ACE II inibitori, ARB, ricomposizione corporea e “Stubborn Fat”

Introduzione:

Il concetto di “ricomposizione corporea” nel Fitness e nel BodyBuilding è senza dubbio considerabile come il “fattore dominante” ricercato dal momento che si tratta, molto semplicemente, del miglioramento quantitativo e qualitativo della massa contrattile (muscolo-scheletrico) a discapito della massa grassa e della ritenzione idrica extacellulare. Che si parli di “Natursl” o “Enhanced”, oltre alle variabili alimentari e allenanti vi sono quelle supplementative rappresentate, dipendentemente dalla “filosofia” scelta, da supplementi OTC e da farmaci utilizzati in ambito off-label.

Caffeina e p-Sinefrina rappresentano i lipolitici/termogenici OTC più utilizzati con un discreto margine di efficacia. Nel contesto “Enhanced”, invece, le classi di farmaci utilizzate al fine di accentuare la riduzione (direttamente o indirettamente) della massa grassa sono diverse e comprendono comunemente:

  • i β2-agonisti (non selettivi e selettivi) come Efedrina, Clenbuterolo e Salbutamolo;
  • i β3-agonisti selettivi come il Mirabegron;
  • gli agenti anoressizzanti con azione sui neurotrasmettitori come la Sibutramina, la Lorcaserina, l’Amfepramone e il Benfluorex;
  • gli anoressizzanti analoghi incretinici come la Semaglutide, il Liraglutide e il Tirzepatide;
  • i tiroidei Tiroxina (T4), Triiodotironina (T3) e Diiodotironina (T2);
  • i tireomimetici come l’Eprotirome, il Sobetirome, il Resmetirome e il profarmaco VK2809;
  • i disaccoppianti della fosforilazione ossidativa come il 2,4-dinitrofenolo (DNP);
  • stimolanti il Il Peptide Natriuretico Atriale (ANP) – vedi, ad esempio, i β-bloccanti – ;
  • α2-antagonisti come la Yohimbina e l’α-yohimbina [Rauwolscine];
  • trattamenti mesoterapici a base di Fosfatidilcolina e/o Acidi Biliari.

A questo elenco, però, andrebbe aggiunta una classe di farmaci che molto poco intuitivamente ci fa pensare alla riduzione della massa grassa. Tale classe di farmaci è rappresentata dagli ACE II inibitori.

Per iniziare a comprendere del perchè questi farmaci possono rappresentare una componente funzionale nel miglioramento della composizione corporea, bisogna parlare di “Stubborn Fat” [“Grasso Testardo”]. Perchè è proprio in questa specifica e caratteristica area del tessuto adiposo che l’ACE II inibitore può contribuire alla riduzione della massa grassa.

Al fine di avere una visione di insieme più completa, è necessario trattare in modo adeguato tutte le componenti dell'”equazione”…

Tessuto adiposo e sue caratteristiche:

Il tessuto adiposo (noto anche come grasso corporeo o semplicemente grasso) è un tessuto connettivo lasso composto principalmente da adipociti.[1][2] Contiene anche la frazione vascolare stromale (SVF) di cellule tra cui preadipociti, fibroblasti, cellule endoteliali vascolari e una varietà di cellule immunitarie come i macrofagi del tessuto adiposo. Il suo ruolo non è semplicemente e solo quello di immagazzinare energia sotto forma di lipidi, ma anche di ammortizzare e isolare il corpo e rappresenta un vero e proprio organo endocrino.

Leptina

Infatti, il tessuto adiposo veniva considerato inerte dal punto di vista ormonale, ma negli ultimi anni è stato riconosciuto come un importante organo endocrino,[3] in quanto produce ormoni come Leptina, Estrogeni, Resistina e Citochine (in particolare il TNFα). Nell’obesità, il tessuto adiposo è coinvolto nel rilascio cronico di marcatori pro-infiammatori noti come adipochine, che sono responsabili dello sviluppo della sindrome metabolica, una costellazione di malattie tra cui il diabete di tipo II, le malattie cardiovascolari e l’aterosclerosi.[2][4]

Preadipociti umani sottocutanei.

Il tessuto adiposo deriva dai preadipociti e la sua formazione sembra essere controllata in parte dal gene dell’adipe. Sappiamo ormai bene che vi sono due principali tipi di tessuto adiposo, il tessuto adiposo bianco (WAT), che immagazzina energia, e il tessuto adiposo bruno (BAT), che genera calore corporeo. Il tessuto adiposo, più precisamente il tessuto adiposo bruno, è stato identificato per la prima volta dal naturalista svizzero Conrad Gessner nel 1551.[5]

  • Grasso Viscerale e Sottocutaneo:

Grasso Viscerale: Il grasso viscerale o addominale[6] (noto anche come grasso d’organo o grasso intra-addominale) si trova all’interno della cavità addominale, stipato tra gli organi (stomaco, fegato, intestino, reni, ecc.). Il grasso viscerale è diverso dal grasso sottocutaneo e dal grasso intramuscolare presente nei muscoli scheletrici. Il grasso nella parte inferiore del corpo, come nelle cosce e nei glutei, è sottocutaneo e non è un tessuto omogeneo, mentre il grasso nell’addome è per lo più viscerale e semi-fluido.[7] Il grasso viscerale è composto da diversi depositi adiposi, tra cui il tessuto adiposo mesenterico, il tessuto adiposo bianco epididimale (EWAT) e i depositi perirenali. Il grasso viscerale viene spesso espresso in termini di area in cm2 (VFA, visceral fat area).[8]

Da sinistra: Normale funzione dell’insulina nell’adipocita e Resistenza all’Insulina nell’adipocita.

Un eccesso di grasso viscerale è noto come obesità addominale, o “grasso della pancia”, in cui l’addome sporge eccessivamente. Nuovi sviluppi, come il Body Volume Index (BVI), sono specificamente progettati per misurare il volume addominale e il grasso addominale. L’eccesso di grasso viscerale è anche legato al diabete di tipo II,[9] all’insulino-resistenza,[10] alle malattie infiammatorie,[11] e ad altre patologie correlate all’obesità.[12] Allo stesso modo, è stato dimostrato che l’accumulo di grasso del collo (o tessuto adiposo cervicale) è associato alla mortalità.[13] Diversi studi hanno suggerito che il grasso viscerale può essere previsto da semplici misure antropometriche,[14] e predice la mortalità in modo più accurato dell’indice di massa corporea o della circonferenza vita.[15]

Gli uomini hanno maggiori probabilità di accumulare grasso nell’addome a causa delle differenze tra gli ormoni sessuali. L’estrogeno causa l’accumulo di grasso nei glutei, nelle cosce e nei fianchi delle donne.[16][17] Quando le donne raggiungono la menopausa e gli estrogeni prodotti dalle ovaie diminuiscono, il grasso migra dai glutei, dai fianchi e dalle cosce alla vita;[18] in seguito il grasso viene accumulato nell’addome.[7]

Il grasso viscerale può essere causato da un eccesso di livelli di cortisolo.[19] Almeno 10 ore MET a settimana di esercizio aerobico portano a una riduzione del grasso viscerale in chi non ha disturbi legati al metabolismo.[20] Anche l’allenamento contro-resistenza e la restrizione calorica riducono il grasso viscerale, anche se il loro effetto può non essere cumulativo.[21] Sia l’esercizio che la dieta ipocalorica causano la perdita di grasso viscerale, ma l’esercizio ha un effetto maggiore sul grasso viscerale rispetto al grasso totale. [22] L’esercizio fisico ad alta intensità è un modo per ridurre efficacemente il grasso addominale totale.[23][24] Una dieta ipocalorica combinata con l’esercizio fisico riduce il grasso corporeo totale e il rapporto tra tessuto adiposo viscerale e tessuto adiposo sottocutaneo, suggerendo una mobilitazione preferenziale del grasso viscerale rispetto al grasso sottocutaneo.[25] Il grasso addominale è fortemente soggetto alle variabili dell’Insulino-resistenza/sensibilità.

Grasso Sottocutaneo: La maggior parte del grasso non viscerale rimanente si trova appena sotto la pelle, in una regione chiamata ipoderma.[26] Questo grasso sottocutaneo non è correlato a molte delle classiche patologie legate all’obesità, come le malattie cardiache, il cancro e l’ictus, e alcune prove suggeriscono addirittura che potrebbe essere protettivo.[27] Il modello tipicamente femminile (o ginecoide) di distribuzione del grasso corporeo intorno ai fianchi, alle cosce e ai glutei è costituito da grasso sottocutaneo, e quindi rappresenta un rischio minore per la salute rispetto al grasso viscerale.[28][29]

Come tutti gli altri organi adiposi, il grasso sottocutaneo è parte attiva del sistema endocrino e secerne gli ormoni Leptina e Resistina.[26]

La relazione tra lo strato adiposo sottocutaneo e il grasso corporeo totale di una persona viene spesso modellata utilizzando equazioni di regressione. La più popolare di queste equazioni è stata creata da Durnin e Wormersley, che hanno testato in modo rigoroso molti tipi di dermoprotezione e, di conseguenza, hanno creato due formule per calcolare la densità corporea di uomini e donne. Queste equazioni presentano una correlazione inversa tra le pieghe cutanee e la densità corporea: all’aumentare della somma delle pieghe cutanee, la densità corporea diminuisce.[30]

Fattori come il sesso, l’età, le dimensioni della popolazione o altre variabili possono rendere le equazioni non valide e inutilizzabili e, a partire dal 2012, le equazioni di Durnin e Wormersley rimangono solo stime del reale livello di grassezza di una persona. Nuove formule sono ancora in fase di creazione.[30]

Gli adipociti del grasso sottocutaneo sono il target degli sforzi di manipolazione dietetica, allenante e supplementativa per ridurre al massimo la percentuale di grasso corporeo. Vi sono comunque aree di distribuzione del grasso sottocutaneo con tassi di mobilitazione lipidica differenti tra gli individui. Ed è proprio in riferimento alle aree di più difficile mobilitazione che ci si riferisce con il termina “grasso ostinato” .

  • Fisiologia del tessuto adiposo:

Gli acidi grassi liberi (FFA) vengono rilasciati dalla lipoproteina lipasi (LPL) ed entrano nell’adipocita, dove vengono riassemblati in trigliceridi mediante esterificazione con il glicerolo.[2] Il tessuto adiposo umano contiene circa l’87% di lipidi.[31]

Esiste un flusso costante di FFA che entrano ed escono dal tessuto adiposo.[2] La direzione netta di questo flusso è controllata dall’insulina e dalla leptina: se l’insulina è elevata, c’è un flusso netto di FFA verso l’interno e solo quando l’insulina è bassa gli FFA possono lasciare il tessuto adiposo. La secrezione di Insulina è stimolata dall’aumento della glicemia, dagli AA insulinogenici e in piccola parte dai grassi.[32]

β2-AR

Nell’uomo, la lipolisi (idrolisi dei trigliceridi in acidi grassi liberi) è controllata attraverso il settaggio equilibrato dei recettori β-adrenergici lipolitici e dell’antilipolisi mediata dai recettori α2A-adrenergici.

L’equilibrio tra β2 e α2A-AR determina le caratteristiche peculiari dell’adipocita in termini di lisi dei trigliceridi di deposito (perdita di grasso). Infatti, se l’equilibrio tende a perdersi in favore dei α2A-AR a discapito dei β2-AR ci troviamo di fronte al già prima citato “grasso testardo”.

  • Distribuzione degli Adrenocettori negli adipociti bianchi, bruni e beige

Gli adipociti bianchi sono il tipo di adipocita predominante nell’organismo e sono localizzati in depositi WAT distinti, caratterizzati da grasso intra-addominale (grasso viscerale che circonda gli organi interni, ovvero grasso mesenterico, perirenale e gonadico) o sottocutaneo (come il grasso inguinale). Gli adipociti bianchi immagazzinano energia (glucosio e acidi grassi) sotto forma di trigliceridi all’interno di un’unica goccia lipidica e il WAT agisce anche come organo endocrino per il rilascio di adipochine come la leptina e l’adiponectina che regolano l’omeostasi energetica dell’intero corpo (Galic, Oakhill, & Steinberg, 2010).

Differenze nella visualizzazione, nella funzione e nell’espressione dei geni firma negli adipociti bianchi, bruni e beige e l’attuale comprensione dell’espressione e della funzione degli adrenocettori (AR) nei roditori e nell’uomo. La mancata menzione di un sottotipo di adrenocettore indica che non esistono prove attuali dell’espressione/funzione della proteina recettoriale. In alcuni casi, l’evidenza funzionale si basa sull’uso di agonisti non selettivi (✦), tra cui l’Isoprenalina (Bartesaghi et al., 2015) e l’Efedrina (Carey et al., 2013) o di antagonisti (✧), tra cui la Fentolamina (Stich et al., 1999) o una combinazione di Propranololo e SR59230A per inibire tutte le risposte mediate dai β-adrenocettori (Imai et al., 2006). *L’assorbimento di 2-[18F]fluoro-2-deossiglucosio è stato misurato in risposta all’agonista selettivo dei β3-adrenocettori mirabegron nel tessuto adiposo bruno umano (Cypess et al., 2015). BA: adipocita bruno; UCP1: proteina di disaccoppiamento 1; WA: adipocita bianco

Nei roditori, tutti e tre i sottotipi di β-adrenocettori sono espressi in una serie di depositi sottocutanei e viscerali (Collins et al., 1994; Collins, Daniel, & Rohlfs, 1999; Germack, Starzec, Vassy, & Perret, 1997; Granneman, 1992; Hollenga & Zaagsma, 1989; Komai et al, 2016; Llado et al., 2002; Susulic et al., 1995), con il β3-adrenocettore che è il principale recettore responsabile della lipolisi mediata dal β-adrenocettore negli adipociti bianchi maturi. L’espressione del β-adrenocettore è influenzata anche dallo stato di differenziazione dell’adipocita bianco. L’agonista generale dei β-adrenocettori, l’Isoprenalina, ma non l’agonista altamente selettivo dei β3-adrenocettori, il CL316243, aumenta la proliferazione dei preadipociti, suggerendo un ruolo mediato dai β1-adrenocettori, mentre sia i β1-adrenocettori che i β3-adrenocettori mediano la lipolisi negli adipociti maturi (Germack et al., 1997; Klaus, Seivert, & Boeuf, 2001; Louis, Jackman, Nero, Iakovidis, & Louis, 2000; Susulic et al., 1995). È stato escluso un ruolo del β2-adrenocettore utilizzando antagonisti e agonisti selettivi del recettore.

Questi studi dimostrano collettivamente che i β-adrenocettori sono essenziali per la funzione del WAT, ma che esistono meccanismi di compensazione quando manca il β3-adrenocettore. Non ci sono prove convincenti di un contributo funzionale da parte degli α1- o α2-adrenocettori negli adipociti bianchi autentici dei roditori (Merlin, Sato, Nowell, et al., 2018). Le conoscenze sulla regolazione dell’adiponectina da parte degli adrenocettori sono meno numerose. L’adiponectina, una seconda adipochina secreta dagli adipociti bianchi e bruni, regola l’assorbimento del glucosio, la lipogenesi, la lipolisi e l’ossidazione degli acidi grassi in diversi tessuti, compreso il WAT, in modo autocrino.

Negli esseri umani, l’α1A-adrenocettore mostra una forte espressione in tutti i campioni adulti nativi, ma un’espressione trascurabile negli adipociti coltivati. Al contrario, l’mRNA per l’α1B-adrenocettore è osservato nei tessuti nativi ma anche negli adipociti differenziati di tutti i depositi, mentre l’espressione dell’α1D-adrenocettore è estremamente bassa sia nei tessuti che nelle colture primarie. L’α2A-adrenocettore mostra una forte espressione nei depositi di WAT adulto, un’espressione molto più bassa nel BAT e un’espressione bassa ma significativa nelle colture di adipociti umani maturi. L’espressione dell’α2B-adrenocettore è massima nel BAT fetale, mentre quella dell’α2C-adrenocettore è elevata nel WAT adulto e nel BAT fetale. Livelli significativi di mRNA di α2C-adrenocettori sono osservati anche negli adipociti bruni interscapolari fetali in coltura. Come accennato in precedenza, esiste un’ampia letteratura sul ruolo dei β-adrenocettori nel tessuto adiposo animale; è quindi interessante che tutti e tre i recettori siano espressi nei depositi adiposi umani nativi. Gli mRNA dei β1- e β2-adrenocettori sono presenti in tutti i depositi del BAT e del WAT, mentre l’mRNA del β3-adrenocettore è espresso principalmente nel BAT sopraclaveare adulto. Come altri marcatori termogenici, il numero di β3-adrenocettori è aumentato nel BAT sovraclaveare di un soggetto esposto al freddo (Chondronikola et al., 2016).

Rapporti precedenti hanno utilizzato la RT-PCR per dimostrare l’espressione dei β3-adrenocettori nel WAT, sebbene i segnali fossero costantemente più elevati nel BAT infantile o nel BAT perirenale (Krief et al., 1993; Lonnqvist et al., 1993; Tavernier et al., 1996). Il riscontro costante di una bassissima espressione di β3-adrenocettori nel WAT, sia da RT-PCR che da RNA-Seq, suggerisce che potrebbero esistere sottopopolazioni minori di cellule positive ai β3-adrenocettori nei depositi di WAT umano.

Le colture di adipociti derivate dalla SVF di depositi adiposi umani mostrano un’espressione trascurabile dei β3-adrenocettori, anche dopo il differenziamento in presenza di cocktail altamente adipogenici (Ding et al., 2018; Shinoda et al., 2015). L’mRNA del β1-adrenocettore è trascurabile anche negli adipociti umani primari, mentre il β2-adrenocettore è espresso nelle colture differenziate con valori medi di frammenti per kilobase per milione di reads di 1,8 (adipociti bruni sopraclavicolari) e 2,2 (adipociti bianchi sottocutanei). La mancanza di espressione dei β3-adrenocettori si verifica parallelamente a bassi livelli di mRNA per PPARGC1A, CPT1B e UCP1, tutti elementi centrali per il controllo cellulare della termogenesi. Ciò suggerisce che la differenziazione di adipociti bruni o beige termogenici è difficile da ottenere sperimentalmente negli adipociti umani primari derivati dalla SVF. Shinoda et al. (2015) hanno osservato che la differenziazione di colture clonali di adipociti bruni sopraclavicolari in presenza di 1 μM di Rosiglitazone e/o il trattamento degli adipociti maturi con 10 μM di Forskolina per 4 ore era sufficiente a indurre livelli di espressione di UCP1 simili a quelli osservati nelle biopsie scBAT native, come osservato nelle colture di adipociti bruni e beige di topo (Merlin, Sato, Chia, et al., 2018). Questo tipo di induzione potrebbe essere necessaria per promuovere l’espressione dei β3-adrenocettori, di PPARGC1A e di CPT1B.

L’espressione a basso livello dei sottotipi di β-adrenocettori è stata rilevata mediante qPCR nelle cellule staminali umane multipotenti di derivazione adiposa, con un rapporto di 3:12:1 per i β1:β2:β3-adrenocettori (Mattsson et al., 2011), ma solo gli agonisti dei β1- e β3-adrenocettori aumentano i livelli di mRNA e di proteina di UCP1 in queste cellule (Mattsson et al., 2011). Le cellule differenziate SGBS e PAZ6 sono state analizzate mediante RNA-Seq (Guennoun et al., 2015). L’espressione del β3-adrenocettore non è rilevabile nelle cellule SGBS, ma è significativa nelle cellule PAZ6 differenziate (2,5 RPKM (reads per kilobase per million mapped reads); Guennoun et al., 2015). È quindi evidente che i livelli di espressione degli adrenocettori e dei marcatori termogenici devono essere considerati in diversi sistemi modello quando si studiano potenziali agenti di “inbrunenti”.

Il WAT umano e gli adipociti bianchi dei roditori differiscono significativamente nell’espressione degli α2-adrenocettori, con un’alta espressione degli α2-adrenocettori nel WAT umano (Galitzky, Larrouy, Berlan, & Lafontan, 1990; Mauriege et al, 1991; Mauriege, Marette, et al, 1995; Mauriege, Prud’homme, Lemieux, Tremblay, & Despres, 1995), ma bassa espressione negli adipociti bianchi dei roditori (Merlin, Sato, Nowell, et al. , 2018; Valet et al., 2000). Ormai sappiamo che l’attivazione di α2-adrenocettori accoppiati a Gαi/o negli adipociti bianchi umani inibisce gli aumenti della lipolisi stimolati dalle catecolamine, contrastando così la lipolisi mediata dai β-adrenocettori (Stich et al, 1999), e gli adipociti bianchi degli esseri umani obesi presentano livelli aumentati di α2-adrenocettori, aumento di α2: β-adrenocettori e un aumento delle risposte mediate dagli α2-adrenocettori (Galitzky et al, 1990; Mauriege et al. , 1991; Mauriege, Marette, et al., 1995; Mauriege, Prud’homme, et al., 1995). Quando l’α2-adrenocettore umano è sovraespresso nel tessuto adiposo di topi KO con β3-adrenocettore, la lipolisi mediata dalla catecolamina negli adipociti bianchi è attenuata e i topi sviluppano una maggiore obesità con una dieta ad alto contenuto di grassi (Valet et al., 2000). Nonostante l’espressione significativa degli α1A- e α1B-adrenocettori nel tessuto adiposo umano nativo, non vi sono prove funzionali convincenti di un’attività diretta delle catecolamine.

  • “Stubborn Fat”

I due tipi di adrenocettori sopra citati, non controllano solo il metabolismo delle cellule grasse, ma anche il flusso sanguigno in entrata e in uscita da queste ultime. Di conseguenza, i β2-AR aumentano la lipolisi e il flusso sanguigno del tessuto adiposo mentre i α2A-AR inibiscono la lipolisi e il flusso sanguigno del tessuto adiposo.

Quindi, le diverse aree del grasso corporeo hanno una diversa distribuzione degli adrenorecettori β2 e α2A e questo influisce profondamente sulla capacità o meno di mobilitare e trasportare il grasso al di fuori di esse.

L’esempio più estremo è quello del grasso corporeo inferiore (fianchi e cosce), in cui è stato riscontrato un numero di recettori α2A circa 9 volte maggiore rispetto ai recettori β2. Alcune ricerche suggeriscono che il grasso addominale degli uomini ha una maggiore densità di recettori α2A (rispetto, ad esempio, al grasso viscerale), anche se non è così accentuato come per il grasso corporeo inferiore. Sebbene non sia stato studiato, è probabile che anche il grasso della parte inferiore della schiena sia relativamente resistente agli stimoli lipolitici, a causa di un numero maggiore di recettori α2A.

I dismorfismi sessuali sulla ripartizione calorica sembrano mostrare che nelle donne, dopo un pasto, può verificarsi una distribuzione calorica preferenziale nel grasso dell’area inferiore del corpo, oltre ad una ridistribuzione del grasso dalla parte superiore a quella inferiore del corpo.

Non è raro, infatti, che le donne lamentino una perdita sensibile nella parte superiore del corpo con una concomitante ed apparente peggioramento dei depositi adiposi nella parte inferiore. Una donna potrebbe mobilitare bene il grasso della parte superiore del corpo, ma immagazzinare parte di quel grasso nei depositi della parte inferiore del corpo. La parte superiore del corpo diventa più magra, quella inferiore più grassa. Questa possibilità può interessare a diverso grado anche gli uomini.

Come accennato in precedenza, oltre alle differenze nella reattività agli stimoli lipolitici, i depositi di “grasso testardo” hanno un flusso sanguigno significativamente più scarso rispetto ad altri depositi.

Alcuni studi hanno dimostrato che il flusso sanguigno nella parte inferiore del corpo può essere inferiore del 67% rispetto ad altri depositi. Il grasso viscerale ha un flusso sanguigno estremamente buono e viene mobilitato molto rapidamente.

La scarsa circolazione sanguigna ha due conseguenze importanti. In primo luogo, significa che gli ormoni trasportati dal sangue non possono raggiungere a concentrazioni ottimali le cellule adipose. In secondo luogo, un flusso sanguigno insufficiente rende più difficile far uscire il grasso mobilitato dalla cellula grassa per ossidarlo altrove.

