumento significativo dell’assunzione di sodio; al contrario, l’osmolarità plasmatica può diminuire con un consumo insufficiente di elettroliti o un’eccessiva assunzione di acqua [49]. L’osmolarità plasmatica e la pressione sanguigna sono regolate in modo tale che l’aumento dell’osmolarità plasmatica si traduca in una diminuzione della pressione sanguigna e viceversa [49]. Inoltre, le variazioni della pressione sanguigna mediate dallo spostamento dell’osmolarità plasmatica sono contrastate dai barocettori arteriosi e renali [50].

Durante la disidratazione, come potrebbe essere impiegato durante la Peak Week, l’osmolarità plasmatica aumenta, la pressione sanguigna diminuisce ed i barocettori renali nell’apparato iuxtaglomerulare (JGA) rilasciano l’ormone Renina; a sua volta, questo attiva il sistema Renina-Angiotensina-Aldosterone (RAAS) [51]. Quando viene attivato il RAAS, viene avviato il processo di mantenimento dell’omeostasi dei fluidi, elettroliti e pressione sanguigna [51] e alla fine rilascia l’ormone Aldosterone dalle ghiandole surrenali per perfezionare ulteriormente l’omeostasi [52, 53]. I barocettori nell’aorta e nelle arterie carotidi rilevano anche una diminuzione della pressione sanguigna e segnalano il rilascio dell’Ormone Antidiuretico (ADH, noto anche come Vasopressina) dalla ghiandola pituitaria per conservare l’acqua, aumentare il volume del sangue e aumentare la pressione sanguigna [48]. Al contrario, se la pressione sanguigna aumenta a causa dell’aumento del volume sanguigno arterioso, gli atri cardiaci percepiscono un allungamento e rilasciano l’ormone Fattore Natriuretico Atriale (ANF) per aumentare l’escrezione di sodio, inibire la vasocostrizione renale, attenuare la secrezione di Renina e infine diminuire il volume sanguigno e la pressione sanguigna [54].

Collettivamente, se l’acqua e il sodio non vengono manipolati e programmati con cura, questi meccanismi fisiologici che lavorano per mantenere il corpo in omeostasi potrebbero non produrre l’effetto desiderato di ridurre selettivamente il fluido nello spazio extracellulare/sottocutaneo. Sebbene questi meccanismi siano in atto per mantenere il corpo in equilibrio, non tutti gli ormoni rilasciati hanno un effetto immediato sul corpo quando l’osmolarità plasmatica è alterata. Ad esempio, uno studio ha mostrato un effetto ritardato dell’ADH quando i ricercatori hanno esaminato gli effetti del carico d’acqua sulla perdita di peso acuta negli atleti di sport da combattimento confrontando una strategia di carico d’acqua per tre giorni in cui il gruppo sperimentale ha consumato 100ml/kg/giorno di acqua rispetto ad un gruppo di controllo che ha consumato 40ml/kg/giorno di acqua [55]. Durante il successivo giorno di disidratazione con entrambi i gruppi che consumavano 15ml/kg/giorno di acqua, i livelli di ADH nel gruppo di carico idrico sono aumentati da ~ 2,3pmol/L a ~ 3,8pmol/L alla 13a ora e ~ 5pmol/L a la 24a ora di restrizione dei liquidi, momento in cui le perdite di massa corporea hanno superato quelle del gruppo di controllo dello 0,6 % (~ 2,5 vs. 3,1 % rispetto al basale) [55]. Pertanto, nonostante l’aumento della produzione totale di liquidi da 3 giorni di carico idrico combinato con un giorno di drastica restrizione dei liquidi, i livelli di ADH stavano ancora salendo oltre le 24 ore di disidratazione [55]. In un altro studio, i ricercatori hanno ridotto l’assunzione di sodio a livelli estremamente bassi (10meq/giorno) per ~ 6 giorni in 16 uomini sani e hanno misurato i livelli di RAAS, Aldosterone plasmatico, sodio urinario e sodio sierico a 24 ore, 48 ore e ~ 6 giorni dopo l’intervento [53]. Sebbene i livelli sierici di sodio siano rimasti abbastanza coerenti tra 137,6 e 139meq/l per il periodo di ~ 6 giorni, i ricercatori hanno riferito che l’attivazione del RAAS era evidente entro 24 ore e diminuiva la produzione di sodio nelle urine da 217meq/24 ore fino a 105meq/24 ore [53]. Inoltre, ci sono volute 48 ore per osservare un forte aumento dei livelli di Aldosterone plasmatico per ridurre ulteriormente la produzione di sodio nelle urine a 59meq/24 ore e altri  ~ 4 giorni affinché la produzione di sodio nelle urine si stabilizzasse a 9,9meq/24 ore [53]. Quindi, c’è un ritardo temporale nello stabilire l’omeostasi di fluidi ed elettroliti durante il quale la manipolazione di acqua e sodio può essere implementata per indurre la diuresi prima che i meccanismi omeostatici protettivi si manifestino completamente per arrestare la perdita di acqua.

Mentre i bodybuilder manipolano spesso l’acqua e/o il sodio alterandone l’assunzione [8, 11, 12, 14, 19, 20], può essere presa in considerazione anche un’altra strategia praticabile per aumentare la diuresi. La letteratura sull’atrofia da disuso e gli adattamenti cardiovascolari all’assenza di gravità durante il volo spaziale [56] rivela una strategia precedentemente descritta [36] che i culturisti possono impiegare per promuovere la diuresi durante le ~ 24 ore prima della competizione. Riposare e/o dormire con una posizione di “inclinazione a testa in giù” (HDT) (tipicamente da − 4 a -6˚ per cui l’intera superficie durante il sonno è inclinata verso il basso [57, 58] simula l’aumento del ritorno venoso cardiaco (e la perdita di pressione ortostatica) che si verifica durante la microgravità. Ciò si traduce in diuresi e risposte cardiovascolari simili a quelle osservate acutamente durante il volo spaziale [57,59], mediate in parte da un aumento del Peptide Natriuretico Atriale (rilasciato dal cuore) e da una riduzione della Renina plasmatica [60,61] Mauran et al., ad esempio, hanno dimostrato che queste risposte ormonali e la diuresi e la natriuresi associate ritornano ai valori di base entro 24 ore [62], provocando una perdita di peso corporeo di circa 1,0-1,3 kg senza variazioni della frequenza cardiaca a riposo o del sangue [58, 60, 61] Brevi periodi di HDT più grave fino a -30 % evocano aumenti graduali della pressione venosa centrale oltre quelli di -6 % HDT [63], sebbene le risposte diuretiche all’angolo HDT siano inferiori a −T6 % non sembra siano stati studiati. Brevi (≤ 2 h) periodi di HDT fino a -40˚ sembrano ben tollerati [64, 65], ma una HDT prolungata ad angoli -12 % aumenta significativamente la pressione intracranica e intraoculare [66]. Inoltre, chi soffre di reflusso gastrico dovrebbe essere consapevole che l’HDT potrebbe in teoria peggiorare la sintomatologia, dato che sollevare la testa sopra il livello del letto (l’opposto dell’HDT) è un rimedio efficace [67,68,69,70]. Questo probabilmente non è un problema per coloro che normalmente non soffrono di reflusso gastrico [71]. Pertanto, i bodybuilder potrebbero plausibilmente impiegare l’HDT durante il riposo e il sonno durante le 12-24 ore prima della competizione per incoraggiare ulteriormente la diuresi se necessario.

Un’altra considerazione quando si manipola l’assunzione di acqua e sodio è il ruolo importante che svolgono nell’assorbimento dei carboidrati. I cotrasportatori sodio-glucosio dipendenti (SGLT) sono proteine ​​presenti nell’intestino tenue che consentono il trasporto del glucosio attraverso la membrana cellulare; una forte evidenza suggerisce che la consegna del trasporto di carboidrati è limitata dalla capacità di trasporto SGLT1 [72,73,74,75]. Poiché il carico di carboidrati sembra avere potenziali benefici per i bodybuilder di apparire “pieni”, è importante la disponibilità di sodio per il co-trasporto del glucosio attraverso le membrane cellulari. È interessante notare che lo studio di de Moraes et al. hanno riferito che il carico di carboidrati ha indotto vari sintomi gastrointestinali nei bodybuilder agonisti [15]. Sebbene l’assunzione di sodio non sia stata riportata in questo studio, alcuni dei sintomi potrebbero essere stati dovuti alla mancanza di sodio nella dieta poiché i bodybuilder hanno riferito di ridurre al minimo l’assunzione di sodio mentre si avvicinano al giorno della gara [11, 14, 20]. Inoltre, poiché ogni grammo di glicogeno attira  ~ 3–4g di acqua nel muscolo [31] e questo è un processo dipendente dal potassio (vedi sopra), una mancanza di acqua e di potassio può anche ridurre l’efficacia del raggiungimento di un aspetto “pieno”.

Gestione del glucosio tramite cotrasportatore sodio-glucosio dipendenti (SGLT)1 e SGLT2. Nell’intestino tenue, il glucosio alimentare viene assorbito principalmente da SGLT1 sulla membrana del bordo a spazzola. SGLT1 ha un’elevata affinità (costante di Michaelis-Menten [Km] = 0,4 mmol/L) per il glucosio e trasporta sodio e glucosio con una stechiometria 2:1. Nel rene, il glucosio filtrato dal glomerulo renale viene riassorbito da SGLT2 e SGLT1 espressi rispettivamente nella membrana luminale dei segmenti (S)1 e S2 e nel segmento S3 dei tubuli prossimali. L’affinità di SGLT2 per il glucosio è inferiore (Km = 2 mmol/L) e il trasporto di sodio e glucosio da parte di SGLT2 avviene con una stechiometria 1:1. GLUT, trasportatore del glucosio.

Contrariamente al tipico obiettivo di ridurre l’acqua corporea (extracellulare, sottocutanea), il disturbo psicologico/stress emotivo può causare ritenzione di liquidi corporei [76] attraverso l’azione delle catecolamine (in particolare della Dopamina) [77,78,79] e degli ormoni surrenalici includendo sia il Cortisolo [80] che l’Aldosterone [81]. La ritenzione idrica durante condizioni sperimentali di stress che richiedono competizione è soggetta a variabilità interindividuale, forse dovuta in parte a differenze genetiche [82]. In casi estremi, situazioni emotivamente stressanti possono evocare polidipsia e alterare l’omeostasi dei fluidi in modo tale che aumenti fino a 9 kg (~ 20 libbre) di massa corporea possono accumularsi in appena 48 ore [78, 79]. Pertanto, c’è supporto per l’osservazione empirica comune che lo stress psicologico possa contrastare i tentativi del bodybuilder agonista di ridurre l’acqua corporea, specialmente nei casi estremi di ansia pre-gara. Gli autori raccomandano di eseguire una prova pratica della strategia della Peak Week  ~ 2–4 settimane prima della competizione effettiva, in parte per ridurre l’ansia e assicurare al concorrente che la strategia della Peak Week è sia gestibile che efficace. Sebbene ciò vada oltre lo scopo di questo articolo, la gestione dello stress è riconosciuta come un aspetto importante della psicologia dello sport [83, 84] ed è molto probabile che sia importante per i concorrenti che trovano gli ultimi giorni prima della competizione così stressanti da influenzare negativamente il loro aspetto sul palco.

Sulla base di questi principi dell’equilibrio idrico-elettrolitico e delle attuali prove disponibili, sembra che la manipolazione dell’acqua e del sodio debba essere attentamente considerata, pianificata e praticata insieme alla manipolazione dei carboidrati se devono essere utilizzate. Sebbene sembrino esserci alcuni potenziali benefici nell’implementazione di queste strategie per migliorare la forma fisica il giorno della competizione, possono verificarsi effetti potenzialmente dannosi se queste variabili vengono calcolate in modo errato e/o con un cronometraggio errato che può causare ai bodybuilder di perdere il loro picco e/o incorrere in problemi di salute; quindi, lasciare queste variabili a se stesse potrebbe essere un’opzione migliore per alcuni concorrenti. Poiché è stato riferito che i bodybuilder considerano la manipolazione del sodio e dell’acqua come pratiche temporanee ma necessarie minimizzando i potenziali rischi coinvolti, è necessario prestare attenzione poiché sono state segnalate misure estreme che hanno portato a condizioni potenzialmente letali [12, 19, 20]. Le sezioni sulle applicazioni pratiche di questo articolo delineeranno ulteriormente come queste variabili possono essere manipolate in modo sicuro sulla base delle prove attualmente disponibili.

Grassi alimentari:

Oltre al glicogeno, le cellule muscolari immagazzinano anche energia sotto forma di Trigliceridi Intramuscolari (IMT). Infatti, nelle cellule muscolari viene immagazzinata quasi la stessa quantità di energia immagazzinata nell’IMT rispetto al glicogeno [85]. Tuttavia, i depositi di IMT variano considerevolmente negli esseri umani, in parte in funzione dello stato di allenamento, del tipo di fibra muscolare, della sensibilità all’Insulina, del sesso e della dieta [85]. L’IMT possono ammontare a ~ 1 % del peso muscolare [86, 87], ma poiché il grasso è meno denso del muscolo scheletrico [88], il volume di IMT in una cellula muscolare completamente “caricata di grasso” potrebbe superare il 2% del volume muscolare [89, 90]. Nei ratti (17), un singolo esercizio può ridurre il contenuto di IMT muscolare del 30% e tre giorni di una dieta ricca di grassi possono aumentare la conservazione dell’IMT di circa il 60% rispetto al basale [91]. Negli esseri umani, il reintegro alimentare di IMT può essere più lento quando anche il ripristino del glicogeno è una priorità [89, 92, 93, 94]. Tuttavia, le riserve di IMT sono aumentate dall’assunzione di grassi nella dieta [91, 95] e ridotte durante l’esercizio di contro-resistenza [96] e di endurance [85].

Sebbene il carico dei grassi sia una strategia nota nell’ambiente del Bodybuilding da molti anni [97, 98], a mia conoscenza la strategia non è stata studiata direttamente nel contesto della Peak Week del bodybuilding (p. es., in combinazione con altre strategie dietetiche come la supercompensazione del glicogeno) . Nello studio sui roditori menzionato sopra [91], tre giorni di dieta ricca di grassi seguiti da tre giorni di dieta ricca di carboidrati (CHO) hanno determinato una supercompensazione sia dei IMT che del glicogeno; tuttavia, e c’era da aspettarselo, 6 giorni di soli CHO elevati hanno prodotto l’effetto di carico di glicogeno previsto, ma non sono riusciti a elevare i livelli di IMT al di sopra del basale. Negli esseri umani, le diete ad alto contenuto di CHO/a basso contenuto di grassi possono effettivamente far precipitare le riserve di IMT [92,93,94], forse perché i IMT vengono utilizzati preferenzialmente per coprire i costi energetici della riparazione cellulare post-esercizio e dell’assemblaggio di glicogeno-glicogenina [94, 99]. Considerando che un bodybuilder di grandi dimensioni (ad es. un uomo di categoria pesi massimi) può trasportare oltre 60kg di muscoli [100, 101], aumentare le riserve di IMT da uno stato relativamente “esaurito” a uno “carico” potrebbe concepibilmente aumentare il volume muscolare di > 1 % [85 ]; ipoteticamente, questo si traduce nell’aggiunta di ≥ 0,6kg di massa magra. Quindi, il carico di grasso sembra essere una strategia promettente da utilizzare in combinazione con il carico dei CHO durante la Peak Week per i bodybuilder, e quindi merita studi futuri in un ambiente controllato.

Proteine alimentari:

Insieme all’assunzione di carboidrati e grassi durante la Peak Week, l’ottimizzazione dell’assunzione di proteine ​​merita di essere trattata, poiché è una componente importante e indispensabile della dieta. La dose dietetica raccomandata negli Stati Uniti (RDA) per le proteine ​​per gli adulti è di 0,8g/kg [102] ed è rimasta invariata dal ~ 1980, nonostante la continua esposizione della sua inadeguatezza. In un invito a rivalutare e rivedere la RDA, Layman [103] ha sostenuto che il fabbisogno proteico è inversamente proporzionale all’assunzione di energia. Quest’ultimo punto si applica alle persone a dieta in generale, ma ha un significato speciale per gli atleti in condizioni ipocaloriche prolungate, incarnate dai bodybuilder agonisti nel pre-gara. Alla luce di prove crescenti, un’assunzione giornaliera di 1,2-1,6g/kg è stata proposta come ottimale per la popolazione generale che mira a ottimizzare la salute e la longevità all’interno di uno stile di vita fisicamente attivo [104]. Verso l’estremità più atletica dello spettro, nella meta-analisi più completa del suo genere, Morton et al. [105] hanno scoperto che un apporto proteico di ~ 1,6g/kg (IC al 95 % superiore di 2,2 g/kg) massimizzava l’ipertrofia muscolare e la forza negli atleti di resistenza amatori non a dieta. In uno studio più rappresentativo dei bodybuilder, Bandegan et al. [106] hanno valutato la sintesi proteica dell’intero corpo tramite il metodo degli indicatori dell’ossidazione degli aminoacidi (IAAO) e hanno determinato un fabbisogno medio stimato di 1,7g/kg/giorno con un intervallo di confidenza superiore del 95% di 2,2 g/kg/giorno vicino al loro massimo muscolare raggiungibile. In un protocollo simile utilizzando il metodo IAAO, Mazzulla et al. [107] hanno stimato che il fabbisogno proteico degli uomini allenati contro-resistenza è di 2,0-2,38g/kg.

In una review sistematica di Helms et al. [108] è stato riferito che 2,3-3,1g/kg di massa magra (FFM) erano appropriati per soggetti allenati contro-resistenza in condizioni ipocaloriche. Tuttavia, dei sei studi inclusi nella review, solo due hanno coinvolto atleti competitivi altamente allenati e solo uno studio ha esaminato i bodybuilder agonisti. Quest’ultimo studio è stato condotto da Mäestu et al. [109], che hanno monitorato la composizione corporea e il profilo ormonale di bodybuilder di livello nazionale e internazionale durante le ultime 11 settimane di preparazione al contest. I concorrenti hanno dichiarato che non stavano utilizzando steroidi da un minimo di due anni prima dello studio. L’assunzione di proteine era di 2,68g/kg (2,97 g/kg FFM) al basale e 2,48 g/kg (2,66 g/kg FFM) al punto di valutazione finale (3 giorni prima della gara).

Chappell et al. [2] hanno riportato che nei bodybuilder di alto livello natural, l’assunzione di proteine di fine preparazione di uomini e donne che si sono posizionati tra i primi 5 è stata rispettivamente di 3,3g/kg e 2,8g/kg. La composizione corporea non è stata riportata in questo studio. Sulla base dei tipici intervalli percentuali di grasso corporeo alla fine della preparazione, l’aggiunta del 4-6% all’assunzione degli uomini e del 13-15% all’assunzione delle donne fornirebbe una stima dei grammi di proteine consumati per kg di FFM. Un caso studio di Kistler et al. [3] su un campione di bodybuilder natural di alto livello ha riportato un apporto proteico di 3,4g/kg (3,6 g/kg FFM). Sebbene la natura descrittiva di questi studi precluda la capacità di trarre conclusioni sul fatto che il livello di assunzione osservato fosse benefico, neutro o dannoso da un punto di vista fisico, sembrano convergere su un dosaggio proteico simile nella fase finale del periodo pre-gara.

Una possibile considerazione per il dosaggio delle proteine ​​durante la Peak Week è se mantenere l’assunzione di proteine ​​statica o modificarla durante le fasi di esaurimento e carico dei carboidrati. Sebbene attualmente non esistano prove concrete su ciò che è ottimale per la nostra conoscenza, lo studio di de Moraes et al. [15] che ha riportato un aumento del volume muscolare e un miglioramento dell’aspetto fisico come risultato di un protocollo di carico di carboidrati fornisce alcune prove che i bodybuilder alterano il loro apporto proteico durante la Peak Week. In questo studio, il protocollo di esaurimento/carico prevedeva tre giorni di dieta a basso contenuto di carboidrati (1,1g/kg) e ad alto contenuto proteico (3,2g/kg) seguiti da un solo giorno di dieta ad alto contenuto di carboidrati (9,0g/kg) e dieta ipoproteica (0,6g/kg). Sembra probabile che si sarebbero verificati aumenti simili del volume muscolare se le proteine ​​fossero state mantenute statiche. Tuttavia, nonostante il ridotto apporto proteico (46,6g nel giorno durante il carico di carboidrati rispetto ai 252,4g nei giorni di scarica dei carboidrati), il disagio gastrointestinale era ancora significativamente maggiore rispetto al gruppo di controllo senza carico di carboidrati. Ciò indica la possibilità che mantenere alta l’assunzione di proteine ​​durante il giorno di carico avrebbe ulteriormente peggiorato i sintomi gastrointestinali, potenzialmente a causa di un’eccessiva assunzione di cibo. Un’alternativa sarebbe quella di mantenere le proteine ​​statiche, ma ridurre il carico di carboidrati (che in questo caso era ~714g), tenendo più di 1 giorno per il carico di carboidrati. Questo sembra un approccio più pratico (vedi sopra), in modo tale che un apporto totale di carboidrati ancora maggiore possa essere consumato ma con meno rischio di problemi gastrointestinali.

Una strategia potenzialmente praticabile per alterare l’assunzione di proteine ​​durante la Peak Week è mantenere l’assunzione di proteine ​​relativamente alta a ~ 2,5–3,5g/kg/giorno durante i primi ~ 3 giorni di esaurimento del glicogeno di una strategia di supercompensazione del glicogeno, seguita da una apporto proteico di ~ 1,6g/kg/giorno durante una dieta ricca di carboidrati per 1-3 giorni (vedi sopra), terminando almeno 24 ore prima della competizione programmata. Successivamente, potrebbe essere impiegata una strategia per indurre la diuresi e (ulteriormente) aumentare le riserve di IMT durante il giorno precedente la competizione seguendo una dieta ricca di proteine ​​e povera di carboidrati (riccha di grassi) per un breve periodo (~12-24 h). Come discusso in precedenza, quando si caricano i carboidrati utilizzando un approccio a basso contenuto di grassi, i livelli di IMT possono diminuire, ma livelli elevati di glicogeno persistono per diversi giorni senza contrazioni impegnative che riducono il glicogeno (ad esempio, esercizio contro-resistenza o eccessiva attività fisica). Alti livelli di glicogeno intramuscolare e dell’acqua intracellulare associata impedirebbero quindi la perdita di ICW che tipicamente accompagna la diuresi. Aumentare l’assunzione di proteine ​​consumate il giorno prima del contest, o semplicemente consumare proteine ​​ad alti livelli tipicamente impiegati dai bodybuilder pre-gara (~ 3,0-3,5g/kg/giorno; vedi sopra) e recentemente dimostrato di essere generalmente sicuro per periodi più lunghi [ 110], incoraggerà una maggiore deaminazione ossidativa degli amminoacidi e l’ureagenesi [111] che si avvicinano ai tassi massimi osservati in individui sani [112, 113]. La clearance dell’urea ematica a sua volta richiede un gradiente osmotico durante la sua escrezione renale, causando così diuresi [114, 115]. Inoltre, il ritorno a una dieta a basso contenuto di carboidrati (ad esempio, una simile a quella utilizzata all’inizio della settimana per il carico di grassi in preparazione al carico di carboidrati) promuoverebbe anche la perdita di acqua corporea [116, 117]. Pertanto, aumentare o mantenere un’assunzione elevata di proteine ​​mentre si riduce l’assunzione di carboidrati e contemporaneamente aumenta l’assunzione di grassi durante il giorno prima della competizione, annullerebbe i guadagni indesiderati di acqua extracellulare/sottocutanea sperimentati durante il carico di carboidrati [118]. Sarebbe inoltre complementare ad altre misure strategiche progettate per indurre la diuresi come la manipolazione dell’assunzione di acqua/sodio/potassio, l’integrazione alimentare e il posizionamento del corpo (ad es. HDT) che offrirebbe anche una seconda opportunità per il carico dei grassi durante la Peak Week. Nell’incertezza sull’efficacia della modifica di de Moraes et al. e altri protocolli può essere mitigata solo per tentativi ed errori, come verrà ulteriormente discusso nella sezione delle applicazioni pratiche, e giustificano ulteriori indagini scientifiche.

Supplementazione alimentare:

Il consumo di integratori è comune tra i bodybuilder ed è spesso manipolato durante le loro fasi preparatorie (cioè off-season e pre-gara) [2, 3, 5]. Sebbene sia ben noto che i bodybuilder utilizzino integratori come proteine in polvere, polimeri del glucosio, stimolanti pre-allenamento, sostanze adattogene/nootrope, creatina, vitamine/minerali, omega-3, termogenici, diuretici erboristici e molto altro [2, 7], c’è una scarsità di dati su come questi integratori influenzino il processo di picco dell’atleta per migliorare la propria condizione fisica. Quindi, discuteremo i potenziali benefici dell’utilizzo di integratori alimentari (cioè polveri di proteine / carboidrati, acidi grassi), creatina ed erbe durante la settimana di punta.

Integratori alimentari che forniscono un substrato energetico come proteine ​​e carboidrati sono stati regolarmente segnalati da altri ricercatori che esaminano i bodybuilder [2, 3, 5]. Chappell et al. [2] hanno esaminato cinquantuno (35 uomini e 16 donne) bodybuilder natural e hanno scoperto che ~ 75 % degli uomini e ~ 89 % delle donne sono stati integrati con polveri proteiche. L’integrazione di carboidrati era meno popolare, con solo il  ~37 % dei concorrenti uomini e nessuna concorrente donna che ne segnalava l’uso. I bodybuilder possono utilizzare questi integratori alimentari come mezzo per manipolare e consumare quantità specifiche di macronutrienti. Come accennato in precedenza nelle sezioni carboidrati e acqua/sodio, i bodybuilder cercano di massimizzare il glicogeno muscolare e il suo effetto osmotico associato come mezzo per aumentare il volume muscolare totale. Pertanto, è comune integrare con varie polveri di carboidrati (ad esempio Destrosio, Ciclo-Destrine altamente ramificata, ecc.). Le caratteristiche dei carboidrati come l’osmolalità, il tasso di clearance gastrica e l’indice glicemico sono alcune delle variabili fisiche che gli atleti dovrebbero prendere in considerazione poiché possono variare significativamente tra le fonti e possono influire sui sintomi gastrointestinali (ad es. gonfiore, crampi, diarrea, stitichezza, ecc.) [ 119,120,121]. Inoltre, è stato dimostrato che l’indice glicemico di diverse fonti di carboidrati influisce sui tassi di sintesi del glicogeno [122, 123]. Questo può essere di maggiore importanza per i bodybuilder che mirano a riempire le riserve di glicogeno in una finestra temporale breve (ad esempio dopo aver preso peso), poiché i carboidrati ad alto indice glicemico hanno dimostrato tassi di risintesi del glicogeno superiori [122]. Tuttavia, in un arco di tempo più lungo (cioè 8 + ore), le riserve di glicogeno possono essere reintegrate in modo simile, indipendentemente dalla frequenza di alimentazione [124], quando si consuma una quantità totale adeguata di carboidrati [125]. Inoltre, i dati hanno dimostrato che la combinazione di proteine ​​e carboidrati può migliorare la risintesi del glicogeno [126]. Tuttavia, sembra prudente che gli atleti non “sperimentino” durante la Peak Week con nuovi CHO, fonti proteiche o altri integratori non integrati nelle strategie specifiche della Peak Week per ridurre il rischio di manifestare sintomi gastrointestinali negativi o altre conseguenze deleterie.

Esistono prove sostanziali a sostegno dell’uso della supplementazione di creatina per i bodybuilder. Chappell et al. hanno riferito che ~ 48 % degli uomini e ~ 51 % delle donne hanno integrato con creatina durante la preparazione del contest [2]. È stato dimostrato che la creatina migliora la composizione corporea (cioè aumenta la massa corporea magra, diminuisce la massa grassa) [127, 128] e aumenta lo stato di idratazione intracellulare [129, 130]. Ziegenfuss et al. [129] hanno dimostrato che una fase di carico di creatina di tre giorni ha aumentato il volume del fluido intracellulare di ~ 3 % senza influire sul fluido extracellulare. L’uso dell’analisi dell’impedenza bioelettrica multifrequenza (MBIA) ha indotto alcuni a interpretare inizialmente i dati con un certo scetticismo. Tuttavia, uno studio di follow-up che impiega lo stesso schema di carico di creatina di tre giorni ha osservato un aumento del 6,6% del volume muscolare della coscia tra gli atleti di potenza NCAA d’élite, come determinato dalla risonanza magnetica standard [131]. È stato anche dimostrato che l’integrazione di creatina aiuta nella sintesi del glicogeno e nella sua supercompensazione [132]. Inoltre, il consumo di CHO con creatina aumenta il carico di creatina [133], che aumenta l’idratazione cellulare come detto sopra [32, 129]. Infine, i livelli di creatina muscolare diminuiscono molto lentamente dopo il carico [134], quindi l’assunzione di creatina dopo il carico di glicogeno nella settimana di picco non è necessaria, tranne forse in piccole quantità per accelerare potenzialmente l’apporto di carboidrati dell’ultimo minuto, il giorno della competizione, nel muscolo scheletrico. Pertanto, l’integrazione di creatina può essere uno strumento potenzialmente efficace durante la Peak Week per l’espansione acuta della massa muscolare. Tuttavia, va notato che non tutti gli individui risponderanno all’assunzione di creatina esogena a fronte di un aumento significativo del contenuto di creatina muscolare [135, 136]. In particolare, i “responder” tendono ad essere quelli che hanno un’area di fibre muscolari di tipo II più ampia (cioè quelli con una propensione innata per lo sprint e/o gli sport di forza/potenza) [137, 138] e/o quelli con creatina iniziale inferiore ai livelli basali, forse a causa della mancanza di assunzione (p. es., coloro che non hanno integrato con creatina o che sono vegetariani che non integrano) [139].

L’integrazione di acidi grassi omega-3 [acido eicosapentaenoico (EPA), acido docosaesaenoico (DHA)] è stata osservata anche nei bodybuilder [2, 3]. Chappell et al. hanno riferito che il 39% degli uomini e il 47% delle donne consumavano un integratore di omega-3 (ad esempio olio di pesce, krill, olio di lino) [2]. Sebbene dati sostanziali in molti dati demografici della popolazione supportino l’uso di EPA e DHA come mezzo per ridurre l’infiammazione sistemica e migliorare la sensibilità all’insulina [140, 141], rimane sconosciuto se ciò possa migliorare il processo di picco.

Come discusso in precedenza, l’uso di diuretici è stato comunemente riportato nel bodybuilding agonistico [8, 19,20,21, 34, 35]. I bodybuilder usano spesso diuretici (sia estratti vegetali che farmaci) per aumentare la produzione di urina ed espellere il sodio nel tentativo di alterare il volume dei liquidi, migliorare la composizione corporea e presentare un fisico più “qualitativo”[142]. Inoltre, alcuni possono utilizzare i diuretici per ridurre la massa corporea totale con l’obiettivo di stabilire una specifica classe di peso [8, 19,20,21, 34, 35, 143]. Ad esempio, Caldwell et al. [143] hanno studiato gli effetti di un diuretico da prescrizione (Furosemide 1,7mg/kg) su atleti di vari sport (ad es. sollevatori di pesi e artisti marziali) e hanno riportato una significativa riduzione della massa corporea totale (-3,1 α 0,8kg) in un periodo di 24 ore. Tuttavia, a causa dei potenziali effetti collaterali e della loro capacità di mascherare l’uso di farmaci per il miglioramento delle prestazioni, i diuretici soggetti a prescrizione sono stati vietati dall’Agenzia mondiale antidoping [144]. Sebbene questi farmaci non siano presumibilmente utilizzati dai bodybuilder natural, sono stati impiegati da agonisti non sottoposti a test [19, 20]. È interessante notare che alcuni integratori a base di erbe che non sono vietati hanno dimostrato un effetto diuretico e possono essere impiegati allo stesso modo da culturisti doped e natural. Ad esempio, è stato dimostrato che il Taraxacum Officinale (Dente di Leone) aumenta significativamente la frequenza di urinazione e la produzione di escrezione in modo acuto (cioè entro una finestra di 10 ore) [145]; tuttavia, per quanto ne sappiamo, nessuna ricerca ha esaminato direttamente il suo impatto sugli spostamenti dei fluidi intracellulari rispetto a quelli extracellulari o sulla sua efficacia durante la Peak Week.

Attività del Furosemide

La vitamina C (acido ascorbico) è idrosolubile e considerata non tossica anche in quantità elevate [146]. Poiché richiede la filtrazione renale per l’escrezione, provoca anche diuresi osmotica [147]. La ricerca supporta un effetto diuretico della vitamina C sia orale che endovenosa [148], con dosi giornaliere di appena 11mg/kg che producono diuresi nei bambini [149], sebbene una dose endovenosa di 500mg non sia riuscita a indurre diuresi nei maschi adulti [150] . Uno studio sia su soggetti sani che su pazienti con carenza di vitamina C ha dimostrato che le perdite urinarie di vitamina C (e la diuresi concomitante) si verificano solo al di sopra della soglia di concentrazioni ematiche di ~ 14mg/L (che corrisponde ai livelli di saturazione dei tessuti). Questi dati suggeriscono che il raggiungimento di concentrazioni ematiche di vitamina C che promuovono la diuresi varia in funzione dei tassi di assorbimento e assorbimento/deposito nei tessuti [151] (3). Dato il suo uso comune, la relativa sicurezza e la potenziale efficacia come diuretico non farmacologico, l’uso dell’acido ascorbico in uno scenario di picco della preparazione (compresi i modelli di dosaggio per ridurre al minimo il disagio gastrointestinale e ottimizzare le concentrazioni ematiche nel contesto dei tempi dei pasti e di altri fattori che possono influenzare l’assorbimento) giustificano ulteriori ricerche. Infatti, a causa della scarsità di ricerche disponibili sull’argomento, è difficile formulare raccomandazioni definitive sull’uso e sul dosaggio durante la Peak Week. Tuttavia, sulla base delle prove disponibili, il dosaggio ripetuto (ogni poche ore) di 500-1000mg di vitamina C è una strategia praticabile da utilizzare durante le 12-24 ore prima della competizione per accelerare potenzialmente la perdita di acqua corporea con effetti collaterali minimi (ad es. disturbi gastrointestinali). Si prega di notare che è necessaria cautela poiché un consumo eccessivo di vitamina C può causare diarrea osmotica [152].

L’uso di un integratore di Caffeina è di menzione speciale per le sue proprietà diuretiche. Dosi di almeno  ~ 250-300mg di Caffeina (2-3 tazze di caffè) possono essere assunte per promuovere la diuresi acuta in coloro che non sono tolleranti alla caffeina a causa dell’uso cronico [153]. D’altra parte, diversi giorni di astinenza possono ripristinare la sensibilità agli effetti diuretici della caffeina (sebbene l’effetto diuretico sia ancora presente solo a queste dosi maggiori) [154]. Anche gli effetti diuretici, migliorativi dell’umore [155] e delle prestazioni della caffeina [156] dovrebbero essere considerati nel contesto di potenziali disturbi del sonno se assunta in modo acuto per promuovere la diuresi per ridurre il peso la notte prima della competizione, così come l’effetto di astinenza se l’uso viene interrotto bruscamente [157]. Una potenziale strategia della Peak Week sarebbe quella di limitare la caffeina all’inizio della settimana (specialmente nei consumatori cronici, per ripristinare la sensibilità), impiegarla all’inizio della giornata come diuretico (p. es., il giorno prima della competizione) per limitare gli effetti negativi su qualità del sonno e continuare il suo uso in seguito (p. es., il giorno della competizione) per prevenire gli effetti di astinenza sia sull’omeostasi dei liquidi che sull’umore e sull’eccitazione [157]. È stato notato che la caffeina può essere impiegata (3-8mg/kg) come agente per accelerare il carico di glicogeno [158], sebbene i dati siano scarsi ed equivoci su questo effetto [159]. Pertanto, gli atleti che potrebbero scegliere di includere la caffeina per aumentare il carico di carboidrati a metà della Peak Week potrebbero anche perdere la sua utilità come diuretico durante i giorni successivi (ad esempio, quando tentano di “asciugarsi” ~ 24h prima di salire sul palco ).

L’uso del farmaco Metformina (500mg-1.5g/die) è utilizzato durante i giorni di ricarica dei CHO della Peak Week. Essa aumenta la sensibilità all’insulina e il miglioramento del ripartizionamento calorico. Nonostante riduca in parte l’assorbimento glucidico e possa alterare la glicogenolisi epatica, molti atleti hanno riferito di usarla con successo aggiustando la quantità di carboidrati la dove necessario e senza compromissioni della supercompensazione del glicogeno muscolare. La pratica d’uso della Metformina ha di gran lunga sostituito il malsano utilizzo dell’Insulina la quale mostra una quantità secreta più che sufficiente dall’alimentazione. L’aggiunta di un GDA (farmacologico o OCT) ne migliora l’effetto. Si sconsiglia un suo inserimento nella Peak Week se non già testata in precedenza dal momento che può causare disturbi gastrointestinali con conseguenti eventi diarroici.