Il motivo per cui il flusso sanguigno è così scarso non è ben definito. In parte potrebbe trattarsi semplicemente di un minor numero di vasi sanguigni, visto che gli studi di imaging ne mostrano pochi in quell’area. Inoltre, sembra che i vasi sanguigni della parte inferiore del corpo abbiano più recettori α2A che β2; ciò ha la stessa conseguenza della lipolisi. Più recettori α2A significano più vasocostrizione e meno vasodilatazione, il che si traduce in un minor flusso sanguigno.

Un fattore da tenere in considerazione è che, l’Estradiolo aumenta direttamente il numero di recettori α2A-adrenergici antilipolitici negli adipociti sottocutanei. L’aumento del numero di recettori α2A-adrenergici causa una risposta lipolitica attenuata delle Catecolamine o delle ammine simpaticomimentiche negli adipociti sottocutanei; al contrario, non è stato osservato alcun effetto degli estrogeni sull’espressione dell’mRNA dei recettori α2A-adrenergici negli adipociti del deposito di grasso intra-addominale.

Questi risultati mostrano che una cattiva gestione degli estrogeni abbassa la risposta lipolitica nel deposito di grasso sottocutaneo aumentando il numero di recettori α2A-adrenergici antilipolitici, mentre gli estrogeni non sembrano influenzare la lipolisi negli adipociti del deposito di grasso intra-addominale. Si è scoperto che questo effetto degli estrogeni è causato dal sottotipo α del recettore degli estrogeni (ERα).

Questi risultati dimostrano che una sovraespressione estrogenica attenua la risposta lipolitica attraverso la sovra-regolazione del numero di recettori α2A-adrenergici antilipolitici solo nel sottocutaneo e non nei depositi di grasso viscerale. Ciò rappresenta una spiegazione del modo in cui gli estrogeni mantengono la tipica distribuzione del grasso femminile nel sottocute, poiché gli estrogeni sembrano inibire la lipolisi solo nei depositi sottocutanei, spostando così l’assimilazione del grasso dai depositi intra-addominali a quelli sottocutanei peggiorando la situazione dei depositi di “grasso testardo” pre-esistenti e “generandone” di nuovi.

Antagonisti degli α2-AR:

Fentolamina; un α2 bloccante

Gli α2 bloccanti sono un sottoinsieme della classe dei farmaci α-bloccanti e sono antagonisti del recettore adrenergico α2. Sono utilizzati principalmente nella ricerca, avendo trovato un’applicazione clinica limitata nella medicina umana. Gli α2 bloccanti aumentano il rilascio di Noradrenalina e bloccano, per l’appunto, l’attività recettoriale degli α2-AR.

La Yohimbina, storicamente utilizzata come afrodisiaco, è talvolta impiegata in medicina veterinaria (anche se ora è stata ampiamente sostituita dall’atipamezolo) per invertire gli effetti degli α2-AR, come la Medetomidina, utilizzati come sedativi durante gli interventi chirurgici.[33]

Gli antidepressivi tetraciclici Mianserina e Mirtazapina sono α2-bloccanti , anche se la loro efficacia come antidepressivi può derivare dalla loro attività su altri siti recettoriali.

Meccanicamente, i α2-bloccanti aumentano i neurotrasmettitori adrenergici, dopaminergici e serotoninergici e inducono la secrezione di Insulina, riducendo i livelli di zucchero nel sangue.

La sospensione repentina degli α2-bloccanti può essere difficile o pericolosa, poiché la sottoregolazione globale dei neurotrasmettitori può causare sintomi di depressione e altri problemi neurologici, e l’aumento dei livelli di zucchero nel sangue insieme alla diminuzione della sensibilità all’insulina può causare in alcuni casi stati diabetici. Inoltre, può verificarsi una riduzione della microcircolazione insieme alla supersensibilità all’adrenalina in organi come il fegato.

  • Yohimbina e α-yohinbina
Yohimbina

Non vi è dubbio che la Yohimbina rappresenti l’α2-antagonista più usato per ridurre il grasso corporeo e, nello specifico, le zone del “grasso testardo”.

Se assunta alla dose raccomandata (≤0,2mg per kg di peso corporeo), la Yohimbina può causare nausea, dolore addominale, vertigini, nervosismo e ansia.[34]

Dosi più elevate di Yohimbina possono essere pericolose; un rapporto del 2005 ha rilevato che la Yohimbina ha il più alto tasso di effetti tossici di qualsiasi prodotto botanico.[35] Casi di ingestione di Yohimbina in eccesso hanno suggerito che l’ansia, l’ipertensione (pressione alta), la tachicardia (frequenza cardiaca elevata), le aritmie e l’agitazione sono tra gli effetti collaterali più gravi di questo composto.[35]

La Yohimbina è un α2-antagonista adrenergico selettivo. In altre parole, ha come bersaglio e inattiva una classe di recettori del sistema nervoso che risponde al neurotrasmettitore Noradrenalina.[36] L’antagonismo dei recettori α2 aumenta il rilascio di Noradrenalina da parte del sistema nervoso simpatico, causando gli effetti stimolanti e “iperadrenergici” della Yohimbina.

La Yohimbina inibisce anche l’attività dei recettori α2 sulle cellule adipose, dove la Noradrenalina agisce normalmente per sopprimere il rilascio di grasso. L’inibizione dell’effetto antilipolitico della Noradrenalina consente una maggiore lipolisi (e conseguente ossidazione lipidica).[37]

Dosi giornaliere totali di 0,2mg/kg di peso corporeo sono state utilizzate con successo per aumentare la mobilitazione lipidica dai depositi di “grasso testardo” e la successiva ossidazione dei grassi senza implicazioni significative sui parametri cardiovascolari come la frequenza cardiaca e la pressione sanguigna. Ciò si traduce in un dosaggio giornaliero totale di:

  • 14 mg per una persona di 68 kg
  • 18 mg per una persona di 91 kg
  • 22 mg per una persona di 113 kg.

Queste dosi totali giornaliere si riferiscono all’uso di Yohimbina come unico agente con azione riduttiva sulla attività dei recettori α2. Tali dosaggi vengono spesso suddivise e assunte in due o quattro dosi nel corso della giornata. Ad esempio, una persona di 68 kg potrebbe assumere 7mg due volte al giorno (lontano dai pasti) per raggiungere una dose totale di 14mg.

Nota: non tutti i soggetti sono in grado di tollerare la “dose piena” ricavata dalla sopra citata formula. In quel caso, l’utilizzatore mantiene la tose tollerabile raggiunta.

Rauwlscina

Se si considera lo stesso recettore α2, la Yohimbina sembra avere una selettività per la subunità α2C piuttosto che per la A o la B; la selettività è compresa tra 4 e 15 volte,[38] mentre la Rauwolscina [α-yohimbina] sembra non essere selettiva tra queste tre subunità.[39][38] La Rauwlscina sembra essere efficace a livello del recettore quanto la Yohimbina ma con una emivita di circa 5h contro i 30 minuti della prima emivita della Yohimbina.[40]

Il fatto che la Yohimbina è selettiva per la subunità α2C più che per altre subunità, compresa l’importante A, se parliamo di α2-AR adipocitari, la sua efficacia risulta moderatamente ridotta per la riduzione del “grasso testardo”, sebbene la subunità α2C sia ad un certo grado espressa anche nel WAT; o per lo meno lo è se utilizzata come unico agente interferente l’attività adipocitaria dei α2-AR.

Introduzione agli ACE II inibitori:

Captopril

Leonard T. Skeggs e i suoi colleghi (tra cui Norman Shumway) scoprirono l’ACE [Inibitori dell’enzima di conversione dell’angiotensina] nel plasma nel 1956.[41] Le scoperte avvenute nel corso di un annosa ricerca hanno portato allo sviluppo del Captopril, il primo ACE-inibitore attivo per via orale, nel 1975.[42]

Bradichinina

Gli ACE inibitori inibiscono l’attività dell’enzima di conversione dell’angiotensina, un componente importante del sistema renina-angiotensina che converte l’angiotensina I in angiotensina II e idrolizza la bradichinina.[43] Pertanto, gli ACE inibitori diminuiscono la formazione di angiotensina II, un vasocostrittore, e aumentano il livello di bradichinina, un vasodilatatore peptidico.[43] Questa combinazione è sinergica nell’abbassare la pressione sanguigna.

Gli ACE-inibitori riducono l’attività del sistema Renina-Angiotensina-Aldosterone (RAAS) come evento eziologico (causale) primario nello sviluppo dell’ipertensione nelle persone con diabete mellito, come parte della sindrome da insulino-resistenza o come manifestazione di una malattia renale.[44][45]

Il sistema renina-angiotensina-aldosterone è un importante meccanismo di regolazione della pressione sanguigna. I marcatori di squilibrio elettrolitico e idrico nell’organismo, come l’ipotensione, la bassa concentrazione di sodio nel tubulo distale, la diminuzione del volume sanguigno e l’elevato tono simpatico, innescano il rilascio dell’enzima renina dalle cellule dell’apparato juxtaglomerulare del rene.

Renina

La renina attiva un proormone circolante derivato dal fegato, l’angiotensinogeno, mediante scissione proteolitica di tutti i suoi residui aminoacidici, tranne i primi dieci, noti come angiotensina I. L’ACE (enzima di conversione dell’angiotensina) rimuove quindi altri due residui, convertendo l’angiotensina I in angiotensina II. L’ACE si trova nella circolazione polmonare e nell’endotelio di molti vasi sanguigni.[46] Il sistema aumenta la pressione sanguigna aumentando la quantità di sale e acqua trattenuta dal corpo, sebbene l’angiotensina II sia anche un potente vasocostrittore.[47]

Struttura dell’Angiotensina I e II

Gli ACE-inibitori sono stati inizialmente approvati per il trattamento dell’ipertensione e possono essere utilizzati da soli o in combinazione con altri farmaci antipertensivi. In seguito, si sono rivelati utili per altre malattie cardiovascolari e renali[48], tra cui:

  • Infarto miocardico acuto (attacco cardiaco)[49]
  • Insufficienza cardiaca (disfunzione sistolica ventricolare sinistra)[50]
  • Complicanze renali del diabete mellito (nefropatia diabetica), grazie alla riduzione della pressione arteriosa e alla prevenzione del danno da iperfiltrazione glomerulare[51].

Angiotesina II e tessuto adiposo:

Noradrenalina

L’angiotensina II determina, tra le atre cose, un aumento del rilascio di catecolamine (Noradrenalina), della sensibilità alle catecolamine e della loro attività.[52]

L’angiotensina II può essere prodotta dal tessuto adiposo umano; a questo proposito, l’angiotensinogeno e gli enzimi coinvolti nella sua conversione in Ang II, nonché le vie RAS (renina, enzima di conversione dell’angiotensina: ACE) e non RAS (catepsina D, catepsina G) sono espressi nel tessuto adiposo umano. Inoltre, anche i recettori dell’Ang II sono espressi nel tessuto adiposo, il che suggerisce un ruolo locale di questo ormone nella regolazione dell’adipogenesi, del metabolismo lipidico e nella patogenesi dell’obesità28,48. L’influenza dell’Ang II sugli adipociti è mediata dall’attivazione dei recettori АТ1 e АТ2, coinvolgendo diversi sistemi di trasduzione del segnale, tra cui le risposte Са 2+, la proliferazione e la differenziazione cellulare, l’accumulo di trigliceridi, l’espressione dei geni delle adipochine e la secrezione di queste ultime [53]. L’angiotensina II ha anche un effetto anti-adipogenico, riducendo la differenziazione delle cellule pre-adipose umane [54]. Pertanto, questo ormone potrebbe rappresentare un fattore protettivo contro l’espansione incontrollata del tessuto adiposo [55].Questo effetto anti-adipogenico dell’Ang II è stato osservato anche nel grasso omentale di esseri umani affetti da obesità, con la partecipazione della via della chinasi regolata dal segnale extracellulare/1,2 (ERK/1,2) e la fosforilazione del recettore gamma attivato dal proliferatore del perossisoma (pPARG) [56]. Durante questo processo, l’origine dell’Ang II può essere sia da RAS che da vie non RAS; queste ultime potrebbero essere più importanti in questo processo [57]. Tuttavia, oltre a questo effetto, l’Ang II può aumentare il contenuto di trigliceridi e l’attività di due enzimi lipogenici (FAS: sintasi degli acidi grassi e GPDH: glicerolo-3-fosfato deidrogenasi) in colture primarie di cellule adipose umane, suggerendo un controllo dell’adiposità attraverso la regolazione della sintesi e dell’immagazzinamento dei lipidi negli adipociti [58]. L’Ang II regola anche il flusso sanguigno regionale verso il tessuto adiposo e le dimensioni e il numero delle cellule grasse [59]. Queste scoperte sono state confermate dal blocco sperimentale dell’Ang II, che influenza direttamente il peso corporeo e l’adiposità [60].

Effetti adipogenici e anti-adipogenici del sistema renina-angiotensina (RAS). La produzione locale di angiotensina II (Ang II) nel tessuto adiposo è coinvolta nella regolazione dell’adipogenesi e del metabolismo lipidico. L’Ang II ha un effetto anti-adipogenico riducendo la differenziazione adipogenica delle cellule pre-adipose umane con la partecipazione di ERK e pPARG. L’Ang II può anche aumentare il contenuto di trigliceridi negli adipociti attivando due enzimi lipogenici, FAS e GPDH. Questo effetto anti-adipogenico dell’Ang II può essere regolato. L’Ang II può essere catabolizzato dall’ACE2 adiposo per formare l’Ang 1-7 che interagisce con i recettori dell’Ang 1-7 (Mas) sugli adipociti, attivando la PI3K/Akt e l’inibizione delle vie MAPK chinasi/ ERK e inducendo un effetto inibitorio nell’Ang II/AT1 anti-adipogenico, promuovendo l’adipogenesi. AT1: Recettore-1 dell’angiotensina II; AT2: Recettore-2 dell’angiotensina II; RAS: Renin Angiotensin System; Cathep D, G: Cathepsin D, Cathepsin G; ACE1: angiotensin-converting enzyme-1; ACE2: angiotensin-converting enzyme-2; Ang 1-7: Angiotensina 1-7; ERK: extracellular signal-regulated kinase; pPARG: phosphorylated peroxisome proliferator-activated receptor gamma; FAS: fatty acid synthase; GPDH: glicerolo-3-fosfato deidrogenasi; MAPK chinasi/ERK: mitogen-activated protein kinases/extracellular signal-regulated kinases; PI3K/Akt: fosfatidilinositolo 3-chinasi/proteina chinasi B.

È stata documentata anche la regolazione autocrina dell’Ang II durante l’adipogenesi. L’angiotensina II può essere catabolizzata nei tessuti adiposi dall’enzima adiposo di conversione dell’angiotensina 2 (ACE2) per formare l’Ang 1-7. La regolazione autocrina del sistema angiotensinico locale implica la coespressione dei recettori dell’Ang II (AT1 e AT2) e dei recettori dell’Ang 1-7 (Mas) sugli adipociti. L’attivazione del recettore Mas da parte dell’Ang 1-7 ha un effetto contrario all’effetto anti-adipogenico dell’Ang II, inducendo l’adipogenesi attraverso l’attivazione delle vie PI3K/Akt e l’inibizione delle vie MAPK chinasi/ERK [61] . In questo contesto, la regolazione autocrina dell’asse Ang II/AT1-ACE2-Ang 1-7/Mas durante l’adipogenesi è in grado di produrre ormoni e citochine che promuovono l’infiammazione, l’accumulo di lipidi, l’IR e le componenti del RAS, che si attivano in presenza di obesità come meccanismi chiave correlati all’obesità dell’ipertensione e di altre componenti della sindrome cardiometabolica [62].

  • Angiotesina II e α2A-AR

Una caratteristica di particolare interesse in riferimento all’Angiotesina II è il fatto che sia un polipeptide necessario per l’espressione di alcuni recettori α2 (ma non di tutti). Ciò significa che senza l’Angiotensina II i recettori α2 non possono essere sviluppati in alcune cellule. Di conseguenza, se sottoregoliamo l’Angiotensina II, prodotta naturalmente dall’organismo, il normale rinnovamento dei recettori α2 non avverrà. Bisogna capire che in ogni cellula c’è un costante rinnovamento recettoriale. Bloccando la formazione di un tipo specifico di recettore in una cellula (ad esempio i recettori α2), dopo un po’ di tempo non ci saranno più recettori α2 in questa cellula. I vecchi recettori saranno completamente degradati e avremo impedito alla nuova generazione di recettori di sostituire quelli vecchi.

Attività dell’Angiotesina II a livello dei α2A-AR e del Recettore dell’Angiotesina II dell’adipocita del WAT

Quindi, sotto-regolazione marcata dei α2 recettori . Il problema principale è se questa azione dell’Angiotensina II avviene nelle cellule adipose. L’Angiotensina II agisce solo sui recettori α2 che rispondono a due condizioni:

  • Sembra avere il massimo effetto sui recettori α2 del sottotipo “A”. Ciò è positivo, poiché sono proprio questi recettori a trovarsi nelle cellule adipose. Quindi, la prima condizione è soddisfatta.
  • L’Angiotensione II agisce solo sulle cellule ricche di recettori α2 e di recettori dell’Angiotensina II. Sappiamo già che le cellule adipose sono molto ricche di recettori α2. Da tempo i ricercatori sanno anche che le cellule adipose sono ricche di recettori dell’Angiotensina II.

Il punto chiave da ricordare è che nelle cellule grasse l’Angiotensina II è necessaria perché i recettori α2 si rinnovino normalmente. Se impediamo in qualche modo la formazione di Angiotensina II, causeremo grossi problemi nel rinnovo dei recettori α2A nelle cellule adipose.

Quindi, tutto ciò che occorre fare è alterare la produzione di Angiotensina II attraverso l’uso principale di ACE II inibitori. Nel giro di poche settimane il numero di recettori α2 diminuirà sensibilmente.

Quinapril

L’uso di ACE II inibitori ha quindi il potenziale di attenuare la sensibilità agli α2-adrenocettori negli adipociti umani. L’effetto del Quinapril, un ACE II inibitore lipofilo, è stato maggiore di quello dell’Enalapril [www.ncbi.nlm.nih.gov/pmc/articles], un ACE II inibitore idrofilo. Gli ACE II inibitori lipofili possono avere un effetto vasodilatatore più potente rispetto agli ACE II inibitori idrofili. La concentrazione di Angiotensina II nei tessuti piuttosto che nel plasma può contribuire alla sensibilità e il numero degli α2-adrenocettori.

Enalapril

È stato riportato che l’ACE inibitore lipofilo, Quinapril, riduce la concentrazione tissutale di Angiotensina II in misura maggiore rispetto all’ACE inibitore idrofilo, Enalapril, da 5 a 24 ore dopo una singola somministrazione orale nei ratti. I tempi di raggiungimento della concentrazione plasmatica massima del Quinapril e del suo metabolita attivo sono stati di 2-3 ore [63, 64]. Pertanto, per esaminare più chiaramente la cosa, ciascun farmaco è stato somministrato 22 e 3 ore prima dell’esame. Entrambi gli ACE inibitori hanno soppresso le attività plasmatiche dell’ACE per oltre il 90%. Questo risultato conferma i precedenti risultati ottenuti in soggetti giapponesi [65]. Sebbene la soppressione dell’attività dell’enzima convertitore dell’Angiotensina nel plasma e la pressione arteriosa sistemica non differissero tra i due farmaci, l’attenuazione della sensibilità degli α-adrenocettori alla Fenilefrina era maggiore nei soggetti trattati con Quinapril rispetto a quelli trattati con Enalapril. Le osservazioni e i rapporti precedenti [66] suggeriscono che la concentrazione di Angiotensina II nei tessuti piuttosto che quella nel plasma può contribuire alla sensibilità dei recettori α-adrenergici nei vasi ed in altri tessuti come quello adiposo. Inoltre, l’ACE inibitore lipofilo può essere più potente dell’ACE inibitore idrofilo. Infatti, il Quinapril ha attenuato la risposta vasopressore della Fenilefrina più dell’Enalapril e l’intervallo di confidenza del 95% per le differenze di ED50 tra Enalapril e Qinapril è stato di 31,1-397,5. Sebbene l’entità dell’attenuazione della sensibilità dei recettori α-adrenergici indotta dalla soppressione dell’ACE tissutale con Quinapril fosse varia, ciò è coerente con un altro esperimento in vitro [67].

Quando osservata, la concentrazione di Noradrenalina nel siero durante il riposo a letto non è cambiata prima e dopo la somministrazione del farmaco ACE inibitore. Rapporti precedenti hanno dimostrato che gli ACE inibitori attenuano il deflusso del nervo simpatico negli animali e nell’uomo [68, 69]. Negli studi in cui non è stato applicato alcun carico al sistema nervoso simpatico, non è stato possibile rilevare alcun cambiamento nel flusso simpatico indotto dagli ACE inibitori.

Applicazione degli ACE II inibitori nel trattamento del “grasso testardo”:

  • La genesi dell’uso degli ACEI come PEDs
Daniel (“Dan”) Duchaine

Nonostante il potenziale maggiore nella sotto-regolazione degli α2A-AR attribuita agli ACE inibitori con caratteristiche prettamente lipolifiche, la molecola appartenente a questa classe di farmaci maggiormente utilizzata per tale scopo e da più tempo è il Captopril. Questo storico ACE II inibitore mostra però caratteristiche idrofile. Certo, la sua maggiore diffusione è legata senza dubbio agli anni dalla sintesi e immissione nel circuito farmaceutico della molecola, ma anche, e soprattutto, al suo lancio come PEDs da parte, tra i primi, di Dan Duchaine (1952-2000).

Le proprietà potenziali sulla composizione corporea del Captopril vennero individuare per la prima volta in alcune atlete interessate ad assumere un farmaco che le desse un miglioramento della composizione corporea ma senza virilizzazione. Così quella divenne l’occasione giusta per testare il Captopril. La dieta delle atlete non venne cambiata. Le atlete hanno continuato per un paio di mesi ad assumere il Captopril come unico farmaco. Avevano migliorato leggermente il trofismo, ma non molto. Ciò che però colpì i “pionieri della preparazione” fu il fatto che avevano perso grasso in aree in cui prima non erano riuscite a perderlo in modo significativo.

Approfondendo le caratteristiche della molecola attraverso la consultazione di testi accademici reperiti alla biblioteca medica, scoprirono che la relazione tra il Captropril e i recettori α2.

Con il procedere del tempo e le sperimentazione dose-tempo nell’applicazione del Captopril (ma non solo), si è notato che il farmaco poteva rendere possibile la riduzione totale della dose di Yohimbina migliorando notevolmente la compliance dell’utilizzatore.

Sappiamo, infatti, che la Yohimbina presenta una selettività maggiore per i recettori α2C piuttosto che ai sottogruppi “A” e “B”. Questa caratteristica risulta limitativa nell’azione ricercata nella Yohimbina come α2-antagonista adipocitario. L’inserimento del Captopril [o di altro ACE II inibitore] permette di 1) ridurre sensibilmente il numero di α2A-AR nell’adipocita e 2) di permettere, a dosaggio di 1/2 fino a 1/3, un legame antagonista da parte della Yohimbina nei confronti degli α2-AR rimasti. L’uso della α-yohimbina, non presentando tale affinità selettiva, migliora sensibilmente questo effetto sinergico.

Situazione adipocitaria in fisiologia con attività catecolaminergica a livello degli adrenocettori nel adipocita;
Impatto sulla attività adrenorecettoriale con somministrazione di Yohimbina;
Impatto sulla densità/numero adrenorecettoriale con somministrazione di un ACE II inibitore [Captopril];
Impatto additivo sulla densità, numero, funzionalità e attivazione adrenorecettoriale con somministrazione di Yohimbina e un ACE II inibitore [Captopril].
  • Le limitazioni degli ACE II inibitori
  • Il Captopril [e in generale gli ACE II inibitori] non è un farmaco che manifesta rapidamente i suoi effetti dal punto di vista estetico. Bisogna ricordare che la regolazione degli α2-AR richiede almeno due mesi prima di diventare significativa.
  • È necessario seguire una dieta ipocalorica per vedere ottimi risultati in termini di perdita di grasso ostinato. Abbiamo detto, infatti, che i recettori α2-AR impediscono la normale perdita di grasso la dose si presentano in maggiori concentrazioni. Questo non significa, però, che si perderà automaticamente grasso di deposito solo perché si è ridotto il numero di recettori α2. Significa solo che la perdita di grasso ostinato indotta dalla dieta ipocalorica sarà più “facile”. Avrà un effetto permissivo sulla perdita di grasso ostinato, consentendo di ridurre i depositi adiposi con un rapporto di α2-AR più elevato.
  • L’ultima limitazione è che esiste ancora una linea di difesa per le cellule adipose e la conservazione delle riserve lipiche. Eliminando parzialmente la linea di difesa rappresentata dagli α2-AR, se ne attiva una nuova costituita da recettori antilipolitici chiamati peptide YY, anch’essi localizzati sulle cellule adipose. Ciò significa che la riduzione del livello dei recettori α2-AR permetterà di perdere più grasso ostinato di quanto sarebbe stato normalmente possibile, ma le limitazioni genetiche saranno sempre presenti.

Ma l’uso di Captopril [o altro ACE II inibitore] può permettere di fare un grande passo avanti nella giusta direzione se l’obbiettivo è una marcata riduzione della body fat, soprattutto le aree ostinate.

  • Esempi applicativi degli ACE II inibitori per il trattamento del “Stubborn Fat”

Nell’approccio protocollare di base, e se prendiamo come esempio di ACE II inibitore il Captopril:

  • Captopril = 50mg/die [da raggiungere con gradualità e aumenti giornalieri di 6,25mg];
  • Yohimbina = 5-10mg/die [dose da raggiungere con aumenti giornalieri (pari a 2,5mg) e test della sensibilità ];
  • α-yohimbina = 3/5mg die [dose da raggiungere con aumenti giornalieri (pari a 0,5mg) e test della sensibilità ].

Nell’approccio protocollare intermedio:

  • Captorpil = 50-75mg/die [da raggiungere con gradualità e aumenti giornalieri di 6,25mg];
  • Yohimbina = 10mg/die [dose da raggiungere con aumenti giornalieri (pari a 2,5mg) e test della sensibilità ];
  • α-yohimbina = 5-6mg die [dose da raggiungere con aumenti giornalieri (pari a 0,5mg) e test della sensibilità ];
  • T3 = 25mcg/die [dose da raggiungere con aumenti giornalieri (pari a 12,5mcg) e controllo ematico del FT3].

Nell’approccio protocollare avanzato:

  • Captorpil = 100mg/die [da raggiungere con gradualità e aumenti giornalieri di 6,25mg];
  • Yohimbina = 0.2mg/Kg/die [dose da raggiungere con aumenti giornalieri (pari a 2,5mg) e test della sensibilità ];
  • α-yohimbina = 0.1mg/Kg/die [dose da raggiungere con aumenti giornalieri (pari a 0,5mg) e test della sensibilità ];
  • T3 = 50mcg/die [dose da raggiungere con aumenti giornalieri (pari a 12,5mcg) e controllo ematico del FT3];
  • Salbutamolo = 8-12mg/die [dose da raggiungere con aumenti ogni 1-2 giorni (pari a 2mg)];
    • Alternativa: Clenbuterolo = 1mcg/Kg/die (range 40-80mcg) [dose da raggiungere con aumenti ogni 2 giorni (pari a 10-20mcg) e test della sensibilità/tolleranza];
  • Nedbivololo = 5mg/die [dose di partenza 2,5mg/die e valutazione della tolleranza].

*Nota bene: Nessuno dei protocolli sopra esposti rappresenta un indicazione d’uso o una prescrizione medica di applicazione. Tali informazioni SONO AD ESCLUSIVO SCOPO ESEMPLIFICATIVO!

  • Effetti collaterali degli ACE II inibitori
    • pressione bassa;
    • tosse. Un altro possibile effetto avverso specifico degli ACE-inibitori, ma non di altri bloccanti del RAAS, è l’aumento del livello di bradichinina. La tosse secca persistente è un effetto avverso relativamente comune che si ritiene sia associato all’aumento dei livelli di bradichinina prodotto dagli ACE inibitori, anche se il ruolo della bradichinina nella produzione di questi sintomi è stato contestato. Tuttavia, molti casi di tosse in persone che assumono ACE inibitori potrebbero non essere dovuti al farmaco stesso. Alcuni (0,7%) sviluppano angioedema a causa dell’aumento dei livelli di bradichinina. Può esistere una predisposizione genetica. ;
    • iperkaliemia. Il potassio elevato nel sangue è un’altra possibile complicazione del trattamento con un ACE-inibitore, dovuta al suo effetto sull’aldosterone. La soppressione dell’angiotensina II porta a una diminuzione dei livelli di aldosterone. Poiché l’aldosterone è responsabile dell’aumento dell’escrezione di potassio, gli ACE-inibitori possono causare una ritenzione di potassio. Alcune persone, tuttavia, possono continuare a perdere potassio durante l’assunzione di un ACE-inibitore. È necessario un attento monitoraggio dei livelli di potassio nei soggetti in trattamento con ACE-inibitori che sono a rischio di iperkaliemia.;
    • cefalea;
    • vertigini;
    • affaticamento;
    • nausea e compromissione renale. I soggetti che iniziano la terapia con un ACE-inibitore presentano di solito una modesta riduzione della velocità di filtrazione glomerulare (eGFR). Tuttavia, la riduzione può essere significativa in condizioni di preesistente ridotta perfusione renale, come stenosi dell’arteria renale, insufficienza cardiaca, malattia renale policistica o deplezione di volume. Una moderata riduzione della funzione renale, non superiore al 30% di aumento della creatinina sierica, che si stabilizza dopo una settimana di trattamento. La riduzione del eGFR è un problema soprattutto se il paziente assume contemporaneamente un FANS e un diuretico. Quando i tre farmaci vengono assunti insieme, il rischio di sviluppare un’insufficienza renale aumenta notevolmente.
    • Una rara reazione allergica grave può colpire la parete intestinale e causare secondariamente dolore addominale.

Ma gli ARB/Sartani possono essere un sostituto agli ACE II inibitori per lo scopo qui discusso?

Telmisartan

Sono circa vent’anni che si è scoperto che il Telmisartan, un Bloccante del Recettore dell’Angiotensina II (ARB) approvato per il trattamento dell’ipertensione, è anche un agonista parziale di PPARγ.[70-71] Mentre gli agonisti completi di PPARγ, come il Rosiglitazone e il Pioglitazone, promuovono l’aumento di peso alterando la distribuzione del grasso e la differenziazione degli adipociti, gli agonisti parziali (agonisti/antagonisti misti) di PPARγ possono avere la capacità di ritardare l’aumento di peso promuovendo al contempo la differenziazione degli adipociti.[72] Ad esempio, è stato scoperto che il Telmisartan può promuovere la differenziazione degli adipociti ma anche attenuare l’aumento di peso, migliorando al contempo il metabolismo del glucosio e dei lipidi nei ratti alimentati con una dieta ad alto contenuto di grassi e carboidrati.[70] Sharma et al[73] hanno riportato che il blocco del recettore dell’angiotensina II di tipo 1, di per sé, può promuovere la differenziazione degli adipociti e hanno proposto che questo possa contribuire agli effetti antidiabetici degli antagonisti del recettore dell’angiotensina II. Non è noto se molecole bifunzionali come il Telmisartan, che attivano PPARγ e bloccano il recettore dell’angiotensina II, esercitino effetti diversi sulle dimensioni degli adipociti e sui determinanti primari del peso corporeo rispetto ai normali bloccanti del recettore dell’angiotensina, come il Valsartan, che non hanno la capacità di attivare PPARγ.

Valsartan

Negli studi si è scoperto che il Telmisartan, ma non il Valsartan, aumenta l’espressione dei geni di un fattore di trascrizione nucleare (TFAM) che regola la funzione mitocondriale e di una proteina mitocondriale (MTCO1) coinvolta nella fosforilazione ossidativa. Rispetto agli agonisti totali convenzionali di PPARγ, come i Tiazolidinedioni, gli agonisti parziali del PPARγ, come il Telmisartan, possono avere la capacità di reclutare in modo preferenziale alcuni coattivatori trascrizionali che sono particolarmente importanti nella regolazione dei geni che controllano la funzione mitocondriale e il metabolismo energetico.[74-75] Ad esempio, gli agonisti parziali sembrano reclutare preferenzialmente il coattivatore 1-α di PPARγ, un coattivatore trascrizionale noto per stimolare l’espressione di TFAM, che, a sua volta, può aumentare l’espressione dei geni mitocondriali (ad esempio, MTCO1) e, in ultima analisi, la biogenesi mitocondriale.[75-76] Sebbene i precisi meccanismi cellulari e molecolari che mediano i robusti effetti del Telmisartan sul peso corporeo, sul dispendio energetico e sul metabolismo dei grassi rimangano da chiarire, gli studi sul reclutamento del coattivatore PPARγ e sull’espressione dei geni target, nonché sul numero, la struttura e la funzione dei mitocondri, potrebbero rappresentare aree di indagine potenzialmente fruttuose in futuro.

Ciò che si è anche notato con gli ARB, ma soprattutto con il Telmisartan, è che ha una azione sulla distribuzione del grasso più che sulla sua riduzione sistemica. Infatti, il Telmisartan ha mostrato di indurre la riduzione del grasso viscerale ma senza cambiamenti statistici sui deposito sottocutanei. Le più recenti review che hanno esaminato l’effetto del Telmisartan sulla condizione metabolica e composizione corporea dei pazienti trattati, hanno evidenziato che i risultati suggeriscono che questo sartano influisce sulla distribuzione del grasso, inducendo una riduzione del grasso viscerale, e quindi potrebbe essere utile nei pazienti ipertesi con obesità/sovrappeso, sindrome metabolica o intolleranza al glucosio.

Anche i dati aneddotici di un certo valore e design suggeriscono uno “spostamento” nell’equilibrio di mobilitazione delle riserve di grasso verso la perdita dei depositi viscerali invece di quelli sottocutanei. Ed è per tale motivo che diversi preparatori ne evitino l’uso sotto gara.

Questo “effetto shift” sul bilancio della mobilitazione delle riserve di grasso dal grasso sottocutaneo ad una prevalenza del viscerale si manifesta in modo significativo nel range di dosaggio di 80-160mg/die.

PPARγ

L’attività come agonista parziale del PPARγ è il motivo principale per il quale in Telmisartan agisce sul metabolismo lipidico adipocitario. Si è affermato che coloro i quali vogliono bypassare il problema dello shift della mobilitazione adiposa possono farlo assumendo l’Oleuropeina. Ora, non vi è nulla di certo e poco che superi la sottile linea tra ipotesi e dato realmente misurato, ma alcuni, soprattutto coloro i quali mal tollerano gli aumenti di bradichinina dati dagli ACE II inibitori, inseriscono questo supplemento erboristico nel tentativo di risolvere la sopra citata limitazione.

Peccato, però, che grazie a questa attività di agonista parziale del PPARγ, il Telmisartan può ridurre lo stoccaggio dei trigliceridi negli adipociti durante una dieta ipercalorica. In topi trattati per 28 giorni con ARB e ACE I, si è osservato un inferiore accumulo adiposo, minor peso corporeo, miglior controllo sull’assunzione di cibo rispetto ai topi non trattati con una dieta ad alto contenuto lipidico.

Nonostante, in teoria, l’effetto sul “grasso testardo” possa essere trattato anche attraverso il blocca del recettore dell’Angiotesina II, i dati a nostra disposizione ci mostrano una superiorità di azione e versatilità legata agli ACE II inibitori. L’uso di ARB, in particolar modo del Telmisartan, potrebbe avere un applicazione logica (se non si parla di soggetti obesi o in sovrappeso) nel gestione del grasso corporeo durante le fasi di ipercalorica, ad un dosaggio ipotetico di 40-80mg/die, al fine di ridurre l’accumulo adiposo e migliorare la qualità complessiva del peso raggiunto in Bulk.

  • Effetti collaterali degli ARB:
    • tachicardia e bradicardia (battito cardiaco accelerato o lento);
    • ipotensione (pressione sanguigna bassa);
    • edema (gonfiore di braccia, gambe, labbra, lingua o gola, quest’ultimo con conseguenti problemi di respirazione);
    • potenziale manifestazione di reazioni allergiche;
    • infezioni del tratto respiratorio superiore;
    • diarrea;
    • mal di schiena;
    • problemi renali;
    • iperkalemia.

Conclusioni:

Abbiamo visto come gli adrenocettori svolgono un ruolo importante nella biologia e nella fisiologia del tessuto adiposo, che comprende la regolazione della sintesi e dell’immagazzinamento dei trigliceridi (lipogenesi), la degradazione dei trigliceridi immagazzinati (lipolisi), la termogenesi (produzione di calore), il metabolismo del glucosio e la secrezione di ormoni derivati dagli adipociti che possono controllare l’omeostasi energetica dell’intero corpo. Questi processi sono regolati dal sistema nervoso simpatico attraverso l’azione di diversi sottotipi di adrenocettori espressi nei depositi di tessuto adiposo. In questa disamina, abbiamo evidenziato il ruolo dei sottotipi di adrenocettori negli adipociti bianchi, bruni e beige, e nel tessuto adiposo “testardo” ed abbiamo approfondito il ruolo potenziale degli ACE II inibitori nella modulazione sottoregolativa dell’attività degli α2-AR e l’impatto che questo può avere sul miglioramento della composizione corporea. Sono stati anche descritti gli effetti riscontrabili, nel medesimo contesto e fine, dei Sartani con le differenze tra l’applicabilità di questi confronto a quella degli ACE II inibitori.

Mentre il potenziale degli ACE II inibitori di migliorare la perdita di massa grassa in specie a carico dei depositi con una ratio sfavorevole tra α2:β2-AR, permettendo un importante sgravio sui dosaggi di α2-antagonisti, risulta un dato importante per la pianificazioni della preparazione alla gara, il potenziale effetto di riduzione del accumulo lipidico per attività di agonista parziale del PPARγ dato dal Telmisartan amplifica le applicazioni potenziali dei Sartani per il miglioramento della qualità del peso guadagnato in fase Bulk.

Ricordo, in fine, che tutto ciò che è stato detto è informazioni prettamente scientifica e non rappresenta in nessun modo un incitamento all’uso di farmaci fuori dalle linee di prescrizioni.

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  1. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (August 2013). “Role of pericytes in skeletal muscle regeneration and fat accumulation”Stem Cells and Development22 (16): 2298–2314. doi:10.1089/scd.2012.0647PMC 3730538PMID 23517218.
  2.  Ye RZ, Richard G, Gévry N, Tchernof A, Carpentier AC (January 2022). “Fat Cell Size: Measurement Methods, Pathophysiological Origins, and Relationships With Metabolic Dysregulations”Endocrine Reviews43 (1): 35–60. doi:10.1210/endrev/bnab018PMC 8755996PMID 34100954.
  3. Kershaw EE, Flier JS (June 2004). “Adipose tissue as an endocrine organ”The Journal of Clinical Endocrinology and Metabolism89 (6): 2548–2556. doi:10.1210/jc.2004-0395PMID 15181022.
  4. Mancuso P (May 2016). “The role of adipokines in chronic inflammation”ImmunoTargets and Therapy5 (2016): 47–56. doi:10.2147/ITT.S73223PMC 4970637PMID 27529061.
  5. Cannon B, Nedergaard J (August 2008). “Developmental biology: Neither fat nor flesh”Nature454 (7207): 947–948. Bibcode:2008Natur.454..947Cdoi:10.1038/454947aPMID 18719573S2CID 205040511.
  6.  Fat on the Inside: Looking Thin is Not Enough Archived 2016-11-17 at the Wayback Machine, By Fiona Haynes, About.com
  7.  Jump up to:a b “Abdominal fat and what to do about it”. President & Fellows of Harvard College. September 2005. Visceral fat more of a health concern than subcutaneous fat
  8. Nagai M, Komiya H, Mori Y, Ohta T, Kasahara Y, Ikeda Y (May 2010). “Estimating visceral fat area by multifrequency bioelectrical impedance”Diabetes Care33 (5): 1077–1079. doi:10.2337/dc09-1099PMC 2858179PMID 20150289.
  9. Montague CT, O’Rahilly S (June 2000). “The perils of portliness: causes and consequences of visceral adiposity”Diabetes49 (6): 883–888. doi:10.2337/diabetes.49.6.883PMID 10866038.
  10. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (May 2001). “Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance”. American Journal of Physiology. Endocrinology and Metabolism280 (5): E745–E751. doi:10.1152/ajpendo.2001.280.5.e745PMID 11287357S2CID 24306481
  11. Marette A (December 2003). “Molecular mechanisms of inflammation in obesity-linked insulin resistance”. International Journal of Obesity and Related Metabolic Disorders27 (Suppl 3): S46–S48. doi:10.1038/sj.ijo.0802500PMID 14704744S2CID 30693649.
  12.  Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS (January 2003). “Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001”JAMA289 (1): 76–79. doi:10.1001/jama.289.1.76PMID 12503980.
  13.  Maresky HS, Sharfman Z, Ziv-Baran T, Gomori JM, Copel L, Tal S (November 2015). “Anthropometric Assessment of Neck Adipose Tissue and Airway Volume Using Multidetector Computed Tomography: An Imaging Approach and Association With Overall Mortality”Medicine94 (45): e1991. doi:10.1097/MD.0000000000001991PMC 4912280PMID 26559286.
  14. Brown JC, Harhay MO, Harhay MN (February 2018). “Anthropometrically predicted visceral adipose tissue and blood-based biomarkers: a cross-sectional analysis”European Journal of Nutrition57 (1): 191–198. doi:10.1007/s00394-016-1308-8PMC 5513780PMID 27614626.
  15. Brown JC, Harhay MO, Harhay MN (January 2017). “Anthropometrically-predicted visceral adipose tissue and mortality among men and women in the third national health and nutrition examination survey (NHANES III)”American Journal of Human Biology29 (1): e22898. doi:10.1002/ajhb.22898PMC 5241265PMID 27427402.
  16. “Reduce Abdominal Fat”. Archived from the original on 2011-09-28. Retrieved 2009-04-10. Estrogen causes fat to be stored around the pelvic region, hips, butt and thighs (pelvic region)
  17. “Waistline Worries: Turning Apples Back Into Pears”healthywomen.org. Archived from the original on 2009-06-09.
  18. Researchers think that the lack of estrogen at menopause plays a role in driving our fat northward. See: Andrews M (2006-12-01). “A Matter of Fat”Yahoo Health. Women’s Health. Archived from the original on 2007-03-15.
  19. Singh AK, Loscalzo J, eds. (2014). The Brigham Intensive Review of Internal Medicine (2nd ed.). New York, NY: Oxford University Press. p. 483. ISBN 978-0-19-935827-4. Retrieved August 3, 2021.
  20. Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I (December 2007). “A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials”. International Journal of Obesity31 (12): 1786–1797. doi:10.1038/sj.ijo.0803683PMID 17637702.
  21. Hoehn K, Marieb EN (2008). Anatomy & Physiology (3rd ed.). San Francisco, Calif.: Pearson/Benjamin Cummings. ISBN 978-0-8053-0094-9.
  22. Porter SA, Massaro JM, Hoffmann U, Vasan RS, O’Donnel CJ, Fox CS (June 2009). “Abdominal subcutaneous adipose tissue: a protective fat depot?”Diabetes Care32 (6): 1068–1075. doi:10.2337/dc08-2280PMC 2681034PMID 19244087.
  23.  “Belly fat in women: Taking – and keeping – it off”. MayoClinic.com. 2013-06-08. Retrieved 2013-12-02.
  24. Manolopoulos KN, Karpe F, Frayn KN (June 2010). “Gluteofemoral body fat as a determinant of metabolic health”. International Journal of Obesity34 (6): 949–959. doi:10.1038/ijo.2009.286PMID 20065965S2CID 21052919.
  25.  Brodie D, Moscrip V, Hutcheon R (March 1998). “Body composition measurement: a review of hydrodensitometry, anthropometry, and impedance methods”. Nutrition14 (3): 296–310. doi:10.1016/S0899-9007(97)00474-7PMID 9583375.
  26. Thomas LW (April 1962). “The chemical composition of adipose tissue of man and mice”Quarterly Journal of Experimental Physiology and Cognate Medical Sciences47 (2): 179–188. doi:10.1113/expphysiol.1962.sp001589PMID 13920823.
  27. Amitani M, Asakawa A, Amitani H, Inui A (2013). “The role of leptin in the control of insulin-glucose axis”Frontiers in Neuroscience7: 51. doi:10.3389/fnins.2013.00051PMC 3619125PMID 23579596.
  28. Dhaliwal SS, Welborn TA (May 2009). “Central obesity and multivariable cardiovascular risk as assessed by the Framingham prediction scores”. The American Journal of Cardiology103 (10): 1403–1407. doi:10.1016/j.amjcard.2008.12.048PMID 19427436.
  29.  Park A (2009-08-08). “Fat-Bellied Monkeys Suggest Why Stress Sucks”TimeArchived from the original on December 20, 2013. Retrieved 2013-12-19.
  30.  Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ, et al. (February 2010). “Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells”Proceedings of the National Academy of Sciences of the United States of America107 (8): 3558–3563. Bibcode:2010PNAS..107.3558Sdoi:10.1073/pnas.0910172106PMC 2840462PMID 20133714.
  31.  Atzmon G, Yang XM, Muzumdar R, Ma XH, Gabriely I, Barzilai N (November 2002). “Differential gene expression between visceral and subcutaneous fat depots”. Hormone and Metabolic Research34 (11–12): 622–628. doi:10.1055/s-2002-38250PMID 12660871S2CID 33960130.
  32.  Baglioni S, Cantini G, Poli G, Francalanci M, Squecco R, Di Franco A, et al. (4 May 2012). “Functional differences in visceral and subcutaneous fat pads originate from differences in the adipose stem cell”PLOS ONE7 (5): e36569. Bibcode:2012PLoSO…736569Bdoi:10.1371/journal.pone.0036569PMC 3344924PMID 22574183.
  33.  Lemke, KA (June 2004). “Perioperative use of selective alpha-2 agonists and antagonists in small animals”. The Canadian Veterinary Journal. 45 (6): 475–80. PMC 548630. PMID 15283516.
  34. Hedner T, Edgar B, Edvinsson L, Hedner J, Persson B, Pettersson AYohimbine pharmacokinetics and interaction with the sympathetic nervous system in normal volunteersEur J Clin Pharmacol.(1992)
  35. Grossman E, Rosenthal T, Peleg E, Holmes C, Goldstein DSOral yohimbine increases blood pressure and sympathetic nervous outflow in hypertensive patientsJ Cardiovasc Pharmacol.(1993 Jul)
  36. Berlan M, Galitzky J, Riviere D, Foureau M, Tran MA, Flores R, Louvet JP, Houin G, Lafontan MPlasma catecholamine levels and lipid mobilization induced by yohimbine in obese and non-obese womenInt J Obes.(1991 May)
  37. Cimolai N, Cimolai TYohimbine use for physical enhancement and its potential toxicityJ Diet Suppl.(2011 Dec)
  38. Lalchandani SG, Lei L, Zheng W, Suni MM, Moore BM, Liggett SB, Miller DD, Feller DRYohimbine dimers exhibiting selectivity for the human alpha 2C-adrenoceptor subtypeJ Pharmacol Exp Ther.(2002 Dec)
  39. MacDonald E, Kobilka BK, Scheinin MGene targeting–homing in on alpha 2-adrenoceptor-subtype functionTrends Pharmacol Sci.(1997 Jun)
  40. Tan S, Curtis-Prior PBComparative effects of RX 781094, mianserin, yohimbine, rauwolscine and prazosin in reversing clonidine inhibition of MIX-stimulated lipolysis in hamster isolated white fat cellsPharmacol Res Commun.(1984 May)
  41. Bernstein KE, Ong FS, Blackwell WL, Shah KH, Giani JF, Gonzalez-Villalobos RA, et al. (January 2013). “A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme”Pharmacological Reviews65 (1): 1–46. doi:10.1124/pr.112.006809ISSN 0031-6997PMC 3565918PMID 23257181.
  42. Cushman DW, Ondetti MA (1991). “History of the design of captopril and related inhibitors of angiotensin converting enzyme”Hypertension17 (4): 589–592. doi:10.1161/01.HYP.17.4.589PMID 2013486S2CID 30766421.
  43. Kaplan’s Essentials of Cardiac Anesthesia. Elsevier. 2018. doi:10.1016/c2012-0-06151-0ISBN 978-0-323-49798-5Mechanisms of Action:ACE inhibitors act by inhibiting one of several proteases responsible for cleaving the decapeptide Ang I to form the octapeptide Ang II. Because ACE is also the enzyme that degrades bradykinin, ACE inhibitors increase circulating and tissue levels of bradykinin (Fig. 8.4).
  44. Jandeleit-Dahm K, Cooper ME (Sep 2006). “Hypertension and diabetes: role of the renin–angiotensin system”. Endocrinol Metab Clin North Am35 (3): 469–90, vii. doi:10.1016/j.ecl.2006.06.007PMID 16959581.
  45. Wang W, McKinnie SM, Farhan M, Paul M, McDonald T, McLean B, et al. (May 2016). “Angiotensin Converting Enzyme 2 Metabolizes and Partially Inactivates Pyrapelin-13 and Apelin-17: Physiological Effects in the Cardiovascular System”Hypertension68 (2): 365–77. doi:10.1161/HYPERTENSIONAHA.115.06892PMID 27217402S2CID 829514.
  46. Human Physiology, Silverthorn (Pearson Benjamin Cummings 2004)[page needed]
  47. Weir M (1999). “The renin-angiotensin-aldosterone system: a specific target for hypertension management”. American Journal of Hypertension12 (4). Oxford University Press (OUP): 205–213. doi:10.1016/s0895-7061(99)00103-xISSN 0895-7061PMID 10619573.
  48. Jackson EK (2006). “Chapter 30. Renin and Angiotensin”. In Brunton LL, Lazo JS, Parker K (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics (11th ed.). New York: McGraw-Hill. ISBN 978-0-07-142280-2.
  49. “Myocardial Infarction”The Lecturio Medical Concept Library. Retrieved 27 August 2021.
  50.  “Congestive Heart Failure”The Lecturio Medical Concept Library. 7 August 2020. Retrieved 27 August 2021.
  51. Kester M, Karpa KD, Vrana KE (2012). “Cardiovascular System”. Elsevier’s Integrated Review Pharmacology. Elsevier. pp. 125–151. doi:10.1016/b978-0-323-07445-2.00008-2ISBN 978-0-323-07445-2ACE inhibitors also slow progression of kidney disease in patients with diabetic nephropathies. Renal benefits are probably a result of improved renal hemodynamics from decreased glomerular arteriolar resistance.
  52. Long AN, Dagogo-Jack S. Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J Clin Hypertens (Greenwich) 2011; 13:244-251. http://doi: 10.1111/j.1751-7176.2011.00434.x
  53. Dolgacheva LP, Turovskaya MV, Dynnik VV, Zinchenko VP, Goncharov NV, Davletov B, Turovsky EA. Angiotensin II activates different calcium signaling pathways in adipocytes. Arch Biochem Biophys 2016; 593:38-49. http://doi: 10.1016/j.abb.2016.02.001. [ Links ]
  54. 50. Palominos MM, Dünner DH, Wabitsch M, Rojas CV. 2015. Angiotensin II directly impairs adipogenic differentiation of human preadipose cells. Mol Cell Biochem 2015; 408: 115-122. http://doi: 10.1007/s11010-015-2487-y.
  55. 51. Schling MM, Dünner NH, Wabitsch M, Rojas CV. Angiotensin II directly impairs adipogenic differentiation of human preadipose cells. Mol Cell Biochem 2015; 408:115-122. http://doi: 10.1007/s11010-015-2487-y.
  56. 52. Brücher R, Cifuentes M, Acuña MJ, Albala C, Rojas CV. Larger anti-adipogenic effect of angiotensin II on omental preadipose cells of obese humans. Obesity 2007; 15:1643-1646. http://doi: 10.1038/oby.2007.196.
  57. 53. Fuentes P, Acuña MJ, Cifuentes M, Rojas CV. The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1,2 activation and PPARG phosphorylation. J Endocrinol 2010; 206:75-83. http:// doi: 10.1677/JOE-10-0049
  58. Jones BH, Standridge MK, Moustaid N. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 1997; 138:1512-1519. http://doi: 10.1210/endo.138.4.5038.
  59. Townsend RR. The effects of angiotensin-II on lipolysis in humans. Metabolism 2001; 50:468-472. http://doi: 10.1053/meta.2001.21021.
  60. Weisinger RS, Begg DP, Jois M. Antagonists of the renin-angiotensin system and the prevention of obesity. Curr Opin Investig Drugs 2009; 10: 1069-1077.
  61. Than A, Leow MK, Chen P. Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. J Biol Chem 2013; 288:15520-15531. http://doi: 10.1074/jbc.M113.459792.
  62. Sharma AM, Engeli S. The role of renin-angiotensin system blockade in the management of hypertension associated with the cardiometabolic syndrome. J Cardiometab Syndr 2006; 1:29-35. http://doi: 10.1111/j.0197-3118.2006.05422.x.
  63. Vertes V, Haynie R. Comparative pharmacokinetics of captopril, enalapril, and quinapril. Am J Cardiol. 1992;69:8C–16C. [PubMed] [Google Scholar]
  64. Nakajima T, Yamada T, Setoguchi M. Prolonged inhibition of local angiotensin-converting enzyme after single or repeated treatment with quinapril in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1992;19:102–107. [PubMed] [Google Scholar]
  65. Fukiyama F, Azuma J, Yoshida H, et al. A pharmacokinetic study of quinapril in normal Japanese men. J Clin Ther Med. 1993;9(Suppl 7):3–16. [Google Scholar]
  66. Weishaar RE, Panek RL, Major TC, Simmerman J, Rapundalo ST, Taylor J, DG DG. Evidence for a functional tissue renin-angiotensin system in the rat mesentric vasculature and its involvement in regulation blood pressure. J Pharmacol Exp Ther. 1991;256:568–574. [PubMed] [Google Scholar]
  67. Major TC, Overhiser RW, Taylor DG, Panek RL. Effect of quinapril, a new angiotensin-converting enzyme inhibitor, on vasoconstrictor activity in the isolated, perfused mesenteric vasculature of hypertensive rats. J Pharmacol Exp Ther. 1993;265:187–193. [PubMed] [Google Scholar]
  68. Willenbrock R, Ozcelik C, Osterziel KJ, Dietz R. Angiotensin-converting enzyme inhibition, autonomic activity, and hemodynamics in patients with heart failure who perform isometric exercise. Am Heart J. 1996;131:999–1006. [PubMed] [Google Scholar]
  69. Saitoh M, Miyakoda H, Kitamura H, Kinugawa T, Kotake H, Mashiba H. Effects of an angiotensin-converting enzyme inhibitor, alacepril, on cardiovascular and sympathetic nervous responses to mental stress in patients with essential hypertension. Intern Med. 1993;32:691–694. [PubMed] [Google Scholar]
  70. Schling P, Mallow H, Trindl A, Loffler G. Evidence for a Local Renin Angiotensin System in Primary Cultured Human Preadipocytes. Int J Obes Relat Metab Disord (1999) 23(4):336–41. doi: 10.1038/sj.ijo.080082 PubMed Abstract | CrossRef Full Text | Google Scholar
  71. Weisinger RS, Begg DP, Chen N, Jois M, Mathai ML, Sinclair AJ. The Problem of Obesity: Is There a Role for Antagonists of the Renin-Angiotensin System? Asia Pac J Clin Nutr (2007) 16 S1:359–67.Google Scholar
  72. Takahashi N, Li F, Hua K, Deng J, Wang CH, Bowers RR, et al. Increased Energy Expenditure, Dietary Fat Wasting, and Resistance to Diet-Induced Obesity in Mice Lacking Renin. Cell Metab (2007) 6(6):506–12. doi: 10.1016/j.cmet.2007.10.01 PubMed Abstract | CrossRef Full Text | Google Scholar
  73. Massiera F, Seydoux J, Geloen A, Quignard-Boulange A, Turban S, Saint-Marc P, et al. Angiotensinogen-Deficient Mice Exhibit Impairment of Diet-Induced Weight Gain With Alteration in Adipose Tissue Development and Increased Locomotor Activity. Endocrinology (2001) 142(12):5220–5. doi: 10.1210/endo.142.12.8556 PubMed Abstract | CrossRef Full Text | Google Scholar
  74. Jayasooriya AP, Begg DP, Chen N, Mathai ML, Sinclair AJ, Wilkinson-Berka J, et al. Omega-3 Polyunsaturated Fatty Acid Supplementation Reduces Hypertension in TGR(mRen-2)27 Rats. Prostaglandins Leukot Essent Fatty Acids (2008) 78(1):67–72. doi: 10.1016/j.plefa.2007.11.001 PubMed Abstract | CrossRef Full Text | Google Scholar
  75. De Blasi A, Cortellaro M, Costantini C. Enalapril in Essential Hypertension: A Comparative Study With Propranolol. Enalapril in Hypertension Study Group (Uk). Br J Clin Pharmacol (1984) 18(1):51–6. doi: 10.1111/j.1365-2125.1984.tb05021. PubMed Abstract | CrossRef Full Text | Google Scholar
  76. Zorad S, Dou JT, Benicky J, Hutanu D, Tybitanclova K, Zhou J, et al. Long-Term Angiotensin II AT1 Receptor Inhibition Produces Adipose Tissue Hypotrophy Accompanied by Increased Expression of Adiponectin and Ppargamma. Eur J Pharmacol (2006) 552(1-3):112–22. doi: 10.1016/j.ejphar.2006.08.062 PubMed Abstract | CrossRef Full Text | Google Scholar