Come sostituto alla Metformina, l’uso della Berberina è stato applicato da alcuni atleti durante la Peak Week nei giorni di ricarica dei carboidrati. L’attività della Berberina, similmente alla Metformina, si esplica attraverso i PPARγ e l’attivazione indiretta del AMPK, con conseguente aumento del uptake del glucosio (migliore insulino sensibilità) sia da parte del miocita che del adipocita (quest’ultimo, in una condizione di bassa concentrazione e deplezione epatico-muscolare di glicogeno risulta limitato per ciò che concerne la ripartizione calorica).

Meccanismo d’azione della Metformina

I dosaggi di Berberina che hanno dimostrato un impatto statisticamente significativo, anche alla luce della ricerca scientifica svolta fino ad oggi, vanno dai  500mg a 1.5g al giorno assunti in 2-3 somministrazioni di uguale portata  distribuite durante la giornata (preferibilmente prima dei pasti principali). L’abbinamento con la Silimarina ha mostrato di aumentarne la biodisponibilità. L’emivita della Berberina è stata stimata essere di circa 5-6 ore.(The 5-minute Herb and Dietary Supplement Consult – a cura di Adriane Fugh-Berman (pag. 158)) Ai dosaggi comunemente usati nella medicina tradizionale e nel limite di 1.5g/die la Berberina è ben tollerata e sicura; a dosaggi più alti può determinare: disturbi gastrointestinali, dispnea, diminuzione pressoria, sintomi simil-influenzali e danno cardiaco. (https://www.ncbi.nlm.nih.gov/pubmed/10767672)

Effetto della Berberina sul metabolismo glucidico

I “NO-booster” vengono utilizzati da alcuni atleti il giorno del contest. Alcuni si limitano ad assumere 8g di Citrullina Malato 30 minuti-1h prima di salire sul palco. Altri, invece, aggiungono, al fine di potenziare l’effetto “pump”, il Sildenafil assumendolo ad un dosaggio di 25-100mg 1h prima di salire sul palco.

Alcuni “intrepidi” con poca conoscenza su farmacologia ed emivita, somministrano per via intramuscolare nei gruppi carenti la PGF1-α per aumentare il “pump” in questi gruppi. Si tratta di una pratica di nicchia e, in definitiva, poco efficace per via della breve vita attiva della molecola (pochi minuti) e la scomodità di utilizzo durante un contest.

Sono anche utilizzate le soluzioni topiche anti-infiammatorie e drenanti per aumentare il flusso dei liquidi extracellulari dalle zone critiche come le gambe. Molecole come il Glicosaminoglicanopolisolfato che viene applicato a partire dall’ultimo post workout del “Leg Day” fino alla sera prima del contest con applicazione in 3 somministrazioni. La sua efficacia è risultata apprezzabile e additiva con le altre pratiche per il controllo dei liquidi extracellulari, anche se vanno comunque valutate le risposte individuali.

I bodybuilder utilizzatori di PEDs usano in vista della Peak Week anche pratiche per la riduzione marcata degli estrogeni per via farmacologica (vedi inibitori dell’Aromatasi) nel tentativo di ridurre lo spessore della pelle. L’Estradiolo, come il GH, è implicato nella sintesi di collagene, una riduzione ulteriore di queste due variabili potrebbe ridurre nel giro di 14 giorni lo spessore cutaneo. La pratica, per essere oggettiva, deve basarsi sugli esami ematici di controllo per valutare i livelli di E2. Non esiste alcuna letteratura in merito ma semplici dati aneddotici raccolti negli anni. E’ scontato dire che gli effetti negativi degli estrogeni sullo spessore della pelle possono richiedere diversi mesi affinché vangano eliminati completamente, quindi il mantenimento di un elevato livello di estrogeni durante i primi mesi di preparazione alla gara per poi farli calare fino al livello minimo solo un paio di settimane prima dell’esibizione non è l’ideale. Per tutti coloro che usano grandi dosi di AAS aromatizzabili per tutta la maggior parte della preparazione, tenete questo bene in mente.

Fibre e FODMAP:

La fibra alimentare è materia vegetale indigeribile proveniente da fonti di carboidrati che possono essere classificate come idrosolubili o insolubili (cioè fermentabili) e svolge un ruolo vitale nella salute gastrointestinale e nella regolarità del movimento intestinale [160]. I culturisti che mirano a ridurre la massa corporea totale durante la Peak Week come mezzo per fare una particolare classe di peso possono trarre beneficio dalla riduzione intenzionale dell’assunzione di fibre. Ad esempio, Reale et al. [55] hanno studiato l’effetto delle manipolazioni dietetiche (cioè macronutrienti, fibre, sodio e assunzione di acqua) sulla perdita di peso acuta per gli atleti da combattimento e hanno prescritto 10-13g di fibre per ridurre il contenuto intestinale totale e la massa corporea. Diverse fonti di cibo influiscono sulle caratteristiche di massa fecale e quelle ricche di fibre tendono ad aumentare l’acqua nello spazio interstiziale e la massa delle feci [161]. I dati hanno dimostrato che una relazione diretta tra l’assunzione di fibre e il contenuto intestinale con periodi di restrizione acuta (di appena due giorni) è efficace nello svuotamento/pulizia del tratto gastrointestinale [162]. Pertanto, la logica per ridurre l’assunzione di fibre prima della competizione è in genere quella di ridurre al minimo il rischio di gonfiore/ritenzione idrica [11] e, per alcuni, può essere una strategia efficace per stabilire una classe di peso.

Sebbene la ricerca sull’argomento sia limitata, Chappell et al. [11] hanno riferito che i bodybuilder che hanno osservato hanno ridotto gravemente il loro apporto di fibre principalmente riducendo/omettendo le verdure fibrose durante la Peak Week. Inoltre, è ben noto che oligosaccaridi, disaccaridi, monosaccaridi e polioli fermentati (FODMAP) sono scarsamente assorbiti, attirano fluidi all’interno del tratto gastrointestinale e aumentano la probabilità di gonfiore/gas [163]. Pertanto, potrebbe essere consigliabile per i bodybuilder limitare le fonti di cibo ad alto contenuto di FODMAP durante la Peak Week. Questo potrebbe essere uno dei motivi per cui anche le fonti alimentari come latticini e fonti ricche di lattosio e glutine sono aneddoticamente limitate in questo periodo. D’altra parte, fonti di fibre come la gomma di guar [164] e lo psillio [165], che hanno dimostrato di ridurre i sintomi della sindrome dell’intestino irritabile dominata sia da stitichezza che da diarrea, potrebbero essere impiegate su base individuale per compensare il disagio gastrointestinale, come notato sopra nello studio di de Moraes et al. [15]. Nonostante la mancanza di dati all’interno di questo gruppo demografico, la fibra alimentare è probabilmente una variabile che può influire sul processo di picco di un bodybuilder e dovrebbe essere considerata su base individuale nel contesto con gli altri aspetti dell’approccio della Peak Week.

Allenamento:

Poiché i bodybuilder si allenano invariabilmente e principalmente con esercizi contro-resistenza (RE), la misura in cui questo tipo di allenamento in particolare riduce il glicogeno e i IMT merita una considerazione. In uno studio iniziale sull’uso di substrati energetici durante un RE in bodybuilder allenati, Essen-Gustavsson e Tesch [96] hanno scoperto che una sessione di RE ad alto volume nella parte inferiore del corpo riduceva sia il glicogeno che i IMT del vasto laterale di ~ 30%, e che sia i livelli a riposo che l’entità della deplezione era correlata rispettivamente agli enzimi energeticamente connessi come la esochinasi e il 3-idrossi-Co-A deidrogenasi. In un altro studio, solo tre serie di Curl delle braccia (80% 1RM o ~ 12RM) erano sufficienti per ridurre il glicogeno del bicipite brachiale del 24 % e aumentare il lattato muscolare ~ 20 volte nei bodybuilder allenati [166]. Allo stesso modo, Roberg et al. [167] hanno scoperto che 6 serie di estensioni del ginocchio (~ 13 ripetizioni/serie; intervalli di riposo di 2 minuti) hanno ridotto il glicogeno muscolare di circa il 40% negli uomini allenati contro-resistenza, ma i livelli di glicogeno hanno recuperato il 50% delle perdite durante le 2 ore di riposo a digiuno, presumibilmente a causa dell’immediata assimilazione post-esercizio dei metaboliti glicogenolitici (ad esempio, lattato) [168]. Lo stesso gruppo ha anche scoperto che un regime di corrispondenza del carico di lavoro esterno (impiegando il doppio del carico in modo tale da impostare una media di solo  ~ 6 ripetizioni ad esaurimento) produceva un modello quasi identico di uso di glicogeno e recupero immediato post-esercizio. Pertanto, il RE eseguito con intervalli di ripetizioni comunemente impiegati tra i bodybuilder riduce sostanzialmente le riserve di glicogeno muscolare in un modo correlato al carico di lavoro/volume di una data seduta.

In linea con la ricerca precedente che suggeriva che l’ossidazione del grasso è maggiore nelle donne così come in quelle con livelli di grasso corporeo più elevati [85, 169], uno studio su donne obese non allenate ha rilevato che il 42% delle riserve IMT miste a riposo sono state utilizzate solo durante 6 serie di 10 ripetizioni di estensione del ginocchio [170]. Mentre i IMT erano tornati al 33% al di sotto della linea di base 2 ore dopo l’esercizio, nonostante l’assenza di assunzione di cibo, le riserve di glicogeno muscolare sono diminuite solo del 25% nel corso della seduta, ma non sono riuscite a recuperare significativamente in assenza di consumo di cibo [170]. I dati di cui sopra suggeriscono che il ripristino dei IMT può procedere lentamente in luogo delle fonti alimentari [171], mentre per i CHO è necessario per ripristinare sostanzialmente i livelli di glicogeno una deplezione acuta post allenamento contro-resistenza con riassorbimento degli intermedi glicolitici.

Pertanto, il potenziale di modificare le riserve di glicogeno intramuscolare e di IMT attraverso la dieta (vedi sopra) e l’esercizio è chiaro, ma gli effetti corrispondenti possono essere variabili tra i bodybuilder in funzione della dieta pre-gara (la composizione e il contenuto dei macronutrienti possono influenzare le riserve a riposo), attività enzimatica muscolare e sesso, tra le altre variabili non studiate. Anche il danno muscolare indotto dall’esercizio può essere importante nell’interpretazione dei dati di cui sopra poiché è altamente variabile [172,173,174], una funzione dello stato di allenamento [175] e noto per compromettere la sensibilità all’insulina muscolare [176] così come il rifornimento di glicogeno [177] . Evitare un danno muscolare eccessivo può quindi essere importante quando si considera una strategia di allenamento contro-resistenza durante la Peak Week non solo per massimizzare le riserve di glicogeno e IMT, ma anche per prevenire indolenzimento muscolare a insorgenza ritardata indesiderato che potrebbe impedire la capacità di attivare i muscoli [178] durante la posa sul palco. In effetti, le richieste energetiche di recupero da un allenamento apportante danno muscolare possono essere così grandi che in casi estremi i livelli di glicogeno possono continuare a diminuire dopo l’esercizio e non recuperare completamente in 24h nonostante un elevato consumo di CHO (10 g/kg/giorno) [179 ]. La variabilità nell’entità dell’infiammazione post-esercizio [180, 181] può anche spiegare la sopra menzionata variabilità nell’entità dell’idratazione che accompagna il carico di glicogeno. I livelli di IMT a riposo e di glicogeno sono più elevati e vengono utilizzati più facilmente in soggetti allenati che impiegano un carico di lavoro assoluto maggiore. Tuttavia, il ripristino post-esercizio di entrambe le riserve di energia è correlato alla sensibilità all’insulina e procede in modo simile rispetto ai depositi a riposo, indipendentemente dallo stato di allenamento [182]. Pertanto, l’elevata sensibilità all’insulina generalmente osservata nei bodybuilder nel pre-gara [5, 7, 90, 183, 184] conferisce un vantaggio per i depositi di IMT e il ripristino del glicogeno dopo sessioni di allenamento ad alto fabbisogno di substrato [185], ma la loro maggiore massa e capacità muscolare per ridurre le riserve di energia muscolare impongono che l’assunzione di grassi alimentari e CHO debba essere proporzionalmente grande per garantire un effetto super compensativo.

Applicazioni pratiche per la Peak Week:

È evidente che i bodybuilder implementano una varietà di strategie per la Peak Week nonostante la scarsità di ricerche specifiche sulla sicurezza e l’efficacia sui bodybuilder. Poiché ci sono molte variabili correlate da considerare durante il processo di picco che si influenzano direttamente a vicenda, non sono possibili raccomandazioni specifiche per la Peak Week. Inoltre, ci sono significative risposte interindividuali alla manipolazione di queste variabili e i bodybuilder potrebbero dover adottare approcci diversi durante la Peak Week a seconda delle loro circostanze, obiettivi e come il loro corpo risponde alle alterazioni delle variabili. Ad esempio, gli approcci alla Peak Week potrebbero differire sostanzialmente in base alle circostanze di un bodybuilder che deve raggiungere un peso per una specifica classe rispetto a un bodybuilder che non è vincolato da un limite di peso. Allo stesso modo, gli atleti che gareggiano nelle varie suddivisioni di categoria del bodybuilding potrebbero dover adottare approcci diversi (ad es. women’s physique/figure/wellness/bikini/fitness e men’s physique/classic physique) in cui gli standard di giudizio possono differire da quelli del bodybuilding tradizionale.

Mentre una discussione approfondita degli standard di giudizio sfumati e in qualche modo fluidi (che variano tra le numerose federazioni/organizzazioni di bodybuilding) delle varie categorie del culturismo competitivo esula dallo scopo di questo articolo, le seguenti considerazioni generali possono essere applicate nella costruzione di una strategia della Peak Week per queste altre categorie:

  • (1) Lo standard per la magrezza nelle divisioni femminili non bodybuilding spesso richiede livelli di grasso corporeo più elevati e meno muscolosità rispetto al bodybuilding femminile, e può anche quindi richiedere poche o nessuna delle manipolazioni della Peak Week descritte fino a qui ;
  • (2) Aneddoticamente, le concorrenti femminili (tipicamente nelle divisioni Bikini o Figure) possono ridurre intenzionalmente il grasso corporeo totale per ottenere livelli di grasso corporeo inferiori e competitivi e, invece di applicare procedure diuretiche, “carico d’acqua”, nel tentativo di ridurre la comparsa di eccessivo magrezza, mantengono l’aspetto desiderato di una distribuzione del grasso corporeo più uniformemente e omogenea;
  • (3) I concorrenti fitness, in cui vengono giudicate le prestazioni fisiche e l’aspetto fisico, potrebbero dover creare approcci altamente individualizzati al ripristino dell’acqua e dei depositi energetici che ottimizzino la competitività, minimizzino il rischio di lesioni e tengano conto della tempistica relativa dei set di routine e fisici nel corso di una gara.

Date le attuali prove discusse nel corso di questo articolo, offro le seguenti raccomandazioni generali per i bodybuilder al fine di aiutare i lettori a sviluppare strategie personalizzate per la Peak Week che coordinino l’assunzione di macronutrienti, le strategie di idratazione e di gestione degli elettroliti, l’integrazione e la routine di allenamento contro-resistenza/endurance(cardio). È importante sottolineare che queste raccomandazioni non dovrebbero essere considerate “regole” concrete in quanto esiste una significativa variabilità individuale di come gli atleti possono rispondere alla manipolazione di queste variabili. Infatti, a causa del numero di variabili che possono essere manipolate e degli scenari espansi che possono verificarsi, presento linee guida più specifiche di Peaking per:

  • (1) Un concorrente Physique femminile (60kg che non è vincolata da un limite di peso (BB1);
  • (2) un bodybuilder supermassimo (105 kg) che non è vincolato da un limite di peso (BB2);
  • (3) un concorrente Classic Physique che deve essere sotto un limite di peso (85 kg) in base alla sua classe di altezza (BB3)

In tutte le circostanze, si presumerà che i concorrenti effettuino il check-in (e il peso, se applicabile) il venerdì pomeriggio per competere il sabato mattina per il giudizio preliminare e il sabato sera per le finali. Si prega di notare che, nonostante queste circostanze specifiche, le raccomandazioni presentate nella Fig. 1 e nelle Tabelle 1, 2 e 3 dovrebbero essere viste come punti di partenza raccomandati che probabilmente richiederanno aggiustamenti basati sulle risposte dell’individuo all’alterazione delle variabili. La strategia simulata della Peak Week nella Fig. 1 è presentata solo come illustrativo esemplificativa e non devono essere considerati consigli dietetici, di esercizio fisico e/o medici prescrittivi. Si prega di fare riferimento al testo per una spiegazione razionale dettagliata per la manipolazione di macronutrienti, acqua, sodio e potassio presentata nella Fig. 1 e nelle Tabelle 1, 2 e 3. A tal fine, le strategie della Peak Week includerebbero le seguenti considerazioni:

1) Durante un protocollo di esaurimento/supercompensazione indotta da allenamenti contro-resistenza, l’attività fisica dovrebbe coinvolgere tutti i principali gruppi muscolari e impiegare una varietà di esercizi per garantire una riduzione diffusa dei livelli di IMT e di glicogeno nell’intera massa muscolare.

2) Utilizzando uno schema di ripetizione relativamente alto (>12 ripetizioni) con un approccio a volume più basso o più alto [167], ed esercitando uno sforzo e/o un carico sufficienti per impegnare la maggior parte dei tipi di fibre [186,187,188] ma fermandosi prima del cedimento applicando un rapporto tra volume/intensità ben delineato e non eccessivo, evitando nuovi esercizi, sembra un approccio prudente per garantire che il danno muscolare sia ridotto al minimo.

3) Gli esercizi che sovraccaricano il muscolo nella fase di allungamento/o eccentrico dominante (es. Stacco da terra rumeno, DB Lat Pullover, DB Fly) dovrebbero essere ridotti al minimo poiché è stato dimostrato che l’allenamento con modalità di allungamento aumenta il danno muscolare [189].

4) L’esercizio cardiovascolare dovrebbe essere ridotto o eliminato preferibilmente prima di entrare nella fase compensatoria delle riserve energetiche nei giorni precedenti la competizione.

5) L’allenamento contro-resistenza durante la Peak Week dovrebbe generalmente avvenire all’inizio della settimana, distribuito su 3-4 giorni a seconda della suddivisione di allenamento abituale dell’atleta, per consentire un tempo adeguato per la supercompensazione durante i giorni prima di salire sul palco di gara. Allenare le gambe per prime in questa serie di allenamenti della Peak Week consente il massimo tempo per il recupero in questi gruppi muscolari.

6) Il potenziale per il carico di glicogeno di compromettere la conservazione dei IMT suggerisce che la separazione dei periodi di carico di glicogeno e di grassi può essere prudente, con una dieta ad alto contenuto di CHO che precede gli sforzi per il carico dei grassi [92]. Ridurre la coingestione dei grassi con grandi quantità di carboidrati può anche evitare gli effetti negativi degli acidi grassi liberi sulla formazione di glicogeno [190], ridurre la distensione gastrica accelerando lo svuotamento gastrico, nonché migliorare il carico di glicogeno aumentando ulteriormente i livelli di glucosio nel sangue e di insulina [191,192,193] . Se consumate in giorni diversi, le diete contenenti grassi a 2g/kg/giorno [92] e CHO a 10g/kg/giorno [100] possono ripristinare e potenzialmente sovracompensare i rispettivi depositi energetici entro 24 ore. La variabilità individuale e gli obiettivi/bisogni dell’atleta possono richiedere strategie diverse, incluso consentire >24h per il carico di glicogeno [194] se le circostanze lo consentono.

7) Piuttosto che introdurre nuovi alimenti, consumare principalmente gli stessi costituenti dietetici durante la Peak Week che si consumano durante le settimane/mesi precedenti può anche essere utile per evitare disturbi gastrici. Poiché le fonti di carboidrati di frutta e fruttosio stimolano meglio il ripristino del glicogeno epatico, mentre il glucosio lo fa per il glicogeno muscolare [195], si raccomanda che la maggior parte dei carboidrati consumati provenga da fonti a base di amido/glucosio. Da notare, tuttavia, che è stato dimostrato che combinazioni di glucosio, fruttosio e saccarosio con bevande sportive aumentano la velocità di assorbimento dei liquidi dall’intestino tenue prossimale [196]. Pertanto, si consiglia agli atleti di sperimentare prima della settimana di picco su quali fonti di carboidrati funzionano meglio per loro.

8) Garantire che le proteine ​​siano co-ingerite, anche se in quantità inferiori, con i CHO durante la ricarica può aumentare il rilascio di insulina e facilitare il carico di glicogeno [197, 198].

9) Un apporto proteico più elevato (es. 3,0g/kg) può essere combinato con un apporto più elevato di grassi durante i periodi di deplezione dei CHO per avviare il carico di grassi seguito da un carico di CHO con un apporto proteico inferiore (es. 1,6 g/kg) per compensare le riserve di glicogeno . Una volta completato il carico di carboidrati, può essere implementata una dieta ad alto contenuto proteico (3,0 g/kg)/alto contenuto di grassi/basso contenuto di CHO. Ancora una volta, la variabilità individuale e gli obiettivi/bisogni dell’atleta possono richiedere strategie diverse per raggiungere il massimo della forma fisica.

10) Varie strategie di carico dei CHO sono state riportate nel bodybuilding. Ad esempio, Roberts et al. [199] discussero la pratica della ricarica dei CHO a caricamento frontale (l’assunzione è maggiore all’inizio della settimana e poi ridotta per mantenere la pienezza muscolare fino alla competizione) e il carico dei CHO a caricamento posteriore (l’assunzione avviene più tardi nella settimana ma può comportare meno tempo per apportare modifiche al fisico). In alternativa, potrebbe essere utilizzato anche un modello in cui i CHO vengono esaurite all’inizio della settimana (7 − 4 giorni out), caricati a metà settimana (3 − 2 ​​giorni out), e quindi regolati/mantenuti (1 giorno out). Nello studio di de Moraes et al. [15], è stato utilizzato un metodo di carica a ritroso, ma sono necessarie ulteriori prove prima di formulare raccomandazioni più concrete. Sulla base delle prove attuali, si raccomanda il terzo modello discusso, come presentato nella Tabella 1 per la concorrente Physique femminile di 60kg e il bodybuilder di sesso maschile di 105kg, per ottenere i benefici del carico frontale e del carico posteriore; tuttavia, devono essere prese in considerazione le risposte/preferenze individuali al carico dei CHO e le esigenze dell’individuo (ad es., fare una classe di peso può richiedere il carico a ritroso).

11) La precedente dieta pre-gara può influenzare la tolleranza del concorrente alla manipolazione dietetica, nonché l’entità della restrizione dietetica di grassi e CHO durante i giorni di allenamento della Peak Week necessari per accelerare un successivo effetto super-compensativo. Ad esempio, quei concorrenti che seguono una dieta ricca di CHO/basso contenuto di grassi, ma molto ipocalorica (lasciando i livelli di glicogeno cronicamente bassi) potrebbero evitare di eliminare completamente i CHO durante l’allenamento della Peak Week. Tuttavia, coloro che hanno utilizzato un approccio a basso contenuto di carboidrati potrebbero continuare a utilizzare una dieta di questo tipo durante la Peak Week, ma potrebbero diffidare di applicare un allenamento eccessivo (invece di un approccio tapering) se i livelli di glicogeno sono già probabilmente diminuiti all’inizio della Peak Week.

12) In generale, ridurre i CHO e aumentare l’assunzione di grassi (in base alla tollerabilità individuale) durante i giorni di allenamento (“esaurimento”) della Peak Week può facilitare il carico di glicogeno durante i giorni successivi all’allenamento e, contemporaneamente, garantire che i livelli di IMT non vengano abbassati eccessivamente. Dopo 1-2 giorni di carico di glicogeno a metà/fine settimana come raccomandato nel prima citato approccio al carico dei CHO, i livelli di IMT potrebbero essere aumentati il giorno prima della competizione con un approccio ad alto contenuto di grassi/basso di CHO che servirebbe anche a ridurre l’acqua corporea in eccesso [117]. Ancora una volta, la variabilità individuale e gli obiettivi/bisogni dell’atleta possono richiedere strategie diverse con queste linee guida generali come base.

13) La pratica del carico d’acqua seguita dalla restrizione idrica è stata documentata come una strategia di perdita di peso sicura ed efficace per perdere TBW negli atleti da combattimento [55]. Sebbene il rapporto tra ECW e ICW perso non sia stato riportato in questo studio, Costill et al. [40] (come affermato in precedenza) hanno riportato che il rapporto tra ECW e perdita di ICW rimane vicino a 1:1 quando i livelli di glicogeno si stabilizzano nel tempo e vengono raggiunti livelli più elevati di disidratazione. Pertanto, sembra che la ritenzione del glicogeno muscolare, evitando l’esercizio che fa molto affidamento sul glicogeno, possa essere importante se i metodi di perdita di acqua devono essere effettuati per una perdita favorevole di ECW rispetto a ICW (ECW > ICW) in modo tale che la dimensione muscolare venga mantenuta mentre L’ECW interstiziale viene preferibilmente perso, migliorando potenzialmente l’aspetto della “definizione” muscolare.

14) Molte variabili possono alterare l’approccio utilizzato per il carico/esaurimento idrico (cioè quanta acqua l’atleta è abituato a bere regolarmente), ma i partecipanti allo studio di Reale et al. hanno perso con successo la TBW bevendo una grande quantità di acqua (100ml/kg) per tre giorni, seguita da una significativa riduzione dell’acqua a 15ml/kg il quarto giorno [55] senza effetti deleteri. In alternativa, l’assunzione di acqua può essere mantenuta relativamente costante (ad eccezione di qualche ora prima di gareggiare per prevenire qualsiasi distensione addominale) per ridurre al minimo le variabili manipolate; in effetti, questo potrebbe essere l’approccio migliore se non vengono eseguite prove pratiche prima della competizione. Mantenere una ratio Sodio:Acqua pari a 1:0.4 (per semplificare, 1L d’acqua = 1g di Cloruro di Sodio (Na)= 400mg di Sodio) fino al giorno precedente alla gara aggiungendo nelle ultime 24h il Glicerolo (generalmente 3 dosi da 10-20ml) il quale ha un noto effetto osmotico intracellulare.

15) Poiché il glicogeno muscolare crea un effetto osmotico, attirando l’acqua nella cellula mentre il glicogeno viene immagazzinato [26], il carico di CHO dovrebbe essere effettuato insieme all’assunzione di acqua [199] in modo che l’ICW muscolare possa essere massimizzato mentre l’assunzione di CHO è alta. Dopo circa tre giorni di carico d’acqua con un apporto di CHO più alto (se si utilizza il metodo di carico d’acqua), l’assunzione di acqua può diminuire a ~ 15ml/kg per 24h, il che aiuterà a indurre la diuresi entro ~ 24h prima della competizione. Si noti che questa raccomandazione si basa su quanto studiato e riportato; tuttavia, gli autori riconoscono che maggiori assunzioni di acqua possono essere preferenziali, come 30-40ml/kg, ma non sono state studiate e quindi richiedono ulteriori ricerche.

16) Aumentare o mantenere un’assunzione elevata di proteine mentre si riduce il consumo di carboidrati e contemporaneamente aumentare l’assunzione di grassi durante il giorno prima della competizione può invertire i guadagni indesiderati di acqua extracellulare/sottocutanea sperimentati durante il carico dei carboidrati [118].

17) È stato riportato che l’assunzione di sodio è significativamente ridotta dai bodybuilder durante la Peak Week [11, 14, 20], ma i tempi di questa pratica dovrebbero essere attentamente implementati e l’assunzione di sodio non dovrebbe essere ridotta contemporaneamente al carico dei CHO poiché l’evidenza suggerisce che la somministrazione di CHO è limitata dalla capacità di trasporto di SGLT1 [72,73,74,75]. Una volta che l’assunzione di CHO è diminuita dopo il carico di glicogeno, l’assunzione di sodio può essere temporaneamente ridotta poiché la ricerca indica che l’attivazione del RAAS è evidente entro 24 ore e sono necessarie  ~ 48 ore per osservare un forte aumento dei livelli di Aldosterone plasmatico [53]. Questo ritardo temporale nello stabilire l’omeostasi di fluidi ed elettroliti, se programmato correttamente, può essere implementato per indurre la diuresi prima che i meccanismi omeostatici protettivi si manifestino completamente per arrestare la perdita di acqua. A seconda delle esigenze del bodybuilder prima della competizione (ad esempio, necessità di stabilire una classe di peso), nella Tabella 2 sono presentati vari scenari di assunzione di sodio. In alternativa, il sodio può essere mantenuto come costante per ridurre al minimo le variabili manipolate; in effetti, questo potrebbe essere l’approccio migliore se non vengono eseguite prove pratiche prima della competizione. Il mantenimento di una corretta ratio Sodio:Acqua, accennata in precedenza, garantisce una migliore escrezione di liquidi e impedisce la comparsa di stati di iponatriemia. L’assunzione di Potassio (2g netti al giorno) garantisce all’atleta una migliore omeostasi qualitativa dei liquidi corporei.

18) I bodybuilder utilizzatori di PEDs che presentano nel proprio protocollo il GH, dovrebbero cessarne l’uso almeno 14-7 giorni prima della competizione dal momento che il peptide ha una attività di alterazione del RAAS.

18) L’immagazzinamento e la ritenzione del glicogeno muscolare dipendono fortemente dalla disponibilità di potassio (un catione intracellulare primario) [41,42,43,44,45,46]. Pertanto, garantire un’adeguata assunzione di potassio durante le procedure sia di carico dei carboidrati che di riduzione dell’acqua (se aggiunta) è probabilmente fondamentale per ottimizzare l’aspetto della pratica attraverso lo stoccaggio e la ritenzione di glicogeno muscolare e quindi stimolare una perdita più favorevole di ECW rispetto a ICW quando si utilizzano strategie di disidratazione.

19) Ridurre l’assunzione di fibre durante la Peak Week sembra offrire alcuni potenziali benefici. Rale et al. [55] hanno riferito che la riduzione dell’assunzione di fibre a 10-13 g/giorno per ~ 5 giorni ha ridotto con successo il contenuto intestinale totale e la massa corporea nei contact fighters. I dati hanno dimostrato che una relazione diretta tra l’assunzione di fibre e il contenuto intestinale con periodi di restrizione acuta (di appena due giorni) è efficace nello svuotamento/pulizia del tratto gastrointestinale [162]. Pertanto, la logica per ridurre l’assunzione di fibre prima della competizione è tipicamente quella di ridurre al minimo il rischio di gonfiore/ritenzione idrica [11] e, per alcuni, parte del loro processo per creare una classe di peso.

20) L’utilizzo di alcuni integratori durante la Peak Week può rivelarsi vantaggioso per gli atleti. È stato dimostrato che l’integrazione di creatina aiuta nella sintesi del glicogeno e nella sua supercompensazione [132]. Inoltre, il consumo di CHO con creatina aumenta il carico di creatina [133], che aumenta l’idratazione intracellulare [32, 129]. Insieme alla creatina, possono essere prese in considerazione anche polveri di carboidrati (ad es. destrosio, ciclo-destrine altamente ramificate, ecc.). Le caratteristiche dei carboidrati come l’osmolalità, il tasso di clearance gastrica e l’indice glicemico sono alcune delle variabili che i bodybuilder dovrebbero prendere in considerazione poiché questi fattori possono variare significativamente tra le fonti e possono influire sui sintomi gastrointestinali (ad es. gonfiore, crampi, diarrea, costipazione, ecc.) [ 119,120,121]. Sia le polveri di proteine del siero di latte idrolizzate, gli EAA, le classiche proteine che le polveri di carboidrati possono essere utilizzate come mezzi per manipolare e consumare quantità specifiche di macronutrienti senza dover consumare grandi volumi di cibo. Anche l’uso di diuretici erboristici e farmacologici, con le dovute precauzioni, possono essere inseriti negli ultimi giorni prima del contest per facilitare l’eliminazione dell’acqua extracellulare. Come detto in precedenza, l’uso di Metformina o Berberina nei giorni di ricarica dei CHO ha il potenziale di migliorare la “qualità” di questa pratica per via di un migliore ripartizionamento calorico. L’uso di “NO-booster” come Citrullina Malato e/o Sildenafil possono dare un affetto “pump” dando un aspetto muscolare più “pieno”. Soluzioni topiche con attività anti-infiammatoria/drenante, come quelle contenenti Glicosaminoglicanopolisolfato, possono agevolare la perdita di liquidi extracellulari in aree critiche come le gambe (applicazione dal post workout dell’ultimo Leg Day fino alla sera precedente il contest). Sempre per i bodybuilder utilizzatori di PEDs, la riduzione estrema dei livelli estrogenici nelle ultime due settimane pre-contest può facilitare l'”assottiogliamento” della cute per via del legame tra sintesi di Collagene e Estrogeni.

21) Situazioni emotivamente stressanti possono evocare polidipsia e alterare l’omeostasi dei fluidi in appena 48 ore [78, 79]. Quindi, lo stress psicologico può contrastare i tentativi del bodybuilder agonista di ridurre l’acqua corporea, specialmente nei casi estremi di ansia pre-gara. Come notato in precedenza, si raccomanda di eseguire una prova pratica della strategia della Peak Week ~ 2–4 settimane prima della competizione effettiva, in parte per ridurre l’ansia e assicurare al concorrente che la strategia della Peak Week è sia gestibile che efficace.

22) Riposare e/o dormire con una posizione di “inclinazione a testa in giù” (HDT) (tipicamente da − 4 a -6˚ per cui l’intera superficie del corpo durante il sonno è inclinata verso il basso [57, 58] simula l’aumento del ritorno venoso cardiaco (e la perdita di pressione ortostatica) che si verifica durante la microgravità e si traduce in diuresi e risposte cardiovascolari [57, 59]. Pertanto, i concorrenti potrebbero plausibilmente impiegare l’HDT quando riposano e dormono durante le 12-24 ore prima della competizione per stimolare ulteriormente la diuresi. Questo potenziale beneficio dovrebbe essere bilanciato con possibili effetti dannosi della pratica sui modelli di sonno, che potrebbero interferire con le prestazioni in gara.

23) Il peso della bilancia può essere utilizzato durante la Peak Week per valutare e confermare i livelli di idratazione (vedere la seguente sezione “Considerazioni pratiche per il giorno della gara”).

24) Dal momento che sono coinvolte una moltitudine di variabili e una sostanziale interindividualità biologica, una pratica o “mock” Peak Week durante le ~ 2-4 settimane prima della competizione può fornire informazioni preziose sull’entità e sui tempi appropriati delle alterazioni della dieta e dell’allenamento durante la Peak Week. Inoltre, può attenuare i livelli di stress che un bodybuilder può avere prima della competizione, il che può facilitare il modo in cui il corpo risponde al protocollo della Peak Week.

25) Gli atleti che possono partecipare a una serie di competizioni in successione relativamente rapida, in genere su base settimanale, dovrebbero costruire strategie per le Peak Week (come negli esempi qui riportati) che possono essere replicate, con aggiustamenti aggiuntivi se necessario, durante il periodo di tempo tra le gare . Ciò può richiedere ai concorrenti di mantenere uno stretto controllo dietetico e di stabilire rapidamente l’omeostasi dei fluidi post-gara in modo da ripristinare le condizioni iniziali di base (ad esempio, i livelli di glicogeno muscolare) su cui può fare affidamento una data strategia della Peak Week. Inoltre, oltre ai rischi medici rilevati citati in precedenza, l’uso non oculato di diuretici farmacologici durante la Peak Week può probabilmente interrompere l’omeostasi dei liquidi e diminuire l’affidabilità e quindi il successo delle strategie diuretiche impiegate in una serie di competizioni in stretta prossimità temporale.

26) Come detto in precedenza, i bodybuilder utilizzatori di PEDs utilizzano in vista della Peak Week anche pratiche per la riduzione marcata degli estrogeni per via farmacologica (vedi inibitori dell’Aromatasi) nel tentativo di ridurre lo spessore della pelle. L’Estradiolo, come il GH, è implicato nella sintesi di collagene, una riduzione di queste due variabili potrebbe ridurre nel giro di 14 giorni lo spessore cutaneo. La pratica, per essere oggettiva, deve basarsi sugli esami ematici di controllo per valutare i livelli di E2. Non esiste alcuna letteratura in merito ma semplici dati aneddotici raccolti negli anni.