mirabegron e agonismo selettivo dei recettori β3-adrenergici – un potenziale trattamento farmacologico antiobesità –

Introduzione:

I capisaldi della gestione del peso sono gli interventi sullo stile di vita con il ruolo aggiuntivo di supporto dei farmaci anti-obesità e delle procedure bariatriche. Attualmente, i farmaci disponibili approvati per il trattamento dell’obesità agiscono sul bilancio energetico riducendo l’assunzione di cibo e il comportamento di ricompensa alimentare nel sistema nervoso centrale (ad esempio, sopprimendo l’appetito) o riducendo l’assorbimento dei grassi nell’intestino.[1,2,3] Finora non sono disponibili farmaci con un effetto diretto sull’aumento del dispendio energetico attraverso un’influenza sul tessuto adiposo [4,6].
Nell’uomo esistono due tipi di tessuto adiposo con funzioni fisiologiche distinte: il tessuto adiposo bianco (WAT), specializzato nell’immagazzinamento di trigliceridi in eccesso quando l’assunzione di energia supera il dispendio energetico, e il tessuto adiposo bruno (BAT) – con i relativi adipociti “beige”/”bruni” (derivati dal WAT) – che svolge un ruolo centrale nel metabolizzare il glucosio, gli acidi grassi e altre sostanze chimiche per produrre calore attraverso l’attivazione della proteina di disaccoppiamento 1 (UCP1) specifica del tessuto termogenico [4,7].
Alcuni dati suggeriscono che il BAT possa essere funzionale nell’uomo adulto [1]. I recettori β3-adrenergici (AR) sono espressi non solo nella vescica urinaria, ma anche sulla superficie degli adipociti bruni e bianchi [1]. I tessuti adiposi bruni e “beige”, contenenti cellule grasse termogeniche, possono essere attivati da agonisti dei recettori β3-adrenergici (β3-AR) [8]. È stato riportato che il Mirabegron, un agonista β3-AR umano selettivo, può stimolare il BAT e il processo di imbrunimento degli adipociti derivati dal WAT [9,10]. Il fatto che l’attivazione del BAT e degli adipociti “beige” possa aumentare il dispendio energetico rende i tessuti adiposi bruni e “beige” nuovi e promettenti bersagli per il trattamento dell’obesità [4,11].

Il ruolo del tessuto adiposo nella termogenesi e nei processi metabolici associati all’obesità:

Nell’uomo esistono due tipi principali di tessuto adiposo, che svolgono funzioni diverse: il tessuto adiposo bianco e il tessuto adiposo bruno. Oltre al WAT e al BAT, sono state distinte anche cellule adipose “brune”, definite cellule adipose “beige”. Esse derivano dal WAT, ma la loro funzione metabolica è simile a quella del BAT [4,7].
Il WAT è responsabile dell’immagazzinamento di energia sotto forma di trigliceridi, del rilascio di lipidi e della funzione di ghiandola endocrina, secernendo adipochine, come l’adiponectina e la leptina, per promuovere l’omeostasi metabolica [9,12]. Nell’obesità, gli adipociti bianchi si ipertrofizzano, seguiti da fibrosi, necrosi degli adipociti e infiltrazione di cellule immunitarie, che portano a infiammazione locale e sistemica, insulino-resistenza e disfunzione metabolica [9].

Cellule del BAT (colorate di marrone con anticorpi contro la proteina specifica del grasso bruno Ucp1) annidate tra le cellule del WAT grasso bianco.

Il BAT è stato descritto per la prima volta nel 1981 in finlandesi che lavoravano all’aperto e che erano stati esposti a basse temperature ambientali [6]. Il BAT metabolicamente attivo è stato identificato negli adulti mediante imaging PET/CT focalizzato principalmente sulla fossa sopraclavicolare, sull’area succlavia e sull’ascella, seguito dalle aree mediastiniche, paraspinali, perinefriche e sopradrenali [10,12]. Sebbene il BAT sia presente nell’uomo, la sua prevalenza diminuisce con l’età e nelle persone in sovrappeso o obese rispetto ai soggetti magri [6,9,13,14]. Gli anelli mancanti nel trattamento dell’obesità sono i farmaci che possono aumentare la quantità o l’attività del BAT. È stato riportato che il volume del BAT può essere aumentato dopo la chirurgia bariatrica [12]. Il BAT è il principale organo termogenico dei mammiferi, con lo scopo di aumentare il dispendio energetico in risposta al freddo o ad altre stimolazioni nervose simpatiche, rilasciando noradrenalina dai terminali nervosi per attivare i recettori β3-adrenergici attraverso il processo definito termogenesi senza brividi [2,10,11,12,13]. La capacità termogenica del BAT è stata stimata in circa 500 W/kg [6]. Gli adipociti del BAT sono arricchiti di mitocondri (i loro livelli sono più alti di quelli del WAT), nei quali la proteina di disaccoppiamento 1 (UCP1) è altamente espressa. La UCP1 dissipa l’energia in eccesso sotto forma di calore in un processo noto come termogenesi [2,15]. L’attivazione adrenergica della lipolisi stimola l’attività termogenica della UCP1 [2,10]. L’attivazione dell’UCP1 sulla membrana mitocondriale interna disaccoppia la respirazione mitocondriale, separando il trasporto di elettroni dalla produzione di ATP per ossidare il substrato e generare calore [4,8,16]. Gli acidi grassi a catena lunga, generati dai pool lipidici intracellulari, sono trasportati ai mitocondri attraverso la carnitina palmitoiltransferasi 1 (CPT1) e utilizzati come fonte di carburante dagli adipociti bruni per produrre calore. Inoltre, è stato proposto che gli acidi grassi liberi agiscano come attivatori allosterici di UCP1. Oltre agli acidi grassi, anche il glucosio circolante può essere utilizzato dal BAT attivo per alimentare la termogenesi [2,10,17]. In sintesi, il BAT consuma glucosio e lipidi per generare calore attraverso la respirazione disaccoppiata mediata da UCP1, con conseguente miglioramento dell’omeostasi glucidica e lipidica [9,13,18].

Struttura della proteina disaccoppiante umana UCP1

Gli adipociti termogenici umani possono originare da due lignaggi distinti, non solo da adipociti bruni costitutivi ma anche da cellule “beige” reclutabili, definite adipociti “bruni” o “bruno-simili” [5]. Gli adipociti “beige” sono localizzati prevalentemente nei depositi di WAT [16]. Le cellule adipose del WAT possono essere convertite in adipociti “beige” termogenici in un processo chiamato “browning” o “beiging” [12]. Da un lato, è stato dimostrato un sostanziale “beiging” del WAT sottocutaneo umano in alcuni disturbi, come la cachessia da cancro, le ustioni e le condizioni con alti livelli di catecolamine, ad esempio il feocromocitoma [8,13,14]. I pazienti con tumori che secernono catecolamine hanno anche più tessuto adiposo bruno rispetto alla maggior parte delle persone [19]. D’altra parte, gli adipociti “bruni” possono essere attivati con l’induzione dell’espressione di UCP1 da parte di stimoli ambientali, come l’esposizione al freddo e agli agonisti β-adrenergici, mediata dalla via di segnalazione p38-MAPK [9,12,14,16]. La risposta “beiging” dei soggetti obesi al freddo è simile a quella dei soggetti magri [14]. Sebbene queste cellule differiscano dagli adipociti bruni convenzionali – in quanto si sviluppano da una cellula precursore di adipociti bianchi e non da una cellula precursore di adipociti bruni, simile agli adipociti bruni classici nel BAT – gli adipociti “beige” possiedono goccioline lipidiche multiloculari, un gran numero di mitocondri e marcatori unici di espressione genica del grasso bruno, come UCP1, aumentando la capacità del tessuto di ossidazione del carburante e il dispendio energetico [4,16,18]. Inoltre, è stato dimostrato che il “beiging” è associato a una riduzione della fibrosi del tessuto adiposo e della disfunzione adiposa. Questi risultati suggeriscono che l’induzione del tessuto adiposo “beige” può migliorare l’omeostasi metabolica aumentando la capacità del WAT sottocutaneo di funzionare come serbatoio metabolico per il glucosio e i lipidi o riducendo la disfunzione del WAT che si verifica con l’obesità [13]. Così, oltre alla termogenesi e al dispendio energetico, i tessuti adiposi bruni e “beige” sono associati a un miglioramento dell’omeostasi del glucosio e dei lipidi, nonché a una maggiore sensibilità all’insulina nell’uomo e nel topo [14].

Distribuzione del BAT nei neonati, nelle donne e negli uomini. Il BAT è immagazzinato in un deposito interscapolare separato nei neonati che perdono il loro tessuto adiposo bruno con l’avanzare dell’età. Negli esseri umani adulti, la maggior parte degli adipociti bruni si trova nei depositi di BAT sopraclavicolari nella regione del collo. Quantità minori di BAT si trovano nell’aorta, nelle vertebre, nelle aree ascellari e renali. C’è una distribuzione simile del tessuto adiposo bruno sia nelle donne che negli uomini. Tuttavia, le donne hanno una maggiore quantità di massa e attività di BAT.

Considerando il fatto che nelle persone obese adulte c’è meno BAT rispetto ai soggetti magri, il WAT in eccesso, che può essere stimolante e in fase di “beigezzazione/imbrunimento”, può svolgere un ruolo aggiuntivo rispetto al BAT nei processi metabolici [13]. Pertanto, il tessuto adiposo bruno e il tessuto adiposo “beige” sono stati riconosciuti come regolatori critici del metabolismo e del dispendio energetico dell’intero corpo e sono considerati bersagli promettenti per la terapia anti-obesità [2,12,15].

L’Irisina è un ormone sintetizzato in grande quantità dal tessuto muscolare umano durante le attività sportive. La molecola è in grado di operare il meccanismo molecolare detto “browning” [“imbrunimento”], ovvero di conversione del WAT in BAT.

Il grasso bruno, il grasso “beige” e i β3-adrenocettori nel contesto dell’obesità:

 Struttura del recettore β3-adrenergico  

La famiglia dei recettori β-adrenergici (AR) umani è composta dai recettori β1, β2 e β3, in cui il β1-AR è altamente espresso in tutto il sistema cardiovascolare, il β2-AR si trova nelle vie aeree polmonari, in tutta la vascolarizzazione e nel muscolo scheletrico e l’espressione del β3-AR è limitata soprattutto alla vescica urinaria e alla cistifellea, oltre che al BAT e al WAT [4,10]. Il β3-AR umano, identificato nel 1989, è un recettore a 7 membrane, con una coda N-terminale extracellulare e una coda C-terminale intracellulare, composta da 408 aminoacidi. Si accoppia principalmente a Gs per attivare l’adenilato ciclasi, con conseguente aumento dei livelli intracellulari di cAMP, sebbene sia stato riportato un accoppiamento promiscuo con altri effettori, come Gi [4,16].

La β3-AR svolge un ruolo critico nel tessuto adiposo, nella regolazione della termogenesi, della glicolisi e della lipolisi [16]. Studi sugli animali hanno dimostrato che la stimolazione cronica del BAT porta a un miglioramento della tolleranza al glucosio e della sensibilità all’insulina e a una riduzione dell’obesità, oltre che al rilascio di adipochine che regolano beneficamente il metabolismo [1,8,10,12,20]. Inoltre, l’attivazione β3-AR-mediata del WAT può aumentare la secrezione insulinica delle cellule β pancreatiche [5]. È stato anche riportato che una parte significativa della termogenesi non da brivido ha luogo nel tessuto adiposo bruno ed è mediata principalmente dal β3-adrenocettore [19]. Nei topi alimentati con dieta a base di chow e ad alto contenuto di grassi, il trapianto di BAT ha ridotto il peso corporeo, aumentato il metabolismo del glucosio e la sensibilità all’insulina e incrementato l’assorbimento di glucosio nel BAT e nel WAT [15].

Oltre alla funzione metabolica, la β3-AR svolge un ruolo nel cervello, essendo coinvolta nei processi di memoria, apprendimento e regolazione dell’appetito, nel tratto gastrointestinale, dove partecipa alla regolazione della motilità, e nel sistema genitourinario, dove svolge un ruolo nella regolazione della funzione vescicale [16].

Durante la termogenesi, i β3-adrenocettori aumentano il dispendio energetico, che può portare alla perdita di grasso, in risposta alla stimolazione simpatica [19]. È dimostrato che la stimolazione cronica dell’attività nervosa simpatica e dei β3-AR può attivare il BAT [6]. È stato dimostrato che l’esposizione al freddo stimola il sistema nervoso simpatico a rilasciare noradrenalina dalle terminazioni nervose simpatiche per attivare i β-AR sulle membrane delle cellule del BAT, promuovendo la termogenesi. In questo modo, il BAT umano è in grado di avviare la termogenesi attraverso il consumo di acidi grassi e glucosio e, successivamente, di generare calore [1,3,8]. Inoltre, l’attivazione dei β3-ARs da parte dell’esposizione al freddo o di agenti farmacologici induce un programma di “beiging” nel WAT [18]. Un modo per aumentare la quantità effettiva di tessuto adiposo bruno può essere quello di somministrare l’agonista β3-adrenoccettore in modo cronico [19]. Una singola dose di agonista dei β3-adrenocettori può almeno raddoppiare il dispendio energetico in un modello murino a circa 21 °C [19].

Struttura del gene ADRB3

Il ruolo dei β3-AR nel metabolismo energetico umano è supportato da studi clinici che riportano associazioni tra polimorfismi specifici nel gene umano ADRB3 (il gene che codifica i β3-AR) e tassi più elevati di obesità, insulino-resistenza e diabete [10]. Inoltre, le mutazioni nel gene ADRB3 sono state correlate all’insulino-resistenza, all’aumento del rischio di obesità e diabete e alla malattia del fegato grasso non alcolico negli individui obesi [10]. I dati indicano che il silenziamento di ADRB3 negli adipociti umani “marroni”/”beige” altera il macchinario termogenico cellulare e causa una riduzione dei livelli di espressione dei geni associati al metabolismo degli acidi grassi, alla massa mitocondriale e alla termogenesi, senza compromettere il fenotipo “marrone”/”beige” [10].