È essenziale capire che nessuna delle suddette strategie della Peak Week fornirà un restyling fisico per compensare la mancanza di una preparazione corretta o della aderenza durante le fasi di preparazione al contest off-season o pre-gara. Il grasso corporeo deve essere ridotto al minimo ~ 2–3 settimane prima della competizione, in modo che il concorrente possa concentrarsi sulla riduzione al minimo dell’acqua sottocutanea per mostrare al meglio la muscolatura e sull’ottimizzazione delle dimensioni muscolari aumentando le riserve intramuscolari di glicogeno e trigliceridi. Pertanto, l’utilizzo di strategie per la Peak Week è semplicemente un mezzo per ottenere un aspetto migliore durante il giorno della competizione sul palco “sintonizzando” il corpo rispetto al semplice mantenimento della dieta e delle strategie di allenamento pre-gara (cioè quelle focalizzate principalmente sulla riduzione del grasso corporeo e sul mantenimento della massa muscolare).

Considerazioni pratiche per il giorno della gara:

Idealmente il fisico presentato sul palco rappresenta il miglior aspetto possibile dell’atleta, superando quello delle settimane e dei mesi precedenti. Garantire che il picco si verifichi il giorno della competizione spesso richiede un approccio su misura con almeno le seguenti considerazioni:

  • Programma della giornata di gara: quando viene giudicato l’atleta e quante volte? Molte organizzazioni competitive includono più turni di valutazione [200,201,202] e categorie tali che la competizione può svolgersi nel corso di un’intera giornata (o più).
  • Strategie (pre-programmate o meno) per mettere a punto l’aspetto del fisico il giorno della competizione manipolando l’assunzione di acqua, cibo e integratori alimentari secondo necessità.
  • Aspetto personale e percezione del fisico (quanto detto sopra), ed altri mezzi per valutare la fase preparazione. Naturalmente, gli obiettivi della Peak Week settimana di punta per ridurre al minimo l’acqua sottocutanea e garantire che i IMTG e le riserve di glicogeno del muscolo scheletrico siano massimizzate, mettendo i muscoli in pieno rilievo e mostrando la massima “muscolarità” dovrebbero essere ampiamente raggiunti prima del risveglio il giorno della competizione. Nel gergo del bodybuilding, queste componenti della muscolatura potrebbero essere considerate “secchezza” (mancanza di fluido sottocutaneo) e “pienezza” (le riserve energetiche delle cellule muscolari sono completamente riempite / supercompensate). Tuttavia, spesso è necessaria una messa a punto per ottimizzare l’aspetto del fisico quando viene giudicato.

A mia conoscenza, non vi è ricerca che esamini la misura in cui i mezzi soggettivi o altri mezzi pratici al fine di garantire la buona preparazione al giorno della competizione di bodybuilding siano associati al presunto fluido sottocutaneo e alle misure istologiche. Tuttavia, i seguenti sono modi comunemente accettati e suggeriti in precedenza [36] per valutare la prestanza per il giorno del contest:

  • Le riserve di glicogeno muscolare sono “piene” e l’atleta può ottenere un buon “pump”? I metaboliti glicolitici (ad esempio, lattato e fosfato inorganico) derivati dall’uso del glicogeno producono una risposta di iperemia reattiva post-esercizio nota come “pump” [203] che gonfia il tessuto muscolare, aumentandone lo spessore fino a ~ 10% [204, 205]. Ciò rappresenta un vantaggio per l’aumento acuto della dimensione muscolare prima di salire sul palco e spostare il fluido in specifici ventri muscolari (idealmente anche riducendo così il volume del fluido sottocutaneo interstiziale per migliorare ulteriormente l’aspetto della muscolosità, tale che un atleta può preferibilmente “pompare” la muscolatura per migliorare l’equilibrio dell’espansione muscolare.
  • L’atleta è “secco”? L’acqua corporea è stata ridotta abbastanza da ridurre al minimo il fluido sottocutaneo per evidenziare notevolmente la muscolatura sottostante?
  • L’atleta è “piatto”? Creare una situazione di pienezza muscolare e con un aspetto fisico “asciutto” richiede uno stretto atto di riequilibrio fisiologico. La “pompa” iperemica richiede un fluido corporeo adeguato per spostarsi nel ventre muscolare; tuttavia, un atleta con alti livelli di glicogeno muscolare ma acqua corporea eccessivamente ridotta può sperimentare la “piattezza muscolare”, cioè la mancanza di un “pump” muscolare solitamente associata a un aspetto sciupato a causa dell’eccessiva disidratazione. D’altra parte, la colpa potrebbe essere anche della mancanza di glicogeno muscolare come fonte di osmoliti metabolici per l’effetto “pump” [203].

Sia le riserve di glicogeno (“pienezza”) che la disidratazione (aspetto “asciutto”) dipendono dall’omeostasi dei fluidi che cambia rapidamente. Pertanto, propongo che il peso della bilancia possa essere impiegato come indicatore rudimentale, ma pratico e oggettivo dell’idratazione corporea nel contesto del “pump” muscolare e dell’aspetto visivo, nonché delle perdite di liquidi urinari [notare che il colore delle urine è una misura di campo adeguata dello stato di idratazione, ma può essere alterata dal consumo di integratori alimentari [206, 207]. Pertanto, misurare il peso corporeo durante la Peak Week e il suo tasso di variazione può aiutare a determinare la misura in cui l’acqua corporea è stata ridotta al minimo il giorno della competizione. Le misurazioni per un ipotetico concorrente sono fornite nella Tabella 4. Presumiamo qui che il glicogeno del muscolo-scheletrico sia stato adeguatamente super compensato (aumentando il contenuto di acqua intramiocellulare e aumentando il peso corporeo) dopo un periodo di ridotta assunzione di carboidrati che riduce il contenuto di acqua corporea (e peso corporeo) all’inizio della Peak Week (vedi sopra). Se le strategie di disidratazione determinano una riduzione del peso della bilancia che si avvicina o è inferiore ai livelli di pre ricarica dei carboidrati, ipotizziamo che ciò rifletta che i cambiamenti desiderati nell’ECF (riduzione del fluido sottocutaneo) e negli spazi ICF (aumento del fluido intramiocellulare e del glicogeno) siano stati raggiunti.

La figura 2 di seguito delinea un albero decisionale del giorno della competizione che un concorrente potrebbe utilizzare per affrontare le possibilità discusse sopra (mancanza di pienezza muscolare o condizione fisica “asciutta”, o essere “piatto”). Presumiamo una preferenza per ridurre al minimo l’acqua corporea rispetto alla pienezza muscolare. Inoltre, tenete presente che lo scenario in cui la “piattezza” è un problema potrebbe richiedere una combinazione di aggiunta di acqua, sodio, carboidrati e/o grassi alimentari a seconda delle circostanze. Le precedenti esperienze di “finta Peak Week” e di assunzione di carboidrati possono servire bene all’atleta nella scelta di un giorno strategicamente appropriato per dare il massimo sul palco. Questo stesso albero decisionale può essere applicato ripetutamente in situazioni in cui l’atleta viene giudicato in più round.

Fig. 2: Albero decisionale per le regolazioni dietetiche e l’assunzione di liquidi del giorno della competizione di Bodybuilding

Conclusioni:

Ricapitolando, l’evidenza suggerisce che i bodybuilder usano frequentemente strategie di “Peak Week” come il carico dei CHO, la manipolazione di acqua/sodio e altri approcci nel tentativo di migliorare il loro fisico durante l’ultima settimana di preparazione alla competizione. Sfortunatamente, c’è una scarsità di ricerche sull’efficacia e la sicurezza di queste strategie quando implementate individualmente o collettivamente. Poiché le variabili che vengono frequentemente manipolate dai bodybuilder sono correlate, l’alterazione di una variabile in genere influenza altre variabili. Inoltre, le risposte interindividuali all’alterazione di queste variabili rendono ancora più difficile fornire precise “regole” da seguire per la Peak Week. Data la complicata interazione di variabili fisiologiche durante la Peak Week, nonché l’interindividualità biologica e la variabilità nell’importanza attribuita alla massimizzazione dei vari aspetti della muscolarità attraverso le diverse categorie competitive, ci sono una moltitudine di vie di ricerca per studiare le strategie della Peak Week. In particolare, un esame strettamente controllato degli effetti quantificabili della supercompensazione del glicogeno, della disidratazione graduale tramite la manipolazione del sodio e/o dell’acqua e delle strategie di “pump” pre-palco, insieme alla documentazione dei cambiamenti visivi “pratici” soggettivi associati nell’aspetto fisico, potrebbero essere aree di studio rilevanti che possono aiutare a informare meglio i concorrenti e indirizzarli lontano da pratiche potenzialmente pericolose e/o meno efficaci della fase Peak Week . Pertanto, grazie alla review di  Brad J. Schoenfeld e colleghi, e alla piccola aggiunta delle mie ricerche e annotazioni, viene presentato questo articolo al fine di rappresentare un approccio basato sull’evidenza alle strategie di picco pre-gara basate sullo stato attuale della letteratura scientifica (e sull’aneddotica più affidabile) nella speranza che possa stimolare il miglioramento dell’atleta e/o del preparatore i quali possono accrescere le loro conoscenze e maturare una corretta comprensione delle delicate componenti che caratterizzano la preparazione ad un contest di Bodybuilding potendo così sviluppare approcci pratici e sicuri applicabili per ottimizzare la forma fisica da mostrare sul palco.

Gabriel Bellizzi

Riferimenti:

  1. Bamman MM, Hunter GR, Newton LE, Roney RK, Khaled MA. Changes in body composition, diet, and strength of bodybuilders during the 12 weeks prior to competition. J Sports Med Phys Fitness. 1993;33:383–91. https://www.ncbi.nlm.nih.gov/pubmed/8035587.
  2. 2.Chappell AJ, Simper T, Barker ME. Nutritional strategies of high level natural bodybuilders during competition preparation. J Int Soc Sports Nutr. 2018;15:4. doi:https://doi.org/10.1186/s12970-018-0209-z.CAS Article PubMed PubMed Central Google Scholar 
  3. 3.Kistler BM, Fitschen PJ, Ranadive SM, Fernhall B, Wilund KR. Case study: Natural bodybuilding contest preparation. Int J Sport Nutr Exerc Metab. 2014;24:694–700. doi:https://doi.org/10.1123/ijsnem.2014-0016.Article PubMed Google Scholar 
  4. 4.Robinson SL, Lambeth-Mansell A, Gillibrand G, Smith-Ryan A, Bannock L. A nutrition and conditioning intervention for natural bodybuilding contest preparation: case study. J Int Soc Sports Nutr. 2015;12:20. doi:https://doi.org/10.1186/s12970-015-0083-x.Article PubMed PubMed Central Google Scholar 
  5. 5.Rossow LM, Fukuda DH, Fahs CA, Loenneke JP, Stout JR. Natural bodybuilding competition preparation and recovery: a 12-month case study. Int J Sports Physiol Perform. 2013;8:582–92. https://www.ncbi.nlm.nih.gov/pubmed/23412685.
  6. 6.Tinsley GM, Trexler ET, Smith-Ryan AE, Paoli A, Graybeal AJ, Campbell BI, et al. Changes in Body Composition and Neuromuscular Performance Through Preparation, 2 Competitions, and a Recovery Period in an Experienced Female Physique Athlete. J Strength Cond Res. 2019;33:1823–39. doi:https://doi.org/10.1519/JSC.0000000000002758.Article PubMed Google Scholar 
  7. 7.Helms ER, Aragon AA, Fitschen PJ. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 2014;11:20. doi:https://doi.org/10.1186/1550-2783-11-20.CAS Article PubMed PubMed Central Google Scholar 
  8. 8.Kleiner SM, Bazzarre TL, Litchford MD. Metabolic profiles, diet, and health practices of championship male and female bodybuilders. J Am Diet Assoc. 1990;90:962–7. https://www.ncbi.nlm.nih.gov/pubmed/2365938.
  9. 9.Gentil P, de Lira CAB, Paoli A, dos Santos JAB, da Silva RDT, Junior JRP, et al. Nutrition, pharmacological and training strategies adopted by six bodybuilders: case report and critical review. Eur J Transl Myol. 2017;27. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5391526/.
  10. 10.Mitchell L, Slater G, Hackett D, Johnson N, O’connor H. Physiological implications of preparing for a natural male bodybuilding competition. EJSS. 2018;18:619–29. doi:https://doi.org/10.1080/17461391.2018.1444095.Article PubMed Google Scholar 
  11. 11.Chappell AJ, Simper TN. Nutritional Peak Week and Competition Day Strategies of Competitive Natural Bodybuilders. Sports (Basel). 2018;6. doi:https://doi.org/10.3390/sports6040126.
  12. 12.Probert A, Palmer F, Leberman S. The Fine Line: An insight into “risky”practices of male and female competitive bodybuilders. Annals of Leisure Research. 2007;10:272–90. https://www.tandfonline.com/doi/abs/https://doi.org/10.1080/11745398.2007.9686767.
  13. 13.Spendlove J, Mitchell L, Gifford J, Hackett D, Slater G, Cobley S, et al. Dietary Intake of Competitive Bodybuilders. Sports Med. 2015;45:1041–63. doi:https://doi.org/10.1007/s40279-015-0329-4.Article PubMed Google Scholar 
  14. 14.Mitchell L, Hackett D, Gifford J, Estermann F, O’Connor H Do Bodybuilders Use Evidence-Based Nutrition Strategies to Manipulate Physique? Sports (Basel). 2017;5. doi:https://doi.org/10.3390/sports5040076.
  15. 15.de Moraes WMAM, de Almeida FN, Dos Santos LEA, Cavalcante KDG, Santos HO, Navalta JW, et al. Carbohydrate Loading Practice in Bodybuilders: Effects on Muscle Thickness, Photo Silhouette Scores, Mood States and Gastrointestinal Symptoms. J Sports Sci Med. 2019;18:772–9. https://www.ncbi.nlm.nih.gov/pubmed/31827362.
  16. 16.Norton L, Baker P. The Complete Contest Prep Guide (Male Cover). CreateSpace Independent Publishing Platform; 2018. https://play.google.com/store/books/details?id=k9S5uwEACAAJ.
  17. 17.Aceto C. Championship Bodybuilding. ASL Publications; 2001.
  18. 18.Konrad C, Schüpfer G, Wietlisbach M, Gerber H. [Insulin as an anabolic: hypoglycemia in the bodybuilding world]. Anasthesiol Intensivmed Notfallmed Schmerzther. 1998;33:461–3. doi:https://doi.org/10.1055/s-2007-994284.CAS Article PubMed Google Scholar 
  19. 19.Mayr FB, Domanovits H, Laggner AN. Hypokalemic paralysis in a professional bodybuilder. Am J Emerg Med. 2012;30:1324.e5–8. doi:https://doi.org/10.1016/j.ajem.2011.06.029.Article Google Scholar 
  20. 20.Kingston M. Dangers of ripping in body building. Intern Med J. 2011;41:708–9. doi:https://doi.org/10.1111/j.1445-5994.2011.02550.x.CAS Article PubMed Google Scholar 
  21. 21.Caldwell JE. Diuretic therapy and exercise performance. Sports Med. 1987;4:290–304. doi:https://doi.org/10.2165/00007256-198704040-00005.CAS Article PubMed Google Scholar 
  22. 22.Goforth HW Jr, Arnall DA, Bennett BL, Law PG. Persistence of supercompensated muscle glycogen in trained subjects after carbohydrate loading. J Appl Physiol. 1997;82:342–7. doi:https://doi.org/10.1152/jappl.1997.82.1.342.CAS Article PubMed Google Scholar 
  23. 23.Ivy JL. Muscle glycogen synthesis before and after exercise. Sports Med. 1991;11:6–19. doi:https://doi.org/10.2165/00007256-199111010-00002.CAS Article PubMed Google Scholar 
  24. 24.Nielsen J, Ørtenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38:91–9. doi:https://doi.org/10.1139/apnm-2012-0184.CAS Article PubMed Google Scholar 
  25. 25.Graham TE, Yuan Z, Hill AK, Wilson RJ. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol. 2010;199:489–98. doi:https://doi.org/10.1111/j.1748-1716.2010.02131.x.CAS Article Google Scholar 
  26. 26.Oakley HB, Young FG. The osmotic pressure of glycogen solutions. Biochem J. 1936;30:868–76. doi:https://doi.org/10.1042/bj0300868.CAS Article PubMed PubMed Central Google Scholar 
  27. 27.King RFGJ, Jones B, O’Hara JP. The availability of water associated with glycogen during dehydration: a reservoir or raindrop? Eur J Appl Physiol. 2018;118:283–90. doi:https://doi.org/10.1007/s00421-017-3768-9.CAS Article PubMed Google Scholar 
  28. 28.Olsson K-E, Saltin B. Variation in Total Body Water with Muscle Glycogen Changes in Man. Acta Physiol Scand. 1970;80:11–8. doi:https://doi.org/10.1111/j.1748-1716.1970.tb04764.x.CAS Article PubMed Google Scholar 
  29. 29.McBride JJ, Guest MM, Scott EL, Others. The storage of the major liver components; emphasizing the relationship of glycogen to water in the liver and the hydration of glycogen. J Biol Chem. 1941;139:943–52. https://www.cabdirect.org/cabdirect/abstract/19411401274.
  30. 30.Sherman WM, Plyley MJ, Sharp RL, Van Handel PJ, McAllister RM, Fink WJ, et al. Muscle glycogen storage and its relationship with water. Int J Sports Med. 1982;3:22–4. doi:https://doi.org/10.1055/s-2008-1026056.CAS Article PubMed Google Scholar 
  31. 31.Shiose K, Yamada Y, Motonaga K, Sagayama H, Higaki Y, Tanaka H, et al. Segmental extracellular and intracellular water distribution and muscle glycogen after 72-h carbohydrate loading using spectroscopic techniques. J Appl Physiol. 2016;121:205–11. doi:https://doi.org/10.1152/japplphysiol.00126.2016.CAS Article PubMed Google Scholar 
  32. 32.Bone JL, Ross ML, Tomcik KA, Jeacocke NA, Hopkins WG, Burke LM. Manipulation of Muscle Creatine and Glycogen Changes Dual X-ray Absorptiometry Estimates of Body Composition. Med Sci Sports Exerc. 2017;49:1029–35. doi:https://doi.org/10.1249/mss.0000000000001174.CAS Article PubMed Google Scholar 
  33. 33.Schoenfeld BJ, Alto A, Grgic J, Tinsley GM, Trexler ET. Alterations in body composition, resting metabolic rate, muscular strength, and eating behavior in response to natural bodybuilding competition preparation: A case study. Journal of Strength Conditioning Research. 2020. doi:https://doi.org/10.1519/JSC.0000000000003816. ;Publish Ahead of Print.Article PubMed Google Scholar 
  34. 34.Albertson TE, Chenoweth JA, Colby DK, Sutter ME. The Changing Drug Culture: Use and Misuse of Appearance- and Performance-Enhancing Drugs. FP Essent. 2016;441:30–43. https://www.ncbi.nlm.nih.gov/pubmed/26881771.
  35. 35.Hickson JF Jr, Johnson TE, Lee W, Sidor RJ. Nutrition and the precontest preparations of a male bodybuilder. J Am Diet Assoc. 1990;90:264–7. https://www.ncbi.nlm.nih.gov/pubmed/2303663.
  36. 36.Stevenson SW. Be Your Own Bodybuilding Coach: A Reference Guide For Year-Round Bodybuilding Success. Integrative Bodybuilding, LLC; 2018. https://play.google.com/store/books/details?id=nzi4ugEACAAJ.
  37. 37.Tobias A, Mohiuddin SS. Physiology, Water Balance. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2019. https://www.ncbi.nlm.nih.gov/pubmed/31082103.
  38. 38.Sawka MN, Coyle EF. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc Sport Sci Rev. 1999;27:167–218. https://www.ncbi.nlm.nih.gov/pubmed/10791017.
  39. 39.NSCA -National Strength & Conditioning Association. Campbell B, Spano M. NSCA’s Guide to Sport and Exercise Nutrition. Human Kinetics; 2011. https://play.google.com/store/books/details?id=nu96DwAAQBAJ.
  40. 40.Costill DL, Coté R, Fink W. Muscle water and electrolytes following varied levels of dehydration in man. J Appl Physiol. 1976;40:6–11. doi:https://doi.org/10.1152/jappl.1976.40.1.6.CAS Article PubMed Google Scholar 
  41. 41.Gardner LI, Talbot NB, Cook CD, Berman H, Uribe RC. The effect of potassium deficiency on carbohydrate metabolism. J Lab Clin Med. 1950;35:592–602. https://www.ncbi.nlm.nih.gov/pubmed/15412290.
  42. 42.Clarke DW. The influence of potassium ion upon glucose uptake and glycogen synthesis in the isolated rat diaphragm. Can J Biochem Physiol. 1955;33:687–94. https://www.ncbi.nlm.nih.gov/pubmed/13240543.
  43. 43.Kreitzman SN, Coxon AY, Szaz KF. Glycogen storage: illusions of easy weight loss, excessive weight regain, and distortions in estimates of body composition. Am J Clin Nutr. 1992;56 1 Suppl:292S – 293S. doi:https://doi.org/10.1093/ajcn/56.1.292S.
  44. 44.Patrick J. Assessment of body potassium stores. Kidney Int. 1977;11:476–90. doi:https://doi.org/10.1038/ki.1977.65.CAS Article PubMed Google Scholar 
  45. 45.King RFGJ, Cooke C, Carroll S, O’Hara J. Estimating changes in hydration status from changes in body mass: considerations regarding metabolic water and glycogen storage. J Sports Sci. 2008;26:1361–3. doi:https://doi.org/10.1080/02640410802192768.Article PubMed Google Scholar 
  46. 46.Torres HN, Birnbaumer L, Del Carmen Garcia M, Bernard E, Belocopitow E. Glycogen metabolism in muscle homogenates. I. The effect of potassium ions on glycogen synthesis. Arch Biochem Biophys. 1966;116:59–68. doi:https://doi.org/10.1016/0003-9861(66)90012-9.CAS Article PubMed Google Scholar 
  47. 47.Knepper MA, Kwon T-H, Nielsen S. Molecular physiology of water balance. N Engl J Med. 2015;372:1349–58. doi:https://doi.org/10.1056/NEJMra1404726.CAS Article PubMed PubMed Central Google Scholar 
  48. 48.Spano M, Kruskall L, Travis Thomas D. Nutrition for Sport, Exercise, and Health. Human Kinetics; 2017. https://play.google.com/store/books/details?id=dvR6DwAAQBAJ.
  49. 49.Kanbay M, Aslan G, Afsar B, Dagel T, Siriopol D, Kuwabara M, et al. Acute effects of salt on blood pressure are mediated by serum osmolality. J Clin Hypertens. 2018;20:1447–54. doi:https://doi.org/10.1111/jch.13374.CAS Article Google Scholar 
  50. 50.Schweda F. Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch. 2015;467:565–76. doi:https://doi.org/10.1007/s00424-014-1668-y.CAS Article PubMed Google Scholar 
  51. 51.Gomez RA, Sequeira Lopez MLS. Who and where is the renal baroreceptor?: the connexin hypothesis. Kidney international. 2009;75:460–2. doi:https://doi.org/10.1038/ki.2008.536.CAS Article PubMed PubMed Central Google Scholar 
  52. 52.Scott JH, Menouar MA, Dunn RJ. Physiology, Aldosterone. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/pubmed/29261963.
  53. 53.Rogacz S, Williams GH, Hollenberg NK. Time course of enhanced adrenal responsiveness to angiotensin on a low salt diet. Hypertension. 1990;15:376–80. doi:https://doi.org/10.1161/01.hyp.15.4.376.CAS Article PubMed Google Scholar 
  54. 54.Maack T. Role of atrial natriuretic factor in volume control. Kidney Int. 1996;49:1732–7. doi:https://doi.org/10.1038/ki.1996.257.CAS Article PubMed Google Scholar 
  55. 55.Reale R, Slater G, Cox GR, Dunican IC, Burke LM. The Effect of Water Loading on Acute Weight Loss Following Fluid Restriction in Combat Sports Athletes. Int J Sport Nutr Exerc Metab. 2018;28:565–73. doi:https://doi.org/10.1123/ijsnem.2017-0183.CAS Article PubMed Google Scholar 
  56. 56.Convertino VA, Bloomfield SA, Greenleaf JE. An overview of the issues: physiological effects of bed rest and restricted physical activity. Med Sci Sports Exerc. 1997;29:187–90. doi:https://doi.org/10.1097/00005768-199702000-00004.CAS Article PubMed Google Scholar 
  57. 57.Blomqvist CG, Stone HL. Cardiovascular adjustments to gravitational stress. Compr Physiol. 2011;:1025–63. http://neuroyates.com/honorshumanphysiology/clinicalpapers/Cardio_Gravitational-Stress.pdf.
  58. 58.Nixon JV, Murray RG, Bryant C, Johnson RL, Mitchell JH, Holland OB, et al. Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol. 1979;46:541–8. doi:https://doi.org/10.1152/jappl.1979.46.3.541.CAS Article PubMed Google Scholar 
  59. 59.Convertino VA, Bisson R, Bates R, Goldwater D, Sandler H. Effects of antiorthostatic bedrest on the cardiorespiratory responses to exercise. Aviat Space Environ Med. 1981;52:251–5. https://www.ncbi.nlm.nih.gov/pubmed/7283897.
  60. 60.Mauran P, Sediame S, Pavy-Le Traon A, Maillet A, Carayon A, Barthelemy C, et al. Renal and hormonal responses to isotonic saline infusion after 3 days’ head-down tilt vs. supine and seated positions. Acta Physiol Scand. 2003;177:167–76. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-201X.2003.01059.x?casa_token=aXoRJ9ceXV8AAAAA:2WA6uD_yoUfSi8ayHb30rOTAOEghdhIGhwFXqAsbNenvQL8eUUuPgEOH_xExJwt4cJmrwqzoujhcbw.
  61. 61.Norsk P. Gravitational stress and volume regulation. Clin Physiol. 1992;12:505–26. doi:https://doi.org/10.1111/j.1475-097x.1992.tb00355.x.CAS Article PubMed Google Scholar 
  62. 62.Mauran P, Sediame S, Traon AP, Maillet A, Carayon A, Barthelemy C, et al. Effects of a three-day head-down tilt on renal and hormonal responses to acute volume expansion. Am J Physiol. 1999;277:R1444–52. doi:https://doi.org/10.1152/ajpregu.1999.277.5.R1444.CAS Article PubMed Google Scholar 
  63. 63.Nagaya K, Wada F, Nakamitsu S, Sagawa S, Shiraki K. Responses of the circulatory system and muscle sympathetic nerve activity to head-down tilt in humans. Am J Physiol. 1995;268(5 Pt 2):R1289–94. doi:https://doi.org/10.1152/ajpregu.1995.268.5.R1289.CAS Article PubMed Google Scholar 
  64. 64.Reuter DA, Felbinger TW, Schmidt C, Moerstedt K, Kilger E, Lamm P, et al. Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance. Eur J Anaesthesiol. 2003;20:17–20. doi:https://doi.org/10.1017/s0265021503000036.CAS Article PubMed Google Scholar 
  65. 65.Kalmar AF, Foubert L, Hendrickx JFA, Mottrie A, Absalom A, Mortier EP, et al. Influence of steep Trendelenburg position and CO 2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433–9. doi:https://doi.org/10.1093/bja/aeq018.CAS Article PubMed Google Scholar 
  66. 66.Marshall-Goebel K, Mulder E, Bershad E, Laing C, Eklund A, Malm J, et al. Intracranial and Intraocular Pressure During Various Degrees of Head-Down Tilt. Aerosp Med Hum Perform. 2017;88:10–6. doi:https://doi.org/10.3357/AMHP.4653.2017.Article PubMed Google Scholar 
  67. 67.Khan BA, Sodhi JS, Zargar SA, Javid G, Yattoo GN, Shah A, et al. Effect of bed head elevation during sleep in symptomatic patients of nocturnal gastroesophageal reflux. J Gastroenterol Hepatol. 2012;27:1078–82. doi:https://doi.org/10.1111/j.1440-1746.2011.06968.x.Article PubMed Google Scholar 
  68. 68.Scott DR, Simon RA. Supraesophageal Reflux: Correlation of Position and Occurrence of Acid Reflux–Effect of Head-of-Bed Elevation on Supine Reflux. J Allergy Clin Immunol Pract. 2015;3:356–61. doi:https://doi.org/10.1016/j.jaip.2014.11.019.Article PubMed Google Scholar 
  69. 69.Meyers WF, Herbst JJ. Effectiveness of positioning therapy for gastroesophageal reflux. Pediatrics. 1982;69:768–72. https://www.ncbi.nlm.nih.gov/pubmed/7079042.
  70. 70.Cohn JR. Elevation of the Head of Bed to Treat Supraesophageal Reflux: Controlling the Trigger and Reducing the “Drip.” J Allergy Clin Immunol Pract. 2015;3:362–4. https://www.jaci-inpractice.org/article/S2213-2198(15)00129-4/abstract.
  71. 71.Heijke SA, Smith G, Key A. The effect of the Trendelenburg position on lower oesophageal sphincter tone. Anaesthesia. 1991;46:185–7. doi:https://doi.org/10.1111/j.1365-2044.1991.tb09405.x.CAS Article PubMed Google Scholar 
  72. 72.Jeukendrup AE. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29(Suppl 1):91–9. doi:https://doi.org/10.1080/02640414.2011.610348.Article Google Scholar 
  73. 73.Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl 1):25–33. doi:https://doi.org/10.1007/s40279-014-0148-z.Article PubMed Central Google Scholar 
  74. 74.Jeukendrup AE, McLaughlin J. Carbohydrate ingestion during exercise: effects on performance, training adaptations and trainability of the gut. Nestle Nutr Inst Workshop Ser. 2011;69:1–12. doi:https://doi.org/10.1159/000329268. discussion 13–7.CAS Article PubMed Google Scholar 
  75. 75.Jeukendrup AE. Training the Gut for Athletes. Sports Med. 2017;47(Suppl 1):101–10. doi:https://doi.org/10.1007/s40279-017-0690-6.Article PubMed PubMed Central Google Scholar 
  76. 76.Mandell AJ, Mersol-Sabbot I, Mandell MP. Psychological disturbance and water retention. Arch Gen Psychiatry. 1964;10:513–8. doi:https://doi.org/10.1001/archpsyc.1964.01720230075008.CAS Article PubMed Google Scholar 
  77. 77.Banday AA, Lokhandwala MF. Dopamine receptors and hypertension. Curr Hypertens Rep. 2008;10:268–75. doi:https://doi.org/10.1007/s11906-008-0051-9.CAS Article PubMed Google Scholar 
  78. 78.Kuchel O, Cuche JL, Buu NT, Guthrie GP, Unger T, Nowaczynski W, et al. Catecholamine Excretion in “Idiopathic” Edema: Decreased Dopamine Excretion, a Pathogenic Factor? The Journal of Clinical Endocrinology Metabolism. 1977;44:639–46. doi:https://doi.org/10.1210/jcem-44-4-639.CAS Article PubMed Google Scholar 
  79. 79.Kuchel O, Cuche JL, Hamet O, Buu NT, Nowaczynski Boucher R, Genest J. Idiopathic edema: New pathogenetic and therapeutic aspects. Mod Med Can. 1976;31:619–24.Google Scholar 
  80. 80.Espiner EA. The effects of stress on salt and water balance. Baillieres Clin Endocrinol Metab. 1987;1:375–90. doi:https://doi.org/10.1016/s0950-351x(87)80068-x.CAS Article PubMed Google Scholar 
  81. 81.Kubzansky LD, Adler GK. Aldosterone: a forgotten mediator of the relationship between psychological stress and heart disease. Neurosci Biobehav Rev. 2010;34:80–6. doi:https://doi.org/10.1016/j.neubiorev.2009.07.005.CAS Article PubMed Google Scholar 
  82. 82.Light K, Koepke J, Obrist P, Willis P. Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science. 1983;220:429–31. doi:https://doi.org/10.1126/science.6836285.CAS Article PubMed Google Scholar 
  83. 83.Nicholls AR, Polman RCJ, Levy AR. A path analysis of stress appraisals, emotions, coping, and performance satisfaction among athletes. Psychol Sport Exerc. 2012;13:263–70. doi:https://doi.org/10.1016/j.psychsport.2011.12.003.Article Google Scholar 
  84. 84.Hanton S, Thomas O, Mellalieu SD. Management of competitive stress in elite sport. International Olympic Committee sport psychology handbook. 2009;:30–42. https://books.google.com/books?hl=en&lr=&id=UwI4xd3a5W0C&oi=fnd&pg=PA30&dq=Hanton+S+Thomas+O+and+Mellalieu+SD+Management+of+competitive+stress+in+elite+sport+2009&ots=ODW4HUUsq4&sig=un9LxJpac8-2dTgVGI9kjCw82o4.
  85. 85.van Loon LJC. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol. 2004;97:1170–87. doi:https://doi.org/10.1152/japplphysiol.00368.2004.Article PubMed Google Scholar 
  86. 86.Frayn KN, Maycock PF. Skeletal muscle triacylglycerol in the rat: methods for sampling and measurement, and studies of biological variability. J Lipid Res. 1980;21:139–44. https://www.ncbi.nlm.nih.gov/pubmed/7354251.
  87. 87.Starling RD, Trappe TA, Parcell AC, Kerr CG, Fink WJ, Costill DL. Effects of diet on muscle triglyceride and endurance performance. J Appl Physiol. 1997;82:1185–9. doi:https://doi.org/10.1152/jappl.1997.82.4.1185.CAS Article PubMed Google Scholar 
  88. 88.Keats TE. Reference Man. A Report Prepared by a Task Group of Committee 2 of the International Commission on Radiological ProtectionReference Man. A Report Prepared by a Task Group of Committee 2 of the International Commission on Radiological Protection. ICRP Publ. 23. Cloth, $50.00; ₤ 21.50. Pp. 480, with figures. Oxford, Pergamon Press, 1975. Radiology. 1975;117:584–584. doi:https://doi.org/10.1148/117.3.584.
  89. 89.van Loon LJC, Schrauwen-Hinderling VB, Koopman R, Wagenmakers AJM, Hesselink MKC, Schaart G, et al. Influence of prolonged endurance cycling and recovery diet on intramuscular triglyceride content in trained males. Am J Physiol Endocrinol Metab. 2003;285:E804–11. doi:https://doi.org/10.1152/ajpendo.00112.2003.Article PubMed Google Scholar 
  90. 90.Dubé JJ, Amati F, Toledo FGS, Stefanovic-Racic M, Rossi A, Coen P, et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia. 2011;54:1147–56. doi:https://doi.org/10.1007/s00125-011-2065-0.CAS Article PubMed PubMed Central Google Scholar 
  91. 91.Shinohara A, Takakura J, Yamane A, Suzuki M. Effect of the classic 1-week glycogen-loading regimen on fat-loading in rats and humans. J Nutr Sci Vitaminol. 2010;56:299–304. doi:https://doi.org/10.3177/jnsv.56.299.CAS Article PubMed Google Scholar 
  92. 92.Décombaz J. Nutrition and recovery of muscle energy stores after exercise. SCHWEIZERISCHE ZEITSCHRIFT FUR SPORTMEDIZIN UND SPORTTRAUMATOLOGIE. 2003;51:31–8. https://ssms.ch/fileadmin/user_upload/Zeitschrift/51-2003-1/07-2003-1.pdf.
  93. 93.Decombaz J, Fleith M, Hoppeler H, Kreis R, Boesch C. Effect of diet on the replenishment of intramyocellular lipids after exercise. Eur J Nutr. 2000;39:244–7. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf/10.1007/s003940070002.pdf&casa_token=KPQETCIB6tUAAAAA:LYP3-oXpXtmiTXk7zGOgOjtZa47nT5Df8voNSC_OkN7RUfT3ay1PYUxrz3C1OF9U4u0C4ECAzl1V3wQpEw.
  94. 94.Spriet LL. Metabolic regulation of fat use during exercise and in recovery. Nestle Nutr Inst Workshop Ser. 2011;69:39–53. doi:https://doi.org/10.1159/000329281. discussion 53–8.CAS Article PubMed Google Scholar 
  95. 95.Zderic TW, Davidson CJ, Schenk S, Byerley LO, Coyle EF. High-fat diet elevates resting intramuscular triglyceride concentration and whole body lipolysis during exercise. Am J Physiol Endocrinol Metab. 2004;286:E217–25. doi:https://doi.org/10.1152/ajpendo.00159.2003.CAS Article PubMed Google Scholar 
  96. 96.Essen-Gustavsson B, Tesch PA. Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1990;61:5–10. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/BF00236686&casa_token=Td7tAAIrqeAAAAAA:4JmL2F0bjS-lXEbu45VJD7_sa9yea81nbaYF85LNufOAbofFiqJjmfUGwxiYHX42InAspYx6lIzKqOPOEw.
  97. 97.Fat Loading. https://muscleinsider.com/features/fat-loading. Accessed 6 Aug 2020.
  98. 98.D’Angelo A Dialing In My Way: The Final Week Preparation! 2002. https://www.bodybuilding.com/fun/angelo2.htm. Accessed 6 Aug 2020.
  99. 99.Kiens B, Richter EA. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am J Physiol. 1998;275:E332–7. doi:https://doi.org/10.1152/ajpendo.1998.275.2.E332.CAS Article PubMed Google Scholar 
  100. 100.Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol. 2002;87:290–5. doi:https://doi.org/10.1007/s00421-002-0621-5.CAS Article PubMed Google Scholar 
  101. 101.Prior BM, Modlesky CM, Evans EM, Sloniger MA, Saunders MJ, Lewis RD, et al. Muscularity and the density of the fat-free mass in athletes. J Appl Physiol. 2001;90:1523–31. doi:https://doi.org/10.1152/jappl.2001.90.4.1523.CAS Article PubMed Google Scholar 
  102. 102.National Research Council, Commission on Life Sciences. Food and Nutrition Board, Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances: 10th Edition. National Academies Press; 1989. https://play.google.com/store/books/details?id=gHB32IsIpu0C.
  103. 103.Layman DK. Dietary Guidelines should reflect new understandings about adult protein needs. Nutr Metab. 2009;6:12. doi:https://doi.org/10.1186/1743-7075-6-12.CAS Article Google Scholar 
  104. 104.Phillips SM, Chevalier S, Leidy HJ. Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab. 2016;41:565–72. doi:https://doi.org/10.1139/apnm-2015-0550.CAS Article PubMed Google Scholar 
  105. 105.Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52:376–84. doi:https://doi.org/10.1136/bjsports-2017-097608.Article PubMed Google Scholar 
  106. 106.Bandegan A, Courtney-Martin G, Rafii M, Pencharz PB, Lemon PW. Indicator Amino Acid-Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance. J Nutr. 2017;147:850–7. doi:https://doi.org/10.3945/jn.116.236331.CAS Article PubMed Google Scholar 
  107. 107.Mazzulla M, Sawan SA, Williamson E, Hannaian SJ, Volterman KA, West DWD, et al. Protein Intake to Maximize Whole-Body Anabolism during Postexercise Recovery in Resistance-Trained Men with High Habitual Intakes is Severalfold Greater than the Current Recommended Dietary Allowance. J Nutr. 2020;150:505–11. doi:https://doi.org/10.1093/jn/nxz249.Article PubMed Google Scholar 
  108. 108.Helms ER, Zinn C, Rowlands DS, Brown SR. A Systematic Review of Dietary Protein During Caloric Restriction in Resistance Trained Lean Athletes: A Case for Higher Intakes. Int J Sport Nutr Exerc Metab. 2014;24:127–38. doi:https://doi.org/10.1123/ijsnem.2013-0054.CAS Article PubMed Google Scholar 
  109. 109.Mäestu J, Eliakim A, Jürimäe J, Valter I, Jürimäe T. Anabolic and Catabolic Hormones and Energy Balance of the Male Bodybuilders During the Preparation for the Competition. Journal of Strength Conditioning Research. 2010;24:1074–81. doi:https://doi.org/10.1519/jsc.0b013e3181cb6fd3.Article PubMed Google Scholar 
  110. 110.Antonio J, Ellerbroek A, Silver T, Vargas L, Tamayo A, Buehn R, et al. A High Protein Diet Has No Harmful Effects: A One-Year Crossover Study in Resistance-Trained Males. Journal of Nutrition Metabolism. 2016;2016:1–5. doi:https://doi.org/10.1155/2016/9104792.CAS Article Google Scholar 
  111. 111.Vella F. Biochemistry. By RH Garrett and CM Grisham. pp 1154. Saunders College Publishing: Harcourt Brace, Orlando, FL. 1995.£ 19.95. Biochem Educ. 1995;23:108–8. https://iubmb.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1016/0307-4412(95)90667-3.
  112. 112.Bilsborough S, Mann N. A review of issues of dietary protein intake in humans. Int J Sport Nutr Exerc Metab. 2006;16:129–52. doi:https://doi.org/10.1123/ijsnem.16.2.129.CAS Article PubMed Google Scholar 
  113. 113.Rudman D, DiFulco TJ, Galambos JT, Smith RB 3rd, Salam AA, Warren WD. Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J Clin Invest. 1973;52:2241–9. doi:https://doi.org/10.1172/JCI107410.CAS Article PubMed PubMed Central Google Scholar 
  114. 114.Epstein FH, Kleeman CR, Pursel S, Hendrikx A. THE EFFECT OF FEEDING, PROTEIN AND UREA ON THE RENAL CONCENTRATING PROCESS 1. Journal of Clinical Investigation. 1957;36:635–41. doi:https://doi.org/10.1172/jci103463.CAS Article PubMed Central Google Scholar 
  115. 115.Levinsky NG, Berliner RW. The role of urea in the urine concentrating mechanism. J Clin Invest. 1959;38:741–8. doi:https://doi.org/10.1172/JCI103854.CAS Article PubMed PubMed Central Google Scholar 
  116. 116.Gomez-Arbelaez D, Bellido D, Castro AI, Ordoñez-Mayan L, Carreira J, Galban C, et al. Body Composition Changes After Very-Low-Calorie Ketogenic Diet in Obesity Evaluated by 3 Standardized Methods. J Clin Endocrinol Metab. 2017;102:488–98. doi:https://doi.org/10.1210/jc.2016-2385.Article PubMed Google Scholar 
  117. 117.Yang MU, Van Itallie TB. Composition of weight lost during short-term weight reduction. Metabolic responses of obese subjects to starvation and low-calorie ketogenic and nonketogenic diets. Journal of Clinical Investigation. 1976;58:722–30. doi:https://doi.org/10.1172/jci108519.CAS Article PubMed Central Google Scholar 
  118. 118.Strong JA, Shirling D, Passmore R. Some effects of overfeeding for four days in man. Br J Nutr. 1967;21:909–19. doi:https://doi.org/10.1079/bjn19670090.CAS Article PubMed Google Scholar 
  119. 119.Vist GE, Maughan RJ. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol. 1995;486(Pt 2):523–31. doi:https://doi.org/10.1113/jphysiol.1995.sp020831.CAS Article PubMed PubMed Central Google Scholar 
  120. 120.Takii H, Kometani T, Nishimura T, Kuriki T, Fushiki T. A sports drink based on highly branched cyclic dextrin generates few gastrointestinal disorders in untrained men during bicycle exercise. Food Sci Technol Res. 2007;10:428–31. https://www.jstage.jst.go.jp/article/fstr/10/4/10_4_428/_article/-char/ja/.
  121. 121.Birchall EF, Fenton PF, Pierce HB. Gastric emptying and intestinal absorption of dextrose solutions. Am J Physiol. 1946;146:610–2. doi:https://doi.org/10.1152/ajplegacy.1946.146.4.610.CAS Article PubMed Google Scholar 
  122. 122.Burke LM, Collier GR, Hargreaves M. Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. J Appl Physiol. 1993;75:1019–23. doi:https://doi.org/10.1152/jappl.1993.75.2.1019.CAS Article PubMed Google Scholar 
  123. 123.Wee S-L, Williams C, Tsintzas K, Boobis L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol. 2005;99:707–14. doi:https://doi.org/10.1152/japplphysiol.01261.2004.CAS Article PubMed Google Scholar 
  124. 124.Costill DL, Sherman WM, Fink WJ, Maresh C, Witten M, Miller JM. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr. 1981;34:1831–6. doi:https://doi.org/10.1093/ajcn/34.9.1831.CAS Article PubMed Google Scholar 
  125. 125.Parkin JA, Carey MF, Martin IK, Stojanovska L, Febbraio MA. Muscle glycogen storage following prolonged exercise: effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc. 1997;29:220–4. doi:https://doi.org/10.1097/00005768-199702000-00009.CAS Article PubMed Google Scholar 
  126. 126.Ivy JL, Goforth HW Jr, Damon BM, McCauley TR, Parsons EC, Price TB. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002;93:1337–44. doi:https://doi.org/10.1152/japplphysiol.00394.2002.CAS Article PubMed Google Scholar 
  127. 127.Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003;13:198–226. doi:https://doi.org/10.1123/ijsnem.13.2.198.CAS Article PubMed Google Scholar 
  128. 128.Chilibeck PD, Magnus C, Anderson M. Effect of in-season creatine supplementation on body composition and performance in rugby union football players. Appl Physiol Nutr Metab. 2007;32:1052–7. doi:https://doi.org/10.1139/H07-072.Article PubMed Google Scholar 
  129. 129.Ziegenfuss TN, Lowery LM, Lemon PWR. Acute fluid volume changes in men during three days of creatine supplementation. J Exerc Physiol Online. 1998;1:1–9. http://www.asep.org/asep/asep/jan13d.htm.
  130. 130.Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4:6. doi:https://doi.org/10.1186/1550-2783-4-6.Article PubMed PubMed Central Google Scholar 
  131. 131.Ziegenfuss TN, Rogers M, Lowery L, Mullins N, Mendel R, Antonio J, et al. Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA Division I athletes. Nutrition. 2002;18:397–402. doi:https://doi.org/10.1016/s0899-9007(01)00802-4.CAS Article PubMed Google Scholar 
  132. 132.Roberts PA, Fox J, Peirce N, Jones SW, Casey A, Greenhaff PL. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids. 2016;48:1831–42. doi:https://doi.org/10.1007/s00726-016-2252-x.CAS Article PubMed PubMed Central Google Scholar 
  133. 133.Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. American Journal of Physiology-Endocrinology Metabolism. 1996;271:E821–6. doi:https://doi.org/10.1152/ajpendo.1996.271.5.e821.CAS Article Google Scholar 
  134. 134.Vandenberghe K, Van Hecke P, Van Leemputte M, Vanstapel F, Hespel P. INHIBITION OF MUSCLE. PHOSPHOCREATINE RESYNTHESIS BY CAFFEINE AFTER CREATINE LOADING 1417. Medicine & Science in Sports & Exercise. 1997;29 Supplement:249. doi:https://doi.org/10.1097/00005768-199705001-01416.
  135. 135.Cooper R, Naclerio F, Allgrove J, Jimenez A. Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr. 2012;9:33. doi:https://doi.org/10.1186/1550-2783-9-33.CAS Article PubMed PubMed Central Google Scholar 
  136. 136.Syrotuik DG, Bell GJ. Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders. J Strength Cond Res. 2004;18:610–7. doi:https://doi.org/10.1519/12392.1.Article PubMed Google Scholar 
  137. 137.Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–531. doi:https://doi.org/10.1152/physrev.00031.2010.CAS Article PubMed Google Scholar 
  138. 138.Andersen JL, Schjerling P, Saltin B. Muscle, genes and athletic performance. Sci Am. 2000;283:48–55. doi:https://doi.org/10.1038/scientificamerican0900-48.CAS Article PubMed Google Scholar 
  139. 139.Burke DG, Chilibeck PD, Parise G, Candow DG, Mahoney D, Tarnopolsky M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sports Exerc. 2003;35:1946–55. doi:https://doi.org/10.1249/01.MSS.0000093614.17517.79.CAS Article PubMed Google Scholar 
  140. 140.Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L. Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients. 2018;10. doi:https://doi.org/10.3390/nu10030350.
  141. 141.Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2:355–74. doi:https://doi.org/10.3390/nu2030355.CAS Article PubMed PubMed Central Google Scholar 
  142. 142.Brunton LL, Lazo JS, Parker K, Buxton I, Blumenthal D. Book, Review: Goodman and Gilman’s The Pharmacological Basis of Therapeutics: Digital Edition, 11th Edition. Annals of Pharmacotherapy. 2006;40:1218–1218. doi:https://doi.org/10.1345/aph.1g685.
  143. 143.Caldwell JE, Ahonen E, Nousiainen U. Differential effects of sauna-, diuretic-, and exercise-induced hypohydration. J Appl Physiol. 1984;57:1018–23. doi:https://doi.org/10.1152/jappl.1984.57.4.1018.CAS Article PubMed Google Scholar 
  144. 144.Cadwallader AB, De La Torre X, Tieri A, Botrè F. The abuse of diuretics as performance-enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis. Br J Pharmacol. 2010;161:1–16. doi:https://doi.org/10.1111/j.1476-5381.2010.00789.x.CAS Article PubMed PubMed Central Google Scholar 
  145. 145.Clare BA, Conroy RS, Spelman K. The Diuretic Effect in Human Subjects of an Extract of Taraxacum officinale Folium over a Single Day. The Journal of Alternative Complementary Medicine. 2009;15:929–34. doi:https://doi.org/10.1089/acm.2008.0152.Article PubMed Google Scholar 
  146. 146.Vitamin C. https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/. Accessed 1 Apr 2021.
  147. 147.Mydlík M, Derzsiová K, Žemberová E. Influence of Water and Sodium Diuresis and Furosemide on Urinary Excretion of Vitamin B6, Oxalic Acid and Vitamin C in Chronic Renal Failure. Miner Electrolyte Metab. 1999;25:352–6. doi:https://doi.org/10.1159/000057474.Article PubMed Google Scholar 
  148. 148.Kenawy MR, El-Nabawy, El-Mohandis MM, El -D, Rohayem HK, El-Sheehy AW. Studies on the diuretic action of vitamin C in normal animals and human beings, and its clinical value in pathological retention of water. Int Z Vitaminforsch. 1952;24:40–61. https://www.ncbi.nlm.nih.gov/pubmed/12999380.
  149. 149.Abbasy MA. The diuretic action of vitamin C. Biochem J. 1937;31:339–42. doi:https://doi.org/10.1042/bj0310339.CAS Article PubMed PubMed Central Google Scholar 
  150. 150.Brennan CF, Martin E, Parkes WB. The effect of vitamin C on urinary excretion. Ir J Med Sci. 1956;31:329–33. https://link.springer.com/content/pdf/10.1007/BF02951118.pdf.
  151. 151.Goldsmith GA, Ellinger GF. ASCORBIC ACID IN BLOOD AND URINE AFTER ORAL ADMINISTRATION OF A TEST DOSE OF VITAMIN C: SATURATION TEST. Arch Intern Med. 1939;63:531–46. doi:https://doi.org/10.1001/archinte.1939.00180200100008.CAS Article Google Scholar 
  152. 152.Hoyt CJ. Diarrhea from vitamin C. JAMA. 1980;244:1674. https://www.ncbi.nlm.nih.gov/pubmed/7411820.
  153. 153.Maughan RJ, Griffin J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet. 2003;16:411–20. doi:https://doi.org/10.1046/j.1365-277x.2003.00477.x.CAS Article PubMed Google Scholar 
  154. 154.Passmore AP, Kondowe GB, Johnston GD. Renal and cardiovascular effects of caffeine: a dose–response study. Clin Sci. 1987;72:749–56. https://portlandpress.com/clinsci/article-pdf/72/6/749/457997/cs0720749.pdf.
  155. 155.Nehlig A. Is caffeine a cognitive enhancer? J Alzheimers Dis. 2010;20(Suppl 1):85–94. doi:https://doi.org/10.3233/JAD-2010-091315.CAS Article Google Scholar 
  156. 156.Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24:257–65. doi:https://doi.org/10.1519/JSC.0b013e3181c1f88a.Article PubMed Google Scholar 
  157. 157.O’Callaghan F, Muurlink O, Reid N. Effects of caffeine on sleep quality and daytime functioning. Risk Manag Healthc Policy. 2018;11:263–71. doi:https://doi.org/10.2147/RMHP.S156404.Article PubMed PubMed Central Google Scholar 
  158. 158.Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33. doi:https://doi.org/10.1186/s12970-017-0189-4.CAS Article PubMed PubMed Central Google Scholar 
  159. 159.Beelen M, van Kranenburg J, Senden JM, Kuipers H, van Loon LJC. Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc. 2012;44:692–700. doi:https://doi.org/10.1249/MSS.0b013e31823a40ef.CAS Article PubMed Google Scholar 
  160. 160.Klosterbuer A, Roughead ZF, Slavin J. Benefits of dietary fiber in clinical nutrition. Nutr Clin Pract. 2011;26:625–35. doi:https://doi.org/10.1177/0884533611416126.Article PubMed Google Scholar 
  161. 161.Monro JA. Faecal bulking index: A physiological basis for dietary management of bulk in the distal colon. Asia Pac J Clin Nutr. 2000;9:74–81. doi:https://doi.org/10.1046/j.1440-6047.2000.00155.x.CAS Article PubMed Google Scholar 
  162. 162.Wu K-L, Rayner CK, Chuah S-K, Chiu K-W, Lu C-C, Chiu Y-C. Impact of low-residue diet on bowel preparation for colonoscopy. Dis Colon Rectum. 2011;54:107–12. doi:https://doi.org/10.1007/DCR.0b013e3181fb1e52.Article PubMed Google Scholar 
  163. 163.Gibson PR, Shepherd SJ. Evidence-based dietary management of functional gastrointestinal symptoms: the FODMAP approach. J Gastroenterol Hepatol. 2010;25:252–8. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1440-1746.2009.06149.x.
  164. 164.Giannini EG, Mansi C, Dulbecco P, Savarino V. Role of partially hydrolyzed guar gum in the treatment of irritable bowel syndrome. Nutrition. 2006;22:334–42. doi:https://doi.org/10.1016/j.nut.2005.10.003.CAS Article PubMed Google Scholar 
  165. 165.Prior A, Whorwell PJ. Double blind study of ispaghula in irritable bowel syndrome. Gut. 1987;28:1510–3. doi:https://doi.org/10.1136/gut.28.11.1510.CAS Article PubMed PubMed Central Google Scholar 
  166. 166.Macdougall JD, Ray S, Sale DG, Mccartney N, Lee P, Garner S. Muscle substrate utilization and lactate production during weightlifting. Can J Appl Physiol. 1999;24:209–15. https://www.nrcresearchpress.com/doi/abs/https://doi.org/10.1139/h99-017.
  167. 167.Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, et al. Muscle glycogenolysis during differing intensities of weight-resistance exercise. J Appl Physiol. 1991;70:1700–6. doi:https://doi.org/10.1152/jappl.1991.70.4.1700.CAS Article PubMed Google Scholar 
  168. 168.Pascoe DD, Gladden LB. Muscle glycogen resynthesis after short term, high intensity exercise and resistance exercise. Sports Med. 1996;21:98–118. doi:https://doi.org/10.2165/00007256-199621020-00003.CAS Article PubMed Google Scholar 
  169. 169.Steffensen CH, Roepstorff C, Madsen M, Kiens B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab. 2002;282:E634–42. doi:https://doi.org/10.1152/ajpendo.00078.2001.CAS Article PubMed Google Scholar 
  170. 170.Harber MP, Crane JD, Douglass MD, Weindel KD, Trappe TA, Trappe SW, et al. Resistance exercise reduces muscular substrates in women. Int J Sports Med. 2008;29:719–25. doi:https://doi.org/10.1055/s-2007-989442.CAS Article PubMed Google Scholar 
  171. 171.Stannard SR, Thompson MW, Fairbairn K, Huard B, Sachinwalla T, Thompson CH. Fasting for 72 h increases intramyocellular lipid content in nondiabetic, physically fit men. Am J Physiol Endocrinol Metab. 2002;283:E1185–91. doi:https://doi.org/10.1152/ajpendo.00108.2002.CAS Article PubMed Google Scholar 
  172. 172.Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol. 2016;116:1595–625. doi:https://doi.org/10.1007/s00421-016-3411-1.Article PubMed PubMed Central Google Scholar 
  173. 173.Chen TC. Variability in muscle damage after eccentric exercise and the repeated bout effect. Res Q Exerc Sport. 2006;77:362–71. doi:https://doi.org/10.1080/02701367.2006.10599370.Article PubMed Google Scholar 
  174. 174.Del Coso J, Valero M, Salinero JJ, Lara B, Gallo-Salazar C, Areces F. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon. PLoS One. 2017;12:e0172965. doi:https://doi.org/10.1371/journal.pone.0172965.CAS Article PubMed PubMed Central Google Scholar 
  175. 175.Meneghel AJ, Crisp AH, Verlengia R, Lopes CR. Review of the repeated bout effect in trained and untrained men. Int J Sports Sci Coach. 2013;3:107–8. http://www.academia.edu/download/53689082/10.5923.j.sports.20130305.02.pdf.
  176. 176.Tee JC, Bosch AN, Lambert MI. Metabolic consequences of exercise-induced muscle damage. Sports Med. 2007;37:827–36. doi:https://doi.org/10.2165/00007256-200737100-00001.Article PubMed Google Scholar 
  177. 177.O’Reilly KP, Warhol MJ, Fielding RA, Frontera WR, Meredith CN, Evans WJ. Eccentric exercise-induced muscle damage impairs muscle glycogen repletion. J Appl Physiol. 1987;63:252–6. doi:https://doi.org/10.1152/jappl.1987.63.1.252.Article PubMed Google Scholar 
  178. 178.Vila-Chã C, Hassanlouei H, Farina D, Falla D. Eccentric exercise and delayed onset muscle soreness of the quadriceps induce adjustments in agonist–antagonist activity, which are dependent on the motor task. Exp Brain Res. 2012;216:385–95. doi:https://doi.org/10.1007/s00221-011-2942-2.Article PubMed Google Scholar 
  179. 179.Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U. Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur J Nutr. 2004;43:148–59. doi:https://doi.org/10.1007/s00394-004-0453-7.CAS Article PubMed Google Scholar 
  180. 180.Paulsen G, Crameri R, Benestad HB, Fjeld JG, Mørkrid L, Hallén J, et al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc. 2010;42:75–85. doi:https://doi.org/10.1249/MSS.0b013e3181ac7adb.Article PubMed Google Scholar 
  181. 181.Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2017;122:559–70. doi:https://doi.org/10.1152/japplphysiol.00971.2016.CAS Article PubMed Google Scholar 
  182. 182.Décombaz J, Schmitt B, Ith M, Decarli B, Diem P, Kreis R, et al. Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2001;281:R760–9. doi:https://doi.org/10.1152/ajpregu.2001.281.3.R760.Article PubMed Google Scholar 
  183. 183.Hocking S, Samocha-Bonet D, Milner K-L, Greenfield JR, Chisholm DJ. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev. 2013;34:463–500. doi:https://doi.org/10.1210/er.2012-1041.CAS Article PubMed Google Scholar 
  184. 184.Stone MH, Fleck SJ, Triplett NT, Kraemer WJ. Health- and performance-related potential of resistance training. Sports Med. 1991;11:210–31. doi:https://doi.org/10.2165/00007256-199111040-00002.CAS Article PubMed Google Scholar 
  185. 185.Kraemer WJ, Noble BJ, Clark MJ, Culver BW. Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med. 1987;8:247–52. doi:https://doi.org/10.1055/s-2008-1025663.CAS Article PubMed Google Scholar 
  186. 186.Morton RW, Sonne MW, Zuniga AF, Mohammad IYZ, Jones A, McGlory C, et al. Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. The Journal of Physiology. 2019;597:4601–13. doi:https://doi.org/10.1113/jp278056.CAS Article PubMed Google Scholar 
  187. 187.Grgic J, Schoenfeld BJ. Higher effort, rather than higher load, for resistance exercise-induced activation of muscle fibres. The Journal of Physiology. 2019;597:4691–2. doi:https://doi.org/10.1113/jp278627.CAS Article PubMed Google Scholar 
  188. 188.The correct interpretation of the size principle. and it’s practical appliction to resistance training – Научные статьи – Библиотека международной спортивной информации. http://bmsi.ru/doc/c33fb1e0-9e05-44fc-a4c7-ad36356db8ea. Accessed 7 Aug 2020.
  189. 189.Child RB, Saxton JM, Donnelly AE. Comparison of eccentric knee extensor muscle actions at two muscle lengths on indices of damage and anglespecific force production in humans. J Sports Sci. 1998;16:301–8. doi:https://doi.org/10.1080/02640419808559358.CAS Article PubMed Google Scholar 
  190. 190.Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. Journal of Clinical Investigation. 1996;97:2859–65. doi:https://doi.org/10.1172/jci118742.CAS Article PubMed Central Google Scholar 
  191. 191.Hunt JN, Knox MT. A relation between the chain length of fatty acids and the slowing of gastric emptying. The Journal of Physiology. 1968;194:327–36. doi:https://doi.org/10.1113/jphysiol.1968.sp008411.CAS Article PubMed PubMed Central Google Scholar 
  192. 192.Collier G, O’Dea K. The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. The American Journal of Clinical Nutrition. 1983;37:941–4. doi:https://doi.org/10.1093/ajcn/37.6.941.CAS Article PubMed Google Scholar 
  193. 193.Gentilcore D, Chaikomin R, Jones KL, Russo A, Feinle-Bisset C, Wishart JM, et al. Effects of Fat on Gastric Emptying of and the Glycemic, Insulin, and Incretin Responses to a Carbohydrate Meal in Type 2 Diabetes. The Journal of Clinical Endocrinology Metabolism. 2006;91:2062–7. doi:https://doi.org/10.1210/jc.2005-2644.CAS Article PubMed Google Scholar 
  194. 194.Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163:1079–94. doi:https://doi.org/10.1016/j.cell.2015.11.001.CAS Article PubMed Google Scholar 
  195. 195.Blom PC, Høstmark AT, Vaage O, Kardel KR, Maehlum S. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc. 1987;19:491–6. https://www.ncbi.nlm.nih.gov/pubmed/3316904.
  196. 196.Shi X, Passe DH. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis. Int J Sport Nutr Exerc Metab. 2010;20:427–42. doi:https://doi.org/10.1123/ijsnem.20.5.427.Article PubMed Google Scholar 
  197. 197.Zawadzki KM, Yaspelkis BB, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72:1854–9. doi:https://doi.org/10.1152/jappl.1992.72.5.1854.CAS Article PubMed Google Scholar 
  198. 198.Alghannam A, Gonzalez J, Betts J. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients. 2018;10:253. doi:https://doi.org/10.3390/nu10020253.CAS Article PubMed Central Google Scholar 
  199. 199.Roberts BM, Helms ER, Trexler ET, Fitschen PJ. Nutritional Recommendations for Physique Athletes. J Hum Kinet. 2020;71:79–108. doi:https://doi.org/10.2478/hukin-2019-0096.Article PubMed PubMed Central Google Scholar 
  200. 200.Official Bodybuilding Rules. http://npcnewsonline.com/official-bodybuilding-rules/. Accessed 16 Oct 2020.
  201. 201.General Information. http://www.nabbasa.com/index.php/categories-judging/general-information. Accessed 16 Oct 2020.
  202. 202.Judging Criteria. https://www.worldnaturalbb.com/judging-criteria/. Accessed 16 Oct 2020.
  203. 203.Schoenfeld BJ, Contreras B. The muscle pump: potential mechanisms and applications for enhancing hypertrophic adaptations. Strength Conditioning Journal. 2014;36:21–5. https://journals.lww.com/nsca-scj/Fulltext/2014/06000/The_Muscle_Pump___Potential_Mechanisms_and.11.aspx.
  204. 204.Freitas EDS, Miller RM, Heishman AD, Ferreira-Júnior JB, Araújo JP, Bemben MG. Acute Physiological Responses to Resistance Exercise With Continuous Versus Intermittent Blood Flow Restriction: A Randomized Controlled Trial. Front Physiol. 2020;11. doi:https://doi.org/10.3389/fphys.2020.00132.
  205. 205.Freitas EDS, Poole C, Miller RM, Heishman AD, Kaur J, Bemben DA, et al. Time Course Change in Muscle Swelling: High-Intensity vs. Blood Flow Restriction Exercise. Int J Sports Med. 2017;38:1009–16. doi:https://doi.org/10.1055/s-0043-118342.Article PubMed Google Scholar 
  206. 206.Armstrong LE, Maresh CM, Castellani JW, Bergeron MF, Kenefick RW, LaGasse KE, et al. Urinary Indices of Hydration Status. Int J Sport Nutr. 1994;4:265–79. doi:https://doi.org/10.1123/ijsn.4.3.265.CAS Article PubMed Google Scholar 
  207. 207.Armstrong LE, Herrera Soto JA, Hacker FT, Casa DJ, Kavouras SA, Maresh CM. Urinary Indices during Dehydration, Exercise, and Rehydration. Int J Sport Nutr. 1998;8:345–55. doi:https://doi.org/10.1123/ijsn.8.4.345.CAS Article PubMed Google Scholar 

Dal “morbo del caribù” alla “Protein Starvation” – storia e metamorfosi della “Carne e Acqua” –

DISCLAIMER: Il presente articolo NON intende in alcun modo consigliare il regime alimentare ivi presentato. Si tratta di semplice divulgazione scientifica e non ha nessun valore medico e/o prescrittivo.

Introduzione:

Le mode alimentari che hanno caratterizzato gli ultimi sessant’anni delle preparazioni ai contest di Bodybuilding mostrano pratiche gestionali dietetiche dal similare al totalmente opposto. Si è passati dalle “low fat” alle “higt fat” con un alternanza quasi ciclica e sempre più dipendente dalla “leggenda da spogliatoio” che non dalla ricerca scientifica. Oggi, per lo meno buona parte di noi, sa che la chiave principale della perdita di peso/grasso è il deficit calorico. L’ipotesi dell’Insulina e quella secondo la quale “una caloria non è una caloria” sono state bocciate dal metodo scientifico e dalla pratica ormai da tempo. E allora perchè dedicare un articolo ad una metodologia alimentare estrema com’è la “Carne e Acqua” se alla fine, semplicemente, basta un deficit calorico di qualsiasi tipo e con un adeguato apporto proteico per raggiungere l’agognato obbiettivo? Beh, i motivi sono principalmente 2:

1- Lo sviluppo e le caratteristiche che tale pratica ha avuto nel mondo del Culturismo agonistico, ma non solo, nel tempo;

2- La sua capacità di essere adattabile e, seppur con una sostenibilità limitata, applicabile su un discreto numero di soggetti pur presentando tagli calorici molto drastici per un numero di giorni variabili durante la settimana.

Essendo, nel mio piccolo, un ricercatore anche in campo nutrizionale, ho osservato e analizzato l’applicazione di questa pratica nelle sue diverse varianti su diversi bodybuilder (sia “Natural” che “Doped”), maturando una valutazione sufficientemente oggettiva e arrivando a “crearne” due nuove versioni.

Ma non dilunghiamoci oltre, per il momento, e partiamo dal principio…

Esiste una letteratura sulla dieta “Carne e Acqua”?

Nello specifico, la risposta è no sebbene esista una discreta letteratura su una condizione alimentare estrema osservata nelle spedizioni artiche o in altre condizioni al limite della sopravvivenza dove l’unica fonte di cibo facilmente reperibile era selvaggina dalle carni estremamente magre: si tratta del “Protein poisoning“, letteralmente “avvelenamento da proteine”.

L’avvelenamento da proteine (chiamato anche colloquialmente come rabbit starvationmorbo del caribou, o fat starvation) è una forma acuta di malnutrizione causata da una dieta carente di grassi, in cui quasi tutte le calorie consumate provengono da carni magre.[1][2 ] Il concetto è solitamente discusso nel contesto delle ipotesi paleoantropologiche sulla dieta degli antichi esseri umani, specialmente durante l’ultimo massimo glaciale e alle alte latitudini.[3][4]

Il termine “rabbit starvation” deriva dal fatto che la carne di coniglio è molto magra, con quasi la totalità delle calorie da essa provenienti apportate dalle proteine e una percentuale di grasso molto bassa. Di conseguenza, è un alimento che, se imperante nella dieta, causerebbe il così detto “avvelenamento da proteine”.[4] D’altra parte, si è osservato che alcuni animali che vivono in ambienti terrestri rigidi e freddi si presentano molto magri.[3]

In Storia Romana di Appiano, Volume I, Libro VI: Le guerre in Spagna, capitolo IX, pagina 223, l’autore osserva e descrive che una moltitudine di soldati romani morivano di dissenteria grave dopo aver mangiato quasi esclusivamente conigli, mentre assediavano la città di Intercatia nel 150 A.C. :

… strano terrore nell’accampamento romano. I soldati erano malati per la veglia e la mancanza di sonno, e per il cibo inconsueto che il paese offriva. Non avevano vino, né sale, né aceto, né olio, ma vivevano di grano e orzo, e quantità di carne di cervo e di coniglio bollite senza sale, causando la dissenteria, dalla quale molti morirono. [5]

Soldati romani consumano il rancio.

Si dice che l’esploratore Vilhjalmur Stefansson abbia vissuto per anni esclusivamente di carne di selvaggina e pesce, senza effetti negativi. Lo stesso vale per il suo compagno esploratore Karsten Anderson. Come parte della sua promozione della dieta a base di carne modellata sulla cucina Inuit, e per dimostrarne gli effetti, a New York City a partire dal febbraio 1928, Stefansson e Anderson “vissero e mangiarono nel reparto metabolismo del Russell Sage Institute of Pathology del Bellevue Hospital. , New York” per un anno, con le loro prestazioni metaboliche osservate da vicino, tutto questo in parte finanziato dall’Institute of American Meat Packers.[6] I ricercatori che speravano di replicare l’esperienza di Stefansson con la “rabbit starvation” sul campo lo hanno esortato a ridurre a zero l’assunzione di grassi nella sua dieta a base di carne. Lo ha fatto, e ha sperimentato un’insorgenza di diarrea molto più rapida rispetto a quanto osservato nel campo. Con l’aggiunta di grasso, Stefansson si è ripreso, sebbene con un periodo seguente di stitichezza di 10 giorni. Lo studio ha riferito di non aver trovato letteratura medica precedente che esaminasse gli effetti delle diete a base di sola carne, che sembrano essere sostenibili, o sulla “rabbit starvation”, che è fatale.

Stefansson scrisse:

I gruppi che dipendono dagli animali grassi sono i più fortunati nello stile di vita della caccia, perché non soffrono mai di fat starvation. Questo problema è peggiore, per quanto riguarda il Nord America, tra quegli indiani delle foreste che dipendono a volte dai conigli, l’animale più magro del Nord, e che sviluppano l’estrema fame di grasso nota come rabbit starvation. I mangiatori di conigli, se non assumono grasso da un’altra fonte – castoro, alce, pesce – svilupperanno diarrea in circa una settimana, con mal di testa, stanchezza e vago disagio. Se ci sono abbastanza conigli, la gente mangia fino a dilatare lo stomaco; ma non importa quanto mangiano si sentono insoddisfatti. Alcuni pensano che un uomo morirà prima se mangia continuamente carne senza grasso piuttosto che se non mangia nulla, ma questa è una credenza sulla quale nel Nord non sono state raccolte prove sufficienti per una conferma in merito. Le morti per rabbit starvation o per il consumo di altra carne magra sono rare; poiché tutti ne comprendono il principio, e vengono naturalmente prese tutte le misure preventive possibili.[7]

Vilhjalmur Stefansson durate una delle sue spedizioni artiche.

Nella prefazione del libro di Alden Todd “Abbandonati: la storia della spedizione artica Greely, 1881-1884” sempre lo stesso Stefansson sostiene che sia stato il cannibalismo dei compagni già morti a provocare il decesso di buona parte dell’equipaggio come conseguenza di questa inquietante e inusuale rabbit starvation.
Charles Darwin nel “Viaggio del Beagle” descrisse esperienze simili relative alla fame da grassi, pur valutando che i gauchos argentini mangiavano per mesi esclusivamente chili di carne di manzo ogni giorno apparentemente senza problema alcuno. In questo ultimo caso, la risposta alla tolleranza dei gauchos è con tutta probabilità da attribuirsi alla percentuale di grasso presente nella carne di manzo che, anche quando il taglio è magro, risulta essere di circa 5g per ogni 100g di carne.

Un opuscolo sulla sopravvivenza artica dell’epoca della seconda guerra mondiale emesso dal comando di controllo di volo delle forze aeree dell’esercito degli Stati Uniti includeva questo enfatico avvertimento:

A causa dell’importanza dei grassi, in nessuna condizione limitarsi a una dieta a base di carne di coniglio solo perché si verifica essere abbondante nella regione in cui sei costretto a stanziare. Una dieta continua di coniglio produrrà la rabbit starvation – la diarrea inizierà in circa una settimana e se la dieta viene continuata POTREBBE RISULTARE LA MORTE.[8]

In Into the Wild (1996), Jon Krakauer ha ipotizzato che Chris McCandless, un avventuriero americano del XX secolo, potrebbe aver sofferto di rabbit starvation.

Chris McCandless

La revisione dell’assunzione di riferimento dietetico statunitense e canadese per le proteine menziona la “rabbit starvation”, ma ha concluso che non c’erano prove sufficienti fino al 2005 per stabilire un livello di assunzione superiore tollerabile, ovvero un limite massimo per la quantità di proteine che può essere consumata in sicurezza.[9 ] Secondo quanto riferito, gli esseri umani moderni sono in grado di ricavare solo il 20% del loro fabbisogno energetico dalle proteine.[10] Per i cacciatori-raccoglitori artici, tuttavia, la quantità può aumentare stagionalmente fino al 45%.[11] In realtà, specie negli atleti, si è osservata un ampia capacità di adattamento alla quota proteica senza ripercussioni negative sul medio termine (circa 4g/Kg). Secondo Bilsborough e Mann (2006), l’assunzione di proteine è principalmente limitata dal ciclo dell’urea. Suggeriscono, quindi, un limite di 2,5 g/kg.[10] L’errore di fondo, è quello di confondere una possibilità di adattamento funzionale (quota proteica aumentata) con la mancanza di lipidi, totale o marcata, nella dieta.