Attività agonista dei β3-AR del Mirabegron:

Struttura molecolare del Mirabegron

Mirabegron è una nuova generazione di agonisti dei β3-adrenocettori con una buona biodisponibilità [21]. Gli effetti dell’agonista selettivo dei β3-AR mirabegron sul rilassamento della vescica sono stati scoperti nel 2007. Per la prima volta, la selettività β3 del mirabegron (YM-178) nel contesto della funzione vescicale è stata descritta da Takasu et al. [22]. YM-178 ha aumentato l’accumulo di AMP ciclico in cellule ovariche di criceto cinese che esprimono il β3-adrenocettore umano. Mirabegron ha dimostrato valori di EC50 nanomolari contro il β3-AR umano in saggi biochimici, con una potente selettività rispetto ai β1- e β2-AR [22]. Studi in vivo hanno dimostrato che la somministrazione di mirabegron ha ridotto la pressione intravescicale e le contrazioni spontanee della vescica in modo dose-dipendente [23]. Mirabegron è stato approvato dalla Food and Drug Administration (FDA) statunitense nel 2012 come nuovo tipo di trattamento farmacologico per la vescica iperattiva (OAB) [6,21,24]. Cinquanta milligrammi di mirabegron è la dose raccomandata a tutti i pazienti con OAB [24]. Il farmaco è generalmente ben tollerato e gli effetti collaterali più comuni includono ipertensione, rinofaringite e infezione del tratto urinario [6].

La selettività β3 di Mirabegron è stata confermata in molti studi con l’uso di linee cellulari che esprimono il β3-adrenocettore sia animale che umano [22,23,25]. Mirabegron ha mostrato una selettività per il β3-AR umano superiore di oltre 400 volte rispetto al β1-AR o al β2-AR umano [26]. Ad esempio, Brucker et al. [27] hanno utilizzato cellule di ovaio di criceto cinese (CHO)-K1, cellule di rene embrionale umano 293 esprimenti stabilmente recettori β1-, β2- o β3-adrenergici umani e recettori α1D- e α2B-adrenergici umani per valutare la selettività di mirabegron. A una concentrazione di 10 μM, l’attività β3-adrenergica rispetto all’isoproterenolo (agonista β-adrenergico completo) era dell’88% per mirabegron. A sua volta, l’attività β1- e β2-adrenergica di mirabegron era rispettivamente del 3% e del 15% [27]. In questo studio mirabegron non ha soddisfatto il criterio di significatività per l’inibizione dei recettori α1D- o α2B-adrenergici [27]. Tuttavia, alcuni studi hanno indicato che mirabegron potrebbe svolgere un ruolo come antagonista degli α1-adrenergici [28,29]. Alexandre et al. [28] hanno ipotizzato che mirabegron rilassasse la muscolatura liscia uretrale nei topi attraverso un duplice meccanismo che coinvolge l’attivazione dei β3-adrenocettori e il blocco degli α1-adrenocettori. In un altro studio, mirabegron ha indotto una vasorilassazione endotelio-indipendente nelle arterie del tessuto adiposo viscerale attraverso l’antagonismo degli α1-adrenocettori. Questa azione ha suggerito che mirabegron potrebbe migliorare efficacemente la perfusione del tessuto adiposo viscerale, favorendo così un sano rimodellamento del tessuto adiposo e prevenendo alcune delle conseguenze cardiometaboliche indesiderate dell’obesità e dell’invecchiamento [29]. Resta ancora difficile stabilire in che misura l’antagonismo degli α1-adrenocettori possa contribuire agli effetti clinici di mirabegron [28,29].

I cambiamenti metabolici benefici causati dal trattamento cronico con mirabegron potrebbero derivare dalla stimolazione della β3-AR nel BAT e nel WAT umani [5,12,18]. È stato suggerito che mirabegron potrebbe migliorare le malattie metaboliche legate all’obesità aumentando la termogenesi del BAT, la lipolisi del WAT e la stimolazione del processo di “brunimento” degli adipociti derivati dal WAT [4,5,9,10]. Il trattamento acuto con mirabegron ha aumentato il dispendio energetico [10,15]. Dopo il silenziamento dell’espressione dei β3-AR, il mirabegron non è stato in grado di stimolare la lipolisi e la termogenesi del BAT [10].
Molti studi hanno dimostrato che il trattamento con mirabegron ha aumentato l’assorbimento del glucosio negli adipociti bruni e “beige”, ha migliorato l’omeostasi del glucosio e ha aumentato la sensibilità all’insulina e la funzione delle cellule β [1,9]. Inoltre, è stato dimostrato che il trattamento cronico con agonisti β3-AR nell’uomo può rilasciare adipochine benefiche [1]. Il modo in cui mirabegron migliora il metabolismo del glucosio non è stato finora chiarito [5]. Tuttavia, sono stati ipotizzati alcuni meccanismi. In primo luogo, mirabegron stimola la secrezione di adiponectina, nota adipochina derivata dal WAT e associata a una maggiore sensibilità all’insulina nel muscolo scheletrico e nel fegato. In secondo luogo, mirabegron aumenta la concentrazione di polipeptide inibitore gastrico (GIP), l’incretina collegata alla secrezione di insulina. Infine, il meccanismo di mirabegron potrebbe coinvolgere le stesse cellule β [5].

L’agonista dei recettori β3-adrenergici è un ottimo candidato per il trattamento dell’obesità, poiché l’isoforma β3 è espressa esclusivamente negli adipociti e l’azione su altri tipi di cellule, come i cardiomiociti e le cellule muscolari lisce, attraverso le altre isoforme β – β1 e β2 – è minima e dose-dipendente [11]. Pertanto, come agonista β3-AR, Mirabegron attiverebbe la termogenesi nel tessuto adiposo, stimolando l’ossidazione dei lipidi e il consumo di glucosio per produrre calore, senza causare gravi effetti collaterali cardiovascolari [13].

Mirabegron come agente antiobesità negli studi sperimentali:

Adipocita del BAT

Il trattamento dei roditori con agonisti β3-AR ha attivato il BAT, con conseguente aumento del dispendio energetico, perdita di peso e miglioramento del metabolismo del glucosio e dei lipidi. Inoltre, ha ripristinato l’equilibrio NO/redox, migliorato la funzione endoteliale e, quindi, esercitato effetti protettivi vascolari [4,6,13,17]. L’aumento dell’attività del BAT ha impedito lo sviluppo e la gravità dell’obesità e del diabete di tipo 2, mentre i topi privi di BAT erano inclini all’obesità [16]. È stato riportato che una riduzione della massa del BAT nei topi indotta da un transgene produce obesità e che questi topi presentano un’ulteriore maggiore suscettibilità all’obesità a causa di diete obesitogene [8,30,31].

Adipocita “Beige”

Come si è detto, il Mirabegron può essere efficace come attivatore del BAT, stimolatore delle cellule “beige” e controllore dell’omeostasi metabolica. L’influenza benefica di mirabegron sul metabolismo è stata confermata da studi in vitro e in vivo [2,4,15,18].
Nello studio condotto da Dehvari et al. [15], sono stati riportati gli effetti di mirabegron negli adipociti bruni, bianchi e “beige” in vitro e i suoi effetti sull’utilizzo del glucosio e sulla termogenesi in vivo. È stato dimostrato che mirabegron aumenta l’assorbimento di glucosio e la glicolisi negli adipociti bruni di topo in vitro e promuove l’assorbimento di glucosio nel BAT in vivo. Il mirabegron ha aumentato i livelli di cAMP e l’mRNA di UCP1, con conseguente aumento del consumo di ossigeno mediato da UCP1, nonché l’assorbimento di glucosio e la glicolisi cellulare negli adipociti bruni e “beige” (tale azione è mancata nelle colture cellulari primarie di adipociti bruni provenienti da topi knockout per il β3-adrenocettore), mentre questi effetti erano assenti o ridotti negli adipociti bianchi. In vivo, mirabegron ha aumentato il consumo di ossigeno nell’intero corpo e l’assorbimento di glucosio nel tessuto adiposo bruno e bianco inguinale e ha migliorato la tolleranza al glucosio. Nei topi knockout per il β3-adrenorecettore, mirabegron non è riuscito a indurre l’assorbimento di glucosio nel tessuto adiposo, né ad aumentare il consumo di ossigeno corporeo, il che dimostra che la segnalazione del β3-adrenorecettore è una via principale delle azioni metaboliche di mirabegron [15]. Analogamente a Dehvari et al. [15], Hao et al. [4] hanno studiato gli effetti anti-obesità di mirabegron utilizzando modelli in vitro e in vivo. In entrambe le linee cellulari – preadipociti bruni di topo e preadipociti bianchi 3T3-L1 – mirabegron ha stimolato l’espressione di UCP1. I topi trattati con mirabegron, alimentati con una dieta ad alto contenuto di grassi, presentavano una riduzione del peso corporeo e dell’adiposità, nonché un miglioramento della tolleranza al glucosio e della sensibilità all’insulina. Le goccioline lipidiche nel BAT dei topi trattati con mirabegron erano meno numerose e di dimensioni inferiori rispetto ai controlli. La colorazione H&E e l’immunoistochimica hanno indicato che mirabegron ha aumentato l’abbondanza di cellule “beige” nel WAT [4]. Si è concluso che mirabegron ha aumentato l’espressione di UCP1 e ha promosso la “brunitura” del WAT, che è stata accompagnata da un miglioramento della tolleranza al glucosio, della sensibilità all’insulina e della prevenzione dell’obesità indotta da una dieta ad alto contenuto di grassi [4]. In un altro studio su animali, Valgas da Silva et al. [18] hanno riferito che un trattamento di 2 settimane con mirabegron ha ridotto l’infiammazione, migliorato il metabolismo, impedito l’accumulo di grasso ectopico nel BAT e nel fegato e diminuito l’insulino-resistenza nei topi obesi (riduzione dell’indice HOMA e dei livelli di insulina). Mirabegron ha aumentato l’espressione di UCP1 nel BAT e il dispendio energetico, oltre a ridurre l’adiposità nei topi obesi. Inoltre, mirabegron ha ridotto i livelli circolanti di acidi grassi liberi, glicerolo e TNF-α. È noto che l’aumento dei livelli di FFA circolanti causa insulino-resistenza negli organi bersaglio dell’insulina ed è emerso come uno dei principali collegamenti tra l’obesità e lo sviluppo della sindrome metabolica. È noto anche che il TNF-α ha un effetto lipolitico, che determina un aumento dei livelli di FFA e glicerolo in circolo, contribuendo all’insulino-resistenza. Tuttavia, a differenza dello studio condotto da Dehvari et al. non sono stati riscontrati cambiamenti nel WAT inguinale: il mirabegron non ha indotto il “beiging” del WAT inguinale dei topi obesi. Inoltre, l’obesità indotta dalla dieta ha aumentato significativamente i depositi lipidici nel fegato e nel BAT, ma mirabegron ha parzialmente invertito questi cambiamenti, il che potrebbe indicare un ruolo protettivo di mirabegron nello sviluppo della steatosi epatica e dell’insulino-resistenza [18].
La conferma che mirabegron può essere utile come agente anti-obesità è stata trovata anche nello studio di Hao et al. [4]. È stato dimostrato che mirabegron provoca un aumento di 14 volte dell’espressione genica di UCP1 e può determinare una perdita di peso del 12% e una riduzione dell’adiposità nei topi obesi rispetto all’attività fisica.

Struttura molecolare della Metformina

La terapia combinata, composta da Mirabegron e Metformina, è stata verificata nel modello murino di prevenzione e nel modello murino di trattamento dell’obesità [2]. La metformina, un derivato della biguanide, è uno dei farmaci più comunemente utilizzati per il trattamento del diabete di tipo 2. Inibisce il complesso mitocondriale I, vitale per il trattamento dell’obesità. Inibisce il complesso mitocondriale I, vitale per il trasporto di elettroni, che porta all’attivazione dell’AMPK (proteina chinasi attivata dall’adenosina 5′-monofosfato). Di conseguenza, la produzione di ATP (adenosina trifosfato) diminuisce e la concentrazione intracellulare di ADP (adenosina difosfato) aumenta. Di conseguenza, i livelli cellulari di AMP (adenosina monofosfato) aumentano, attivando infine l’AMPK. L’AMPK è un regolatore chiave di numerose vie metaboliche, tra cui il metabolismo del glucosio e dei lipidi e l’omeostasi energetica. La metformina svolge anche un ruolo importante inibendo la segnalazione dei recettori dell’insulina e dell’IGF, con conseguenti cambiamenti nell’omeostasi metabolica [32]. Zhao et al. [2] hanno indicato che questa terapia complessa potrebbe essere un approccio promettente per la prevenzione e il trattamento dell’obesità, agendo contemporaneamente sull’assunzione e sul dispendio energetico, senza effetti collaterali sulla funzione cardiovascolare. Nel modello di prevenzione, metformina e mirabegron hanno provocato un’ulteriore riduzione del 12% e del 14% dell’aumento di peso corporeo indotto da una dieta ad alto contenuto di grassi, rispetto a metformina o mirabegron da soli, rispettivamente. Nel modello di trattamento, metformina e mirabegron hanno promosso in modo additivo una perdita di peso corporeo del 17% nei topi obesi indotti dalla dieta, superiore del 13% e del 6% rispetto a metformina e mirabegron da soli, rispettivamente. La terapia combinata ha avuto un effetto additivo sulla perdita di peso nei topi, associato a una significativa perdita di grasso, soprattutto nel WAT sottocutaneo [2]. I ricercatori hanno suggerito che l’effetto additivo di metformina e mirabegron sull’aumento del dispendio energetico abbia contribuito in modo determinante alla riduzione del peso corporeo e della massa grassa nei topi [2]. La terapia con metformina e mirabegron ha avuto un effetto additivo sulla termogenesi del BAT e sulla doratura del WAT sottocutaneo. La terapia combinata ha aumentato significativamente l’espressione di UCP1 nel BAT e nel WAT sottocutaneo [2]. Inoltre, metformina e mirabegron hanno migliorato la tolleranza al glucosio e la sensibilità all’insulina, e l’effetto era indipendente dall’assunzione di cibo. Tuttavia, la co-somministrazione di metformina e mirabegron non ha migliorato l’omeostasi del glucosio nei topi in misura maggiore rispetto alla metformina o al mirabegron da soli [2].

Un diagramma che riassume gli effetti combinati di Metformina (Met)/Mirabegron (Mir) sull’obesità nei modelli di prevenzione e trattamento. (A) Nel modello di prevenzione in cui una dieta ricca di grassi (HFD) e farmaci venivano somministrati simultaneamente, il trattamento con Met/Mir ha ridotto l’aumento di peso in modo additivo. Ciò è dovuto principalmente a un miglioramento della spesa energetica (EE) che era accompagnato da un’espressione sovraregolata di marcatori critici nella lipolisi, nell’ossidazione degli acidi grassi e nella termogenesi nel tessuto adiposo bruno (BAT). (B) Nel modello di trattamento, è stato prima stabilito un fenotipo di obesità indotta dalla dieta (DIO), seguito da 5 settimane di trattamenti terapeutici con Met e/o Mir. Il trattamento con Met/Mir ha causato una marcata perdita di peso, derivante dall’aumento di EE

E’ interessante notare che la p-Sinefrina, una agonista selettivo dei β3-Adrenocettoiri di origine naturale, ha mostrato in studi su animali effetti positivi sull’imbrunimento del WAT, sopprimendo così l’obesità e la steatosi epatica.

Mirabegron come farmaco antiobesità: i dati degli studi sull’uomo:

Oltre agli studi sperimentali, esistono numerosi studi clinici in cui è stata dimostrata l’influenza di mirabegron sull’attività del BAT e sulla massa corporea. Gli autori hanno riferito che mirabegron ha portato a un aumento dell’attività del BAT e del dispendio energetico a riposo [1,3,5,10,17,21]. Prove preliminari suggeriscono che gli effetti del mirabegron sul metabolismo del glucosio, sul colesterolo HDL e sugli acidi biliari assomigliano a quelli ottenuti con un lieve esercizio fisico [1,5].
Nel primo gruppo di studi sono state testate soprattutto dosi elevate di mirabegron (100 mg, 150 mg o 200 mg) [1,3,5,17,21].

Cypess et al. [1] hanno usato, per la prima volta, Mirabegron per studiare il BAT umano e hanno confrontato la sua azione in un grado che corrispondeva alle risposte all’esposizione al freddo. La somministrazione di 200mg al giorno di Mirabegron orale per 12 settimane a 12 uomini sani è stata associata a una maggiore attività del BAT (misurata tramite tomografia a emissione di positroni 18F-fluorodesossiglucosio combinata con tomografia computerizzata) e all’aumento del tasso metabolico a riposo di 203 ± 40 kcal/die, rispetto agli individui che hanno ricevuto il placebo. È stato ipotizzato che la perdita di peso calcolata, associata al dispendio energetico, dovrebbe raggiungere i 5 kg nel primo anno e i 10 kg entro la fine dei 3 anni [1]. In questo studio, il dosaggio di 200 mg di mirabegron, una dose molto più alta di quelle attualmente approvate per ridurre i sintomi della vescica iperattiva, è stato generalmente ben tollerato, anche dopo 12 settimane di somministrazione orale giornaliera [1]. L’effetto collaterale più comune era la tachicardia [1].

L’alta dose di Mirabegron [100mg al giorno] è stata testata da O’Mara et al. durante un programma di terapia di 4 settimane su 14 donne sane di varie etnie [5]. Nell’endpoint primario, i ricercatori hanno riferito che la terapia cronica con Mirabegron ha aumentato il volume del BAT e l’attività metabolica, misurati tramite PET/CT con 18F-fluorodesossiglucosio [5]. Inoltre, le donne che avevano avuto principalmente meno BAT hanno finalmente raggiunto un aumento maggiore del volume e dell’attività del BAT dopo il trattamento [5]. Gli endpoint secondari hanno rivelato che la spesa energetica a riposo dell’intero corpo era più alta dopo il trattamento con mirabegron; tuttavia, non sono state riscontrate modifiche nel peso corporeo o nella composizione. Questi risultati dovrebbero essere associati a un intervallo di BMI ristretto e alla partecipazione di donne non obese. Inoltre, è stato riscontrato che la terapia con Mirabegron aumenta i biomarcatori delle lipoproteine ​​come HDL e apolipoproteina A1, apolipoproteina E e peptide inibitorio gastrico (GIP), nonché i livelli di adiponectina, adipochina antidiabetica e antinfiammatoria. Dopo il trattamento con mirabegron, è stata osservata una riduzione del rapporto ApoB100/ApoA1, un biomarcatore del rischio cardiovascolare. Infine, dopo il trattamento cronico con mirabegron, un test di tolleranza al glucosio per via endovenosa ha rivelato una maggiore sensibilità all’insulina, efficacia del glucosio e secrezione di insulina [5]. Tuttavia, il cambiamento nella valutazione del modello omeostatico della resistenza all’insulina (HOMA-IR), una misura della resistenza all’insulina, non è stato significativo dopo il trattamento cronico con mirabegron. Gli autori hanno suggerito che la ragione principale dovrebbe essere il livello HOMA-IR quasi normale all’inizio dello studio [5]. Come è una preoccupazione comune nel trattamento cronico con agonisti adrenergici, 100mg di Mirabegron hanno portato a una variazione diurna della frequenza cardiaca tale che Mirabegron l’ha aumentata di più durante la notte rispetto a quando i soggetti erano svegli e in movimento. D’altra parte, il trattamento con Mirabegron non ha avuto alcun effetto sulla tolleranza all’esercizio [5].

Loh et al. [21] hanno riportato l’efficacia di varie dosi singole di mirabegron (50, 100, 150 e 200 mg) in un gruppo di 17 individui sani (11 uomini, 6 donne) che hanno assunto il farmaco in quattro giorni separati, con 3-14 giorni di wash-out tra ogni dose. Hanno riferito che la spesa energetica (misurata tramite calorimetria indiretta) è aumentata significativamente dopo le dosi da 100 mg e 200 mg e ha mostrato una tendenza all’aumento dopo le dosi da 150 mg, ma non era significativamente diversa dal basale in risposta a 50 mg di mirabegron. La temperatura cutanea sopraclaveare (come indicatore surrogato dell’attività BAT), è aumentata dopo le dosi di mirabegron da 50 mg, 100 mg e 150 mg, ma non era significativamente diversa dal basale in risposta a 200 mg. Considerando gli effetti collaterali, il cambiamento nella pressione sanguigna sistolica è stato significativo dopo le dosi da 150 mg e 200 mg rispetto alla dose da 50 mg e alla dose da 100 mg. Tuttavia, non c’era alcuna differenza nella pressione sanguigna diastolica tra le dosi da 50 mg, 100 mg, 150 mg e 200 mg. Il cambiamento nella frequenza cardiaca è stato maggiore dopo 200 mg rispetto alle dosi rimanenti. Hanno concluso che una dose da 100 mg di mirabegron può essere efficace per aumentare il dispendio energetico e la temperatura cutanea sopraclaveare in modo specifico per il recettore β3-adrenergico, senza gli aumenti significativi della pressione sanguigna o della frequenza cardiaca osservati a dosi più elevate [21].

Baskin et al. [17] hanno studiato le implicazioni cliniche del mirabegron in 12 uomini sani e magri a cui è stata somministrata la dose approvata di 50 mg e una dose elevata di 200 mg. Si è verificato un aumento più che proporzionale alla dose nell’attività metabolica del BAT (misurata tramite PET/CT). Rispetto al placebo, 50 mg di mirabegron hanno aumentato l’attività del BAT nella maggior parte dei soggetti. Tuttavia, l’attivazione del BAT con 50 mg è stata significativamente inferiore rispetto a quella con 200 mg. Solo la dose da 200 mg ha aumentato la spesa energetica a riposo (5,8%). La stimolazione cardiovascolare è stata coerente con studi precedenti, poiché 200 mg di mirabegron hanno aumentato sia la frequenza cardiaca che la pressione sanguigna.

Uno studio randomizzato, in doppio cieco, cross-over costituito da tre interventi (esposizione al freddo a breve termine (~2 h), mirabegron (dose singola da 200 mg) e placebo) in un gruppo di 10 uomini magri olandesi sud asiatici e 10 uomini magri europei, condotto da Nahon et al. [3], ha rivelato che l’esposizione al freddo e il mirabegron hanno indotto effetti metabolici benefici, tra cui un aumento della spesa energetica a riposo (misurata mediante calorimetria indiretta), livelli di acidi grassi liberi nel siero e ossidazione dei lipidi. Il mirabegron ha aumentato la frequenza cardiaca sia nei sud asiatici (+10 battiti/min) che nei caucasici bianchi (+7 battiti/min), mentre la pressione sanguigna sistolica e diastolica non sono cambiate in modo significativo [3]. È stato osservato che una singola dose di mirabegron ha aumentato i livelli di insulina nel siero senza influenzare i livelli di glucosio. Il mirabegron può stimolare il rilascio di insulina direttamente agendo sul β3-AR del pancreas o indirettamente attraverso un aumento degli FFA che possono stimolare il pancreas a rilasciare insulina [3].

L’azione dose-dipendente del mirabegron sul tessuto adiposo, inclusa l’influenza sull’attività BAT e sul dispendio energetico, può essere analoga all’effetto del mirabegron sulla vescica urinaria. L’attivazione dei recettori β3-adrenergici con mirabegron ha determinato risposte dei recettori β3-adrenergici dipendenti dalla concentrazione [27]. Per quanto riguarda la funzione della vescica, negli studi in vivo, la somministrazione di mirabegron ha ridotto la pressione intravescicolare e le contrazioni vescicali spontanee in modo dose-dipendente [23].