Quindi, è chiaro che la letteratura scientifica non ci fornisce moltissime informazioni in merito a questo argomento. E, a proposito di ciò, esiste uno studio [12] su di un singolo caso di decesso per rabbit starvation riportato anche dal fanatico della “Paleo Dieta” Loren Cordain il quale peraltro ritiene [1], similmente a Bilsborough e Mann, che a fronte di un carico proteico eccessivo il fegato non sia in grado di produrre enzimi sufficienti per la sintesi dell’urea.
Oltre un certo limite variabile, infatti, l’organismo va in iperammonemia e iperaminoacidemia.[13]
Il tratto gastro-intestinale potrebbe assorbire in teoria non oltre 1,3 – 10 gr di aminoacidi ogni ora [14], anche se il dato ci appare superato di gran lunga all’atto pratico. Lo stesso autore d’altronde nella ricerca citata sottolinea come il 75% delle comunità di cacciatori–raccoglitori ricavi da fonti animali fino al 73% (98% gli Eskimos) del proprio nutrimento. Il limite di tolleranza sarebbe raggiunto sempre secondo Cordain quando l’apporto proteico equivale a circa il 40% dell’introduzione calorica complessiva, secondo Billsborought quando si aggira sul 35%.

La “Carne e Acqua” ed il Bodybuilding:

Se vogliamo parlare di dieta “Carne e Acqua” nel Bodybuilding non possiamo esimerci dal citare Rheo Blair.

Rheo H. Blair è stato il primo uomo riconosciuto come un “mago della nutrizione” quando si trattava di dieta e integratori per il Bodybuilding. Ha regolarmente eseguito degli ottimi lavori di trasformazione fisica su centinaia di bodybuilder inferiori alla media dei competitor. Durante gli anni ’50, ’60 e ’70, abbondavano le testimonianze sulle incredibili trasformazioni fisiche che Blair aveva compiuto su centinaia di “casi senza speranza”. Si diceva trasformasse regolarmente i deboli di 97 libbre in uomini robusti con le sue speciali formule proteiche e la vigorosa routine di allenamento con i pesi basata sul volume. Anche i bodybuilder avanzati riportavano risultati simili dal sistema Blair. In un articolo del numero di maggio 1967 della rivista Iron Man, un bodybuilder scrisse:

“Dopo aver seguito il programma di Rheo per sole tre settimane, ho ottenuto più guadagni di quelli che ho avuto negli ultimi sei anni. Ho messo quasi mezzo pollice sulle mie braccia. E dopo due mesi ho messo su quasi 20 libbre di muscoli puri.”

Sotto la guida di Blair, Jim Park passò dall’essere uno sconosciuto bodybuilder con un fisico nella media ad essere Mr. America… in meno di quattro mesi! Non si esclude l’uso di AAS che, già negli anni 50, pur essendo di nicchia e non ancora dilaganti, erano presenti. Ovviamente, come vuole il politically correct, viene, e venne, affermato che questa straordinaria trasformazione era stata realizzata senza farmaci! Adducendo al fatto che, dal momento che il tutto accadeva negli anni ’50, cioè prima che l’uso degli AAS diventasse così diffuso nel bodybuilding, la probabilità d’uso non era possibile. Personalmente, lo trovo poco importante e banale come discussione. C’erano AAS disponibili all’epoca? Si (es. Methyltestosterone, Mesterolone e Testoterone Propionato). Avrebbe potuto averne accesso? Possibile. E’ importante? Non per chi valuta l’atleta e non il suo “sgabuzzino”.

Sebbene avesse la reputazione di essere un eccentrico, tutti i grandi bodybuilder degli anni ’50, ’60 e ’70 (Arnold, Frank Zane, Dave Draper, Larry Scott, ecc.) hanno seguito i consigli di Blair e sono entrati nella loro forma migliore. Uno dei segreti di Blair era la sua speciale formula proteica. La famosa polvere proteica di Blair si basava sui rapporti di aminoacidi nel latte materno. Era anni in anticipo sui tempi. Sfortunatamente, Blair è morto prematuramente nei primi anni ’80 e molti dei suoi “segreti” sul bodybuilding sono morti con lui… inclusa la formula esatta della sua polvere proteica.

Rheo Blair

Ma la sua “arma” nelle preparazioni alimentari, soprattutto nella preparazione alla gara, era l’uso elevato di proteine con un esclusione marcata di Carboidrati e Grassi.

Come abbiamo visto in precedenza, mentre Vilhjamur Stefannsson ha reso popolare la dieta a base di carne degli Inuit all’inizio del 1900, una dieta a base di carne per atleti sembra essere un nuovo sviluppo dietetico, anche se così non è. Facendo eco alla meravigliosa “serie niente di nuovo sotto il sole” prodotta da Chaos and Pain (sicuramente non sicura per il lavoro!), abbiamo precedenti per la dieta “Carne e Acqua” anche con Rheo H. Blair e, in un certo qual modo, con Vince Gironda, diete dimagranti a breve termine utilizzate dai bodybuilder prima di una competizione.

A parte Vince Gironda, Rheo H. Blair è, a mio avviso, uno dei personaggi più affascinanti del bodybuilding degli anni ’50 e ’60. Fondamentali nella divulgazione degli integratori proteici, le polveri proteiche a base di latte e le compresse vitaminiche di Blair hanno acquisito uno status quasi mitico tra la comunità del sollevamento pesi. Blair contava tra i suoi clienti bodybuilder, atleti, celebrità e individui comuni. Il suo continuo interesse per la nutrizione fu senza dubbio la ragione del suo successo. Fu questo interesse che portò al suo esperimento “carne e acqua”, una dieta simile alla “dieta di massima definizione” di Gironda. Come raccontato da Steve Davis, che ha subito un drastico cambiamento nella dieta a base di carne e acqua, Blair ha voluto stabilire se una dieta di questo genere fosse preferenziale rispetto alla dieta a base di carne e uova promossa da Gironda, quest’ultima soprannominata “maximum definition diet”. Preparandosi per un servizio fotografico, Davis, allora aspirante bodybuilder, si è dimostrato una cavia ideale.

Al momento ho prove che i bodybuilder usassero la dieta a base di carne e acqua di Blair alla fine degli anni ’60 e all’inizio degli anni ’70. Il primo, Steve Davis, ha usato la dieta per coronare un’incredibile perdita di peso. Come raccontato da Old School Bodybuilding, Davis era inizialmente un powerlifter che voleva cimentarsi nel bodybuilding. Sotto la guida di Vince Gironda e Rheo H. Blair, ha subito una notevole perdita di peso che comprendeva quasi 100 libbre (circa 45,35Kg).

Parlando con Dennis Weis in Raw Muscularity, Davis ha raccontato le sue esperienze non così felici sul programma alimentare a base di carne e acqua:

Per raggiungere la forma in queste foto mi sono reso conto che avrei dovuto perdere quel minuscolo strato di tessuto adiposo per affinare davvero il mio corpo alla condizione di un Larry Scott o di un Gable Boudreaux…

A questo punto del programma Rheo ha detto: “Steve, vogliamo aiutarti a ottenere un po’ di magrezza in più per il tuo corpo e c’è un programma dietetico che possiamo usare per farlo. Vivere solo di carne e acqua…

Rheo mi ha spiegato che, per potermi preparare appositamente per il servizio fotografico, solo per due o cinque giorni al massimo avrei dovuto vivere di nient’altro che carne più un integratore di proteine ​​della carne …

Ho continuato questo tipo di programma per un periodo fino a dodici giorni. E questa è la parte triste della storia. Sono diventato così fisicamente esausto, così teso, così tassato e tirato che dopo che Rheo aveva scattato le foto ero sul punto di crollare.

Steve Davis prima e dopo essere diventato un atleta di Blair.

Ora, ciò che è importante sottolineare della testimonianza di Davis è che ha intrapreso una dieta a base di carne che era estremamente povera di calorie per prepararsi ad un servizio fotografico nel breve termine.

Passando ora a Heart of Steel, una meravigliosa biografia di Dan Lurie, troviamo menzione di innumerevoli altri bodybuilder che usarono la dieta di Blair, incluso il rivale di Arnold in Pumping Iron, Lou Ferrigno. Parlando all’inizio degli anni ’70, un tempo in cui Lou Ferrigno era ancora un imponente bodybuilder piuttosto che “l’incredibile Hulk”, Lurie commentò che:

Lui (Lou Ferrigno) è stato quindi sottoposto a una dieta speciale “carne e acqua” per ridurre il suo peso, per ottenere un aspetto “strappato”, da competizione. I bodybuilder che volevano preservare i muscoli mentre perdevano grasso usavano spesso la dieta a base di carne e acqua a quei tempi, e aveva funzionato a meraviglia per campioni come Vince Gironda, e per gli atleti seguiti da Rheo H. Blair e altri risalenti agli anni ’50.

Era una dieta che prevedeva carne di ogni tipo, poche verdure e acqua, il che la rendeva ricca di proteine, moderatamente grassa e con pochissimi carboidrati. E Lou ha fatto grandi progressi con questo piano.

Lou Ferrigno vincitore del Mr. Universo 1974.

Quindi Davis era in buona compagnia durante l’età dell’oro del Bodybuilding. Su questo punto sono probabilmente necessarie spendere alcune parole. La riduzione del grasso corporeo per le competizioni o i servizi fotografici è stata spesso eseguita in modo semplice: ridurre gli amidi (quindi le calorie dai carboidrati) e aumentare l’attività fisica (maggiore dispendio calorico). Non è avvenuto fino agli anni ’80 che gli atleti hanno iniziato a contare le calorie in modo ossessivo. Non che contare le calorie sia sbagliato, ma l’eccesso porta sempre a ripercussioni negative. Dalla metà del secolo, si può quindi osservare una adesione nel pre-contest molto evidente alla dieta “carne e acqua”, era semplice ed efficace. Inoltre ha avuto il sostegno di alcuni dei migliori allenatori e atleti di questo sport. Anche quella “statua vivente” quale fu Serge Nubret, in preparazione alla gara seguiva un regime “Carne e Acqua” basato su carne, pesce e amminoacidi.

Serge Nubret

Vi sono taluni che pensano che la “dieta carnivora” per gli atleti sia nata negli ultimi decenni insieme a regimi ortoressici e inutilmente restrittivi come la “Paleo Dieta”, ma come abbiamo visto non è così. Non sono estraneo alle diete restrittive – ho osservato e seguito molti soggetti sotto regime chetogenico per quasi sei anni – ma il concetto di “dieta carnivora” mi è sempre parso intrinsecamente fallimentare se non adeguatamente contestualizzato e, in definitiva, inserito in un piano di preparazione culturistica. Non sono affatto favorevole all’applicazione di questo modo di mangiare sul lungo termine, poiché risulterebbe controproducente su più aspetti della salute umana. Ma la dieta “carne e acqua”, come quella di Blair, dà a questa metodica alimentare una giusta e limitata dimensione nell’ambito della preparazione alla gara di Bodybuilding.

Attualmente, il maggior sostenitore della dieta carnivora come stile di vita è Shawn Baker, ex medico ortopedico americano.(15) Egli cita fantomatiche testimonianze di coloro che seguono la dieta carnivora come prova (non provata) che può curare la depressione, l’ansia, l’artrite, l’obesità, il diabete e altro.[15][16] Ovviamente, nessuna ricerca ha analizzato gli effetti della dieta carnivora e dimostrato quanto precedentemente asserito. Inoltre, nel 2017 la licenza medica di Baker è stata revocata dal New Mexico Medical Board a causa delle preoccupazioni sulla sua competenza.[17]

E’ chiaro, quindi, che il concetto applicativo di Blair e Baker differiscono significativamente nella loro applicazione. Baker, da quanto egli stesso fa trasparire, vede la dieta carnivora come una dieta a vita, il che significa che può essere utilizzata per anni senza problemi (secondo lui). Blair e Gironda, invece, con intelligenza preferivano un uso a breve termine. Gironda, ad esempio, aveva di logica un approccio alimentare ciclico con i suoi clienti a seconda dei loro obiettivi. Quindi, si sta parlando fondamentalmente di una forma commerciale venduta al grande pubblico (la dieta carnivora di Baker) e di una strategica per il miglioramento della composizione corporea rivolta ad atleti in preparazione ad un contest di Bodybuilding.

La mia ricerca applicata:

Dal 2016 ho iniziato a raccogliere dati sulla pratica alimentare “carne e acqua” valutandone gli effetti su diversi culturisti, sia agonisti in preparazione alla gara che amatori nella fase “Cut”.

La prima cosa che annotai, e che era del tutto presumibile già partendo dai dati preliminari in mio possesso, era che la “carne e acqua” risultava tollerabile in un numero ristretto di persone. ma questo era direttamente proporzionale al numero di giorni nei quali l’atleta rimaneva alimentato totalmente con carni magre. Classificai tre principali modalità di applicazione:

  • Modalità Estrema: si trattava di seguire un regime alimentare basato su carni magre e integratori di fibre (anche se non sempre) e integratori multi vitaminici-minerali per un periodo determinato totalmente sulla resistenza del soggetto sottoposto e dalla valutazione della forma fisica;
  • Modalità Metabolica: su stampo della famosissima dieta di Mauro di Pasquale, “La Dieta Metabolica”, l’atleta segue un regime “carne e acqua” per 5-6 giorni a settimana per poi “ricaricare” con Carboidrati e Grassi per 1-2 giorni a settimana;
  • Modalità Ciclica: simile alla precedente, essa tiene strettamente conto delle risposte psicofisiche dell’atleta alternando periodi a “carne e acqua” con giorni di refeed.

La più problematica e meno sostenibile risulta essere, e per ovvie ragioni, la “Modalità Estrema”. Se dovessimo elencare i principali problemi questi sarebbero:

  • Deficit nutrizionali;
  • Aumento del Cortisolo in risposta al deficit calorico e alle richieste metaboliche per la gestione del carico amminoacidico.
  • Risposta fisiologica e non determinante nella negativizzazione della composizione corporea nel breve termine.

    Ricordiamoci inoltre che la transaminazione al fine di convertire le proteine in urea e indurre la sintesi degli aminoacidi derivati in glucosio è un processo dal costo metabolico molto elevato.
    E’ un processo aerobico che ha il proprio limite nella disponibilità di ossigeno del fegato. La capacità complessiva del sistema si attesta comunque sulla produzione di 250g circa. E’ vero anche che la conversione metabolica degli amminoacidi in Glucosio, per via della sua richiesta energetica, è soggettivamente limitato e dipendente dagli adattamenti metabolici in atto o all’uso di determinati farmaci.

    Via della gluconeogenesi con molecole ed enzimi chiave. Molti passaggi sono opposti a quelli che si osservano nella glicolisi.

    Al deficit calorico diretto va sommato, oltre a quanto sopra, quello causato dalla termogenesi indotta dal cibo che nel caso delle Proteine si aggira tra il 10 ed il 35% (22,5% in media) delle calorie ingerite.

    Questo aspetto risulta positivo, almeno in parte, ma insieme ad esso, in una “carne e acqua” estrema, va considerato l’enorme deficit nutrizionale che, nonostante la possibilità di sopperire a ciò sul piano vitaminico, minerale e di fibre, colpisce duramente la richieste fisiologiche di una quantità sufficiente di Grassi. Inoltre, la privazione eccessivamente prolungata del consumo glucidico peggiora per circostanze adattative il metabolismo glucidico ed i vantaggi ad esso legati (vedi, per esempio, la qualità della prestazione, la capacità di utilizzo del substrato energetico una volta reintrodotto ecc… ).

    L’aumento del Cortisolo, e so già che alcuni limitati si scandalizzeranno, è la preoccupazione minore in quanto trattasi di un adattamento fisiologico che può diventare un problema nel cronico. Stesso discorso vale per lo squilibrio della bilancia acido-base dell’organismo e conseguente catabolismo muscolare. Ciò si verifica solo in sistemi organici gravemente compromessi, come quelli osservati all’inizio del XX secolo nelle aree del Canada dove per molti mesi non ci si nutriva se non di coniglio e qualche radice.

    Comunque sia, gli atleti che optavano per la versione più “bruta” della “carne e acqua” arrivavano ben presto ad un esaurimento fisico e mentale con forte nervosismo e calo della performance sportiva. Non mi dilungherò a parlare dei volumi che, e questo lo dovreste sapere più o meno tutti, venivano rapidamente supercompensati con i refeed.

    Le più tollerabili tra le versioni elencate erano la “Metabolica” e la “Ciclica”. Quest’ultima, la migliore in assoluto tra le tre versioni, viene retta anche da alcuni “Natutral” che, al fine di tagliare le calorie totali della settimana tenevano due giorni in cui il loro consumo calorico era molto ridotto, e per fare ciò usavano in quei giorni una “carne e acqua”.

    Personalmente, sperimentai una mia prima versione di dieta “carne e acqua ibridata” nell’estate del 2016. Si trattava di ciclicizzare 3 giorni in regime simil-Chetogenico (versione dieta Atkins Modificata) seguiti da 1 giorno di refeed seguito a sua volta da 3 giorni a “carne e acqua” per poi ripetere la sequenza per tutta la durata della programmazione. All’epoca la ribattezzai con il “pacchianissimo” nome di “Roller Coaster“.

    Ripartizione macro-calorica nelle fasi della “Roller Coaster”

    L’anno successivo, siamo quindi nel 2017, modificai il sopra citato schema rendendolo pianificabile sui canonici 7 giorni settimanali. Si trattava quindi di 3 giorni in regime simil-Chetogenico (versione dieta Atkins Modificata) seguito da 1 giorno di refeed seguito a sua volta da 2 giorni a “carne e acqua” e successivamente un altro giorno di refeed. Questa volta la ribattezzai “Keto Starvation”.

    Ripartizione macro-calorica nelle fasi della “Keto Starvation””

    Quest’ultimo schema applicativo risultò essere ben tollerato e con pochi disagi se non gli iniziali annessi a tutti i regimi low-carb (mal di testa, spossatezza, feci molli) che tendono a scomparire dopo poche settimane.

    Da questa versione ne è nata una recente e decisamente più “drastica”. Infatti, la “Protein Starvation” consiste in un piano settimanale nel quale vi sono 3 giorni iniziali a “carne e acqua” seguiti da 1 giorno di refeed glucidico/low fat, successivamente vi sono altri 2 giorni a “carne e acqua” e 1 giorno di refee glucidico/lipidico.

    Ripartizione macro-calorica nelle fasi della “Protein Starvation””

    Questo schema è poco tollerato dalla maggior parte delle persone ma ha mostrato effetti su periodi di tempo di 8 settimane statisticamente significativi rispetto a quanto ottenuto negli stessi soggetti con il regime più “soft”. Ed è ovvio che non si tratta di una pratica propriamente da “Natural”.

    Importante da ricordare è che vi è un integrazione d’obbligo in questa pratica alimentare:

    • Multivitaminico Multiminerale;
    • Potassio;
    • Magnesio;
    • Calcio;
    • Ferro;
    • EPA+DHA;
    • Zinco;
    • Fibra o in alternativa shirataki di Konjac.

    Supplementazione addizionale:

    • Metformina: l’uso della Metformina trova la sua ragione d’essere in una “carne e acqua” per via del suo effetto su l’attività metabolica cellulare via PPAR e AMPK, con conseguente miglioramento del metabolismo energetico sia glucidico che lipidico che, sebbene ci si trovi in un regime low-carb, ipoteticamente dovrebbe indurre delle “forzature di sistema” tali da spingere l’organismo ad attingere maggiormente dai depositi adiposi e dal surplus amminoacidico come substrati di sostentamento per via della “precarietà” dei livelli di glucosio ematico. Inoltre, la Metformina riduce le concentrazioni di glucosio plasmatico a digiuno riducendo i tassi di produzione epatica di glucosio a partire dagli amminoacidi [18][19], il suo effetto sui contributi relativi della glicogenolisi epatica e della gluconeogenesi rimane comunque controverso. Alcuni studi concludono che la Metformina agisca principalmente riducendo i tassi di gluconeogenesi [20]; altri, che agisce riducendo i tassi di glicogenolisi epatica [21][22]. Comunque sia, come già precedentemente accennato, il corpo può ricavare solo 1000 calorie al giorno attraverso la gluconeogenesi in una dieta di sole proteine dal momento che il fegato è in grado di produrre solo 250g di glucosio dalle proteine, e non importa quante proteine si mangiano. Con l’aggiunta di 750mg/die di Metformina si ipotizza, almeno da considerazioni fatte per via di rapporti sui cambiamenti glicemici, per quello che valgono, che la produzione di glucosio scenda a circa 180g al giorno, al limite del mantenimento dei tessuti glucosio dipendenti.
    Metformina

    Nota: l’uso della Metformina può dare dissenteria e problemi gastrointestinali.

    Sfortunatamente, nei piani “carne e acqua” prolungati, il fegato inizierà a non riuscire a convertire l’ammoniaca in urea (non abbastanza ATP), quindi l’ammoniaca rientrerà nel flusso sanguigno. Questo inizierà a dare problemi al sistema nervoso.

    Mi sembra scontato aggiungere che la dove viene applicata una supplementazione farmacologica strategica e contestualizzata il piano da i suoi migliori risultati. Per esempio, oltre a quanto detto prima per la Metformina, l’uso del 7-Keto-DHEA, o di altro inibitore della 11 βHSD-1, riduce la risposta cortisolemica. Alcuni riducono l’assorbimento lipidico dei pasti con fonti non accuratamente pesate e che possono contenere una quantità di grassi più elevata delle fonti comunemente consumate.

    Azione del 7-Keto-DHEA sull’attività dell’enziama 11 β-HSD-1

    Vi ricordo, e sto parlando all’idiota che sta sempre dietro lo schermo leggendo ma non capendo una emerita ciola, che estremizzare questo tipo di dieta già di suo estrema scimmiottando quanto sofferto dagli esploratori del secolo scorso beh, gli effetti non sono affatto piacevoli e comprendono nausea e affaticamento iniziali, seguiti da diarrea continua e infine, nei casi cronici, la morte.[4]

    Conclusione:

    Cosa si può imparare dalla dieta “carne e acqua”?

    Lo ripeto affinché sia chiaro a tutti: la dieta “carne e acqua” trova il suo motivo d’esistere per brevi periodi di tempo (vedi pre-contest), e ancora meglio se nello schema alimentare i giorni di “starvation” vengono intervallati da refeed glucidici e misti!

    Come ben si comprende, sembra che la dieta “carne e acqua” abbia funzionato per un certo numero di culturisti, un punto che sottolinea la necessità di adattare il piano alimentare alle capacità adattative del soggetto. Ma questo, ad oggi, lo abbiamo ben capito, di qualsiasi piano alimentare o allenante si tratti.

    Consiglio la “carne e acqua” o la mia “Protein Starvation”? Non la consiglio da un punto di vista etico e professionale dal momento che per seguire tali regimi il soggetto interessato deve per forza di cose essere attentamente seguito da un professionista onde evitare che si ritrovi collassato sul cesso a causa di una pesante disidratazione da dissenteria. Non consiglio in nessun modo di seguire la “dieta carnivora” come stile di vita promossa da Shawn Baker, una follia!

    Per il resto, affidatevi a personale qualificato prima di intraprendere qualsiasi percorso alimentare.

    Gabriel Bellizzi

    Riferimenti:

    1. Cordain, L.; Miller, J. B.; Eaton, S. B.; Mann, N.; Holt, S. H.; Speth, J. D. (March 2000). “Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets”The American Journal of Clinical Nutrition71 (3): 682–692.
    2. Hosfield, Rob (2016-10-02). “Walking in a Winter Wonderland? Strategies for Early and Middle Pleistocene Survival in Midlatitude Europe”Current Anthropology57 (5): 653–682. 
    3. Jump up to:a b Hardy, Bruce L. (2010-03-01). “Climatic variability and plant food distribution in Pleistocene Europe: Implications for Neanderthal diet and subsistence”Quaternary Science Reviews29 (5): 662–679. 
    4. Jump up to:a b c Fiorenza, Luca; Benazzi, Stefano; Henry, Amanda G.; Salazar‐García, Domingo C.; Blasco, Ruth; Picin, Andrea; Wroe, Stephen; Kullmer, Ottmar (2015). “To meat or not to meat? New perspectives on Neanderthal ecology”American Journal of Physical Anthropology156 (S59): 43–71. 
    5. “Appian’s Roman History, Vol. I-III.”, Edited and translated by Brian McGing. Loeb Classical Library 2. Cambridge, MA: Harvard University Press, 1912.
    6. McClellan WS, Du Bois EF (February 13, 1930). “Clinical Calorimetry: XLV. Prolonged Meat Diets With A Study Of Kidney Function And Ketosis” (PDF). J. Biol. Chem87 (3): 651–668. 
    7. “Not by Bread Alone”, Vilhjalmur Stefansson, Publisher, Macmillan, 1946
    8.  Jungle, Desert, and Arctic Emergencies Booklet. Flight Control Command Safety Education Division of the United States Army Air Forces. 1 January 1941. p. 116,119. Retrieved 27 July 2020.
    9. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids, Institute of Medicine. National Academy Press, 2005
    10. Jump up to:a b Bilsborough, S; Mann, N (April 2006). “A review of issues of dietary protein intake in humans”. International Journal of Sport Nutrition and Exercise Metabolism16 (2): 129–52. 
    11. Lahtinen, Maria; Clinnick, David; Mannermaa, Kristiina; Salonen, J. Sakari; Viranta, Suvi (December 2021). “Excess protein enabled dog domestication during severe Ice Age winters”Scientific Reports11 (1): 7. 
    12. Lieb CW THE EFFECTS ON HUMAN BEING OF A TWELVE MONTHS EXCLUSIVELY MEAT DIET jama 1929; 93:20-2
    13. Rudman et al MAXIMAL RATES OF EXCRETION AND SYNTESIS OF UREA IN NORMAL AND CIRRHOTICS SUBJECTS J Clin Invest 1973; 52:2241-9
    14. Bilsborought S, Mann N. A REVIEW OF ISSUE OF DIETARY PROTEIN INTAKE IN HUMANS Int J Sport Nutr Exerc Metab, 2000 Apr; 16(2): 129-52
    15. Shawn Baker MD – The Carnivore Diet (shawn-baker.com)
    16. Carnivore Diet Success Stories | MeatRX
    17. B O A R D A C T I O N S (state.nm.us)
    18. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334:574–579. [PubMed] [Google Scholar]
    19. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Rev. 1998;6:89–131. [Google Scholar]
    20. Stumvoll M, Nurjhan N, Periello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–554. [PubMed] [Google Scholar]
    21. Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81:4059–4067. [PubMed] [Google Scholar]
    22. Christiansen MP, Linfoot PA, Neese RA, Hellerstein M. Metformin: effects upon postabsorptive intrahepatic carbohydrate fluxes. Diabetes. 1997;46 Suppl. 1:244A. [Google Scholar]

    Il dilemma sulla validità della Anabolico:Androgeno ratio degli AAS [e SARM].

    Introduzione alla Anabolico:Androgeno ratio

    Chi segue il sito e legge con attenzione i miei lavori, si ricorderà certamente che l’argomento della Anabolico:Androgeno ratio era già stato toccato nell’articolo di analisi dettagliata sul Methenolone. Visto che la questione alzò una non indifferente reazione da parte degli “irriducibili” del “ribattere con banalità”, e che la lettura di certi validi testi in lingua inglese sembra per i più ostica, ho deciso di trattare con minuzia di dettagli questo tanto dibattuto argomento. Ovviamente, chi vive di convinzioni basate sul nulla difficilmente potrà accettare quanto mi accingerò a riportare. Per tutti gli altri sarà un altra occasione per imparare qualcosa di nuovo e potenzialmente utile.

    Ma andiamo avanti…

    Tutti noi sappiamo che gli Steroidi Androgeni Anabolizzanti (AAS) hanno proprietà anaboliche e androgene, da cui il nome. In generale, per proprietà anaboliche si indica l’effetto di costruzione muscolare e l’effetto stimolante sulla densità minerale ossea (BMD). Gli altri effetti sono considerati effetti Androgeni, come l’impatto sulla ipertrofia prostatica, sullo stimolo del midollo osseo, sul cuore, sull’ipotalamo e sull’ipofisi, ecc. In generale, questi effetti sono considerati indesiderati. Ad esempio, una meta-analisi ha rilevato che un aumento dell’ematocrito (la % del volume di sangue occupato dagli eritrociti) è l’effetto avverso più frequente associato alla Terapia Sostitutiva del Testosterone (TRT).[1] Un altro problema degli androgeni è che sono in grado di indurre, in particolari circostanze, la crescita del cancro alla prostata. In quanto tale, una delle terapie utilizzate per il trattamento del cancro alla prostata è la terapia di deprivazione androgenica. Tuttavia, è importante notare che esiste un limite alla capacità degli androgeni di stimolare la crescita del cancro alla prostata. Ciò significa che, fino a una certa concentrazione, gli androgeni ne stimoleranno la crescita, ma al di sopra di essa avranno poco o nessun ulteriore effetto. Da qui sono nate alcune ipotesi tra le quali quella del “modello di saturazione dei recettori degli androgeni” [2], un modello dibattuto e tutt’altro che dimostrato. Comunque sia, questo effetto sulla riduzione dell’attività ipertrofica prostatica è in realtà qualcosa che sembra già avvenire a basse concentrazioni di Testosterone, nel intervallo basso classico del soggetto ipogonadico. Avremo comunque tempo di ritornare nuovamente su questo punto più tardi, quando parlerò di un rinomato test che viene utilizzato per valutare il rapporto tra potenza anabolica e androgena.

    Lo scopo della Androgeno:Anabolico ratio è quello di fornire dati numerici al fine di dividere i diversi AAS in termini di potenza anabolica e androgena. Quindi, ad esempio, si potrebbe prendere il Testosterone come AAS di “paragone”, assegnandogli una Anabolico/Androgeno ratio di 100 e 100 (o solo 1). Quindi, attraverso alcuni esperimenti, viene determinato che un altro AAS ha un rapporto pari a 400:200 (o solo 2) Ciò implicherebbe che questo AAS è 4 volte più anabolico del Testosterone, pur essendo solo due volte più androgena.

    Se le cose stessero in questo modo, allora, volendo ridurre al minimo il rischio di effetti collaterali androgeni, si potrebbe semplicemente scegliere un AAS con una Anabolico-Androgeno ratio molto favorevole e il problema non sussisterebbe. Tuttavia, ci sono così tanti problemi e variabili sia con il concetto stesso di Anabolico:Androgeno, ratio sia con il modo in cui esso è determinato sperimentalmente, che tutti questi rapporti che si trovano online o in letteratura sono praticamente inutili.

    Il test di Hershberger

    Un test molto comune utilizzato per determinare la Anabolico:Androgeno ratio è il cosiddetto test di Hershberger. Il test è stato descritto per la prima volta nel 1953 da Hershberger e dai suoi colleghi dell’Università del Wisconsin.[3] Come già accennato nell’articolo sul Methenolone, il test funziona come segue. Si prendono dei ratti e li si castra. La castrazione assicura che si abbia pochissimo Testosterone endogeno nell’animale e che ciò possa influenzare i risultati del test. Successivamente, si somministra l’AAS di cui si vuole conoscere il rapporto tra potenza anabolico e androgena all’animale. Successivamente si attende un po’ di tempo (8 giorni nel caso del originale test di Hershberger) e si procede con l’uccisione dei ratti trattati per sezionarli e pesarne il muscolo levator ani, la prostata ventrale e le vescicole seminali. L’aumento di peso de levator ani sarebbe quindi indicativo dell’attività anabolica dell’AAS, mentre quello della prostata ventrale e delle vescicole seminali sarebbe indicativo della sua attività androgena.

    LA: levator ani.

    Anche se questo test può sembra un metodo ragionevolmente valido, in esso vi sono una serie di problemi. Un primo punto su cui vorrei soffermarmi riguarda il muscolo levator ani, che, appunto, è il muscolo bulbocavernoso dorsale.[4] È un muscolo che fa parte del sistema riproduttivo maschile e quindi non dovrebbe essere considerato in alcun modo rappresentativo del muscolo scheletrico. È un muscolo fortemente androgeno-dipendente e dopo la castrazione subisce un tasso di diminuzione del peso simile a quello dell’atrofia da denervazione nei muscoli scheletrici.[5] Proprio questa informazione da sola garantisce già che il lato anabolico dell'”equazione” sia imperfetto. Un altro problema è che il muscolo bulbocavernoso dorsale e le vescicole seminali rispondono in modo diverso a una diminuzione della concentrazione di AAS all’interno del range fisiologico.[6] Di conseguenza, il rapporto determinato sperimentalmente dipenderà dalla dose utilizzata e dal momento in cui vengono effettuate le misurazioni. Ciò è ben illustrato nella figura sottostante tratta da una pubblicazione di van der Vies.[6] Durante i primi 3 giorni, la concentrazione di AAS (Nandrolone in questo caso) è abbastanza alta da stimolare la crescita sia delle vescicole seminali che del muscolo bulbocavernoso dorsale. Tuttavia, dopo tre giorni la concentrazione non è abbastanza elevata da sostenere questa crescita per le vescicole seminali, che diminuiscono nuovamente di dimensioni. Tuttavia, il muscolo bulbocavernoso è ancora sufficientemente stimolato per continuare a crescere di dimensioni. Pertanto, se determinassi il rapporto anabolico/androgeno il giorno 3, esso sarebbe molto diverso rispetto al risultato che rileverei se la misurazione venisse fatta il giorno 7, nonostante sia utilizzato lo stesso composto.

    Scomparsa del Nandrolone Fenilpropionato dal deposito intramuscolare ed effetti sui pesi del muscolo bulbocavernoso dorsale e delle vescicole seminali. Figura tratta da van der Vies [6].

    Ciò evidenzia anche che i diversi organi rispondono semplicemente in modo diverso a seconda della concentrazione della molecola. E anche se ci fosse un modo accurato per determinare una anabolico:androgeno ratio, estrapolarlo oltre le concentrazioni fisiologiche sarebbe completamente errato.

    Un altro difetto è l’ipotesi che la crescita della prostata ventrale o delle vescicole seminali sia rappresentativa di tutti gli altri effetti androgeni. Non ci sono mai state prove a sostegno di questa ipotesi. I tessuti androgeni variano molto in risposta l’uno dall’altro e non ci si deve assolutamente aspettare che un tessuto risponda nella stessa misura di un altro. In effetti, ricordate quanto menzionato nell’introduzione sulla prostata? Gli androgeni sembrano già smettere di stimolare ulteriormente la crescita della prostata oltre l’intervallo ipogonadico basso. Infatti, il volume della prostata rimane invariato quando a uomini sani vengono somministrati 600mg di Testosterone Enantato (pari a 432mg di Testosterone) settimanalmente per 20 settimane.[7] Eppure sappiamo per certo che altri effetti collaterali androgeni iniziano a comparire quando il dosaggio comincia ad essere elevato! Comunque, questo mette in luce anche la questione del concetto stesso di rapporto tra potenza anabolica e androgena. Un singolo rapporto non è mai in grado di catturare le risposte differenziali dei vari tessuti sensibili agli androgeni o la complessità della risposta androgena all’interno di un tessuto specifico, per essere di valore. Diversi tessuti rispondono in modo diverso ad un AAS, come sarà mai possibile rappresentarlo con un singolo numero?

    Naturalmente, il test di Hershberger viene eseguito sui ratti, non sugli esseri umani. È un altro errore è quello di presumere che i tessuti omologhi nell’uomo rispondano allo stesso modo osservato in un ratto trattato con AAS. L’intero test di Hershberger è semplicemente pieno di falle, e nonostante ciò viene attualmente utilizzato per lo screening di potenziali Modulatori Selettivi del Recettore degli Androgeni (SARM). Ad esempio, GlaxoSmithKline ha valutato la selettività tissutale del proprio SARM GSK2881078 utilizzando il classico test di Hershberger.[8]

    GSK2881078

    Test di affinità di legame relativo (RBA)

    Mentre il test di Hershberger viene eseguito in un organismo vivente, i saggi di affinità di legame relativa (RBA) vengono eseguiti in una sorta di piastra di Petri. Viene quindi esaminata l’affinità di legame dei composti per il Recettore degli Androgeni (AR). In questo contesto, l’affinità di legame si riferisce alla forza con cui un AAS si lega all’AR. L’RBA mostra quindi quanto fortemente un AAS si lega all’AR rispetto ad un altro. O in altre parole: relativamente l’uno all’altro.