È stato riportato che dosi elevate di mirabegron (in particolare 200 mg al giorno), molto più elevate di quelle approvate dalla FDA per l’iperattività della vescica (50 mg al giorno), possono essere associate a effetti collaterali cardiovascolari come mal di testa, tachicardia e pressione sanguigna elevata (per lo più solo pressione sanguigna sistolica) [1,3,5,17,21]. L’aumento della pressione sanguigna sistolica può raggiungere ~10 mm Hg alla dose di 200 mg al giorno [21]. Questo è il risultato della perdita di selettività per il β3-adrenocettore a questa dose, tale che mirabegron attiva indirettamente i β1-adrenocettori che sono ampiamente espressi in vari organi, in particolare il sistema cardiovascolare. Questo meccanismo coinvolge l’assorbimento del trasportatore di noradrenalina del mirabegron nei terminali nervosi simpatici cardiaci, causando successivamente un rilascio di noradrenalina, che attiva i β1-adrenocettori [21]. Tuttavia, il trattamento con mirabegron non ha avuto effetti sulla tolleranza all’esercizio [5]. L’attivazione dei β1-adrenocettori può essere attenuata dalla co-somministrazione di propranololo o bisoprololo [16]. D’altro canto, gli studi clinici hanno rivelato che dosi di mirabegron fino a 100 mg al giorno per almeno 12 mesi hanno mostrato un buon profilo di sicurezza e non hanno determinato un aumento dell’incidenza di tachicardia, pressione sanguigna, alterazioni dell’ECG o eventi cardiovascolari [21]. Dosi terapeutiche inferiori (50 mg) nei pazienti con OAB hanno determinato piccole variazioni della frequenza cardiaca (1 battito al minuto) e della pressione sanguigna (1 mm Hg o meno). Considerando gli effetti collaterali cardiovascolari, il mirabegron non è raccomandato nei pazienti con grave ipertensione incontrollata (pressione sanguigna sistolica ≥ 180 mm Hg e/o pressione sanguigna diastolica ≥ 110 mm Hg) [16].

Nel secondo gruppo di studi, condotto da Finlin et al. [9,13,14], è stata testata una bassa dose di mirabegron, una che è stata approvata per il trattamento dell’OAB. In un gruppo di 13 pazienti obesi di mezza età, 50 mg di mirabegron al giorno durante una terapia di 12 settimane hanno indotto il “beiging” del tessuto adiposo bianco sottocutaneo, nonché un miglioramento della funzione delle cellule β. Mirabegron ha aumentato l’espressione proteica dei marcatori adiposi “beige” UCP1 (2,4 volte), della proteina transmembrana 26 (TMEM26) (4,2 volte) e dell’effettore A simile al DFFA che induce la morte cellulare (CIDEA) (2,4 volte) [13]. Il “beiging” del tessuto adiposo bianco sottocutaneo da parte di mirabegron può ridurre la disfunzione del tessuto adiposo, il che può migliorare la capacità ossidativa muscolare e può migliorare la funzione delle cellule β [13]. Prendendo in considerazione l’omeostasi del glucosio, il trattamento con mirabegron ha migliorato la tolleranza orale al glucosio, portando a convertire il prediabete in una normale concentrazione di glucosio, ha ridotto i livelli di emoglobina A1c e ha migliorato la sensibilità all’insulina e la funzione delle cellule β, senza influenzare la glicemia a digiuno o i livelli di insulina a digiuno e HOMA-IR. Tuttavia, i risultati delle pinze euglicemiche, che sono il gold standard per misurare la sensibilità all’insulina, hanno rivelato che il trattamento con mirabegron ha aumentato in modo coerente e significativo la velocità di infusione del glucosio di circa il 12% [13]. I livelli di lipidi plasmatici sono cambiati in modo significativo, ma, dopo il trattamento con mirabegron, è stata riscontrata una tendenza verso una riduzione del colesterolo totale [13]. Sfortunatamente, una terapia di 12 settimane non ha determinato un aumento significativo della quantità di BAT e del dispendio energetico a riposo, della perdita di peso o dei cambiamenti nella composizione corporea in tali pazienti [13].

L’effetto benefico del mirabegron, simile all’effetto dell’esposizione al freddo, sull’induzione del tessuto adiposo “beige” nel tessuto adiposo sottocutaneo umano è stato riportato anche in un altro studio condotto da Finlin et al. [14]. Hanno esposto al freddo i partecipanti alla ricerca magri e obesi o li hanno trattati con mirabegron. Il trattamento cronico con mirabegron (10 settimane; 50 mg/giorno) ha indotto UCP1 (3 volte) e TMEM26 (8,7 volte) nei soggetti obesi. Inoltre, l’espressione di UCP1 e dei marcatori degli adipociti “beige” è aumentata più che dopo 10 giorni di ripetuta esposizione al freddo [14].

Nello studio successivo, composto da 12 partecipanti obesi insulino-resistenti, Finlin et al. [9] hanno valutato la capacità del trattamento con pioglitazone (30 mg/giorno) o del trattamento con mirabegron (50 mg/giorno) in monoterapia, così come una combinazione di trattamento con pioglitazone (30 mg/giorno) e mirabegron (50 mg/giorno), di aumentare il grasso “beige” o migliorare ulteriormente il metabolismo del glucosio durante 12 settimane di terapia. Il pioglitazone è un attivatore PPARγ che può stimolare il BAT o “grasso beige”. Il trattamento con pioglitazone o la combinazione di pioglitazone e mirabegron hanno aumentato l’espressione del marcatore proteico del tessuto adiposo “beige” e migliorato la sensibilità all’insulina (misurata tramite clamp euglicemico, più efficace nella terapia combinata) e l’omeostasi del glucosio (inclusi test di tolleranza al glucosio migliorati, più efficaci nella terapia combinata), ma nessuno dei due trattamenti ha indotto il BAT o influenzato la spesa energetica nei soggetti obesi. Inoltre, non si è verificato alcun cambiamento significativo nel peso corporeo dopo il trattamento. Nonostante il fatto che mirabegron e pioglitazone somministrati separatamente abbiano indotto il “beiging” del tessuto adiposo, l’aggiunta di pioglitazone a mirabegron non ha migliorato il “beiging”, poiché il trattamento combinato ha prodotto un “beiging” inferiore rispetto a entrambi i farmaci somministrati singolarmente [9].

Sebbene i risultati preliminari degli studi sugli animali abbiano mostrato i benefici della co-somministrazione di mirabegron e metformina nella prevenzione e nel trattamento dell’obesità [2], a nostra conoscenza, l’influenza di tale terapia combinata non è stata verificata in relazione all’attività BAT, al dispendio energetico e alla perdita di peso negli esseri umani. È noto solo che non ci sono interazioni clinicamente significative tra metformina e mirabegron. Nello studio con 32 soggetti maschi sani (BMI: 18–30 kg/m2), mirabegron (160 mg somministrati una volta al giorno) non ha mostrato alcun effetto sulla farmacocinetica di metformina (500 mg somministrati due volte al giorno). La co-somministrazione di mirabegron con metformina ha determinato piccole modifiche nell’esposizione a mirabegron (AUC e Cmax diminuite del 21%). Le modifiche farmacocinetiche osservate non sono state considerate clinicamente rilevanti. Pertanto, non è necessario alcun aggiustamento del dosaggio di mirabegron quando viene co-somministrato con metformina [33].

Sebbene i dati confermino che una bassa dose di mirabegron può indurre il “beiging” del WAT sottocutaneo, è stato riportato che 50 mg di mirabegron durante il trattamento a breve termine (circa 12 settimane di terapia) non hanno alcun effetto sulla quantità di BAT, sul dispendio energetico a riposo e sulla perdita di peso. Pertanto, sono necessari studi clinici di lunga durata, con partecipanti obesi con una dose inferiore di mirabegron, per valutare se il “beiging” del tessuto adiposo si tradurrebbe in un miglioramento del dispendio energetico a riposo e in una significativa perdita di peso.

Conclusioni:

Il BAT metabolicamente attivo è stato correlato positivamente al miglioramento dell’energia, del glucosio e del metabolismo dell’intero corpo [34]. L’attivazione del BAT e l’induzione del processo di “browning” nel WAT sembrano essere un’interessante strategia terapeutica per aumentare la spesa energetica e migliorare il metabolismo. Il mirabegron, come agonista del recettore β3-adrenergico, si è rivelato efficace come attivatore del BAT, stimolatore delle cellule “beige” e regolatore dell’omeostasi metabolica sia negli studi sugli animali che negli esseri umani. Sebbene negli studi sugli animali la somministrazione di mirabegron abbia portato a un miglioramento dell’obesità, non è stata ancora dimostrata una significativa perdita di peso nei pazienti obesi dopo dosi elevate o basse del farmaco. Ciò può essere spiegato dalla durata troppo breve degli studi e dal numero esiguo di partecipanti agli studi. Inoltre, negli esseri umani, il trattamento più efficace per la stimolazione del BAT e del WAT è stato quello con dosi elevate di mirabegron; tuttavia, gli effetti collaterali cardiovascolari possono limitare l’uso di dosi superiori a quelle approvate dalla FDA per il trattamento della vescica iperattiva. Da un lato, considerando l’uso di dosi elevate di mirabegron, deve essere valutata la sicurezza a lungo termine in relazione al sistema cardiovascolare. In caso di attivazione aggravata dei recettori β1 miocardici, la somministrazione concomitante di 100-200 mg di mirabegron con un bloccante β1-AR può essere una strategia terapeutica utile per evitare effetti collaterali cardiovascolari. D’altro canto, dovrebbe essere valutato se dosi più piccole di mirabegron, ad esempio quelle approvate per la vescica iperattiva (50 mg al giorno), assunte per un periodo di tempo più lungo, saranno sufficienti a stimolare la crescita del BAT, l’imbrunimento del WAT e la termogenesi che può portare alla perdita di peso. Negli studi clinici riguardanti l’efficacia e la sicurezza del mirabegron nei pazienti con vescica iperattiva, l’influenza del mirabegron sul peso corporeo non è stata verificata. A nostra conoscenza, l’efficacia del mirabegron in relazione ai disturbi metabolici, inclusa l’obesità, nei soggetti trattati per vescica iperattiva, non è stata finora valutata.

Si potrebbe quindi ipotizzare che, il potenziale ruolo del Mirabegron nel trattamento o nella prevenzione dell’obesità dipenderebbe dai risultati della sua efficacia determinati da studi clinici a lungo termine. In caso di mancanza o insoddisfacente effetto dimagrante (rispetto ai farmaci attualmente disponibili approvati per il trattamento dell’obesità), il mirabegron potrebbe essere utilizzato per migliorare il profilo metabolico nei pazienti obesi. Se l’effetto dimagrante del mirabegron venisse confermato, il farmaco diventerebbe un’opzione alternativa agli attuali agenti anti-obesità, specialmente nei pazienti con controindicazioni o intolleranza ad altri farmaci. Inoltre, un aspetto interessante da valutare negli studi clinici sarebbe se la co-somministrazione di mirabegron e altri farmaci, come metformina, pioglitazone o altri farmaci anti-obesità attualmente utilizzati, potrebbe essere una strategia più efficace rispetto alla somministrazione di tali farmaci da soli per migliorare i profili metabolici o per trattare l’obesità. I benefici della co-somministrazione di mirabegron e metformina nella prevenzione e nel trattamento dell’obesità, dimostrati in studi sugli animali, devono essere confermati in ulteriori studi clinici. Sebbene i risultati preliminari della co-somministrazione di mirabegron e pioglitazone in partecipanti obesi non abbiano indicato alcuna influenza di tale terapia sul peso corporeo, devono essere eseguiti ulteriori studi per confermare questi risultati. Pertanto, l’introduzione di agonisti del recettore β3-adrenergico nel trattamento dell’obesità in futuro richiederà studi a lungo termine con un numero maggiore di soggetti per valutarne l’efficacia, la tollerabilità e la sicurezza.

I tessuti adiposi bruni e “beige” rimangono un bersaglio attraente per combattere le malattie metaboliche. Sono necessari ulteriori studi per confermare se la combinazione di agenti attivatori di BAT e “beige”, esercizi fisici e una dieta ipocalorica sana sarebbe una strategia di successo per ottenere la perdita di peso nei pazienti con obesità.

E per l’uso off-label nella ricomposizione corporea? I test in tal senso sono ancora scarsi e dal design spesso pessimo. Vi sono stati riscontri positivi, almeno preliminarmente parlando, con protocolli di 8-12 settimane a dosaggi di 75-100mg/die. Il dosaggio era stato settato partendo da 25mg/die per poi mantenere e osservare le risposte al dosaggio per qualche giorno [pressione, battito cardiaco ecc…]. L’uso del Mirabegron in ambito sportivo è tanto pionieristico come lo è quello dei tireomimetici. Ci vorranno ancora diversi studi per poter essere maggiormente certi di concreti vantaggi applicativi di questa molecola come PEDs.

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  1. Cypess, A.M.; Weiner, L.S.; Roberts-Toler, C.; Elia, E.F.; Kessler, S.H.; Kahn, P.A.; English, J.; Chatman, K.; Trauger, S.A.; Doria, A.; et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell. Metab. 201521, 33–38. [Google Scholar] [CrossRef]
  2. Zhao, X.Y.; Liu, Y.; Zhang, X.; Zhao, B.C.; Burley, G.; Yang, Z.C.; Luo, Y.; Li, A.Q.; Zhang, R.X.; Liu, Z.Y.; et al. The combined effect of metformin and mirabegron on diet-induced obesity. Med. Comm. 20234, e207. [Google Scholar] [CrossRef]
  3. Nahon, K.J.; Janssen, L.G.M.; Sardjoe Mishre, A.S.D.; Bilsen, M.P.; van der Eijk, J.A.; Botani, K.; Overduin, L.A.; Ruiz, J.R.; Burakiewicz, J.; Dzyubachyk, O.; et al. The effect of mirabegron on energy expenditure and brown adipose tissue in healthy lean South Asian and Europid men. Diabetes Obes. Metab. 202022, 2032–2044. [Google Scholar] [CrossRef]
  4. Hao, L.; Scott, S.; Abbasi, M.; Zu, Y.; Khan, M.S.H.; Yang, Y.; Wu, D.; Zhao, L.; Wang, S. Beneficial Metabolic Effects of Mirabegron In Vitro and in High-Fat Diet-Induced Obese Mice. J. Pharmacol. Exp. Ther. 2019369, 419–427. [Google Scholar] [CrossRef]
  5. O’Mara, A.E.; Johnson, J.W.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Fletcher, L.A.; Fink, Y.A.; Kapuria, D.; Cassimatis, T.M.; Kelsey, N.; et al. Chronic mirabegron treatment increases humaan brown fat, HDL-cholesterol and insulin sensitivity. J. Clin. Investig. 2020130, 2209–2219. [Google Scholar] [CrossRef]
  6. Hainer, V. Beta3-adrenoreceptor agonist mirabegron—A potential antiobesity drug? Expert Opin. Pharmacother. 201617, 2125–2127. [Google Scholar] [CrossRef]
  7. Roberts-Toler, C.; O’Neill, B.T.; Cypess, A.M. Diet-Induced Obesity Causes Insulin Resistance in Mouse Brown Adipose Tissue. Obesity 201523, 1765–1770. [Google Scholar] [CrossRef]
  8. Flier, J.S. Might β3-adrenergic receptor agonists be useful in disorders of glucose homeostasis? J. Clin. Investig. 2020130, 2180–2182. [Google Scholar] [CrossRef]
  9. Finlin, B.S.; Memetimin, H.; Zhu, B.; Confides, A.L.; Vekaria, H.J.; El Khouli, R.H.; Johnson, Z.R.; Westgate, P.M.; Chen, J.; Morris, A.J.; et al. Pioglitazone does not synergize with mirabegron to increase beige fat or further improve glucose metabolism. JCI Insight 20216, e143650. [Google Scholar] [CrossRef]
  10. Cero, C.; Lea, H.J.; Zhu, K.Y.; Shamsi, F.; Tseng, Y.H.; Cypess, A.M. β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 20216, e139160. [Google Scholar] [CrossRef]
  11. Waki, H.; Yamauchi, T. Body-weight-independent glucose-lowering effect of the b3-adrenergic receptor agonist mirabegron in humans. J. Diabetes Investig. 202112, 689–690. [Google Scholar] [CrossRef]
  12. Harb, E.; Kheder, O.; Poopalasingam, G.; Rashid, R.; Srinivasan, A.; Izzi-Engbeaya, C. Brown adipose tissue and regulation of human body weight. Diabetes Metab. Ress. Rev. 202339, e3594. [Google Scholar] [CrossRef]
  13. Finlin, B.S.; Memetimin, H.; Zhu, B.; Confides, A.L.; Vekaria, H.J.; El Khouli, R.H.; Johnson, Z.R.; Westgate, P.M.; Chen, J.; Morris, A.J.; et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostatsis in obese humans. J. Clin. Investig. 2020130, 2319–2331. [Google Scholar] [CrossRef]
  14. Finlin, B.S.; Memetimin, H.; Confides, A.L.; Kasza, I.; Zhu, B.; Vekaria, H.J.; Harfmann, B.; Jones, K.A.; Johnson, Z.R.; Westgate, P.M.; et al. Human adipose beiging in response to cold and mirabegron. JCI Insight 20183, e121510. [Google Scholar] [CrossRef]
  15. Dehvari, N.; Sato, M.; Bokhari, M.H.; Kalinovich, A.; Ham, S.; Gao, J.; Nguyen, H.T.M.; Whiting, L.; Mukaida, S.; Merlin, J.; et al. The metabolic effects of mirabegron are mediated primarily by β3-adrenoceptors. Pharmacol. Res. Perspect. 20208, e00643. [Google Scholar] [CrossRef]
  16. Dehvari, N.; da Silva Junior, E.D.; Bengtsson, T.; Hutchinson, D.S. Mirabegron: Potential off target effects and uses beyond the bladder. Br. J. Pharmacol. 2018175, 4072–4082. [Google Scholar] [CrossRef]
  17. Baskin, A.S.; Linderman, J.D.; Brycha, R.J.; McGehee, S.; Anflick-Chames, E.; Cero, C.; Johnson, J.W.; O’Mara, A.E.; Fletcher, L.A.; Leitner, B.P.; et al. Regulation of Human Adipose Tissue Activation, Gallbladder Size, and Bile Acid Metabolism by a b3-Adrenergic Receptor Agonis. Diabetes 201867, 2113–2125. [Google Scholar] [CrossRef]
  18. Pereas Valgas da Silva, C.; Calmasini, F.; Alexandre, E.C.; Raposo, H.F.; Delbin, M.A.; Monica, F.Z.; Zanesco, A. The effects of mirabegron on obesity-induced inflammation and insulin resistance are associated with brown adipose tissue activation but not beiging in the subcutaneous white adipose tissue. Clin. Exp. Pharmacol. Physiol. 202148, 1477–1487. [Google Scholar] [CrossRef]
  19. Arch, J.R.S. Challenges in β3-adrenoceptor agonist drug development. Ther. Adv. Endocrinol. Metab. 20112, 59–64. [Google Scholar] [CrossRef]
  20. Liu, X.; Pérusse, F.; Bukowiecki, L.J. Mechanisms of the antidiabetic effects of the beta 3-adrenergic agonist CL-316243 in obese Zucker-ZDF rats. Am. J. Physiol. 1998274, R1212–R1219. [Google Scholar]
  21. Loh, R.K.C.; Formosa, M.F.; Gerche, A.L.; Reutens, A.T.; Kingwell, B.A.; Carey, A.L. Acute metabolic and cardiovascular effects of mirabegron in healthy individuals. Diabetes Obes. Metab. 201921, 276–284. [Google Scholar] [CrossRef] [PubMed]
  22. Takasu, T.; Ukai, M.; Sato, S.; Matsui, T.; Nagase, I.; Maruyama, T.; Sasamata, M.; Miyata, K.; Uchida, H.; Yamaguchi, O. Effect of (R)-2-(2-aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function. J. Pharmacol. Exp. Ther. 2007321, 642–647. [Google Scholar] [CrossRef]
  23. Igawa, Y.; Michel, M.C. Pharmacological profile of β3-adrenoceptor agonists in clinical development for the treatment of overactive bladder syndrome. Naunyn. Schmiedebergs. Arch. Pharmacol. 2013386, 177–183. [Google Scholar] [CrossRef] [PubMed]
  24. Krhut, J.; Martan, A.; Zachoval, R.; Hanus, T.; Svabik, K.; Zvara, P. Impact of body mass index on treatment efficacy of mirabegron for overactive bladder in females. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016196, 64–68. [Google Scholar] [CrossRef] [PubMed]
  25. Hatanaka, T.; Ukai, M.; Watanabe, M.; Someya, A.; Ohtake, A.; Suzuki, M.; Ueshima, K.; Sato, S.; Sasamata, M. In vitro and in vivo pharmacological profile of the selective β3-adrenoceptor agonist mirabegron in rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 2013386, 247–253. [Google Scholar] [CrossRef]
  26. Nagiri, C.; Kobayashi, K.; Tomita, A.; Kato, M.; Kobayashi, K.; Yamashita, K.; Nishizawa, T.; Inoue, A.; Shihoya, W.; Nureki, O. Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity. Mol. Cell. 202181, 3205–3215. [Google Scholar] [CrossRef] [PubMed]
  27. Brucker, B.M.; King, J.; Mudd, P.N., Jr.; McHale, K. Selectivity and Maximum Response of Vibegron and Mirabegron for β3-Adrenergic Receptors. Curr. Ther. Res. Clin. Exp. 202296, 100674. [Google Scholar] [CrossRef]
  28. Alexandre, E.C.; Kiguti, L.R.; Calmasini, F.B.; Silva, F.H.; da Silva, K.P.; Ferreira, R.; Ribeiro, C.A.; Mónica, F.Z.; Pupo, A.S.; Antunes, E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3 -adrenoceptor activation and α1 -adrenoceptor blockade. Br. J. Pharmacol. 2016173, 415–428. [Google Scholar] [CrossRef]
  29. De Stefano, A.; Schinzari, F.; Di Daniele, N.; Sica, G.; Gentileschi, P.; Vizioli, G.; Cardillo, C.; Tesauro, M. Mirabegron relaxes arteries from human visceral adipose tissue through antagonism of α1-adrenergic receptors. Vascul. Pharmacol. 2022146, 107094. [Google Scholar] [CrossRef]
  30. Lowell, B.B.; S-Susulic, V.; Hamann, A.; Lawitts, J.A.; Himms-Hagen, J.; Boyer, B.B.; Kozak, L.P.; Flier, J.S. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993366, 740–742. [Google Scholar] [CrossRef]
  31. Hamann, A.; Flier, J.S.; Lowell, B.B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 1996137, 21–29. [Google Scholar] [CrossRef] [PubMed]
  32. Lv, Z.; Guo, Y. Metformin and its benefits for various diseases. Front. Endocrinol. 202011, 191. [Google Scholar] [CrossRef] [PubMed]
  33. Groen-Wijnberg, M.; van Dijk, J.; Krauwinkel, W.; Kerbusch, V.; Meijer, J.; Tretter, R.; Zhang, W.; van Gelderen, M. Pharmacokinetic Interactions Between Mirabegron and Metformin, Warfarin, Digoxin or Combined Oral Contraceptives. Eur. J. Drug Metab. Pharmacokinet. 201742, 417–429. [Google Scholar] [CrossRef] [PubMed]
  34. Bel, J.C.; Tai, T.C.; Khaper, N.; Lees, S.J. Mirabegron: The most promising adipose tissue beiging agent. Physiol. Rep. 20219, e14779. [Google Scholar] [CrossRef]

Glucocorticoidi – dalla biosintesi all’uso nello sport

Introduzione:

I Glucocorticoidi (o, meno comunemente, glucocorticosteroidi) sono una classe di corticosteroidi, ovvero una classe di ormoni steroidei. I Glucocorticoidi sono corticosteroidi che si legano al recettore dei glucocorticoidi[1], presente in quasi tutte le cellule animali vertebrate. Il nome “Glucocorticoide” è un portmanteau (glucosio + corteccia + steroide) ed è composto dal suo ruolo nella regolazione del metabolismo del glucosio, dalla sintesi nella corteccia surrenale e dalla sua struttura steroidea.

I Glucocorticoidi fanno parte del meccanismo di feedback del sistema immunitario, che riduce alcuni aspetti della funzione immunitaria, come l’infiammazione. Sono quindi utilizzati in medicina per trattare le malattie causate da un sistema immunitario iperattivo, come allergie, asma, malattie autoimmuni e sepsi. I Glucocorticoidi hanno molti effetti diversi, come la pleiotropia, tra cui effetti collaterali potenzialmente dannosi.[2] Inoltre, interferiscono con alcuni meccanismi anomali delle cellule tumorali, per cui vengono utilizzati in dosi elevate per il trattamento del cancro. Ciò include effetti inibitori sulla proliferazione dei linfociti, come nel trattamento di linfomi e leucemie, e l’attenuazione degli effetti collaterali dei farmaci antitumorali.