    Il principio alla base è abbastanza semplice. Si prende un AAS di riferimento, comunemente il Methyltrienolone (R1811), e si misura la sua affinità di legame. Successivamente si misura l’affinità di legame di altri AAS e si esprimono i dati relativi all’AAS di riferimento. Quindi al Methyltrienolone viene assegnato un RBA di 1, essendo il composto di riferimento, e quindi se qualche altra molecola si lega con una potenza maggiore di due volte gli viene assegnato un RBA di 2. Allo stesso modo, se un’altra molecola si lega due volte più debolmente le viene assegnato un RBA di 0,5. Si potrebbero fare queste misurazioni in diversi tipi di cellule. Una che rappresenta il muscolo scheletrico e un altra che rappresenta in qualche modo i suoi effetti androgeni (ad esempio le cellule della prostata). Come tale, anche in questo caso si possono porre alcune delle stesse obiezioni del test Hershberger descritte sopra.

    Ad ogni modo, l’immagine seguente raccoglie gli RBA di una selezione di AAS popolari misurati nei tessuti di ratto e coniglio.[9] Se dovessimo ottenere questi risultati, il Testosterone avrebbe un rapporto anabolico-androgeno più favorevole rispetto al Nandrolone. È un po’ l’opposto di quello che si osserva nei test di Hershberger. È anche un po’ sorprendente, dato che gli effetti androgeni del Testosterone sono amplificati nei tessuti che esprimono la 5α-reduttasi, a causa della conversione all’androgenicamente più potente DHT. Al contrario, l’azione androgena del Nandrolone è indebolita nei tessuti che esprimono questo enzima, a causa della conversione al meno potente androgeno Dihydronandrolone (DHN).[10]

    Gli RBA di una selezione di AAS presi dal lavoro di Saartok et al. [9]. Il Methyltrienolone è servito come steroide di riferimento.

    Un’altra cosa che questi dati rivelano in modo appropriato sono le differenze interspecie dei valori RBA. Nel muscolo di ratto, l’1α-methyl DHT si lega all’AR circa 3 volte più debolmente del Testosterone. Se si osservano i dati provenienti dall’analisi del muscolo di coniglio, fondamentalmente si vede un risultato contrario: 1α-methyl-DHT si lega con una forza all’incirca 3 volte maggiore all’AR come il Testosterone. L’estrapolazione da una specie animale a un’altra è (altamente) problematica, e quindi anche l’estrapolazione dal ratto, coniglio o qualsiasi altro animale, all’uomo.

    Nel caso ti stia chiedendo perché il DHT dimostri un RBA così basso nel muscolo di coniglio e ratto, questo è probabilmente dovuto alla sua rapida degradazione nel tessuto muscolare. Il DHT costituisce un eccellente substrato per l’enzima 3α-HSD. Questo enzima lo scompone in 3α-androstanediolo, il quale si lega molto debolmente all’AR.[11] Questo accade anche negli esseri umani [12], e questo è uno dei motivi per cui non si vedono protocolli basati sull’uso di DHT.

    Un ultimo punto che deve essere evidenziato è che l’affinità di legame non determina la potenza del AAS nel modulare anche l’espressione genica. Che è alla fine ciò che più interessa. Tuttavia, questo è possibilmente valutabile per via sperimentale. Si tratta del test del gene reporter responsivo agli androgeni (dosaggi biologici AR). Questi test biologici, per quanto ne so, sono stati inizialmente utilizzati per lo screening di nuovi androgeni di design nei campioni di urina per contrastare l’uso di doping. Un test biologico AR è essenzialmente in grado di dimostrare se un campione contiene qualcosa che riesce ad attivare il recettore degli androgeni e avviare la trascrizione genica. Per contrastare il doping, questo è molto utile. Dopotutto, puoi dimostrare che un campione di urina contiene qualcosa che attiva l’AR senza conoscere la struttura chimica del composto utilizzato.

    Ad ogni modo, uno di questi test è stato sviluppato da un team di scienziati olandesi. [13] I ricercatori hanno utilizzato un test chiamato test biologico della LUciferasi attivata da sostanze chimiche reattive agli androgeni (AR CALUX). Hanno preso una linea cellulare di osteosarcoma umano e l’hanno co-trasfettata con l’AR umano e un gene reporter della luciferasi che è sotto il controllo trascrizionale degli elementi di risposta agli androgeni (ARE). Ciò significa che quando l’AR viene attivato, l’enzima luciferasi arriva all’espressione. Questo enzima produce bioluminescenza, o per dirla semplicemente: luce. E la luce può essere misurata. Quindi il grado di bioluminescenza è il grado in cui avviene l’attivazione del recettore degli androgeni.

    I ricercatori hanno quindi proceduto a testare una varietà di AAS noti con il test biologico AR CALUX. Simile all’RBA, con esso si può calcolare la potenza relativa in termini di attivazione del recettore (REP). E non è solo stato fatto per l’AR, ma lo hanno fatto anche per il recettore del progesterone (PR), entrambe le isoforme del recettore degli estrogeni (ERα e ERβ) e il recettore dei glucocorticoidi (GR). Nella tabella seguente sono elencati gli REP di alcuni (popolari) AAS.

    Gli REP di una selezione di AAS tratti dal lavoro di Houtman et al. [13]. Il DHT è servito come steroide di riferimento per il AR, ORG-2058 per il PR, l’Estradiolo per ERα/β e il Desametasone per GR.

    Permettetemi di evidenziare il REP del Testosterone e del DHT per l’AR. Il REP del Testosterone è circa 5 volte inferiore al REP del DHT. Cosa ci dice questo? Semplicemente che quel DHT non è stato degradato enzimaticamente nella linea cellulare che hanno usato come sarebbe successo nel mondo reale se si fosse legato al AR del muscolo scheletrico. Il metabolismo che di solito avviene nel muscolo scheletrico non sembra quindi avvenire in questa linea cellulare. Questo problema invalida i risultati di questo test biologico per quegli AAS che sono metabolizzati nel muscolo scheletrico, come il DHT, ma probabilmente anche il Methenolone (Primobolan). Un altro problema è che l’espressione genica è complessa (e dirlo è un eufemismo). L’AR regola un vasto numero di geni. Se due composti aumentano la trascrizione genica di un determinato gene in misura simile, non significa necessariamente che questi due composti modulino in modo comparabile la trascrizione genica di altri geni. Sicuramente non sarebbe sorprendente se ci fosse una correlazione in un modo o nell’altro, ma questi test biologici dipingono solo un quadro approssimativo. Anche se è probabile che questa immagine approssimativa sia più accurata di quella degli RBA. Tuttavia, fino ad oggi, i biotest AR non sono stati eseguiti in più linee cellulari di vari tessuti (sensibili agli androgeni) per fornirci “nuovi” rapporti tra il potenziale anabolico e androgeno.

    Conclusioni

    Sia il test di Hershberger che gli studi che valutano gli RBA dell’AAS in vari tessuti sono irrimediabilmente inaffidabili. Inoltre, il concetto di numero che cattura la complessità delle proprietà anabolizzanti e di quelle androgene dovrebbe essere abbandonato. Un singolo rapporto è semplicemente incapace di descrivere le risposte differenziali di vari tessuti agli androgeni, così come la complessità della risposta androgena all’interno di un tessuto specifico, per essere di valore. Forse sarebbe più appropriato un “profilo di attività” che descriva l’azione androgenica su base tissutale. Qualcosa di simile è stato proposto per descrivere come dovrebbe essere un SARM ideale per il trattamento di una condizione specifica. Tuttavia, è estremamente difficile quantificare l’azione androgena per tessuto, se non impossibile. Forse i biotest AR eseguiti su linee cellulari di tessuti di interesse potrebbero avere un valore clinico predittivo. Alla fine, dopo tutto, sono necessari studi clinici per dimostrare (il grado di) eventi avversi che si verificano con l’uso di un determinato composto.

    Ovviamente, e lo dico per i tordi che affermano “e allora perchè con l’Oxandrolone gli effetti androgeni sono bassi come descritto dalla sua anabolico:androgeno ratio?” Bambino caro, l’Oxandrolone, come altri composti steroidei testati nel corso degli ultimi sessant’anni, hanno passato trial clinici dove gli effetti sono stati documentati anche nel caso di trattamento di donne in pre e post-menopausa. Ma non sono mai stati effettuati confronti di potenziale ed estrapolate ratio anabolico:androgeno. Semplicemente hanno osservato il miglioramento clinico dei pazienti trattati per svariate patologie e condizioni come, ad esempio, soggetti ustionati o gravemente sottopeso (vedi malati di HIV). Sono state effettuate biopsie, controlli della ritenzione d’azoto ma nessun test comparativo. Così facendo, puoi basarti sul grado di trofismo indotto dalla molecola e dal grado di espressione dei caratteri androgeni, ma, lo ribadisco, nessuna ratio di confronto!

    Ricordate, inoltre, che per i soggetti sensibili l’espressione degli effetti androgeno-correlati avviene anche con le molecole con la ratio più bassa… Fatevene una ragione…

    Gabriel Bellizzi

    Riferimenti:

    1. Calof, Olga M., et al. “Adverse events associated with testosterone replacement in middle-aged and older men: a meta-analysis of randomized, placebo-controlled trials.” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 60.11 (2005): 1451-1457.
    2. Morgentaler, Abraham, and Abdulmaged M. Traish. “Shifting the paradigm of testosterone and prostate cancer: the saturation model and the limits of androgen-dependent growth.” European urology 55.2 (2009): 310-321.
    3. Hershberger, L. G., Elva G. Shipley, and Roland K. Meyer. “Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method.” Proceedings of the Society for Experimental Biology and Medicine 83.1 (1953): 175-180.
    4. Hayes, Keith J. “The so-called ‘levator ani’ of the rat.” European Journal of Endocrinology 48.3 (1965): 337-347.
    5. Gori, Zina, C. Pellegrino, and Maria Pollera. “The castration atrophy of the dorsal bulbocavernosus muscle of rat: an electron microscopic study.” Experimental and molecular pathology 6.2 (1967): 172-198.
    6. Van der Vies, J. “Implications of basic pharmacology in the therapy with esters of nandrolone.” European Journal of Endocrinology 110.3_Suppla (1985): S38-S44.
    7. Bhasin, Shalender, et al. “Effect of testosterone supplementation with and without a dual 5α-reductase inhibitor on fat-free mass in men with suppressed testosterone production: a randomized controlled trial.” Jama 307.9 (2012): 931-939.
    8. Neil, David, et al. “GSK2881078, a SARM, produces dose-dependent increases in lean mass in healthy older men and women.” The Journal of Clinical Endocrinology & Metabolism 103.9 (2018): 3215-3224.
    9. Saartok, Tönu, Erik Dahlberg, and JAN-ÅKE GUSTAFSSON. “Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin.” Endocrinology 114.6 (1984): 2100-2106.
    10. Bergink, E. W., et al. “Comparison of the receptor binding properties of nandrolone and testosterone under in vitro and in vivo conditions.” Journal of steroid biochemistry 22.6 (1985): 831-836.
    11. Jin, Yi, and Trevor M. Penning. “Steroid 5α-reductases and 3α-hydroxysteroid dehydrogenases: key enzymes in androgen metabolism.” Best Practice & Research Clinical Endocrinology & Metabolism 15.1 (2001): 79-94.
    12. Becker, H., et al. “In vivo uptake and metabolism of 3H-testosterone and 3H-5α-dihydrotestosterone by human benign prostatic hypertrophy.” European Journal of Endocrinology 71.3 (1972): 589-599.
    13. Houtman, Corine J., et al. “Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays.” Analytica chimica acta 637.1-2 (2009): 247-258.

    L’efficacia della PCT [Post-Cycle Therapy]alla luce dello studio HAARLEM.

    Introduzione:

    Chiunque segua questo sito o si sia interessato minimamente alla questione “doping”, è a conoscenza del fatto che durante l’uso di AAS e/o SARM, la produzione endogena di Testosterone subisce un calo marcato in misura maggiormente dipendente dalla molecola/e utilizzata/e e in minor parte dal tempo di utilizzo. Una volta interrotta la somministrazione di AAS e/o SARM, la produzione di Testosterone rimane (a diverso grado ma, pur sempre, significativo) soppressa per un periodo di tempo transitorio. Durante questo periodo di tempo, il soggetto si trova in una condizione di ipogonadismo, cioè sarà carente di Testosterone con importanti alterazioni di Estradiolo, DHT e Prolattina. Sappiamo allo stesso modo che è usanza comune l’utilizzo di alcuni farmaci dopo il termine d’uso di AAS e/o SARM con il fine, sperato, di accelerare il processo di recupero dell’attività dell’Asse HPT e la stabilizzazione della normale produzione di Testosterone. Questa pratica è ovviamente la conosciutissima, almeno per nome, PCT (Post-Cycle Therapy).

    Tre tipi di farmaci sono frequentemente utilizzati per la PCT, e questi sono:

    • Modulatori Selettivi del Recettore degli Estrogeni (SERM), cioè Tamoxifene e Clomifene Citrato;
    • Inibitori dell’Aromatasi (IA), come Letrozolo, Anastrozolo ed Exemestane;
    • Gonadotropina Corionica umana (hCG).

    Il ragionamento dietro l’uso di questi farmaci è abbastanza semplice. I SERM agiscono a livello del recettore degli estrogeni bloccando l’attività, principalmente, dell’Estradiolo portando ad un feedback negativo a livello ipofisario il quale, a cascata, porta ad un aumento del rilascio di GnRH e di LH ed FSH i quali, rispettivamente, andranno a stimolare la sintesi di Testosterone e la spermatogenesi. Allo stesso modo, gli Inibitori dell’Aromatasi causano una riduzione dei livelli di Estradiolo e, quindi, della sua attività portando ad un medesimo ciclo di feedback negativo stimolante il rilascio di GnRH e, consequenzialmente, di LH ed FSH. In fine, l’hCG viene usato inizialmente al fine di compensare i livelli bassi di LH e FSH, prima del loro incremento legato all’uso di SERM e AI, incrementando l’attività delle cellule di Leydig e del Sertoli stimolando la sintesi di Testosterone e la spermatogenesi.

    Asse Ipotalamo-Ipofisi-Gonadi (HPGA; conosciuta anche come HPTA, Asse Ipotalamo-Ipofisi-Testicoli)

    Di questi farmaci, i SERM sono solitamente il pilastro portante della PCT. E, in effetti, i SERM hanno dimostrato di aumentare il Testosterone in vari stati di ipogonadismo. Tuttavia, nessuno studio fino ad oggi aveva effettivamente esaminato in modo prospettico la sua efficacia nell’ipogonadismo indotto da AAS. Nemmeno la tanto acclamata PCT di Scally riporta scientificamente buone certezze d’efficacia. Di recente è uscito uno studio che ci mostra quanta efficacia possa avere una PCT nella “corsa al recupero” post ciclo di AAS e/o SARM. Parlo dello studio HAARLEM.[1]

    Lo studio HAARLEM

    Lo studio HAARLEM è uno studio prospettico e osservazionale a cui hanno partecipato 100 utilizzatori di AAS. Si tratta di un’iniziativa dell’ambulatorio per i consumatori di steroidi anabolizzanti di Haarlem, nei Paesi Bassi. L’ambulatorio nasce nel 2010 ed è gestito dai due endocrinologi dott. de Ronde e il dott. Smit.

    L’obiettivo dello studio HAARLEM era quello di ottenere informazioni preziose sui rischi per la salute coinvolti nell’uso di AAS. Le caratteristiche di base di questa coorte sono state pubblicate in precedenza.[2]

    In breve: nello studio sono stati inclusi un totale di 100 soggetti (tutti uomini) che intendevano iniziare un ciclo di steroidi anabolizzanti entro 2 settimane. Diverse misurazioni dello stato di salute, tra cui gli esami del sangue, sono state eseguite su tutti i partecipanti prima del ciclo (T0), durante l’ultima settimana del ciclo (T1), 3 mesi dopo la fine del ciclo (T2), e 1 anno dopo l’inizio del ciclo (T3). Per essere chiari: i soggetti stavano usando AAS che essi stessi si erano procurati, gli endocrinologi non hanno prescritto nessun AAS.

    Ciò che è di particolare rilevanza per questo articolo è che i ricercatori hanno anche misurato i livelli di Testosterone e, quindi, hanno potuto osservare come potesse avvenire la ripresa dell’attività dell’Asse HPT dopo un ciclo. Inoltre, 80 dei soggetti in osservazione hanno eseguito la PCT (mentre i restanti 20 non hanno svolto alcuna PCT). Quindi, detto ciò, questo sarebbe il primo studio prospettico in cui l’efficacia della PCT potrebbe diventare evidente. Alla fine, però, i dati erano disponibili per 79 soggetti che avevano svolto la PCT e 19 soggetti che non l’avevano svolta.

    Anche i farmaci per la PCT non sono stati forniti dagli endocrinologi. I soggetti interessati si sono procurati autonomamente tali farmaci. I ricercatori hanno notato che la maggior parte dei regimi PCT consisteva nell’uso di Tamoxifene Citrato (70% delle volte) e/o Clomifene Citrato (55% delle volte) per 4 settimane dopo il ciclo. Il che, in effetti, rappresenta l’esempio stereotipato di una classica PCT.

    I risultati dello studio

    Sono sicuro che questo darà fastidio a qualche “relativista ad oltranza”, ma i dati sono questi:

    I valori di Testosterone basale (T0) erano praticamente identici e, come prevedibile, sono risultati aumentati a livelli soprafisiologici durante l’ultima settimana del ciclo (T1). Quindi, 3 mesi dopo la fine del ciclo, i valori sono stati di nuovo praticamente normalizzati in entrambi i gruppi (sebbene leggermente, ma non in modo statisticamente significativo, più bassi nel gruppo PCT).

    Questa ricerca ha sicuramente delle mancanze e non arriva ad essere una “pietra miliare” ella dimostrazione scientifica in questo specifico contesto. Non si è trattato di uno studio in doppio cieco controllato con placebo. Ma è molto improbabile che un tale studio venga mai eseguito. Questo è un buon lavoro di ricerca in un frangente ben poco analizzato. Quali altre deficienze presenta lo studio HAARLEM? Qualcuno potrebbe blaterare riguardo ad improbabili bias di selezione. Cioè, i soggetti che “sanno” di recuperare più facilmente, potrebbero aver optato per non utilizzare una PCT. Dubito fortemente che ciò porterebbe a differenze significative. Un’altra ragione potrebbe essere che il dosaggio di AAS medio era più alto nel gruppo PCT, che era 1,110 contro 839mg/settimana. Tuttavia, entrambi sono ben al di sopra dei dosaggi richiesti per la massima soppressione della produzione endogena di Testosterone (il dosaggio minimo richiesto come criterio di inclusione nello studio era anche di 200mg a settimana). Inoltre, il gruppo che non ha svolto la PCT in media ha avuto una durata del ciclo più lunga (20 settimane contro 18 settimane).

    In linea di principio, forse il gruppo PCT si era ripreso un po’ prima, il che sarebbe stato visibile se avessero misurato i marker specifici 2 mesi dopo aver interrotto l’uso di steroidi anabolizzanti invece che 3 mesi dopo. In effetti i controlli avrebbero dovuto essere più assidui. Comunque sia, fatte le dovute eccezioni, non ci si aspetterebbe comunque molta differenza . Se non altro perché la maggior parte di questi soggetti avrebbe impiegato probabilmente circa un mese prima che iniziasse il recupero dell’Asse HPT. Dopotutto, con alti dosaggi e molecole legate ad esteri che ne conferiscono lunghe emivite ci vorrà semplicemente più tempo prima che la soglia ematica degli AAS scenda sotto la curva del basale.

    Sicuramente una buona parte di chi leggerà questo articolo dirà che (la maggior parte di) questi soggetti hanno semplicemente sbagliato la loro PCT. Ma, nonostante molti di voi considerino la “PCT di Scally” il metro di misura per valutare una PCT corretta da ciò che non lo è, purtroppo, non ci sono prove disponibili che abbiano esaminato l’efficacia dei vari tipi di PCT. Naturalmente, esiste una logica di gestione del post ciclo che andrebbe calcolata sul soggetto interessato. Tuttavia, questo studio mostra che quando si osserva un gruppo di persone che eseguono PCT come fatto nella maggior parte della pratica (SERM per circa un mese) semplicemente non si dimostra una reale efficace al fine di un recupero rapido della sintesi endogena di Testosterone. E, come si vede dai dati riportati, c’è stato uno scarso effetto accelerante se il gruppo non PCT si riprende dall’alterazione ormonale comunque in 3 mesi.

    Come nota finale, gli autori chiariscono un punto chiave nel ridurre e migliorare i tempi di recupero e cioè il mantenimento della funzione gonadica per via somministrazione di hCG anche durante il ciclo. Infatti i ricercatori hanno scoperto che quando la funzione gonadica era normale al basale, c’era una probabilità del 90% di avere una normale concentrazione di Testosterone totale dopo 3 mesi di recupero e una probabilità del 100% alla fine del follow -up (in media circa 8 mesi dopo l’interruzione del ciclo).

    Ma allora perché una PCT non da i risultati sperati se i SERM mostrano risultati così buoni in vari tipi di ipogonadismo?

    Sfortunatamente, attualmente non sono disponibili studi di buona qualità nei quali i SERM vengano valutati come trattamento per l’ipogonadismo indotto da AAS. Principalmente il loro uso è destinato, e risultato efficace, nell’ipogonadismo dovuto ad altre cause. Di conseguenza è ovvio che bisognerebbe quindi avere cautela prima di giungere ad affrettate conclusioni, poiché attualmente non è noto quanto bene questi risultati si traducano in coloro che soffrono di ipogonadismo AAS-indotto. La causa sottostante dell’ipogonadismo è molto diversa. In linea di principio, l’ipogonadismo indotto da AAS è uno stato transitorio post-ciclo in cui l’ipotalamo e l’ipofisi non rispondono adeguatamente alla diminuzione delle concentrazioni di androgeni ed estrogeni. Dopo tutto, le concentrazioni post-ciclo di Testosterone ed Estradiolo sono di molto alterate e quindi il feedback negativo che solitamente impone all’ipotalamo e all’ipofisi il rilascio di GnRH e di LH ed FSH è notevolmente diminuito. Quindi, mentre lo stimolo (alterazione di Estradiolo e Testosterone) per produrre LH e FSH è variabilmente presente, le cellule endocrine temporaneamente non riescono a rispondere in modo adeguato a questa condizione. Non è sicuro di come l’uso di SERM possa rendere questo stimolo più marcato e aiutare nel recupero dell’HPGA. A differenza dell’ipogonadismo indotto da AAS, le popolazioni di studio sull’ipogonadismo secondario sono in uno stato stazionario di carenza di Testosterone. Qui, in quel caso, per via delle condizioni di base, avrebbe di certo senso che un soggetto possa spostare lo stato stazionario aumentando lo stimolo con un SERM per aumentare a sua volta il livello di Testosterone, ed è dimostrato. Quindi, tanto per ribadire i concetti primari quando si parla di studi, bisognerebbe essere cauti quando si traducono questi studi alla luce di una situazione ben diversa seppur simile, ossia la situazione ormonale post-ciclo.

    Conclusioni e riflessioni critiche

    Ricapitolando, lo studio HAARLEM è uno studio prospettico in cui è stata seguita nel tempo un’ampia coorte di utilizzatori di AAS. Diverse misurazioni, inclusi i livelli di Testosterone, sono state eseguite prima, durante e in due punti temporali dopo la cessazione dell’uso di AAS. Confrontando quei soggetti che hanno svolto una PCT con quelli che non l’hanno svolta, sono finalmente emerse alcune buone prove iniziali sulla reale efficacia della PCT. Sfortunatamente, la pratica comunemente applicata sembra essere un po’ inutile, per usare un eufemismo.

    Ma quali altre critiche possono essere mosse verso questo studio? Beh, qualcuno potrebbe obbiettare che “Olivier de Hon è uno degli autori. Ed è una autorità dell’antidoping olandese”. Sì, vero, ma in che modo questo invalida i risultati esattamente? basterebbe indicare solo quale parte potrebbe essere stata influenzata da lui. Inoltre, sono sicuro che l’autorità antidoping avrebbe voluto vedere gli utilizzatori di AAS NON recuperare affatto, anche dopo 3 mesi. Ma lo hanno fatto. Sono il primo a mettere in dubbio l’onesta o meglio la lucidità di certi enti, ma sono quasi certo che avrebbero apprezzato risultati diversi da questi.

    Si potrebbe anche dire che “Non hanno istruito gli utilizzatori di AAS a fare A, B e C, il che avrebbe portato a risultati migliori”. Sì, infatti è uno studio OSSERVAZIONALE, non uno studio interventistico. Se avessero istruito gli utilizzatori di AAS ad applicare determinate pratiche con i composti che stavano usando, sarebbe stato piuttosto difficile far passare la cosa al comitato etico medico in primo luogo. L’unico modo per superare l’ottenimento di un intervento è se quest’ultimo incoraggia gli utilizzatori a prendere meno AAS, o a non utilizzarli del tutto. L’obiettivo di questo studio era valutare i rischi per la salute legati all’abuso di AAS nella pratica. Una configurazione osservazionale come questa è ESATTAMENTE ciò che si vorrebbe fare in quel caso.

    Un altra obbiezione potrebbe riguardare il fatto che tutti i dosaggi di AAS utilizzati non siano stati equiparati su base milligrammo per milligrammo. Ovviamente non ci sono prove che sia stato fatto diversamente. Potresti assegnare arbitrariamente qualcosa come “2mg di Testosterone = 1mg di Trenbolone” o qualsiasi altra molecola, ma sarebbe ben poco valido viste le informazioni che si hanno in materia. Cosa starebbe a significherebbe quel numero? Il Trenbolone è due volte più potente nella stimolazione dell’ipertrofia muscolare? Due volte più potente nel sopprimere l’HPGA? Due volte più potente nel causare l’acne? Da dove basi questi numeri? Medie di dosaggi degli androgeni estremamente imprecise? E in che modo questo avrebbe comunque influenzato i risultati? TUTTI gli utilizzatori hanno riscontrato una soppressione marcata dei loro livelli endogeni di Testosterone durante i loro cicli.

    I soggetti potrebbero aver sbagliato la modalità delle loro PCT? Bene, in primo luogo, tornando a quanto detto in precedenza, i ricercatori non potevano dire loro di fare diversamente da quanto essi avevano previsto. E secondo, quale ricerca può dirci cosa comporta una “buon PCT”? Non ne esiste nessuna! E, sebbene la “PCT di Scally” risulti quella con il desing più logico, le prove a suo favore rimangono limitate. È per lo più tutta una ipotesi e supposizioni basate su ricerche estrapolate da popolazioni di studio con diverse cause di ipogonadismo. I soggetti di questo studio hanno semplicemente svolto una PCT come fa la maggior parte degli utilizzatori: assumere SERM per circa un mese.

    Forse avrebbero dovuto iniziare la PCT più tardi? Ok, quindi che differenza ci si aspetterebbe? Il gruppo senza PCT aveva comunque gli stessi livelli di Testosterone che avevano al basale 3 mesi dopo l’ultima iniezione. Dovremmo forse aspettare 3 mesi? Sembra funzionare abbastanza bene…

    I ricercatori forse hanno sbagliato a non fare una sottoanalisi basata su chi ha usato un tipo di composto e chi ne ha usato un altro? Beh, sarebbe stato alquanto arduo poterlo fare. Il motivo di ciò è che solo nel 13% dei campioni la fiala conteneva esclusivamente l’AAS che era riportato sull’etichetta e nel 47% dei casi la fiala non conteneva nemmeno l’AAS dichiarato sull’etichetta ma ne conteneva un altro (o altri).[2]

    Attenzione, non sto dicendo che la PCT sia stata o sia completamente una cattiva idea. Sto semplicemente sottolineando ciò che lo studio prospettico e anni di osservazione ci suggeriscono. Anche nei casi di uso corretto di hCG durante il ciclo, uso dei SERM e hCG post ciclo secondo logica di decadenza dei livelli ematici del/gli AAS usato/i e l’inserimento di un AI quando necessariamente richiesto dagli esami ematici di controllo, la risultante è sempre soggetta a fortissime variabili legate non solo alla lunghezza del ciclo e/o al tipo di molecole usate (vedi anche tipo/i di estere) ma anche dall’età del soggetto e dal numero di cicli svolti in precedenza. Alcuni utilizzatori si attestano a livelli discreti nella metà del range di riferimento, mentre una parte non indifferente soffre per anni di variazioni estrogeno-prolattiniche con livelli di Testosterone totale verso il limite basso e il Testosterone libero sotto il limite minimo.

    Non è un caso se molti utilizzatori, specie dai 30 anni in su, optino per una TRT piuttosto di tentare un recupero travagliato.

    Gabriel Bellizzi

    Riferimenti:

    1. Smit, D. L., et al. “Disruption and recovery of testicular function during and after androgen abuse: the HAARLEM study.” Human Reproduction (2021).
    2. Smit, Diederik L., et al. “Baseline characteristics of the HAARLEM study: 100 male amateur athletes using anabolic androgenic steroids.” Scandinavian journal of medicine & science in sports 30.3 (2020): 531-539.

    Rauwolscina (α-yohimbina).

    Introduzione:

    Come si potrà facilmente capire dalle prime righe di questo articolo, la Rauwolscina è una molecola molto simile nella sua struttura alla Yohimbina e probabilmente condivide simili effetti; ipoteticamente potrebbe essere più potente, ma esistono prove limitate.

    Dal momento che mi è capitato molto spesso di ricevere domande su questa forma di Yohimbina, ho deciso di scrivere alcune righe in merio trattando gli effetti maggiormente ricercati dall’utilizzatore medio dell’alcaloide in questione.

    Rauwolscina: caratteristiche proprie e similitudini con la Yohimbina

    La Rauwolscina, nota anche come Isoyohimbina, α-yohimbina e Corynanthidina, è un alcaloide presente in varie specie del genere Rauvolfia e Pausinystalia (precedentemente noto come Corynanthe).[1] È uno stereoisomero della Yohimbina. [1] la Rauwolscina è uno stimolante del sistema nervoso centrale, un anestetico locale e possiede un certo potenziale afrodisiaco.[1] La Rauwolscina agisce prevalentemente come antagonista del recettore α2-adrenergico.[2][3] È stato anche dimostrato che agisce come agonista parziale del recettore 5-HT1A e antagonista del recettore 5-HT2A e 5-HT2B. [4] [5] [6]

    la Rauwolscina, o {3H}Rauwolscina, come già accennato, è un antagonista dei recettori adrenergici alfa-1 e alfa-2 (con una maggiore selettività per quest’ultimo).[7] La Yohimbina condivide il medesimo meccanismo d’azione recettoriale.

    Come ormai risaputo, la Yohimbina agisce sul sistema dei recettori adrenergici delle cellule adipose, che regolano la termogenesi. Le subunità beta dei recettori adrenergici (bersagli, per esempio, dell’Efedrina) possono essere viste come stimolanti per la perdita di grasso poiché aumentano l’attività dell’enzima adenil ciclasi e successivamente dei livelli di cAMP (principalmente attraverso le subunità b1 e b2; con la b3 che è meno attiva negli umani).[8][9] Le subunità alfa sono soppressive del metabolismo lipidico, e attraverso la loro attivazione si riduce l’attività dell’adenil ciclasi e si riducono i livelli di cAMP (in particolare per opera degli alfa-2). La Yohimbina, come la Rauwolscina, è un antagonista selettivo del recettore alfa-2 adrenergico (inattivatore), che inibisce l’attivazione del set di recettori soppressivi e preserva l’attività dell’adenil ciclasi e gli effetti mediati dai recettori beta.[10]

    Osservando le interazioni della Yohimbina a livello del recettore, la molecola è risultata essere un antagonista alfa2-adrenergico selettivo con un’affinità 44 volte maggiore per la subunità alfa2 rispetto alla subunità alfa1 quando testata su ratti anoccigei e dotti deferenti; questo differisce dal relativo composto Corinantino e Rauwolscina che sono selettivi per il recettore alfa1 (33 volte) e per lo più non selettivi (3,3 volte); rispettivamente.[11] Questi valori sono stati derivati ​​da sperimentazioni in vitro e un secondo test nel quale è stato osservato il legame competitivo in campioni di cervello notando che la selettività era ridotta da 45 a 5,7. Quando si osserva il recettore alfa2 stesso, la Yohimbina sembra avere ulteriore selettività per la subunità alfa2C piuttosto che per la A o la B; nell’intervallo di 4-15 volte la selettività,[12] mentre la Rauwolscina sembra essere non selettiva tra queste tre subunità.[13][12] La Rauwolscina sembra essere efficace a livello del recettore quanto la Yohimbina,[14] con la Coynantina che presenta la minore entità di efficacia.[11]

    Oltre a ciò, la stessa Yohimbina può potenzialmente indurre la perdita di grasso per via indiretta attraverso il rilascio di Adrenalina; l’Adrenalina stessa è un attivatore dei recettori beta-adrenergici.[15] Tuttavia, questo aumento di Adrenalina può svanire con il tempo raggiungendo l’irrilevanza statistica 2 settimane dopo l’inizio dell’ingestione giornaliera.[16] L’aumento degli acidi grassi liberi plasmatici e la densità dei recettori alfa2-adrenergici rimangono simili in entrambi i momenti, suggerendo che la Yohimbina perde selettivamente il picco di Adrenalina ma non gli effetti diretti sulla sovra-regolazione della lipolisi recettore-dipendente.

    La Yohimbina è stata inizialmente studiata per il suo ruolo nella riduzione degli accumuli adiposi localizzati grazie al suo utilizzo come crema topica (potendo scegliere dove applicare la Yohimbina)[17][18] ma anche secondariamente al suo utilizzo per ridurre l’adipe nelle cosce delle donne, poiché livelli elevati di Estrogeni aumentano l’attività del recettore alfa2-adrenergico.[19] A causa dell’aumento dell’attività alfa2-adrenergica nel tessuto adiposo sito nelle cosce delle donne, si pensava che l’antagonismo di questi recettori riducesse l’adiposità in modo selettivo; i risultati con la soluzione topica sono ad oggi vaghi, con uno studio con esito positivo [18] e l’altro nel quale si sono notati benefici sia con la Forskolina (da Coleus Forskohlii) che con l’Aminofillina ma non con la Yohimbina. [17]

    La chetogenesi, o la produzione di corpi chetonici, è potenziata dalla presenza di Noradrenalina in condizioni normali. Il blocco dei recettori alfa adrenergici, tramite l’antagonismo della Yohimbina (e della Rauwolscina) sul recettore alfa-2 adrenergico, aumenta gli effetti chetogenici della Noradrenalina. [20]

    Uno studio nel quale si è osservato un aumento della ossidazione lipidica (aumento dei biomarcatori di NEFA e glicerolo) ha anche notato che questo aumento è stato soppresso durante lo stato di alimentazione.[21] È stato ipotizzato che questa interazione con lo stato di digiuno così come gli effetti apparentemente additivi/sinergici della Yohimbina e l’esercizio sulla lipolisi[21] potrebbero portare a tempistiche di assunzione ideale della Yohimbina prima dell’esercizio mattutino.[22] Se abbinata al cibo in modo acuto, la Yohimbina può effettivamente aumentare il rilascio di Insulina indotto dal glucosio attraverso lo stimolo delle cellule pancreatiche[23][24] ma non si verifica a digiuno dopo il consumo orale di 0,2g/kg.[25][21]

    Se il meccanismo avviene tramite la stimolazione del rilascio di Insulina che riduce la lipolisi, è teorico che un pasto privo di carboidrati e a basso contenuto proteico (per ridurre la stimolazione indotta dagli amminoacidi) potrebbe essere simile allo stato di digiuno; questo non è stato però studiato.

    Uno studio è stato condotto con la somministrazione di Yohimbina a giocatori di calcio d’élite che assumevano 10mg della molecola due volte al giorno (20 mg in totale) per un periodo di 21 giorni. Durante lo studio si è osservato che, in seguito al controllo della dieta, la percentuale di grasso era diminuita dallo 9,3 +/- 1,1% allo 7,1 +/- 2,2% (valutato tramite calibro), mentre nel gruppo placebo è stato registrato un aumento non significativo.[26] La dose di 0,2mg/kg di Yohimbina in uomini altrimenti sani sembra aumentare gli effetti sul miglioramento del metabolismo lipidico e della beta-ossidazione della Noradrenalina endogena e sembra essere più efficace durante i periodi di esercizio e attenuarsi se somministrati dei beta-bloccanti;[21] un altro studio ha rilevato che questa attenuazione deve essere misurata al 70%.[25] Tuttavia, almeno uno studio ha rilevato risultati nulli, in quanto la Yohimbina non ha fatto diminuire il peso nei volontari sani.[27]

    La {3H} Rauwolscina è meno potente della Yohimbina nel proteggere dagli aumenti della pressione sanguigna indotti dall’Adrenalina (entrambi meno potenti della Corinantina e più potenti della 3-epi-alfa-yohimbina), questo effetto sembra correlato alla loro affinità per gli alfa -2 adrenorecettori.[28]

    Come la Yohimbina, la Rauwolscina è un agonista dei recettori 5-HT1a/b e induce effetti simili alla Serotonina. Mentre la Yohimbina ha più affinità per tale recettore, la Rauwolscina ha un valore IC50 più basso (il che significa che può saturare più recettori alla stessa dose) e può essere considerata leggermente più potente nell’attività serotoninergica.[29][30]

    Non mi dilungherò oltre, dal momento che gli argomenti trattati fino a questo momento sono di maggiore interesse per la valutazione di supplementi contenenti Rauwolscina e del loro possibile utilizzo.

    Conclusione:

    Ora, sappiamo che le caratteristiche di entrambe le forme di Yohimbina sono pressoché identiche sebbene la selettività recettoriale della Rauwolscina sembri minore di quella della Yohimbina. La caratteristica che sembra spostare l’interesse sulla Rauwolscina è la sua più lunga emivita ( Yohimbine 0.25-2.5h; Rauwolscina 0.5-5h ipotetiche). Se però valutiamo quest’aspetto alla luce della sua bassa selettività e alto potenziale di saturazione recettoriale, viene facile intuire che ciò possa influire negativamente sulla percentuale di emersione di effetti collaterali tipici dell’alcaloide (tremori, insonnia, emicrania, tachicardia, ecc…). Con molta probabilità il dosaggio “ideale” con un certo margine di “sicurezza” può essere attestato a 0.1mg/Kg/die.

    Gabriel Bellizzi

    Riferimenti:

    1.  KOHLI JD, DE NN (June 1956). “Pharmacological action of rauwolscine”. Nature177 (4521): 1182. doi:10.1038/1771182a0PMID 13334509.
    2.  Perry BD, U’Prichard DC (December 1981). “[3H]rauwolscine (alpha-yohimbine): a specific antagonist radioligand for brain alpha 2-adrenergic receptors”. European Journal of Pharmacology76 (4): 461–4. doi:10.1016/0014-2999(81)90123-0PMID 6276200.
    3.  Kou Qin; Pooja R. Sethi; Nevin A. Lambert (August 2008). “Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins”The FASEB Journal22 (8): 2920–2927. doi:10.1096/fj.08-105775PMC 2493464PMID 18434433.
    4.  Arthur JM, Casañas SJ, Raymond JR (June 1993). “Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptors”. Biochemical Pharmacology45 (11): 2337–41. doi:10.1016/0006-2952(93)90208-EPMID 8517875.
    5.  Kaumann AJ (June 1983). “Yohimbine and rauwolscine inhibit 5-hydroxytryptamine-induced contraction of large coronary arteries of calf through blockade of 5 HT2 receptors”. Naunyn-Schmiedeberg’s Archives of Pharmacology323 (2): 149–54. doi:10.1007/BF00634263PMID 6136920.
    6.  Wainscott DB, Sasso DA, Kursar JD, Baez M, Lucaites VL, Nelson DL (January 1998). “[3H]Rauwolscine: an antagonist radioligand for the cloned human 5-hydroxytryptamine2b (5-HT2B) receptor”Naunyn-Schmiedeberg’s Archives of Pharmacology357 (1): 17–24. doi:10.1007/PL00005133PMID 9459568. Archived from the original on 2001-09-11.
    7. J C Doxey, et al. Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthineNaunyn Schmiedebergs Arch Pharmacol. (1984)
    8. Carmen GY, Víctor SM. Signalling mechanisms regulating lipolysisCell Signal. (2006)
    9. ^ Liu CY, Boyer JL, Mills SE. Acute effects of beta-adrenergic agonists on porcine adipocyte metabolism in vitroJ Anim Sci. (1989)
    10. ^ Lafontan M, et al. Alpha-2 adrenoceptors in lipolysis: alpha 2 antagonists and lipid-mobilizing strategiesAm J Clin Nutr. (1992)
    11. a b c Doxey JC, et al. Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthineNaunyn Schmiedebergs Arch Pharmacol. (1984)
    12. a b Lalchandani SG, et al. Yohimbine dimers exhibiting selectivity for the human alpha 2C-adrenoceptor subtypeJ Pharmacol Exp Ther. (2002)
    13. ^ MacDonald E, Kobilka BK, Scheinin M. Gene targeting–homing in on alpha 2-adrenoceptor-subtype functionTrends Pharmacol Sci. (1997)
    14. ^ Tan S, Curtis-Prior PB. Comparative effects of RX 781094, mianserin, yohimbine, rauwolscine and prazosin in reversing clonidine inhibition of MIX-stimulated lipolysis in hamster isolated white fat cellsPharmacol Res Commun. (1984)
    15. Reiner S, et al. Differential signaling of the endogenous agonists at the beta2-adrenergic receptorJ Biol Chem. (2010)
    16. Galitzky J, et al. Pharmacodynamic effects of chronic yohimbine treatment in healthy volunteersEur J Clin Pharmacol. (1990)
    17. Greenway FL, Bray GA, Heber D. Topical fat reductionObes Res. (1995)
    18. a b Greenway FL, Bray GA. Regional fat loss from the thigh in obese women after adrenergic modulationClin Ther. (1987)
    19. ^ Pedersen SB, et al. Estrogen controls lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distributionJ Clin Endocrinol Metab. (2004)
    20. ^ Keller U, Weiss M, Stauffacher W. Contribution of alpha- and beta-receptors to ketogenic and lipolytic effects of norepinephrine in humansDiabetes. (1989)
    21. a b c d Galitzky J, et al. Alpha 2-antagonist compounds and lipid mobilization: evidence for a lipid mobilizing effect of oral yohimbine in healthy male volunteersEur J Clin Invest. (1988)
    22. ^ McCarty MF. Pre-exercise administration of yohimbine may enhance the efficacy of exercise training as a fat loss strategy by boosting lipolysisMed Hypotheses. (2002)
    23. ^ Ito K, et al. Adrenoceptor antagonists, but not guanethidine, reduce glucopenia-induced glucagon secretion from perfused rat pancreasDiabetes Res Clin Pract. (1995)
    24. ^ Ribes G, et al. Involvement of a central nervous pathway in yohimbine-induced insulin secretionEur J Pharmacol. (1989)
    25. Berlan M, et al. Plasma catecholamine levels and lipid mobilization induced by yohimbine in obese and non-obese womenInt J Obes. (1991)
    26. Ostojic SM. Yohimbine: the effects on body composition and exercise performance in soccer playersRes Sports Med. (2006)
    27. Sax L. Yohimbine does not affect fat distribution in menInt J Obes. (1991)
    28. Rockhold RW, Gross F. Yohimbine diastereoisomers: cardiovascular effects after central and peripheral application in the ratNaunyn Schmiedebergs Arch Pharmacol. (1981)
    29. Arthur JM, Casañas SJ, Raymond JR. Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptorsBiochem Pharmacol. (1993)
    30. [3H.

    AAS e infezione con sviluppo sintomatico da SARS-CoV-2

    Introduzione

    Torno a parlare dell’argomento AAS e sistema immunitario con questa piccola parentesi incentrata sulla risposta alle possibilità di sviluppo di eventi avversi in seguito a contaminazione virale, soprattutto da ceppi delle famiglia dei coronaviridae della cui famiglia fa parte l’ormai famoso SARS-CoV-2.

    Come ben sapete, io ed altri divulgatori d’oltre oceano abbiamo sottolineato come l’uso di dosi sovrafisiologiche di AAS possano portare ad uno stato di lieve immunosoppressione, tale da poter aumentare il rischio di sviluppare sintomatologia da contagio virale. Secondo recenti studi scientifici, probabilmente avevamo ragione.[1]

    Attività androgenica e SARS-CoV-2 (e coronaviridaee)

    Le donne con la PCOS hanno livelli elevati di androgeni. Se queste donne sono infettate dal SARS-CoV-2, come da altri ceppi della stessa famiglia, e non solo, i sintomi sembrano essere più gravi rispetto alle donne senza la PCOS.[2]

    Gli inibitori della 5α-reduttasi riducono fortemente la conversione del Testosterone nel più androgeno DHT. Se si trattano gli uomini con inibitori della 5α-reduttasi, sembra che l’infezione da SARS-CoV-2 risulti meno grave nella sintomatologia.[3,4]

    Una minore attività androgenica nei soggetti di sesso maschile affetti da SARS-CoV-2 sembrano quindi manifestare una sintomatologia lieve. Alcuni ricercatori sospettano che ciò sia dovuto al fatto che gli androgeni attivano l’enzima TMPRSS2. Questo enzima fa sì che le cellule presentino un numero maggiore di recettori ACE2 sulla superficie della membrana fosfolipidica. Come ormai noto, i recettori ACE2 sono il bersaglio di legame per le proteine spike del SARS-CoV-2. Grazie al legame con tali proteine di membrana il virus in questione può penetrare all’interno della cellula e dare avvio ai processi di replicazione.

    Meccanismi di infezione cellulare (cardiomiocita) da parte del SARS-CoV-2. Come si può notare, vi è connessione di attività tra l’enzima TMPRSS2 e il recettore ACE2, il legame della proteine spike del virus.

    Il caso studio “Oxandrolone e Proxalutamide”

    In base a quanto detto in precedenza, significa anche che gli atleti che usano AAS hanno maggiori probabilità di sviluppare una sintomatologia maggiore in seguito ad infezione da SARS-CoV-2? Sembrerebbe di sì, e gli endocrinologi brasiliani dell’Università federale di San Paolo hanno riportato una loro osservazione su BMJ Case Reports.

    Quindi, secondo quanto emerso dalle loro osservazioni, gli utilizzatori di AAS sono più vulnerabili all’infezione e sviluppo di sintomatologia acuta da SARS-CoV-2.

    I ricercatori si basano sul caso di un bodybuilder di 28 anni con una grave infezione da SARS-CoV-2. Il caso è stato notevole, perché l’uomo non aveva di base fattori di rischio. I genitori del soggetto avevano contratto il virus, ma la sintomatologia non è stata grave. Perché allora il bodybuilder si è ammalato gravemente? Quando gli endocrinologi lo hanno esaminato, è emerso che aveva assunto 40mg di Oxandrolone al giorno per un mese.

    I medici hanno convinto l’uomo a interrompere l’assunzione di Oxandrolone prescrivendogli una terapia a base dell’anti-androgeno Proxalutamide. Il Proxalutamide è anche un farmaco sperimentale per il trattamento dell’infezione da SARS-CoV-2 negli uomini.[5]

    I medici hanno inizialmente somministrato al bodybuilder una singola dose di 600mg di Proxalutamide. Quindi al soggetto è stata prescritta l’assunzione di 200mg/die del anti-androgeno per una settimana.

    Già 24 ore dopo la prima somministrazione, il bodybuilder ha riferito di sentirsi significativamente meglio. Allo stesso tempo, vari marker ematici erano visibilmente migliorati in quel breve periodo di tempo.

    L’immagine schematica descrive il ruolo del enzima TMPRSS2 nell’infezione da SARS-CoV-2 e l’espressione androgeno-mediata di ACE2 e di TMPRSS2 che potrebbero potenzialmente essere modulati con l’uso di molecole anti-androgene.

    Conclusione

    La più alta percentuale di infezioni e manifestazione di sintomatologia severa possibilmente riscontrabile degli utilizzatori di AAS era cosa già conosciuta e constata nel mio articolo dedicato. Detto ciò, adesso abbiamo la conferma che la manifestazione della sintomatologia conseguente all’infezione da SARS-CoV-2 può essere maggiore negli utilizzatori di AAS. E, di certo, questo interessa tutti i virus che possono dare una risposta sintomatologica di varia entità, non solo il SARS-CoV-2 o altri coronaviridaee.

    Gabriel Bellizzi

    Riferimenti:

    1- https://doi.org/10.1136/bcr-2021-241572

    2- https://doi.org/10.1111/jdv.17004

    3- https://dx.doi.org/10.1111/jdv.17021

    4- https://doi.org/10.1111/jdv.16953

    5- https://doi.org/10.21203/rs.3.rs-135303/v1

    Disamina scientifica su Boldenone e metabolismo estrogenico.

    Introduzione

    Molti sono convinti che il Boldenone (conosciuto commercialmente con Equipoise) aromatizzi in Estradiolo ad un tasso pari al 50% di quello del Testosterone sulla base di un informazione estrapolata da “Chemical Muscle Enhancement” del compianto A.L. Rea o da “Anabolics” di William Llewellyn.

    Il vantaggio del Boldenone come anabolizzante è una questione che è stata pesantemente dibattuta per anni nel mondo del Bodybuilding.

    Quanto è potente il Boldenone nello stimolo dell’ipertrofia muscolare? Se si è particolarmente sensibili agli effetti collaterali derivanti da un aumento degli estrogeni per via dell’aromatizzazione dei substrati soggetti come il Testosterone, può il Boldenone essere una alternativa al Testosterone?

    Nel corso degli anni ho raccolto molti dati che, per la maggior parte, mi hanno portano a credere che il Boldenone non possa sostituire il Testosterone ne come base per un ciclo e nemmeno per una “TRT”. Ho visionato anche diversi risultati di esami del sangue i quali dimostravano che effettivamente i livelli di Estradiolo, con il solo uso del Boldenone come unico agente aromatizzabile, erano molto bassi.

    Ad esempio, se qualcuno volesse usare 500mg di Testosterone, ma non potrebbe usare un tale dosaggio dal momento che presenta particolare difficoltà nella gestione estrogenica in specie senza l’uso di AI come Exemestane o Anastrozolo, una conclusione a cui molti superficialmente sono giunti è che si potrebbe semplicemente usare il Boldenone al dosaggio sopra citato per ridurre della metà l’attività estrogenica, ma comunque supportare un’adeguata produzione di Estradiolo. Ma quando si approfondisci l’ipotesi e la si testa sul campo, è davvero così che stanno le cose? In realtà no, o, comunque, la media delle variabili di risposta spinge a confermare una maggiore validità nel “mixare” Testosterone e Boldenone coprendo la dose base calcolata in precedenza, e con variazione di percentuale T:B ratio da 1:1 a 2:1.

    Vi ricordate l’affermazione secondo cui il Nandrolone ha un tasso di aromatizzazione del 20% rispetto al Testosterone? Ecco, questo è un altro assunto semplicistico e simile a quanto si tratterà in questo articolo, che è stato tramandato per anni nella comunità della ghisa, e che ora sappiamo non essere corretto (ne parlerò probabilmente in un articolo a parte).

    Quindi, per il Boldenone come stanno le cose? Iniziamo conoscendo la molecola in questione

    Caratteristiche del Boldenone

    Il Boldenone [1,4-androstadiene-3-one,17b-ol], commercializzato con il nome di Equipoise, Ganabol, Equigan, Ultragan, e Boldane,  è uno steroide anabolizzante-androgeno spesso legato all’estere Undecylenato. Strutturalmente molto simile al Testosterone, il Boldenone differisce da questo per il doppio legame tra C1 e C2.

    Struttura molecolare del Boldenone

    Come detto, il Boldenone non è altro che Testosterone con un doppio legame tra C1 e C2, caratteristica che:

    1- Riduce ipoteticamente il tasso di aromatizzazione in rapporto al Testosterone;

    2- rende la molecola un substrato molto meno affine all’enzima 5-α reduttasi rispetto al Testosterone. Questo aspetto riduce in modo apprezzabile la conversione del Boldenone a Dihydroboldenone, rendendo l’androgenicità assoluta inferiore rispetto a quella del Testosterone (androgeno:anabolico ratio comune/ipotetica del Boldenone è di 50/100).

    Nonostante non ci siano dati sperimentali sull’affinità recettoriale del Boldenone, in base alla sua struttura e alla conversione limitata a Dihydroboldenone, si ipotizza che l’affinità recettoriale della molecola sia “Mix”  a livello muscolare come quella del Testosterone. Vi sono altresì diverse ipotesi come quella secondo cui il Boldenone possegga una affinità AR inferiore a quella del Testosterone, speculando che esso possa essere classificato come “Non-AR”.

    Il Boldenone condivide con il Testosterone anche una forte affinità per le SHBG. Cosa molto poco importante in un contesto “doped”: è ormai risaputo che dosi sovrafisiologiche di AAS causano una riduzione delle SHBG.

    Il Boldenone è privo di qualsiasi tipo di metilazione cosa che lo rende sensibilmente meno efficace per via orale, ma meno di quello che ci si potrebbe aspettare:  il doppio legame in C1-C2 incrementa leggermente la resistenza al passaggio epatico.

    E arriviamo dunque al tasso di aromatizzazione ad Estradiolo del Boldenone considerato essere del 50% rispetto al Testosterone.

    Il Boldenone è spesso raggruppato nella categoria ristretta dei derivati ​​del Testosterone che possono anche servire come base sostitutiva del Testosterone per via della loro interazione con l’Enzima Aromatasi.

    Le basi sostitutive del Testosterone sono AAS soggetti all’Aromatasi e si convertono in una quantità sufficiente di Estrogeni per supportare un’adeguata attivazione del recettore degli Estrogeni.

    Ma c’è un errore, il Boldenone è stato inserito in questa categoria erroneamente.

    Una produzione adeguata di Estrogeni garantisce una migliore neuroprotezione, cardioprotezione, attività dell’asse GH/IGF-1, produzione di fattori di crescita a valle e una miriade di altre importanti funzioni sia per la salute che per le prestazioni.

    Si afferma comunemente, come già detto, che il Boldenone aromatizzi la metà del Testosterone, e il libro di William Llewellyn “Anabolics” è comunemente indicato a supporto di questa affermazione.

    Molti ritengono che il Boldenone possa essere utilizzato come base sostitutiva del Testosterone per coloro che sono inclini agli effetti collaterali estrogenici. E, in teoria, utilizzando il Boldenone, si potrebbe ridurre il rischio di sviluppare effetti collaterali correlati ad un livello elevato di estrogeni poiché dovrebbe aromatizzare circa la metà del Testosterone.

    Nel corso degli anni si sono sviluppate altre teorie sul meccanismo d’azione del Boldenone. Una delle più recenti è che uno (o più) dei suoi metaboliti agisca come un Inibitore dell’Aromatasi (AI). Ma esiste una teoria completamente diversa, che approfondirò dopo aver elaborato l’ipotesi del/i metabolita/i AI.

    L’ipotesi dei “metaboliti AI” del Boldenone

    Secondo questa ipotesi, i metaboliti del Boldenone sono in realtà la causa del ridotto impatto dell’Enzima Aromatasi su questa molecola e su altri substrati soggetti come il Testosterone.

    E’ reperibile in rete una raccolta della ricerca disponibile sui metaboliti del Boldenone [1].

    In questa raccolta si esaminano anche aneddoti che affermano sia la necessità di aumentare, diminuire o non avere affatto bisogno di un IA a seconda del dosaggio di Boldenone utilizzato. Logicamente, più la dose di Boldenone sarà alta più si dovrebbe necessitare di AI al fine di marginare l’aromtizzazione in Estradiolo. Tuttavia, molte persone riportano una diminuzione del bisogno di AI quando usano il Boldenone o, addirittura, arrivano ad affermare di non averne affatto bisogno.

    Estratto dal libro “Anabolics” di William Llewellyn, sezione dedicata al Boldenone.

    Nel libro di William Llewellyn “Anabolics” viene affermato che “gli studi sull’aromatizzazione suggeriscono che il tasso di conversione [del Boldenone] in Estradiolo è di circa la metà di quello del Testosterone”.

    Llewellyn fa riferimento a uno studio in vitro per supportare questa affermazione. Ma il precedentemente citato studio non si riferisce al Boldenone in nessuna delle sue parti.[2]

    In un’edizione rivista di “Anabolics” il riferimento è cambiato in uno oscuro studio che valuta il ruolo degli androgeni nella crescita e nello sviluppo del feto, bambino e adolescente.[3] Anche in questo studio non ci si riferisce al Boldenone. Potrebbe tuttavia essere un errore di Llewellyn in quanto un composto con un nome simile, Boldione (considerato un PH del Boldenone), è menzionato nel primo studio (lo studio in vitro) e apparentemente interagisce con l’Aromatasi, tuttavia, ha aggiornato la fonte in una copia più recente del suo libro, presumibilmente basato sul fatto che il nuovo studio rappresentava un’informazione corretta, ma nello studio aggiornato non c’è affatto menzione della molecola in questione.

    È stato analizzato uno studio svolto su conigli e indagante l’effetto del Boldenone sugli ormoni riproduttivi.[4]

    Lo studio era strutturato su due gruppi sperimentali e uno di controllo.

    I due gruppi sperimentali sono stati trattati con Boldenone.

    Il gruppo di controllo non ha ricevuto alcun trattamento farmacologico.

    Entrambi i gruppi sperimentali hanno avuto una significativa diminuzione del Testosterone circolante con un aumento simultaneo dell’Estradiolo.

    Nella discussione finale dello studio, i ricercatori ipotizzano che ciò possa essere dovuto all’aromatizzazione in Estradiolo del Boldenone.

    Quindi, questo studio è stato condotto in un contesto monoterapico, il che significa che hanno trattato i conigli con solo Boldenone.
    Vediamo una predicibile diminuzione del Testosterone e un aumento dell’Estradiolo.
    Logicamente, se non viene somministrato Testosterone ma solo Boldenone, ed i livelli di Estradiolo aumentano sensibilmente rispetto al basale, allora il Boldenone deve aromatizzare in Estradiolo, giusto? Non esattamente…
    Se guardiamo a come hanno misurato questi biomarcatori, possiamo vedere che hanno raccolto campioni di sangue ed eseguito un successivo test ormonale.
    I livelli sierici di Testosterone ed Estradiolo sono stati determinati utilizzando kit di test immunologico per elettrochemiluminescenza (ECLIA). Parliamo di uno dei peggiori metodi di test ematico.

    Andando oltre, nella raccolta di dati precedentemente citata, si approfondisce la questione del metabolita che molti sostengono essere il responsabile degli effetti AI-simili del Boldenone.

    Non è possibile trovare pubblicazioni inerenti specifiche su PubChem.[5, 6]

    L’uso di Google come motore di ricerca al fine di chiarire la questione non è di molto aiuto, e non mostra nemmeno ricerche rilevanti per 1,4 dienedione in riferimento al Boldenone. Durante la ricerca, è emerso un composto, l’Androsta-1,4-didenedione. Durante la ricerca sul Androsta-1,4-didendione sono emersi alcuni studi, uno che mostrava che poteva causare difetti alla nascita, un altro sugli “steroidi su micropiastre con gel di silice fisso” e l’ultimo su un chetosteroide. Nessun risultato viene visualizzato quando si cerca 1,4 dienedione, è considerato un errore di battitura.

    Uno studio ha esaminato i metaboliti escreti dopo la somministrazione di Boldenone nell’uomo [7]. Essi risultano essere i seguenti:

    • 5β‐androst‐1‐en‐17β‐ol‐3‐one
    • 5β‐androst‐1‐ene‐3α,17β‐diol
    • 5β‐androst‐1‐en‐3α‐ol‐17‐one
    • 5β‐androst‐1‐en‐6β‐ol‐3,17‐dione
    • 5β‐androst‐1‐ene‐3,17‐dione
    • 5α‐androst‐1‐ene‐3,17‐dione (aka 1-AD)
    • androsta‐1,4‐diene‐3,17‐dione (aka ADD)
    • androsta‐1,4‐diene‐6β,17β‐diol‐3‐one
    • androsta‐1,4‐dien‐6β‐ol‐3,17‐dione

    Come si può vedere, vengono prodotti nove metaboliti, con due metaboliti (1-AD e ADD) simili a quelli precedentemente menzionati.

    Lo studio non menziona alcun effetto anti-aromatase.

    L’1-AD è un androgeno sintetico e uno steroide anabolizzante. Agisce anche come pro-ormone dell’1-Testosterone [8].

    Dall’alto al basso: 1-AD e 1-Testosterone

    In uno studio in vitro è stato dimostrato che l’1-AD è un potente inibitore dell’attività dell’aromatasi e dell’espressione dell’mRNA del CYP19.[9]

    L’ADD è uno steroide androgeno anabolizzante correlato a Boldenone e Testosterone. L’ADD metabolizza rapidamente a Boldenone [10, 11]. In uno studio in vitro è stato dimostrato che l’ADD inibisce l’aromatasi.[12]

    L’ATD non era elencato nello studio sui metaboliti umani condotto sul Boldenone [13]. Proprio come con l’ADD, l’ATD ha dimostrato di essere sia un metabolita del Boldenone che di metabolizzare in Boldenone [14, 15].

    In uno studio in vitro è stato dimostrato che l’ATD riduce significativamente la biosintesi degli estrogeni.[16]

    Quando si confrontano le strutture di 1-AD, ADD, ATD e i dati disponibili a riguardo, sembra che l’1,4 Dienedione sia solo un tentativo errato di identificare l’ADD.

    PubChem non lo ha mostrato come sinonimo in quanto non era indicizzato su PubMed.

    È anche fuorviante chiamarlo AI perché è anche un AAS che si ha effetti simili ad un IA, ma subisce esso stesso l’aromatizzazione.

    Tutti gli studi a cui si fa riferimento sono condotti in vitro.

    Gli studi in vitro e gli studi sugli animali non si traducono quasi sempre in risposte analoghe una volta applicati agli esseri umani, quindi le estrapolazioni non dovrebbero essere prese come un dato di fatto senza necessità di approfondire.

    Un fattore di singolare importanza è senza dubbio la variabilità nella risposta genetica tra individuo e individuo. E’ del tutto plausibile che alcuni individui possano metabolizzare il Boldenone in ADD, 1-AD o ATD a un tasso più elevato di altri, o possano avere una elevata risposta a questi metaboliti. La risposta ai farmaci è diversa da individuo a individuo e anche il metabolismo degli steroidi endogeni prodotti naturalmente differisce notevolmente da persona a persona. Alcuni individui semplicemente non rispondono nemmeno a determinati farmaci, il che deve essere preso in considerazione.

    La risultante della ricerca non chiarisce se il Boldenone agisca come un AI o se aromatizza in Estradiolo ad un dato tasso.

    Ma qual è il problema con il metodo ECLIA?

    Semplice, l’ECLIA rileva in modo incrociato altri estrogeni nel sangue.

    Anche in monoterapia con il Nandrolone possono emergere letture errate come, per esempio, Testosterone elevato ed Estradiolo nei range quando non lo sono. Di conseguenza, è di estrema importanza riuscire a fare analizzare i campioni raccolti da un laboratorio analisi utilizzante un test sensibile per l’Estradiolo nello specifico.

    Durante diversi esperimenti con solo uso di Nandrolone si sono valutati i livelli di Estradiolo con il metodo ECLIA ottenendo un risultato nella norma del range di riferimento (media tra i 35 ed i 40pg/ml).

    L’anomalia di lettura emergeva quando il medesimo soggetto trattato svolgeva un prelievo ematico il cui campione veniva analizzato utilizzando un test ad alta sensibilità, e da esso veniva rivelato un livello di Estradiolo nettamente inferiore (media tra i 10 ed i 15pg/ml).

    Per quale ragione si è manifestata una discrepanza così evidente tra i due metodi di test? L’ECLIA rileva in modo incrociato altri estrogeni nel campione ematico leggendo l’Estrone come Estradiolo alterando in modo significativo il risultato del test. Ciò significa che possiamo già concludere che i livelli di Estradiolo nello studio sui coniglio trattati con il Boldenone hanno un sostanziale margine di errore.

    Nel caso del solo uso di Nandrolone, esso causa un aumento significativo di Estrone che attraverso il test ECLIA risulta rilevato come Estradiolo dando come risultante un falso livello ematico di quest’ultimo. L’Estrone può si convertirsi in Estradiolo, ma ciò non si verifica ad un tasso significativo.

    Quindi, sappiamo che i valori rilevati tramite test ECLIA non sono molto accurati quando si valuta l’Estradiolo.

    E’ adesso chiaro come non sia una coincidenza il fatto che ogni qual volta un soggetto trattato con Boldenone riscontri referti ematici differenti rispetto al test ECLIA quando il campione viene sottoposto a test specifici. Infatti, tramite test specifici, si possono osservare costantemente dei bassi livelli di Estradiolo anche con alte dosi di Boldenone, sebbene ciò sia soggetto a variabili soggettive.

    Aneddoti e analisi del sangue che mostrano bassi livelli di Estradiolo durante la somministrazione di Boldenone

    Su YouTube, a volte, molto raramente, ci si può imbattere in personaggi discretamente preparati in materia di farmaci applicati allo Sport, e questo è, ad esempio, il caso di Vigorous Steve.

    Steve afferma di rispondere molto bene ai cicli di Testosterone ad alti dosaggi ed è arrivato a livelli di dosi piuttosto alte. Dice che, di norma, quando assume un grammo di Testosterone a settimana, deve assumere 12,5mg/die di Exemestane per evitare la comparsa di effetti collaterali estrogenici.

    Quando ha mixato 1g di Testosterone con 1g di Boldenone a settimana, tuttavia, ha notato che non aveva bisogno della stessa quantità di Exemestane giornaliera, poiché l’introduzione del Boldenone aveva effettivamente ridotto il livello estrogenico.

    Nonostante l’aggiunta di 1g di un altro farmaco che presumibilmente aromatizza alla metà del tasso con il quale aromatizza il Testosterone, Steve aveva bisogno di una dose inferiore di AI.

    Esempi di risultati ematici dei livelli di Estradiolo con test ad alta sensibilità (specifico)

    In rete si trova di tutto e di più, e l’affidabilità lascia molto a desiderare. A volte, però, è possibile reperire testimonianze di buona credibilità come questa che vi espongo qui di seguito e che proviene da un utilizzatore sotto trattamento con Boldenone. I risultati delle sue analisi del sangue sono stati elaborati tramite test ad alta sensibilità, ed hanno aiutato a fare maggiore chiarezza su ciò che realmente accade con l’uso di Boldenone.

    Questa è la linea temporale del suo ciclo:

    • 18/02/19 – Esplosione iniziale: 400mg di Testosterone Cypionato/200mg di Nandrolone Fenilpropionato (NPP) a settimana (necessari 0,25 mg di Arimidex due volte a settimana per tenere sottocontrollo gli effetti collaterali estrogenici);
    • 31/5/19 – Passaggio alla TRT composta da: 100mg di Testosterone Cypionato/ 900IU hCG (300UI x 3) a settimana;
    • 19/07/19 – Completamento della TRT. Il risultato dell’analisi del sangue con Estradiolo a 75pg/mL.
    • 19/07/19 – Inizia la fase esplosiva con Equipoise. Dopo il prelievo ematico 400 mg di Testosterone Cypionato/300mg di Boldenone a settimana e 20mg di Oxandrolone al giorno;
    • 2/09/19 – Prelievo ematico durante il periodo di somministrazione di 400mg di Testosterone Cypionato/300mg di Boldenone a settimana e 20mg di Oxandrolone al giorno;
    • 4/09/19 – Il risultato dell’analisi del sangue con Estradiolo a 24pg/mL, nonostante stesse utilizzando 400mg di Testosterone Cypionato e 300mg di Boldenone che presumibilmente aromatizza al 50% del tasso con il quale aromatizza il Testosterone. Il suo livello di Estradiolo è diminuito da 75pg/ml a 24pg/ml.

    Il soggetto in questione ha assicurato che i campioni ematici sono stati analizzati con test LC/MS-MS ultra sensibile e non l’ECLIA.
    Come si può notare, si tratta di un altro individuo che mostra che l’uso del Boldenone ha ridotto significativamente l’Estradiolo durante il ciclo.

    Lo Youtuber Symmetry and Fitness ha fatto un ulteriore passo avanti e non solo ha testato i suoi livelli di Estradiolo durante l’uso del Boldenone tramite test di analisi sensibili, ma ha anche testato i suoi livelli di Estrone, ed i risultati sono molto interessanti.

    Il suo ciclo comprendeva circa 850mg di Boldenone Undecylenato e 250mg di Testosterone Enantato a settimana.

    I risultati mostrano un significativo aumento dei livelli di Estrone, con un risultato di 662pg/mL, con il limite massimo dell’intervallo di riferimento pari a 65pg/mL. Il suo livello di Estradiolo non era rilevabile con meno di 2,5pg/mL.

    Normalmente con i livelli sierici di Testosterone derivanti da 250mg/week di Testosterone Enantato portano in media ad avere livelli di Estradiolo pienamente all’interno dell’intervallo di riferimento.

    Con la produzione endogena media di Testosterone si raggiungono livelli pari a circa 15-35pg/ml (a seconda di quanto Testosterone sintetizza il soggetto e da altri fattori). I risultati delle analisi del sangue in questione mostrano che l’Estradiolo è persino inferiore a quello di una donna in menopausa.

    Dovrebbe essere noto, per lo meno ai miei lettori, che portare i livelli di Estradiolo a quote molto basse (fatte rare eccezioni e per brevissimi periodi di tempo) è qualcosa da evitare per i consequenziali problemi psicofisici.

    Comunque, il risultato del test indica che qualcosa nello stack utilizzato dallo youtiuber ha impedito sensibilmente l’aromatizzazione del Testosterone in Estradiolo. Grazie all’accuratezza degli esami svolti, sappiamo che il Testosterone utilizzato dal soggetto in questione è realmente Testosterone (1431 ng/dL), poiché, per l’appunto, i campioni ematici sono stati sottoposti ad un test specifico LC/MS-MS, che è il gold standard per verificare il totale esatto del Testosterone evitando il rilevamento incrociato di altri anabolizzanti.

    La quantità di Testosterone rilevata, normalmente, porterebbe ad un livello di Estradiolo medio-alto, non di certo così basso come è risultato. Quindi, probabilmente l’enzima Aromatasi viene inibito. Fortunatamente, con il risultato del suo esame del sangue comprendente l’Estrone, possiamo finalmente risolvere l’enigma su ciò che realmente accade.

    Facendo riferimento allo studio sui conigli, sappiamo che per esso hanno utilizzato l’ECLIA per rilevare i livelli di Estradiolo.

    Lo studio sui conigli visto in precedenza, ha mostrato un aumento dell’Estradiolo con Boldenone in monoterapia e, guarda caso, tutti gli individui che hanno riportato livelli nella norma di Estradiolo dopo esame ematico svolto durante il ciclo di AAS, i loro campioni non sono stati sottoposti a test ad alta sensibilità (almeno quelli che ho visionato ad oggi, e vi assicuro che sono numerosi).

    “Symmetry and Fitness” mostra un livello di Testosterone alto, e nessun livello di Estradiolo alterato dalla falsa lettura del Estrone circolante. Tutti i risultati delle analisi del sangue che mostrano un aumento dell’Estradiolo utilizzano ECLIA.

    Quindi, a questo punto, si potrebbe ipotizzare che il Boldenone non aromatizza effettivamente in Estradiolo, né inibisca l’enzima Aromatasi ma, piuttosto, esso potrebbe competere con il Testosterone nell’interazione con l’Aromatasi.

    Approfondirò ulteriormente questo aspetto più avanti, ma, per il momento, posso dirvi che, probabilmente, si necessiterà di una co-somministrazione di Estradiolo o di un substrato soggetto all’aromatizzazione in Estradiolo durante l’uso di Boldenone al fine di ottenere effettivamente una quantità fisiologica dell’estrogeno maggiormente bioattivo. Il motivo è che il Boldenone, chiaramente, non aromatizza in una quantità sufficiente ad Estradiolo ma, da come è emerso da esami approfonditi, sembra avere una maggiore conversione in Estrone, un estrogeno con bassa bio-attività. L’Estrone, quindi, non è in grado di sopperire ai bassi livelli di Estradiolo, e sto parlando soprattutto dei benefici connessi a quest’ultimo per la salute psicofisica o la crescita muscolare, e vi sono numerosi studi che dimostrano quanto i livelli di Estrone sproporzionatamente elevati possano essere deleteri per la salute. In alternativa, una dose molto più bassa di Boldenone dovrebbe essere somministrata in rapporto al Testosterone, a meno che non vi sia una competizione o una fase dove i livelli di Estradiolo devono essere maggiormente ridotti.

    Abbiamo visto come anche con uno schema di dosaggio quasi identico tra Testosterone e Boldenone (vedi precedente esempio da 300mg di Boldenone e 400mg di Testosterone) i livelli di Estradiolo risultano generalmente bassi.

    Quasi nessun “doped” si somministra meno di 300mg/week di Boldenone, e se solo a questi dosaggi può risultare un problema per l’Estradiolo, livelli maggiori richiedono gestioni estremamente più accurate, soprattutto se l’obbiettivo è la massima crescita muscolare.

    Effetti potenziali del Boldenone sulla biosintesi estrogenica

    Come accennato in precedenza, è molto probabile che l’uso di Estradiolo esogeno, o l’aggiunta di dosaggi maggiori di un substrato soggetto ad aromatizzazione in Estradiolo, sia necessario per mantenere livelli salubri durante un ciclo di Boldenone ad alte dosi.

    La via principale attraverso la quale l’Estrone viene biosintetizzato coinvolge l’Androstenedione come intermedio, con quest’ultimo che viene convertito in Estrone dall’enzima Aromatasi. Questa è il punto chiave da ricordare nel contesto di questa profonda anamnesi sul Boldenone.