I glucocorticoidi agiscono sulle cellule legandosi al Recettore dei Glucocorticoidi (GR). Il complesso recettore glucocorticoide-glucocorticoide attivato regola l’espressione di proteine antinfiammatorie nel nucleo (processo noto come transattivazione) e reprime l’espressione di proteine pro-infiammatorie nel citosol impedendo la traslocazione di altri fattori di trascrizione dal citosol al nucleo (transrepressione).[2]

Il Recettore dei Glucocorticoidi (GR o GCR), noto anche come NR3C1 (sottofamiglia 3 del recettore nucleare, gruppo C, membro 1), è il recettore a cui si legano il Cortisolo e altri Glucocorticoidi.

I glucocorticoidi si distinguono dai mineralocorticoidi e dagli steroidi sessuali per i loro specifici recettori, cellule bersaglio ed effetti. In termini tecnici, il termine “corticosteroide” si riferisce sia ai glucocorticoidi che ai mineralocorticoidi (poiché entrambi sono mimici degli ormoni prodotti dalla corteccia surrenale), ma è spesso usato come sinonimo di “glucocorticoide”. I glucocorticoidi sono prodotti principalmente nella zona fascicolata della corteccia surrenale, mentre i mineralocorticoidi sono sintetizzati nella zona glomerulosa.

Il Cortisolo (o idrocortisone) è il più importante glucocorticoide umano. È essenziale per la vita e regola o supporta una serie di importanti funzioni cardiovascolari, metaboliche, immunologiche e omeostatiche. Gli aumenti delle concentrazioni di glucocorticoidi sono parte integrante della risposta allo stress e sono i biomarcatori più comunemente utilizzati per misurare lo stress.[3] I glucocorticoidi hanno anche numerose funzioni non correlate allo stress e le concentrazioni di glucocorticoidi possono aumentare in risposta al piacere o all’eccitazione.[4] Sono disponibili diversi glucocorticoidi sintetici, ampiamente utilizzati nella pratica medica generale e in numerose specialità, come terapia sostitutiva in caso di carenza di glucocorticoidi o per sopprimere il sistema immunitario dell’organismo.

Si sospetta che gli atleti utilizzino i Glucocorticoidi per migliorare le prestazioni atletiche fin dagli anni ’60 (5). I glucocorticoidi possono migliorare le prestazioni fisiche attraverso diverse vie, tra cui una maggiore disponibilità di substrati metabolici attraverso un aumento della lipolisi (6), della proteolisi (7) e della disponibilità di glucosio (5). I Glucocorticoidi possono anche avere effetti immunosoppressivi e antinfiammatori che possono impedire al sistema immunitario di reagire in modo eccessivo a seguito di danni muscolari indotti dall’esercizio fisico (8), e il Cortisolo sembra preparare l’organismo per l’esercizio successivo (9). Inoltre, i glucocorticoidi possono stimolare i recettori cerebrali dei glucocorticoidi, determinando una riduzione del dolore muscolare durante l’esercizio, un aumento della soglia della fatica e risposte edoniche positive, che possono tradursi in un aumento delle prestazioni fisiche (10). I glucocorticoidi hanno un elevato potenziale di effetti avversi, tra cui il deperimento muscolare, e questi effetti dipendono da molteplici fattori come il tipo di glucocorticoide, la durata del trattamento, la dose e la via di somministrazione (11). Pertanto, gli atleti che assumono glucocorticoidi per migliorare le prestazioni probabilmente preferiscono periodi di somministrazione più brevi.

L’Associazione Mondiale Antidoping (WADA) aggiorna annualmente la sua lista proibita, un elenco di sostanze e metodi vietati negli sport d’élite. La lista proibita, in vigore dal 1° gennaio 2022, vieta tutti i glucocorticoidi nelle competizioni quando sono somministrati per via orale, rettale o iniettabile, poiché queste forme di somministrazione sono considerate ad effetto sistemico. Altre vie di somministrazione, come l’applicazione topica per inalazione e le iniezioni locali, sono approvate nelle competizioni, poiché si ritiene che abbiano un minore potenziale di miglioramento delle prestazioni. L’uso dei glucocorticoidi al di fuori delle competizioni è approvato (12). Per aiutare i medici a curare gli atleti e a rispettare le norme antidoping, dal 2022 la WADA raccomanda specifici periodi di wash out (tempo dall’ultima dose al giorno prima della competizione) per i diversi tipi di glucocorticoidi e le diverse vie di somministrazione. Dal 2022 la WADA ha anche introdotto livelli di segnalazione urinaria specifici per i diversi tipi di glucocorticoidi, in quanto i diversi glucocorticoidi hanno un’ampia variazione nel tempo di eliminazione (13).

Dagli anni 90 si è studiato l’effetto dei glucocorticoidi sulla frequenza cardiaca e sul consumo di ossigeno durante intervalli di corsa ad alta intensità. Da allora diversi studi RCT hanno analizzato l’effetto dei glucocorticoidi sulla prestazione fisica submassimale e massimale. Poiché le modalità di somministrazione, il tipo di glucocorticoide, la durata del trattamento, la dose, la popolazione e il protocollo di esercizio possono variare tra gli studi, essi giungono a conclusioni diverse per quanto riguarda l’effetto dei glucocorticoidi sulla prestazione fisica, tuttavia sono soprattutto gli studi che indagano l’effetto di alte dosi orali somministrate nel tempo sulla resistenza in bicicletta fino all’esaurimento a mostrare effetti. L’effetto dei glucocorticoidi sulla prestazione fisica e sul metabolismo dei soggetti sani è stato esaminato in precedenza (5, 10), ma senza una ricerca sistematica della letteratura e senza combinare i risultati degli studi inclusi nell’analisi statistica. Pertanto, in tale sede, cercherò anche di fare chiarezza sull’effetto dei glucocorticoidi sulla prestazione massimale o submassimale in soggetti sani.

Steroidogenesi dei Glucocorticoidi:

La steroidogenesi è il processo biologico attraverso il quale gli steroidi vengono generati dal colesterolo e trasformati in altri steroidi.[14] Le vie della steroidogenesi differiscono tra le specie. Le principali classi di ormoni steroidei, con i loro membri e le loro funzioni principali, sono i progestinici, i corticosteroidi (corticoidi), gli androgeni e gli estrogeni.[15][16] La steroidogenesi umana dei corticosteroidi avviene nella Corteccia Surrenale.

Steroidogenesi che mostra i Glucocorticoidi nell’ellisse verde a destra con l’esempio primario del Cortisolo. Non è un gruppo strettamente delimitato, ma un continuum di strutture con effetto glucocorticoide crescente.

La Corteccia Surrenale è la regione più esterna e anche la parte più grande della ghiandola surrenale. È divisa in tre zone distinte: zona glomerulosa, zona fascicolata e zona reticolare. Ogni zona è responsabile della produzione di ormoni specifici. È anche un sito secondario di sintesi degli androgeni.[17]

Corteccia Surrenale
  • Zona Glomerulosa
Colorazione H&E della Corteccia Surrenale. La Zona Glomerulare è lo strato più esterno, sotto la capsula renale (vicino all’indicatore)

Lo strato più esterno, la zona glomerulosa, è il sito principale per la produzione di aldosterone, un mineralcorticoide. La sintesi e la secrezione di aldosterone sono regolate principalmente dal sistema renina-angiotensina-aldosterone. Le cellule della zona glomerulosa esprimono un enzima specifico, l’aldosterone sintasi (noto anche come CYP11B2).[18][19] L’aldosterone è ampiamente responsabile della regolazione a lungo termine della pressione sanguigna. [Gli effetti dell’aldosterone si manifestano nel tubulo contorto distale e nel dotto collettore del rene, dove provoca un aumento del riassorbimento del sodio e una maggiore escrezione di potassio (da parte delle cellule principali) e di ioni idrogeno (da parte delle cellule intercalate del dotto collettore).[20] La ritenzione di sodio è anche una risposta del colon distale e delle ghiandole sudoripare alla stimolazione dei recettori dell’aldosterone. Sebbene la produzione sostenuta di aldosterone richieda un ingresso persistente di calcio attraverso canali del Ca2+ attivati a basso voltaggio, le cellule isolate della zona glomerulosa sono considerate non eccitabili, con tensioni di membrana registrate troppo iperpolarizzate per consentire l’ingresso di canali del Ca2+.[21]

La secrezione di aldosterone è stimolata anche dall’ormone adrenocorticotropo (ACTH).[22]

Le cellule della zona glomerulosa non esprimono l’11β-idrossilasi e la 17α-idrossilasi. Per questo motivo la zona glomerulosa non può sintetizzare cortisolo, corticosterone o ormoni sessuali (androgeni). [23] L’espressione di proteine specifiche per i neuroni nelle cellule della zona glomerulosa dei tessuti adrenocorticali umani è stata prevista e riportata da diversi autori [24][25][26] ed è stato suggerito che l’espressione di proteine come la molecola di adesione delle cellule neuronali (NCAM) nelle cellule della zona glomerulosa rifletta la caratteristica rigenerativa di queste cellule, che perderebbero l’immunoreattività della NCAM dopo essersi spostate nella zona fascicolata. [24][27] Tuttavia, insieme ad altri dati sulle proprietà neuroendocrine delle cellule della zona glomerulosa, l’espressione di NCAM potrebbe riflettere una differenziazione neuroendocrina di queste cellule.[24]

  • Zona Fasciculata
Zona Fasciculata

Situate tra la glomerulosa e la reticolare, le cellule della zona fascicolata sintetizzano e secernono glucocorticoidi (come l’11-deossicorticosterone, il corticosterone e il cortisolo), oltre a piccole quantità di androgeni ed estrogeni surrenalici.[28] La zona fascicolata ha una maggiore attività di 3β-idrossisteroide deidrogenasi rispetto alla zona reticolare. Pertanto, la zona fascicolata produce più 11-deossicorticosterone, corticosterone e cortisolo.[23] Il principale ormone che stimola la secrezione di cortisolo nell’uomo è l’ACTH, rilasciato dall’ipofisi anteriore.[22] È stato dimostrato che la capacità steroidogenica della zona fascicolata aumenta durante la malattia nei neonati.[22]

  • Zona Reticolare
Zona Reticolare

La zona reticolare, lo strato corticale più interno, produce gli androgeni surrenalici, oltre a piccole quantità di estrogeni e alcuni glucocorticoidi.[28] La zona reticolare possiede una quantità maggiore di cofattori necessari per l’attività della 17,20-liasi della 17α-idrossilasi rispetto alla zona fascicolata. Pertanto, la zona reticolare produce più androgeni,[23] soprattutto deidroepiandrosterone (DHEA), DHEA solfato (DHEA-S) e androstenedione (il precursore del Testosterone e DHT) nell’uomo. La secrezione di DHEAS è stimolata anche dall’ACTH.[22]

Come abbiamo visto, I glucocorticoidi sono prodotti principalmente nella Zona Fascicolata.[23]

Il precursore degli steroidi sintetizzati nella corteccia surrenale è il colesterolo che viene immagazzinato nelle vescicole. Il colesterolo può essere sintetizzato de novo nella corteccia surrenale. Tuttavia, la fonte principale di colesterolo sembra essere il colesterolo assunto dalle lipoproteine circolanti. [29]

I passaggi fino a questo punto avvengono in molti tessuti produttori di steroidi. Le fasi successive per generare aldosterone e cortisolo, tuttavia, avvengono principalmente nella corteccia surrenale:

  • Progesterone → (idrossilazione a C21) → 11-Deossicorticosterone → (due ulteriori idrossilazioni a C11 e C18) → Aldosterone
  • Progesterone → (idrossilazione a C17) → 17-alfa-idrossiprogesterone → (idrossilazione a C21) → 11-Deossicortisolo → (idrossilazione a C11) → Cortisolo
Fasi della sintesi dell’ormone steroideo surrenale

Effetto sistemico dei Glucocorticoidi:

Gli effetti dei glucocorticoidi possono essere ampiamente classificati in due categorie principali:

  • immunologici
  • metabolici.

Inoltre, i glucocorticoidi svolgono ruoli importanti nello sviluppo fetale e nell’omeostasi dei fluidi corporei.

  • Immunità

Come già accennato, i glucocorticoidi funzionano anche attraverso l’interazione con il recettore dei glucocorticoidi:

  • Aumentano l’espressione di proteine antinfiammatorie.
  • Riducono l’espressione di proteine pro-infiammatorie.
Micrografia elettronica a scansione di un globulo rosso (sinistra), una piastrina (centro) e un linfocita T (destra); colorato

È stato dimostrato che i glucocorticoidi svolgono un ruolo nello sviluppo e nell’omeostasi dei linfociti T. Questo è stato dimostrato in transgenici. Ciò è stato dimostrato in topi transgenici con una maggiore o minore sensibilità della linea delle cellule T ai glucocorticoidi.[30]

  • Metabolismo

Nello stato di digiuno, il cortisolo stimola diversi processi che servono collettivamente ad aumentare e mantenere le normali concentrazioni di glucosio nel sangue.

Effetti metabolici:

  • Stimolazione della gluconeogenesi, in particolare nel fegato: Questa via porta alla sintesi del glucosio a partire da substrati non esosi, come gli aminoacidi e il glicerolo proveniente dalla scissione dei trigliceridi, ed è particolarmente importante nei carnivori e in alcuni erbivori. L’aumento dell’espressione degli enzimi coinvolti nella gluconeogenesi è probabilmente la funzione metabolica più nota dei glucocorticoidi.
  • Mobilitazione di aminoacidi dai tessuti extraepatici: Questi servono come substrati per la gluconeogenesi.
  • Inibizione della captazione del glucosio nel tessuto muscolare e adiposo: Un meccanismo per conservare il glucosio
  • Stimolazione della demolizione dei grassi nel tessuto adiposo: Gli acidi grassi rilasciati dalla lipolisi vengono utilizzati per la produzione di energia in tessuti come il muscolo e il glicerolo rilasciato fornisce un altro substrato per la gluconeogenesi.
  • L’aumento della ritenzione di sodio e dell’escrezione di potassio porta a ipernatremia e ipokaliemia[31].
  • Aumento della concentrazione di emoglobina, probabilmente dovuto all’ostacolo dell’ingestione di globuli rossi da parte di macrofagi o altri fagociti[32].
  • Aumento dell’acido urico urinario[33]
  • Aumento del calcio urinario e ipocalcemia[34]
  • Alcalosi[35]
  • Leucocitosi[36]
Il Cortisolo innesca una cascata di eventi che influenzano l’omeostasi del glucosio. Il fegato, i muscoli scheletrici, i tessuti adiposi bianchi e il pancreas svolgono un ruolo chiave nell’assicurare un apporto continuo di energia utilizzabile per la risposta di lotta/fuga.

Livelli eccessivi di glucocorticoidi derivanti dalla somministrazione di farmaci o dall’iperadrenocorticismo hanno effetti su molti sistemi. Alcuni esempi includono l’inibizione della formazione ossea, la soppressione dell’assorbimento del calcio (entrambi possono portare all’osteoporosi), il ritardo nella guarigione delle ferite, la debolezza muscolare e l’aumento del rischio di infezioni. Queste osservazioni suggeriscono una moltitudine di ruoli fisiologici meno drammatici per i glucocorticoidi.[30]

  • Eccitazione e sfera cognitiva
Principali scissure e lobi del cervello visti lateralmente (il lobo frontale è mostrato in blu).

I glucocorticoidi agiscono sull’ippocampo, sull’amigdala e sui lobi frontali. Insieme all’adrenalina, favoriscono la formazione di ricordi flashbulb di eventi associati a forti emozioni, sia positive che negative.[36] Ciò è stato confermato da studi in cui il blocco dell’attività dei glucocorticoidi o della noradrenalina ha compromesso il richiamo di informazioni emotivamente rilevanti. Ulteriori fonti hanno dimostrato che i soggetti il cui apprendimento della paura è stato accompagnato da alti livelli di cortisolo hanno avuto un migliore consolidamento di questa memoria (questo effetto è stato più importante negli uomini). L’effetto che i glucocorticoidi hanno sulla memoria può essere dovuto a un danno specifico all’area CA1 della formazione dell’ippocampo.

In diversi studi sugli animali, lo stress prolungato (che causa aumenti prolungati dei livelli di glucocorticoidi) ha mostrato la distruzione dei neuroni nell’area dell’ippocampo del cervello, che è stata collegata a prestazioni di memoria inferiori.[32][37][33]

Una rappresentazione grafica della curva di Yerkes-Dodson

È stato inoltre dimostrato che i glucocorticoidi hanno un impatto significativo sulla vigilanza (disturbo da deficit di attenzione) e sulla cognizione (memoria). Questo sembra seguire la curva di Yerkes-Dodson, in quanto gli studi hanno dimostrato che i livelli circolanti di glucocorticoidi rispetto alle prestazioni della memoria seguono un andamento a U rovesciata, proprio come la curva di Yerkes-Dodson. Ad esempio, il potenziamento a lungo termine (LTP, il processo di formazione dei ricordi a lungo termine) è ottimale quando i livelli di glucocorticoidi sono leggermente elevati, mentre si osserva una significativa riduzione dell’LTP dopo la surrenalectomia (stato di basso livello di glucocorticoidi) o dopo la somministrazione di glucocorticoidi esogeni (stato di alto livello di glucocorticoidi). Livelli elevati di glucocorticoidi migliorano la memoria per gli eventi emotivamente eccitanti, ma portano più spesso a una scarsa memoria per il materiale non correlato alla fonte di stress/eccitazione emotiva.[38] In contrasto con gli effetti di potenziamento dose-dipendenti dei glucocorticoidi sul consolidamento della memoria, è stato dimostrato che questi ormoni dello stress inibiscono il recupero di informazioni già memorizzate. [È stato dimostrato che l’esposizione a lungo termine a farmaci glucocorticoidi, come quelli contro l’asma e gli antinfiammatori, crea deficit di memoria e attenzione sia durante che, in misura minore, dopo il trattamento,[39][40] una condizione nota come “demenza da steroidi”.[41]

  • Omeostasi dei fluidi corporei

I glucocorticoidi potrebbero agire a livello centrale e periferico per contribuire alla normalizzazione del volume dei liquidi extracellulari regolando l’azione dell’organismo nei confronti del peptide natriuretico atriale (ANP). A livello centrale, i glucocorticoidi potrebbero inibire l’assunzione di acqua indotta dalla disidratazione;[42] a livello periferico, i glucocorticoidi potrebbero indurre una potente diuresi.[43]

Metabolismo dei Glucocorticoidi. La secrezione di Glucocorticoidi da parte della ghiandola surrenale è regolata dall’asse HPA tramite secrezione di ACTH. Il cortisolo plasmatico principale (F) è legato alle proteine ​​con una frazione libera del 4-5%. Il Cortisone plasmatico (E) è nella forma libera non legata. L’equilibrio di cortisolo e cortisone tra plasma e tessuti è illustrato con le frecce bidirezionali tratteggiate. È anche raffigurato il metabolismo dei GC tessuto-specifici. I GC sono metabolizzati principalmente nel fegato e i metaboliti sono escreti nelle urine. Sono mostrati solo i tessuti rilevanti per la sindrome metabolica. THE, tetraidrocortisone; THF, tetraidrocortisolo.

Meccanismi d’azione dei Glucocorticoidi:

  • Transattivazione

I glucocorticoidi si legano al recettore citosolico dei glucocorticoidi, un tipo di recettore nucleare che viene attivato dal legame con il ligando. Dopo che un ormone si lega al recettore corrispondente, il complesso appena formato si trasloca nel nucleo della cellula, dove si lega agli elementi di risposta ai glucocorticoidi nella regione promotrice dei geni bersaglio, determinando la regolazione dell’espressione genica. Questo processo viene comunemente definito attivazione trascrizionale o transattivazione.[44][45]

Le proteine codificate da questi geni regolati hanno un’ampia gamma di effetti, tra cui, ad esempio:[45]

L’Annessina [Lipocortina I]
  • Antinfiammatori – lipocortina I, proteina legante p11/calpactina, inibitore secretorio della proteasi leucocitaria 1 (SLPI) e fosfatasi della proteina chinasi attivata dal mitogeno (MAPK fosfatasi).
  • Aumento della gluconeogenesi – glucosio 6-fosfatasi e tirosina aminotransferasi

  • Transrepressione

Il meccanismo opposto è chiamato repressione trascrizionale o transrepressione. Secondo la concezione classica di questo meccanismo, il recettore dei glucocorticoidi attivato si lega al DNA nello stesso sito in cui si legherebbe un altro fattore di trascrizione, impedendo la trascrizione di geni che vengono trascritti tramite l’attività di quel fattore.[44][45] Sebbene ciò avvenga, i risultati non sono coerenti per tutti i tipi di cellule e per tutte le condizioni; non esiste un meccanismo generale e generalmente accettato per la transrepressione.[45]

Meccanismo d’azione di NF-κB.

Si stanno scoprendo nuovi meccanismi in cui la trascrizione viene repressa, ma il recettore dei glucocorticoidi attivato non interagisce con il DNA, bensì direttamente con un altro fattore di trascrizione, interferendo con esso, o con altre proteine che interferiscono con la funzione di altri fattori di trascrizione. Quest’ultimo meccanismo sembra essere il modo più probabile in cui il recettore glucocorticoide attivato interferisce con NF-κB, ossia reclutando istone deacetilasi, che deacetilano il DNA nella regione del promotore portando alla chiusura della struttura cromatinica in cui NF-κB deve legarsi.[44][45]

  • Attività non-genomica

Il recettore glucocorticoide attivato ha effetti che, come è stato dimostrato sperimentalmente, sono indipendenti da qualsiasi effetto sulla trascrizione e possono essere dovuti solo al legame diretto del recettore glucocorticoide attivato con altre proteine o con l’mRNA.[44][45]

Effetti genomici e non genomici dei Glucocorticoidi. Trans-attivazione: l’effetto genomico del GC dopo il legame del GR al suo elemento di risposta positiva causa una maggiore trascrizione di proteine ​​antinfiammatorie, ad esempio, lipocortina-1, IL-10, IL-12, MAPK fosfatasi I e IκB. Trans-repressione: l’interazione molecola-molecola tra GR attivato e fattori di trascrizione pro-infiammatori, ad esempio, AP-1 o NF-κB causa una riduzione della trascrizione di mediatori pro-infiammatori, ad esempio, Il-2, IL-3, IL-4, IL-5, IL-6, IL-13, IL-15, TNF-α e VCAM-a.

Ad esempio, la chinasi Src, che si lega al recettore glucocorticoide inattivo, viene rilasciata quando un glucocorticoide si lega al recettore glucocorticoide e fosforila una proteina che a sua volta sposta una proteina adattatrice da un recettore importante nell’infiammazione, il fattore di crescita epidermico, riducendone l’attività, che a sua volta si traduce in una riduzione della creazione di acido arachidonico, una molecola proinfiammatoria chiave. Questo è uno dei meccanismi con cui i glucocorticoidi hanno un effetto antinfiammatorio.[44]

Farmacologia dei Glucocorticoidi:

Fludrocortisone Acetato

Per uso terapeutico sono stati creati diversi Glucocorticoidi sintetici, alcuni molto più potenti del Cortisolo. Si differenziano sia per la farmacocinetica (fattore di assorbimento, emivita, volume di distribuzione, clearance) che per la farmacodinamica (ad esempio la capacità di attività mineralcorticoide: ritenzione di sodio (Na+) e acqua; fisiologia renale). Poiché permeano facilmente l’intestino, vengono somministrati principalmente per os (per bocca), ma anche con altri metodi, ad esempio per via topica sulla pelle. Oltre il 90% di essi lega diverse proteine plasmatiche, anche se con una diversa specificità di legame. I glucocorticoidi endogeni e alcuni corticoidi sintetici hanno un’elevata affinità con la proteina Transcortina (detta anche globulina legante i corticosteroidi), mentre tutti legano l’albumina. Nel fegato, vengono rapidamente metabolizzati mediante coniugazione con un solfato o un acido glucuronico e vengono secreti nelle urine.

La potenza dei Glucocorticoidi, la durata dell’effetto e la sovrapposizione della potenza dei mineralocorticoidi variano. Il cortisolo è lo standard di confronto per la potenza dei glucocorticoidi. Idrocortisone è il nome utilizzato per le preparazioni farmaceutiche di cortisolo.