    L’Androstenedione si converte in Estrone attraverso l’azione dell’enzima Aromatasi. Questa reazione si verifica sia nelle gonadi che in alcuni altri tessuti, in particolare il tessuto adiposo, e l’Estrone viene successivamente rilasciato da questi tessuti. Oltre che attraverso l’aromatizzazione dell’Androstenedione, l’Estrone può essere sintetizzato reversibilmente a partire dall’Estradiolo tramite l’azione dell’enzima 17β-idrossisteroide deidrogenasi (17β-HSD) in vari tessuti, compreso il fegato.

    Descrizione: le vie metaboliche coinvolte nel metabolismo dell’Estradiolo e di altri estrogeni naturali (ad es. Estrone, Estriolo) nell’uomo. Oltre alle trasformazioni metaboliche mostrate nel diagramma, la coniugazione (ad es. Solfatazione e Glucuronidazione) si verifica nel caso dell’Estradiolo e dei suoi metaboliti che hanno uno o più gruppi idrossilici (–OH) disponibili.

    Aneddoticamente, possiamo vedere come la necessità di utilizzo di un AI diminuisce nettamente dal momento che i livelli di Estradiolo vengono marcatamente soppressi, anche con una dose elevata di Testosterone quando si aggiunge del Boldenone a dosaggi del tutto contenuti.

    Vediamo anche i risultati degli esami del sangue che mostrano livelli altissimi di Estrone. Alcuni dei metaboliti del Boldenone sono propagandati come AI, ma l’evidenza di ciò si basa sull’estrapolazione da studi su animali, modelli in vitro e sul fatto che vediamo una diminuzione dei livelli di Estradiolo presente nei risultati degli esami del sangue ad alta sensibilità. Tutto questo porta a credere che il Boldenone non agisca, direttamente o indirettamente, come un AI, e anche se i suoi metaboliti lo fanno, il grado in cui svolgono tale azione è chiaramente insignificante, altrimenti non avremmo questo picco enorme di Estrone nel sangue.

    Quello che con molta probabilità accade, è che anche il Boldenone è un potente substrato per l’Aromatasi, ma non aromatizza direttamente ad Estradiolo, convertendosi in Estrone o in un altra forma di estrogeno sintetico (non presente in natura ma frutto di un substrato modificato per sintesi di laboratorio). In effetti, molti hanno dato per scontato che il Boldenone si converta in Estradiolo nonostante questo AAS sia sintetico.

    Se l’enzima Aromatasi fosse inibito dai metaboliti del Boldenone, non vedremmo picchi dei livelli di Estrone così significativi, né vedremmo picchi di Estradiolo tramite il metodo ECLIA. Quel test incrociato rileva altri estrogeni ed è solo tramite test ad alta sensibilità che possiamo vedere cosa sta effettivamente succedendo sul piano del Estradiolo e dei tassi di aromatizzazione. Il fatto che gli estrogeni vengano rilevati in quei range indica chiaramente che l’enzima Aromatasi agisce senza particolari limitazioni, nonostante non stia operando sul Testosterone dal momento che i livelli di Estradiolo sono decisamente ridotti.

    A questo punto ci si può domandare quale sia l’affinità di legame del Boldenone rispetto al Testosterone per l’enzima Aromatasi e quali sono i metaboliti estrogenici derivanti durante il processo di conversione enzimatica.

    Considerate che che “Symmetry and Fitness” ha eseguito test ad alta sensibilità per Testosterone ed Estradiolo ma, tuttavia, il metodo usato per rilevare i livelli di Estrone è l’ECLIA. Quindi, l’Estrone potrebbe benissimo essere anche un rilevamento incrociato di un altro metabolita estrogenico sintetico. E ci sono buone probabilità che sia così, poiché il diretto interessato ha riferito di aver fatto dei successivi test di follow-up per valutare i suoi livelli di Estrone tramite LC / MS / MS. E questa volta sono tornati nella norma.

    Rapporti tra Testosterone ed Estradiolo e limite di attività dell’Aromatasi

    Una cosa che spesso viene trascurato è che esiste un limite nell’attività dell’Aromatasi. Una volta che i dosaggi sovrafisiologici di AAS aumentano, il corpo non risponde con una sintesi di enzima Aromatasi proporzionale causando una conversione massiva e perfettamente proporzionale di Estradiolo (o qualsiasi metabolita che l’AAS somministrato sensibile all’Aromatasi dia come risultato dell’interazione biochimica). Gli studi che hanno misurano la risposta a dosi graduate di Testosterone in uomini giovani e anziani hanno dimostrato che la Estradiolo:Testosterone ratio in realtà diminuisce ulteriormente con dosaggi sovrafisiologici di Testosterone.

    • Con 25mg di Testosterone a settimana, il rapporto totale E2-T in un giovane è di circa l’1,2%;
    • A 50mg si scende a circa lo 0,7%;
    • A 125mg scende a circa lo 0,4%…E così via.

    Come si può chiaramente osservare, l’aromatizzazione del Testosterone non avviene in maniera direttamente proporzionale alla dose somministrata, suggerendo che esiste un potenziale di tasso dell’aromatizzazione limitato e che esso può verificarsi. Un’altra possibile aggiunta allo scenario è che l’AAS sintetico somministrato sarà probabilmente in competizione con il Testosterone per quella limitata attività dell’Aromatasi.

    È bene che comprendiate come sia fisicamente impossibile in fisiologia (sia di base che alterata e, fino a prova contraria, fatta eccezione per rari stati patologici) un aumento massivo del tasso di aromatizzazione, soprattutto con dosaggi sovrafisiologici. E, quindi, viene difficile pensare al fatto che qualcuno possa aspettarsi che il Testosterone in qualche modo subisca l’azione dell’enzima Aromatasi quando entra in competizione con un altro substrato di pari grado (?) ed a dosaggi maggiori (parlo ovviamente del Boldenone).

    Analogamente agli anti-androgeni che competono per il legame con il recettore degli Androgeni con Testosterone e DHT, il Boldenone, molto probabilmente, compete con il Testosterone per l’enzima Aromatasi. Un altro esempio rilevante è ciò che accade dopo aver utilizzato un inibitore della 5α-reduttasi come la Finasteride.

    Quando si inibisce la 5α-reduttasi con l’uso di Finasteride o Dutasteride per abbassare i livelli di DHT circolanti, detto nel modo più semplice possibile, il Testosterone raggiungerà concentrazioni più elevate per via dell’azione della Finasteride. Quando la 5α-riduzione del Testosterone viene inibita o fortemente ridotta, si verifica una riduzione del DHT, ma essendoci livelli maggiori di Testosterone, si verrà a creare un livello maggiore di Estradiolo per via della maggiore presenza del substrato soggetto all’azione dell’enzima Aromatasi (vedi, appunto, Testosterone). Questo è il motivo per cui l’uso della Finsteride aumenterà i livelli di Testosterone ed Estradiolo di circa il 15% e la Dutasteride di oltre il 20%.

    Quindi, se un enzima ha un limite di espressione e attività, l’introduzione di un altro substrato con affinità di legame e/o dosaggio comparabili (ci sono ovviamente anche altri fattori) nell’equazione riduce ulteriormente la quantità disponibile dell’enzima con cui interagiscono gli “ormoni genitore” (il Testosterone è l’ormone genitore in questo contesto al quale ci stiamo riferendo).

    Non sarei sorpreso di constatare che l’uso del Boldenone con il Testosterone possa causare effettivamente un modesto picco nei livelli di Testosterone e DHT al di sopra di quanto constatabile con la medesima dose di Testosterone, allo stesso modo in cui la co-somministrazione di Testosterone e Finasteride aumenta i livelli circolanti di Testosterone ed Estradiolo. Se l’Aromatasi è per la maggior parte legata al Boldenone, ci sarà dio conseguenza più Testosterone circolante, e quindi più testosterone soggetto alla 5α-reduttasi e alla conversione in DHT.

    Ora, in teoria si potrebbe probabilmente ancora sfruttare il Boldenone in “Bulk” se la dose di Testosterone fosse significativamente più alta del precedente, ma i risultati delle analisi del sangue suggeriscono che la dose di Testosterone dovrebbe essere MOLTO più alta perché non ci sia una significativa compromissione della conversione di Testosterone in Estradiolo. Anche solo 300mg di Boldenone Undecylenato hanno causato un calo dei livelli di Estradiolo molto al di sotto di quelli che avrebbero dovuto esserci con l’uso di 400mg di Testosterone, compromettendo di conseguenza la salute e la crescita muscolare rispetto a ciò che si sarebbe potuto ottenere con un altro anabolizzante aggiuntivo che non compete con il Testosterone per l’Aromatasi.

    Va anche considerato che il Boldenone è considerato dalla maggior parte dei “doped” come un agente anabolizzante relativamente debole, e ad oggi non ho ancora sentito parlare di una persona che sta usando Testosterone alto con Boldenone basso.

    Esiste una “regola della broscience” che è stata tramandata fino ad oggi e che afferma che il Boldenone funziona bene solo a dosaggi superiori a 600-700mg7week. Ho anche sentito persone dire che “il Boldenone brilla a 1.5g/week”. Follia nella maggior parte dei casi.

    Conclusioni sul Boldenone

    A seguito delle mie ricerche, sono quasi certo che il Boldenone interagisca direttamente con l’enzima Aromatasi dando come risultato un metabolita estrogenico che altera il semplice esame ECLIA dando falsi positivi per livelli elevati di Estradiolo. Se possa o meno convertirsi in Estrone non ne sono certo, ma una ipotesi plausibile è che esso non si converta in nulla di bioidentico, ma in un estrogeno sintetico che ha una qualche affinità per i ERα ed ERβ.

    Ipotesi della conversione del Boldenone in Estrone

    Ora resta da scoprire quale sia questo ipotetico estrogeno sintetico e quanto sia potente in rapporto nell’adempiere alle stesse funzioni fisiologiche dell’Estradiolo. Questa domanda ce la poniamo anche, avendone una risposta, con il Methandrostenolone (Dianabol) ed il Trestolone (MENT), i quali convertono rispettivamente a 17α-Methylestradiolo e 7α-Methylestradiolo. Con il Boldenone, invece, non abbiamo idea di cosa accada realmente in termini di reazione biochimica enzimatica, seppur, aneddoticamente, la sua attività estrogenica sembri limitata, ed il fatto che essenzialmente inibisca marcatamente l’aromatizzazione del Testosterone in Estradiolo lo rende un composto molto più difficile da gestire in modo efficace di quanto si possa essere indotti a pensare da una certa letteratura.

    La ricerca suggerisce anche che il Boldenone potrebbe essere uno dei composti più nefrotossici esistenti.[17]

    La competizione per l’enzima Aromatasi, la successiva riduzione della cascata a valle che interessa importanti funzioni fisiologiche tra le quali lo stimolo all’ipertrofia muscolare, l’impatto marcato sulla eritropoiesi e la ipotetica tossicità renale fanno di questo AAS un composto poco versatile e, di certo, non facile da gestire/dosare specie in fasi della preparazione dove il fine ipertrofico è di massima importanza.

    Sebbene ci siano alcuni contesti che, per via del maggiore controllo estrogenico, possano risultare ottimali per l’inserimento del Boldenone, per la maggior parte delle persone non penso che questo sia un composto di elezione nella strutturazione di un ciclo.

    Ed è ovvio, giusto per ribadirlo, che l’uso in monoterapia e/o in contesto TRT risulta una pessima scelta per i motivi sopra esaustivamente riportati.

    Ricordatevi, in fine, che la risposta soggettiva nel tasso di aromatizzazione da risultati di molto diversificati tra individuo ed individuo. Per tale motivo, prima di andare in qualche community a gridare “con il Boldenone mi sfondo di d-bol è non aromatizzo!” pensate che senza esami ad alta sensibilità per l’ormone specifico non potete proferire nulla più che vostre ipotesi di scarso valore logico e scientifico! Oltretutto, cosa assai grave, rischiate anche di danneggiare il prossimo!

    Gabriel Bellizzi

    Riferimenti:

    1. https://www.reddit.com/r/steroids/comments/gb6upf/compounds_boldenone_eq_bold_cyp_bold_ace_etc_does/
    2. Biosynthesis-of-Estrogens-Gual-C-Morato-T-Hayano-M-Gut-M-and-Dorfman-R.-Endocrinology-71-1962-920-25..pdf
    3. Imgur: The magic of the Internet
    4. Effects of boldenone undecylenate on growth performance, maintenance behaviour, reproductive hormones and carcass traits of growing rabbits – PubMed (nih.gov)
    5. PubChem (nih.gov)
    6. PubChem (nih.gov)
    7. Metabolism of boldenone in man: gas chromatographic/mass spectrometric identification of urinary excreted metabolites and determination of excretion rates – PubMed (nih.gov)
    8. An efficient synthesis of 5alpha-androst-1-ene-3,17-dione – PubMed (nih.gov)
    9. Steroidal metabolites transformed by Marchantia polymorpha cultures block breast cancer estrogen biosynthesis – PubMed (nih.gov)
    10. Metabolism of boldione in humans by mass spectrometric techniques: detection of pseudoendogenous metabolites – PubMed (nih.gov)
    11. Detection and characterization of urinary metabolites of boldione by LC-MS/MS. Part I: Phase I metabolites excreted free, as glucuronide and sulfate conjugates, and released after alkaline treatment of the urine – PubMed (nih.gov)
    12. A new hypothesis based on suicide substrate inhibitor studies for the mechanism of action of aromatase – PubMed (nih.gov)
    13. https://pubmed.ncbi.nlm.nih.gov/1591280/
    14. https://pubmed.ncbi.nlm.nih.gov/19089863/
    15. https://www.wada-ama.org/sites/default/files/resources/files/09a19ws_w._schanzer.pdf
    16. https://pubmed.ncbi.nlm.nih.gov/7472286/
    17. Deterioration of glomerular endothelial surface layer and the alteration in the renal function after a growth promoter boldenone injection in rabbits – PubMed (nih.gov)

    Pillola blu o pillola rossa? Realtà per aspiranti “doped” … ma non solo…

    DISCLAIMER: Il presente articolo è a solo scopo educativo, di intrattenimento e informativo. Non rappresenta in alcun modo una forma di incitamento all’uso/abuso di sostanze dopanti. L’autore ed il sito, per tanto, è esentato da qualsiasi responsabilità dipendente dalla libera scelta individuale.

    Introduzione ad un dilemma…

    Chiunque frequenti l’ambiente del Bodybuilding e del Fitness avrà letto o sentito almeno una volta nella vita espressioni del genere “se mi dopassi sarei anche io così [indicando Flex Wheeler]” o “ho provato di tutto e senza farmaci non riuscirò ad ottenere risultati”. Andando poi ad approfondire la storia di ognuno di questi soggetti si scopre in percentuale quasi assoluta che si tratta di individui nella norma (o al di sotto) frustrati e/o con personalità deboli, speranzosi omini che attendono placidamente che accada una svolta miracolosa nella loro banale e piatta esistenza e, cosa molto importante, con il minimo dello sforzo (meglio se nessuno).

    Nella mia esperienza come ricercatore e operatore nel campo della cultura fisica in qualità di Preparatore Atletico, ho assistito a innumerevoli casi in cui un soggetto aspirava al miglioramento della propria composizione corporea trascurando, consciamente o inconsciamente, le basi fondamentali rappresentate da Nutrizione e Allenamento baipassandole in vista della possibile prescrizione di una pillola miracolosa capace di renderlo/a possessore della forma fisica ambita.

    Tralasciando l’ovvio ragionamento che spinge ogni essere umano dotato di un minimo d’intelletto verso la comprensione che la genetica è il blocco d’argilla sul quale si va ad operare, ma le sue qualità e difetti sono presenti in modo eterogeneo nella popolazione mondiale, e ciò non è modificabile nemmeno con la farmacologia più oculata, quando ci si trova davanti al bivio tra “pillola rossa” (PEDs) e “pillola blu” (drug free) bisogna essere pienamente consapevoli non solo del fattore illegalità ma del fattore conoscitivo. Purtroppo, la politica del terrore ha operato in modo fallimentare nel goffo intento di allontanare dalla scelta “rossa”, e ciò si è tradotto in un numero sensibile di soggetti abusatori con tutte le conseguenze cliniche derivanti.

    Se un individuo non ha raggiunto un livello di maturità sportiva tale da conferirgli una gestione corretta della nutrizione e della periodizzazione allenante (gestione delle variabili volume, intensità, densità ecc…), è molto meglio per lui/lei rivedere i suoi programmi e scegliere ancora la “pillola blu”. Capita, a volte, di incontrare persone decise ad intraprendere la via del “lato oscuro” che, dopo una approfondita chiacchierata sulla gestione dei suddetti fattori, rivede le proprie posizioni.

    Per tutti coloro i quali sono immersi nel dilemma della scelta, vi espongo alcuni punti per rendere l’eventuale decisione meno rischiosa anche se pur sempre illegale nel “bel paese”…

    “Pillola blu o pillola rossa?” I punti da tenere in considerazione per una scelta consapevole:

    #1 Raggiungere una adeguata maturità sportiva

    Per “maturità sportiva”, in particolare riferimento al BodyBuilding, si intende la capacità del atleta di sapersi alimentare e allenare correttamente con piena gestione delle proprie potenzialità fisiologiche/genetiche. Questa è la base, se viene a mancare ciò non solo la vostra esperienza finirà per deludervi e rendervi ancora di più dei frustrati, ma potrebbe rovinosamente portarvi ad un abuso cronico a senso inesorabilmente negativo…

    #2 I PEDs non faranno miracoli

    Una cosa da tenere bene a mente, e questo non dovrebbe interessare solo gli aspiranti “doped”, è che l’uso di PEDs non renderà diversi da ciò che rientra nelle potenzialità espressive del proprio patrimonio genetico. Certamente le caratteristiche genetiche verranno “iperespresse”, nel bene e nel male, dall’uso di PEDs ma non vi sarà nessun miracolo! Migliorerete ma non sarete ne più ne meno di ciò che potete essere!

    Un esempio per capire come la base genetica faccia la differenza anche con protocolli che, ad oggi, spesso non raggiungono nemmeno i livelli del “bridge” più soft..

    #3 Ridurre la percentuale di grasso corporeo

    Il tessuto adiposo rappresenta uno dei siti dove il Testosterone, ed altri AAS soggetti all’aromatizzazione, viene convertito in Estradiolo. Soggetti con percentuali di grasso corporeo elevate vedrebbero una alterazione marcata della Testosterone:Estradiolo ratio a favore della componente estrogenica, con conseguenze quali alterazione del comportamento sessuale (impotenza, difficoltà nel raggiungere e/o mantenere l’erezione), ritenzione idrica, accumulo di grasso con modello femminile e ginecomastia. E no, l’uso di DHT derivati o di SARM non steroidei senza una base di Testosterone non risolverebbe il problema o, per lo meno, porterebbe ad altre conseguenze negative, che pur non comprendendo, per esempio, ritenzione idrica e ginecomastia, interesserebbero l’attività sessuale e la condizione psichica del soggetto trattato. [1]

    Schema esemplificato del processo di aromatizzazione degli androgeni aumentati in un soggetto con percentuale di grasso corporeo alta.

    Allo stesso tempo, i rischi cardiovascolari della somministrazione di AAS- come il possibile aumento esponenziale del Ematocrito, l’aumento del LDL e Trigliceridi a discapito di una riduzione del HDL, e l’aumento della pressione sanguigna – sarebbero già presenti in certa misura quando la body fat è già alta e sarebbero quindi soggetti ad un repentino aggravamento.

    Se la percentuale di grasso è relativamente alta, si dovrebbe prima di tutto considerare di migliorare la composizione corporea con una adeguata routine alimentare e allenante (senza farmaci) prima di iniziare solo a pensare all’uso di AAS. Sicuramente ciò renderà la scelta più efficace e meno rischiosa.

    Nel caso fosse necessario sottolinearlo, no, non è saggio nemmeno utilizzare agenti PEDs a fini lipolitici e/o antiadipogenici e/o termogenici (compresi gli Ormoni Tiroidei). A meno che non siate affetti da ipotiroidismo, e in questo caso la terapia vi dovrebbe essere stilata dal vostro medico, per ridurre in modo sensibile la body fat non sono necessari i farmaci!

    #4 Controllare se si ha una storia familiare di trombosi (o qualsiasi altra malattia cardiovascolare)

    Molte malattie cardiovascolari hanno una componente di base genetica. Uno stile di vita sano può ridurne sensibilmente la loro insorgenza, ma l’uso di AAS può causare l’attivazione di specifici geni implicati nella comparsa di malattie cardio-circolatorie. Caratteristico dell’interazione tra AAS e geni specifici è un caso studio ben documentato che ricercatori americani hanno pubblicato sul “Blood Coagulation & Fibrinolysis”.[2]

    Trombosi venosa

    Oltre all’attivazione genica diretta dagli AAS, e nociva per il sistema cardio-circolatorio, vi sono altre condizioni negative innescate dall’uso/abuso di Steroidi Anabolizzanti, e di altri PEDs, come, per esempio, l’aumento del tasso di coagulazione, l’incremento eccessivo dell’Ematocrito con aumento pressorio, rigidità dell’endotelio vascolare con perdita di efficienza strutturale e aumento della pressione ematica con incremento delle possibilità di danno strutturale dei componenti del sistema interessato.

    #5 Inserire delle sedute di allenamento cardio prima, durante e dopo l’uso di PEDs

    Un moderato allenamento cardiovascolare è sicuramente una delle migliori strategie preventive contro la comparsa di malattie cardio-circolatorie. Tale tipologia di allenamento può portare un miglioramento e/o riduzione delle alterazioni lipidiche ematiche del praticante, fornendo un, seppur minimo, tampone all’azione negativa degli AAS e SARM non steroidei sui livelli di LDL (aumento), Trigliceridi (aumento) e HDL (diminuzione). Secondo quanto riportato da una interessante review del 2013, l’abbinamento di sedute cardio e in sala pesi possono avere una azione additiva benefica sui livelli di LDL, Trigliceridi e HDL.[3]

    Risulta interessante anche quanto emerso da alcuni studi su animali a seguito dei quali si è osservato un significativo grado di protezione dato dall’allenamento cardio negli esemplari trattati con AAS.[4]

    #6 Assicurarsi di rimanere ben idratati

    Oltre ad agevolare il mantenimento di un Ematocrito migliore, una buona idratazione risulta positiva sulla pressione di lavoro renale nel filtraggio del sangue. Diversi AAS come il Trenbolone e i metilati in C-17 presentano una particolare resistenza metabolica che, oltre a causare un aumentato stress epatico, può portare ad una sofferenza renale sfociabile nel patologico. Si è osservato come una combinazione di AAS, dieta iperproteica e supplementazione di Creatina possa aumentare l’incidenza di problemi renali.[5] In un soggetto in fisiologia, la sola dieta ad altro contenuto proteico e la supplementazione di Creatina non hanno mostrato nessun grado di pericolosità, soprattutto sul breve/medio termine.

    #7 Non usare “droghe ricreative”

    A livello globale, il numero di decessi tra gli abusatori di AAS è in aumento. Alcuni, troppo superficialmente, dicono che questo sia dovuto al fatto che sempre più uomini e donne usano AAS, ma questa è solo una spiegazione dozzinale e limitata. Il sospetto ricade soprattutto sulle modalità di approccio dei consumatori di AAS: i dosaggi sono drammaticamente aumentati e un numero crescente di individui combina PEDs con “droghe ricreative”. Ed è su questi due ultimi punti che risiede la spiegazione principale dell’aumento statistico prima menzionato. Soprattutto la combinazione di PEDs e le così dette “droghe ricreative” risulta essere probabilmente un fattore significativo, come evidenziato alcuni anni fa da ricercatori australiani. Nel loro studio sono state analizzate tutte le morti documentate tra i consumatori di AAS a Sydney tra il 1997 e il 2012, scoprendo che le droghe ricreative come la cocaina avevano avuto un ruolo nella schiacciante molteplicità dei casi. Dagli studi sugli animali ora sappiamo della possibilità che la co-assunzione di un AAS come il Nandrolone con la cocaina vede moltiplicati gli effetti cardiotossici rispetto ai singoli composti.[6] E secondo studi in vitro la combinazione di Testosterone e cocaina aumenterebbe la possibilità di formazione di coaguli nel flusso ematico. [7]

    #8 Corretta modalità di iniezione e herpes labiale

    Gli utilizzatori di AAS a volte sviluppano ascessi, ma non sempre dovuti alla bassa qualità dei prodotti utilizzati.

    Alcuni medici ritengono che gli utilizzatori di AAS dovrebbero effettivamente ricevere una formazione sulle tecniche di iniezione corrette, onde evitare embolie oleose o ascessi per cattiva gestione igienica della procedura. [8]

    Molti utilizzatori ancora non sanno che disturbi come l’herpes labiale rendono le iniezioni ancora più rischiose. Perchè? Il virus che causa l’herpes labiale, come altri patogeni, riduce l’efficienza del sistema immunitario, fornendo così terreno fertile per infezioni batteriche i cui microorganismi scatenanti vengono inoculati nel corpo del soggetto attraverso l’iniezione in modo diretto o indiretto.

    #9 Non fare affidamento sugli integratori

    Secondo un buon numero di studi svolti su animali, alcuni integratori proteggono dagli effetti collaterali degli AAS. Secondo alcune ricerche, la Taurina, la Vitamina C ed E proteggono i testicoli durante un ciclo e la vitamina C e il cacao proteggono la prostata.

    L’utilità dei risultati provenienti da questi studi è limitata per tre motivi:

    A. gli animali da laboratorio non sono esseri umani, e

    B. le dosi utilizzate e rapportate ad un essere umano sono quasi sempre molto inferiori rispetto a quelle utilizzate dai “doped”, e

    C. la ricerca in campo psicologico mostra che l’uso di integratori stimola comportamenti rischiosi e malsani. I supplementi fanno pensare agli utilizzatori di essere invulnerabili e di non dover comportarsi in modo sano ed attento.[9]

    Gli integratori possono aiutare a creare una mentalità che non si dovrebbe avere da utilizzatore consapevole di AAS.

    Ovviamente, alcuni supplementi “protettivi” utilizzati dai soggetti meglio informati hanno un potenziale di “tamponare” in modo discreto alcune alterazioni legate all’uso di AAS e SARM come, ma non limitato a, Riso Rosso fermantato (controllo lipidico) [10], Silimarina (epatoprotezione), NAC (epatoprotezione) [11], Niacina (controllo lipidico) ecc…

    #10 Ridurre al minimo (se non eliminare) il consumo di alcolici

    Potrebbe sembrare un indicazione superflua ma non lo è.

    L’abuso di alcol è indubbiamente uno dei problemi sociali più diffusi. Uno dei problemi correlati all’abuso di alcol e l’epatopatia alcolica. Questo stato patologico è derivante da un processo infiammatorio progressivo ai danni del fegato legato al consumo eccessivo di alcolici. È una malattia a più stadi. La steatosi provoca un ingrossamento del fegato causato da un accumulo di trigliceridi, spesso senza sintomi per molto tempo. I rischi correlati sono la steatosi (fegato grasso), l’epatite alcolica e la cirrosi epatica. Il rapporto con l’alcolismo è complesso. Non tutti i bevitori, infatti, hanno danni al fegato, anche se sono altamente probabili. La causa è da rinvenire in una trasformazione dell’alcol (etanolo) in sostanze tossiche che danneggiano il fegato in maniera irreversibile e cronica, con un rischio elevato di insufficienza epatica e di cancro, fino alla necessità di un trapianto di fegato.

    In acuto, invece, l’alcol può essere una causa di alterazione delle transaminasi ma non si può sapere se e con quale modalità si potrebbero innalzare: dipende molto dalla risposta individuale dell’organismo. In caso di stress preesistente, di causa iatrogena e/o alimentare, si può presentare una alterazione significativa. [12]

    Il primo caso è una consequenziale possibile se eventi stressori concomitanti si presentano in cronico. Ed è semplice giungere alla conclusione che l’uso di AAS, specie se metilati, possa comportare un aumentato stress epatico che potrebbe degenerare in peliosi epatica, cirrosi ecc…

    Che siate “doped” o “natural”, per ragioni legate e non, dovreste evitare di consumare più di 25g per gli uomini, o 12,5g per le donne, di Etanolo al giorno.

    #11 Sottoporsi a regolari controlli medici pre, intra e post utilizzo

    Il monitoraggio della salute dovrebbe essere la base fondante del comportamento del utilizzatore consapevole e minimamente attento ai potenziali rischi nei quali potrebbe imbattersi.

    Gli esami di controllo sono i seguenti:

    • Esami ematici e delle urine (comprendenti il quadro ormonale secondo necessità);
    • Elettrocardiogramma ogni 6 mesi circa;
    • Elettrocardiogramma sotto sforzo (prima di iniziare);
    • Ecocardiogramma ogni 6 mesi circa;
    • Coronarografia ogni 6 mesi circa;
    • Monitoraggio della pressione ematica;
    • TAC addome completa ogni 6 mesi circa.

    Ovviamente, ogni accertamento , al di la degli esami ematici, deve essere gestito in base alle esigenze soggettive, caratteristiche e tipo di PEDs utilizzati.

    #12 Essere seguiti da personale qualificato

    Fin troppa gente è stata salutisticamente deturpata da gorilla di spogliatoio a mala pena consapevoli dell’esistenza dei macronutrienti e che, nonostante ciò, si sono improvvisati farmacisti. Donne divenuti uomini e uomini divenuti simili a cagne in calore per via di orrende ginecomastie.
    Evitate il fai da te e l’affidarsi a semianalfabeti … la somaticità sopra la norma è cosa diversa dall’intelligenza e alla competenza in biologia, biochimica e farmacologia… senza offesa per tutti quelli che “io mi facevo e ho vinto! Senzia scienzia!” …

    #13 Pensare seriamente al post ciclo prima del ciclo

    Molti aspiranti “doped” non considerano il fattore post ciclo. La maggior parte di loro è convinta che la PCT sarà una facile soluzione alla sottoregolazione dell’Asse HPT, ma in realtà non è proprio così. Esistono diversi casi studio che mostrano come gli ex utilizzatori abbiano spesso livelli di Testosterone inferiori rispetto al pre-utilizzo anche a distanza di anni dal cessato uso di AAS. Sembra che i fattori che aumentano le possibilità e il grado di tale effetto sul lungo termine siano:

    • Tempo di somministrazione;
    • Età
    • Molecole utilizzate (con maggiore impatto negativo dato dai19-norsteroidi come il Nandrolone per via della lunga permanenza dei metaboliti nel sistema).

    Tutto ciò è indipendente dalla qualità della PCT, anche se essa può avere dei riscontri positivi specie nel primo periodo di stacco dagli AAS. Le alterazioni ormonali legate ad una alterazione dell’Asse HPT comprendono depressione, ansia, bassa libido, difficoltà nel raggiungere e mantenere l’erezione, stanchezza cronica ecc…

    Per questa ragione molti scelgono di entrare in TRT (Terapia Sostitutiva del Testosterone) dopo il primo ciclo.

    Quale conclusione?…

    Se mai non dovesse bastare il disclaimer, questo articolo non rappresenta in alcun modo un consiglio e, ne tanto meno, un incitamento all’uso di sostanze dopanti! E’ semplicemente a fine divulgativo con l’obbiettivo di far comprendere a più persone possibili che la scelta di intraprendere coscientemente certe pratiche (illegali) necessita di una sufficiente (e veritiera) conoscenza del argomento.

    Quindi? Leggete e comprendete correttamente ciò che ho riportato in sintesi fruibile ad un largo pubblico… Pensate prima di tutto ad alimentarvi e allenarvi in modo ottimale!

    La conoscenza della Verità rende liberi dalla cattiva informazione, dagli strumenti commerciali e dal relativismo… Negarla è semplice e pericolosa manifestazione di profonda ignoranza… di VERO NEGAZIONISMO!

    Se avete una buona conoscenza della lingua inglese e volete approfondire l’argomento PEDs e Sport, potete leggere il libro ANABOLICS 11th Edition di William Llewellyn

    Gabriel Bellizzi

    Riferimenti:

    1- Androgens and Adipose Tissue in Males: A Complex and Reciprocal Interplay (hindawi.com)

    2- https://www.ncbi.nlm.nih.gov/pubmed/26588446

    3- Differential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile: Review, Synthesis and Recommendations (nih.gov)

    4https://www.ingentaconnect.com/content/bsc/ijep/2008/00000089/00000005/art00007;jsessionid=31871vv9fkia1.alice

    5- https://ckj.oxfordjournals.org/content/early/2015/05/26/ckj.sfv032.abstract

    6- Eur J Pharmacol. 2000 Jun 16; 398 (2): 263-72.

    7- Thromb Res. 15 febbraio 2003; 109 (4): 195-201.

    8- Int J Sports Med. 1999 Nov; 20 (8): 563-6.

    9- https://doi.org/10.1177/0956797611416253

    10- [‘Red yeast rice’ as a cholesterol-lowering substance?Caution is warranted] – PubMed (nih.gov)

    11- The effect of N-acetyl-l-cysteine (NAC) on liver toxicity and clinical outcome after hematopoietic stem cell transplantation (nih.gov)

    12- Alcoholic Liver Disease: Pathogenesis and Current Management (nih.gov)

    Concentrazioni ematiche di INSL3 e danno testicolare a lungo termine post uso di AAS.

    Introduzione

    Anni dopo l’interruzione dell’uso di AAS da parte di soggetti di sesso maschile questi ultimi potrebbero riscontrare ancora una condizione di ipo-funzionamento testicolare. La concentrazione ematica del fattor isulino simile 3 (INSL3), un peptide del quale si sa ancora poco, rende chiaro quanto possa durare l’impatto endocrinologico dato dall’uso di AAS. Ciò risulta particolarmente evidente dai risultati di uno studio danese, al quale hanno partecipato 132 bodybuilder.[1]

    Fattore Insulino Simile-3 (INSL3)

    Dettagli dello studio

    I ricercatori, un gruppo di endocrinologi dell’Università di Copenaghen, hanno osservato 132 uomini di età compresa tra 18 e 50 anni che si allenavano con i pesi. Questi uomini sono stati divisi in 3 gruppi formati all’incirca dallo stesso numero di individui:

    • Un gruppo non aveva mai usato AAS;
    • un secondo gruppo era sotto ciclo di AAS durante lo studio;
    • infine, il terzo gruppo aveva usato AAS in passato.

    Il partecipante medio allo studio in quest’ultimo gruppo aveva smesso di usare AAS 32 mesi prima. I ricercatori hanno misurato la concentrazione di INSL3 nel sangue dei soggetti partecipanti allo studio. Quell’ormone, che di per sé ha anche proprietà anabolizzanti, è prodotto dai testicoli. Gli endocrinologi sospettano che i testicoli siano più sani in quanto producono più INSL3 e pensano persino che questo peptide sia un marker di riferimento maggiormente importante per la valutazione della vitalità dei testicoli rispetto al Testosterone.

    Risultati dello studio

    Dei tre gruppi sotto osservazione, i soggetti che utilizzavano AAS nel periodo dello studio avevano la più bassa concentrazione ematica di INSL3. Tuttavia, i soggetti che avevano usato AAS in passato avevano anch’essi meno INSL3 sierico rispetto a coloro che non avevano mai utilizzato AAS:

    • I non utilizzatori avevano una media di 0,59mcg di INSL3 per litro;
    • gli ex utenti 0,39mcg per litro.

    Più a lungo gli ex utilizzatori erano stati sotto AAS in passato, minore era il INSL3 rilevato attraverso esame ematico.

    I dati riportati nella figura sopra sono di notevole interesse. Si guardi all’associazione tra il passare del tempo dopo l’ultima somministrazione di AAS da una parte e la concentrazione sierica di INSL3, dall’altro. Bene, si nota una consequenziale en significativa risposta…

    Contrariamente, è ovvio che se non ci fosse stato alcun legame significativo il INSL3 non avrebbe alcuna valenza come marker per la valutazione dello stato di salute dei testicoli.

    Conclusioni

    Il principale ricercatore dello studio, Jon Jarlov Rasmussen, in un comunicato stampa ha affermato che è ancora dibattuto se l’uso off-label di AAS provochi una carenza di Testosterone sul lungo termine. I loro risultati suggeriscono, però, la presenza di una capacità gonadica compromessa sul lungo termine nei precedenti utilizzatori di AAS. I risultati sollevano la questione se alcuni precedenti utilizzatori di AAS debbano ricevere una terapia di stimolazione medica per aumentare la capacità funzionale delle cellule di Leydig nei testicoli.[2]

    Rasmussen ipotizza come base di trattamento inibitori dell’Aromatasi e SERM.

    Gabriel Bellizzi

    Riferimenti:

    1. https://dx.doi.org/10.1210/clinem/dgab129
    2. https://www.sciencedaily.com/releases/2021/03/210309091308.htm