I dati riportati di seguito si riferiscono alla somministrazione orale. La potenza orale può essere inferiore a quella parenterale perché quantità significative (fino al 50% in alcuni casi) possono non raggiungere la circolazione. Il Fludrocortisone Acetato e il desossicorticosterone acetato sono, per definizione, mineralocorticoidi piuttosto che glucocorticoidi, ma hanno una potenza glucocorticoide minore e sono inclusi in questa tabella per fornire una prospettiva sulla potenza dei mineralocorticoidi.

Usi terapeutici:

I Glucocorticoidi possono essere utilizzati a basse dosi nell’insufficienza surrenalica. A dosi molto più elevate, i glucocorticoidi per via orale o inalatoria sono utilizzati per sopprimere vari disturbi allergici, infiammatori e autoimmuni. I glucocorticoidi per via inalatoria sono il trattamento di seconda linea per l’asma. Sono anche somministrati come immunosoppressori post-trapianto per prevenire il rigetto acuto del trapianto e la malattia del trapianto contro l’ospite. Tuttavia, non prevengono un’infezione e inibiscono anche i successivi processi riparativi. Nuove evidenze hanno dimostrato che i glucocorticoidi potrebbero essere utilizzati nel trattamento dell’insufficienza cardiaca per aumentare la responsività renale ai diuretici e ai peptidi natriuretici. I glucocorticoidi sono storicamente utilizzati per alleviare il dolore nelle condizioni infiammatorie.[46][47][48] Tuttavia, i corticosteroidi mostrano un’efficacia limitata nell’alleviare il dolore e potenziali eventi avversi per il loro uso nelle tendinopatie.[49]

  • Terapia Sostitutiva
Cortisolo

Qualsiasi glucocorticoide può essere somministrato in una dose che fornisce all’incirca gli stessi effetti glucocorticoidi della normale produzione di cortisolo; si parla di dosaggio fisiologico, sostitutivo o di mantenimento. Si tratta di circa 6-12mg/m2/die di Idrocortisone (m2 si riferisce all’area di superficie corporea (BSA), ed è una misura delle dimensioni del corpo; la BSA di un uomo medio è di 1,9 m2).

Gli usi clinici dei glucocorticoidi comprendono quindi:

  • Terapia Immunosoppressiva: I glucocorticoidi causano immunosoppressione e la componente terapeutica di questo effetto è principalmente la diminuzione della funzione e del numero di linfociti, compresi i linfociti B e i linfociti T.
  • Terapia Anti-Infiammatoria: I glucocorticoidi sono potenti antinfiammatori, indipendentemente dalla causa dell’infiammazione; il loro meccanismo antinfiammatorio primario è la sintesi della lipocortina-1 (annexin-1). La lipocortina-1 sopprime la fosfolipasi A2, bloccando così la produzione di eicosanoidi, e inibisce vari eventi infiammatori dei leucociti (adesione epiteliale, emigrazione, chemiotassi, fagocitosi, esplosione respiratoria, ecc.) In altre parole, i glucocorticoidi non solo sopprimono la risposta immunitaria, ma inibiscono anche i due principali prodotti dell’infiammazione, le prostaglandine e i leucotrieni. Inibiscono la sintesi delle prostaglandine a livello della fosfolipasi A2 e a livello della cicloossigenasi/PGE isomerasi (COX-1 e COX-2),[50] quest’ultimo effetto è molto simile a quello dei FANS, potenziando così l’effetto antinfiammatorio. Inoltre, i glucocorticoidi sopprimono anche l’espressione della ciclossigenasi.[51]
  • Trattamento del Iperaldosteronismo: I glucocorticoidi possono essere utilizzati nella gestione dell’iperaldosteronismo familiare di tipo 1. Non sono efficaci, tuttavia, per l’uso nella condizione di tipo 2.
  • Trattamento insufficienza cardiaca: I glucocorticoidi possono essere utilizzati nel trattamento dell’insufficienza cardiaca scompensata per potenziare la reattività renale ai diuretici, in particolare nei pazienti con insufficienza cardiaca con resistenza diuretica refrattaria a dosi elevate di diuretici dell’ansa.[52][53][54][55][56][57][58]
Meccanismi di resistenza ai corticosteroidi

La resistenza agli usi terapeutici dei glucocorticoidi può verificarsi in un certo numero di pazienti e presentare delle difficoltà; ad esempio, il 25% dei casi di asma grave può non rispondere agli steroidi. Questo può essere il risultato di una predisposizione genetica, dell’esposizione continua alla causa dell’infiammazione (come gli allergeni), di fenomeni immunologici che bypassano i glucocorticoidi, di disturbi farmacocinetici (assorbimento incompleto o escrezione o metabolismo accelerati) e di infezioni respiratorie virali e/o batteriche.[59][60]

Glucocorticoidi e Sport:

Come abbiamo visto, i Glucocorticoidi sono una delle classi di farmaci più ampiamente utilizzate ed efficaci nella popolazione generale e sono disponibili in una varietà di formulazioni farmaceutiche (ad esempio, iniezioni, compresse, creme, colliri, gocce auricolari, inalatori e spray nasali). Somministrati sia per i loro effetti sistemici che locali, i Glucocorticoidi sono utilizzati a livello globale in una vasta gamma di specialità cliniche, principalmente per le loro proprietà antinfiammatorie e immunosoppressive. In alcuni contesti, l’uso medico dei Glucocorticoidi orali sembra essere aumentato negli ultimi anni poiché questi sono un’alternativa accessibile e conveniente ai farmaci mirati ma più costosi. La prevalenza dell’uso sistemico prevalentemente per uso a breve termine varia tra l’1% e il 3%, sebbene abbia raggiunto il 17,1% in un recente studio sugli adulti in Francia.(https://bjsm.bmj.com) Nelle popolazioni di atleti, vi è una maggiore prevalenza di lesioni muscoloscheletriche e asma, e pertanto un frequente uso legittimo di Glucocorticoidi terapeutici non sarebbe sorprendente. Tuttavia, vi è una scarsità di stime di prevalenza nelle popolazioni di atleti. Un’analisi di TUE abbreviate in cui il CIO è stato informato dell’uso di Glucocorticoidi da parte degli atleti prima dei Giochi olimpici negli anni ’90 e nei primi anni 2000 suggerisce che almeno il 5% al ​​12% degli atleti d’élite competitivi è stato trattato con Glucocorticoidi tramite tutte le vie, prevalentemente inalatoria. In un recente sondaggio internazionale non pubblicato di medici che lavorano con atleti d’élite, oltre l’85% ha riferito di aver somministrato almeno occasionalmente Glucocorticoidi iniettabili come parte della loro normale pratica (comunicazione personale, Dr David Hughes, Australian Institute of Sport).

I Glucocorticoidi, somministrati tramite determinate vie, sono stati proibiti per la prima volta nello sport dal CIO nel 1985 e sono stati proibiti dalla WADA sin dalla sua Lista iniziale, pubblicata nel 2004. Le sostanze o i metodi sono considerati per l’inclusione nella Lista se soddisfano due dei tre criteri seguenti come stabilito dal Codice mondiale antidoping:

  1. potenziale di migliorare o migliorano le prestazioni sportive;
  2. rappresentano un rischio effettivo o potenziale per la salute dell’atleta;
  3. violano lo spirito dello sport. I Glucocorticoidi sono proibiti in competizione quando somministrati tramite vie “sistemiche” (orali, rettali, intramuscolari o endovenose).[https://www.wada-ama.org/] La somministrazione tramite tutte le altre vie (incluse le iniezioni intra-articolari e altre periarticolari) è considerata somministrazione locale e non è proibita in competizione. La somministrazione di Glucocorticoidi tramite qualsiasi via non è proibita fuori competizione (OOC).

Indipendentemente dalla sostanza specifica del Glucocorticoidi e dalle sue singole caratteristiche farmacologiche, un presunto riscontro analitico avverso (AAF) viene segnalato dai laboratori accreditati WADA quando i livelli urinari dei campioni in gara superano un livello di segnalazione di 30ng/mL. La farmacocinetica dei Glucocorticoidi è complessa e influenzata dalla formulazione, dal tipo di esterificazione e sale, dalla via di somministrazione, dal sito e dal metodo di somministrazione. Di conseguenza, mentre il limite di segnalazione del laboratorio può dimostrare la presenza di un Glucocorticoidi , non può necessariamente indicare se la somministrazione è avvenuta in gara o OOC o se è probabile che abbia un effetto farmacologico o ergogenico. Qualsiasi medico o atleta non sarà sicuro di quando interrompere l’uso di GC sistemici prima del periodo in gara per evitare di superare il limite di segnalazione. Per complicare ulteriormente il quadro farmacocinetico, le iniezioni intra-articolari possono dare origine a livelli sistemici e i medici possono inavvertitamente caratterizzare erroneamente il sito di iniezione in assenza di guida radiologica o ecografica. La definizione di limiti di segnalazione specifici per sostanza è un’area di discussione e ricerca attiva tra gli esperti nominati dalla WADA e va oltre lo scopo del presente documento.

  • Glucocorticoidi sistemici e performance

Alcuni atleti hanno indubbiamente tentato di sfruttare i presunti effetti di miglioramento delle prestazioni dei Glucocorticoidi sistemici che ritengono benefici nella loro particolare disciplina sportiva. Tuttavia, i meccanismi complessi e pleiotropici dell’azione dei Glucocorticoidi suggeriscono che questi farmaci sono uno strumento poco maneggevole per l’atleta che cerca di ottenere un vantaggio nelle prestazioni e sono considerati una componente meno popolare dei regimi di doping rispetto al passato.[ https://cyclingtips.com/] Alcuni pazienti e atleti hanno riferito di aver sperimentato euforia dopo la somministrazione sistemica.[ http://www.cyclingnews.com] Tuttavia, le prove scientifiche a supporto dell’euforia misurabile nelle popolazioni cliniche sono ambigue e l’interpretazione dei dati è complicata dall’associazione del dolore cronico confondente.[https://bjsm.bmj.com/]

Sembrerà starno, ma non vi è alcuna prova incontrovertibile di effetti di miglioramento delle prestazioni derivanti dall’uso a breve termine di Glucocorticoidi sistemici.[https://bjsm.bmj.com/] Esistono studi randomizzati in doppio cieco cross-over che suggeriscono che gli atleti possono sfruttare cicli di Glucococrticoidi orali ad alto dosaggio della durata di una settimana per migliorare le loro prestazioni di esercizio di intensità submassimale per brevi periodi di tempo.[https://bjsm.bmj.com/] Questi dosaggi sarebbero facilmente rilevati durante i test antidoping, se assunti in gara. Il meccanismo preciso di questo effetto non è chiaro, ma si suggerisce che derivi da una combinazione di effetti sul metabolismo energetico, sui muscoli, sull’infiammazione e sul sistema nervoso. Questo effetto del farmaco è stato dimostrato in uno studio su atleti maschi il cui allenamento era strettamente periodizzato insieme all’uso di Glucocorticoidi orali.[https://bjsm.bmj.com/] Sfruttare questo tipo di regime di miglioramento delle prestazioni evitando efficacemente l’insufficienza surrenalica e il rilevamento tramite controlli antidoping standard in gara richiederebbe una meticolosa supervisione medica. Potrebbe anche richiedere una manipolazione farmacologica più complessa ed esotica dell’asse ipotalamo-ipofisi-surrene rispetto a quella offerta dai Glucocorticoidi prescritti.[https://bjsm.bmj.com/]

Atleti e dottori hanno descritto metodi inappropriati con cui l’uso sistemico di Glucocorticoidi, un’alimentazione limitata e un allenamento a bassa intensità potrebbero essere combinati OOC per perdere peso e preservare la massa muscolare.[ https://www.nytimes.com/]Tuttavia, date le funzioni cataboliche proteiche ampiamente riconosciute dei Glucocorticoidi,[https://bjsm.bmj.com/] questo meccanismo di doping rimane speculativo e controverso. Inoltre, l’efficacia potrebbe dipendere dall’uso di Glucocorticoidi come parte di un cocktail complesso che include altri ormoni proibiti ma scarsamente rilevati come l’insulina.[https://bjsm.bmj.com/]

Schema esemplificativo sull’uso di Glucocorticoidi sistemici e perdita di peso/ricomposizione corporea: la base teorica sulla quale si sostiene la suddetta pratica farmacologica è il ciclo di feedback negativo dell’Asse HPA per via d’uso di Glucocorticoidi esogeni. Tale pratica dovrebbe portare a 1) soppressione del rilascio di —> CRH>ACTH>Cortisone<>Cortisolo con consequenziale prevenzione di 2) aumento della fame/appetito con il procedere del regime ipocalorico 3) prevenzione del aumento del catabolismo muscolare 4) prevenzione di un aumento della ritenzione idrica e 5) prevenzione dell’alterazione del metabolismo lipidico correlato ad un incremento significativo del Cortisolo. Da notare che il momento della somministrazione del Glucocorticoide esogeno può influenzare il grado di soppressione surrenalica. Per esempio, il Prednisone in una dose di 5mg somministrato la sera prima di coricarsi e 2,5mg al mattino produrrà una soppressione dell’Asse HPA più marcata rispetto a 2,5mg la sera e 5mg al mattino. 5mg è un dosaggio basso e generalmente non è promotore di insonnia sebbene in soggetti sensibili può manifestarsi. Il dosaggio comunemente utilizzato varia da 15 a 25mg/die diviso in due dosi dopo i pasti. Tale pratica comunemente è parte di protocolli PEDs più complessi e contenenti uno o più agenti anabolizzanti.

Recenti resoconti sulla presunta potenza dei Glucocorticoidi sistemici provengono da atleti che hanno anche confessato l’uso concomitante di altri metodi e sostanze per migliorare le prestazioni, tra cui agenti anabolizzanti come il testosterone.[https://bjsm.bmj.com/] Tali regimi di Glucocorticoidi potrebbero avere rilevanza solo in un piccolo sottoinsieme di discipline sportive, come nelle ripide tappe di montagna dei Grandi Giri del ciclismo, dove gli atleti potrebbero essere disposti ad accettare compromessi nei loro regimi di allenamento o potenza assoluta in uscita nel perseguimento di un rapporto potenza/peso superiore. L’uso di OOC richiederebbe comunque una continuazione prolungata dell’uso di Glucocorticoidi nel periodo di gara per evitare l’insufficienza surrenalica dovuta a meccanismi di feedback. L’uso prolungato di Glucocorticoidi comporta rischi medici ben noti, alcuni dei quali potrebbero ridurre in modo permanente le prestazioni atletiche.[https://bjsm.bmj.com/]

  • Rischi per la salute, eventi avversi ed effetti negativi sulle prestazioni

Il trattamento con Glucocorticoidi per molte condizioni ha una lunga storia e un profilo di sicurezza ragionevole. Dosi elevate o uso cronico di Glucocorticoidi sistemici presentano un certo rischio per la salute dell’atleta. Un esame attento, una diagnosi e una deliberazione da parte del medico sono fondamentali e i benefici del trattamento devono essere soppesati rispetto ai potenziali rischi ed effetti avversi. L’uso potenziale per migliorare le prestazioni, descritto sopra e ritenuto limitato a contesti sportivi specifici con uso di GC ad alto dosaggio, è anche potenzialmente associato a rischi significativi per la salute di un atleta.

Gli eventi avversi con associazioni causali ben consolidate all’uso clinicamente appropriato di GC toccano praticamente ogni sistema umano, vanno da esiti negativi sulla salute acuti a cronici e includono insufficienza surrenalica, immunodeficienza, osteoporosi, atrofia muscolare, cedimento di tendini/fasce, necrosi avascolare della testa femorale, vari squilibri elettrolitici, nutrizionali e metabolici, glaucoma e cataratta. Forse perché i GC sono farmaci così comuni e clinicamente versatili, alcuni medici potrebbero sopravvalutare il loro valore terapeutico e sottostimare la gravità degli eventi avversi associati.[https://bjsm.bmj.com/] Anche una singola iniezione intra-articolare potrebbe causare un’insufficienza surrenalica clinicamente significativa che porta a malessere, squilibrio elettrolitico e immunosoppressione per diverse settimane.[https://bjsm.bmj.com/]

È importante sottolineare che l’eziologia di questi sintomi potrebbe non essere riconosciuta dall’atleta e dal personale medico, in particolare in un contesto sportivo in cui gli atleti si allenano ad alta intensità e i sintomi possono mascherarsi da affaticamento correlato al sovrallenamento. Inoltre, un atleta che subisce un trauma o un infortunio grave potrebbe essere a maggior rischio di crisi surrenalica a causa della soppressione ipotalamo-ipofisi-surrene dovuta al precedente utilizzo di GC. Ciò potrebbe essere particolarmente problematico se l’atleta non rivela questo precedente utilizzo.

Sia l’efficacia che il potenziale danno delle iniezioni intra-articolari sono ampiamente dibattuti. Le prove di un recente studio prospettico controllato con placebo su pazienti con osteoartrite hanno suggerito che frequenti iniezioni di triamcinolone al ginocchio, somministrate secondo un programma prestabilito, non sono riuscite a gestire efficacemente il dolore a lungo termine e hanno portato a una riduzione statisticamente significativa dello spessore della cartilagine.[https://bjsm.bmj.com/]Tuttavia, le raccomandazioni della società medica, così come una meta-analisi completa, supportano l’efficacia e la sicurezza dello stesso intervento,[https://bjsm.bmj.com/l] suggerendo fortemente che un uso giudizioso di iniezioni intra-articolari in pazienti e circostanze appropriate può produrre risultati positivi. Vi è una mancanza di prove pubblicate sulla sicurezza o il danno dell’uso di GC intra-articolari nelle popolazioni di atleti e sono urgentemente necessarie ulteriori ricerche a causa dell’uso onnipresente di GC intra-articolari.

  • Politiche per garantire l’uso appropriato dei GC

Nonostante le preoccupazioni di un possibile abuso per un vantaggio competitivo o potenziali effetti dannosi sulla salute degli atleti, i GC sono ampiamente utilizzati nello sport per legittime ragioni terapeutiche. Considerando che l’elenco è armonizzato in tutti gli sport, dal tiro con l’arco al wakeboard, il doping con i GC non è un problema laddove i presunti benefici dell’uso di GC ad alto dosaggio (potenza prolungata a intensità di esercizio submassimali o gestione aggressiva del peso catabolico) difficilmente miglioreranno le prestazioni. Pertanto, un AAF per i GC non sarebbe probabilmente associato a nessun intento di doping. L’uso di GC sistemici in molti sport deve essere considerato sotto una luce diversa rispetto agli sport ad alto rischio come il ciclismo, dove l’abuso è ben documentato e le prove scientifiche forniscono un certo supporto.

Consapevoli delle sfide specifiche poste dall’uso di GC nello sport, le organizzazioni sportive e antidoping hanno introdotto politiche innovative e stanno rafforzando le normative esistenti per affrontare l’uso terapeutico ragionevole dei GC.

Conclusioni su Glucocorticoidi e prestazioni sportive:

Da recenti review, sappiamo che l’uso dei Glucocorticoidi sistemici può migliorare la prestazione fisica massima rispetto al placebo (SDM 0,300, 95% CI 0,080-0,520). In una recente review [https://www.frontiersin.org/], l’SDM per i 13 confronti inclusi non era eterogeneo (I2 = 35%, p = 0,099). L’analisi di sensibilità escludendo i due studi con alto rischio di bias ha mostrato un effetto simile (SDM 0,349, 95% CI 0,071-0,626). Con la meta-regressione si è scoperto che la durata del trattamento, la via di somministrazione e il tipo di esercizio non hanno influenzato (p > 0,124) l’SDM. Nell’analisi stratificata il trattamento prolungato e l’ingestione orale hanno migliorato la prestazione fisica (p = 0,003). Il trattamento acuto e l’inalazione non hanno avuto alcun effetto sulla prestazione fisica (p > 0,564), l’analisi di sensibilità con studi ad alto rischio di bias rimossi o solo un trattamento per gruppo di controllo, ha mostrato un effetto simile all’analisi completa con SDM 0,334, 95% CI 0,075-0,592 e SDM 0,296 0,059-0,532, rispettivamente. L’analisi di sensibilità escludendo i sei confronti con meno di 10 coppie di dati non ha indicato alcun effetto dei Glucocorticoidi sulla prestazione fisica (p = 0,070). I Glucocorticoidi hanno migliorato la prestazione aerobica (SDM 0,348, 95% CI 0,129-0,567). Tre confronti hanno testato l’effetto dei Glucocorticoidi sulla prestazione anaerobica massima e la meta-analisi dei confronti non ha mostrato alcun effetto (p = 0,573) sulla prestazione fisica. L’effetto è rimasto non statisticamente significativo dopo aver incluso i due studi che misuravano la prestazione anaerobica all’interno di un test di prestazione aerobica (p = 0,491) e quando tutti i risultati della prestazione anaerobica negli studi inclusi (anche più risultati dello stesso studio) sono stati meta-analizzati (p = 0,177). Non è stato trovato alcun effetto dei Glucocorticoidi sulla spesa energetica durante la prestazione submassimale (SDM 0,-332, 95% CI −0,785 a 0,121).

In una review narrativa del 2016, Collomp et al. hanno mirato a riassumere le attuali conoscenze sugli effetti ergogenici dei glucocorticoidi negli esseri umani. Hanno riferito che un effetto ergogenico (sull’esercizio di endurance) dei Glucocorticoidi sistemici a breve termine è stato chiaramente dimostrato e che gli effetti a breve termine (4,5 giorni) e a lungo termine (4 settimane) dell’assunzione di Glucocorticoidi non hanno avuto alcun effetto sul VO2-max o sulla potenza massima in uscita durante protocolli di esercizio graduati. Hanno anche il test sul campo come categoria di test delle prestazioni, ma fanno riferimento solo allo studio di Casuso et al. che riporta un miglioramento delle prestazioni nella corsa a navetta, ma nessun cambiamento nelle prestazioni nello sprint. I risultati successivi supportano e rafforzano la conclusione di Collomp et al. ( per quanto riguarda l’esercizio di endurance poiché scopriamo anche che il trattamento prolungato con glucocorticoidi migliora le prestazioni aerobiche. Tuttavia, a differenza di Collomp et al. nelle ultime review sono stati inclusi sia test di esercizio graduati che test sul campo (della durata di 1 minuto o più) nella definizione di prestazione aerobica e quindi, più studi che hanno aggiunto potenza statistica alla analisi. Non è stato trovato alcun effetto dei Glucocorticoidi sulla prestazione anaerobica quando è stato analizzato secondo il protocollo di studio, tuttavia sono stati inclusi solo tre studi che testavano la prestazione anaerobica. Per aumentare la potenza statistica, è stato anche incluso la prestazione anaerobica all’interno di test aerobici e più test anaerobici dallo stesso studio, ma ancora non era evidente alcun effetto dei glucocorticoidi. Questo approccio può diminuire la validità dell’analisi poiché la prestazione anaerobica all’interno di test aerobici può testare altre abilità rispetto ai test anaerobici e la meta-analisi di più risultati dagli stessi soggetti e l’intervento non è raccomandato dal Cochrane Handbook. Collomp et al. concludono che non è chiaro se i Glucocorticoidi migliorino la prestazione durante l’esercizio breve-intenso. Questa conclusione è ancora valida poiché solo pochi studi hanno indagato l’effetto dei glucocorticoidi sull’esercizio anaerobico/breve intenso. Tuttavia, quando meta-analizziamo tutte le prove disponibili, sembra che i Glucocorticoidi non migliorino le prestazioni anaerobiche. I Glucocorticoidi non hanno influenzato le prestazioni submassimali aumentando l’energia totale spesa e/o il VO2max a un carico fisso, ma questa conclusione dovrebbe anche essere interferita con cationi poiché l’analisi include solo 35 soggetti, il che fornisce una potenza statistica limitata.

L’uso di Glucocorticoidi nello sport è una questione altamente complessa a causa del loro uso diffuso in medicina, delle numerose formulazioni e vie di somministrazione con farmacocinetica variabile, effetti negativi sulla salute e potenziali associazioni di doping.

In definitiva, da quanto recentemente emerso attraverso il riassunto delle migliori prove scientifiche disponibili, i Glucocorticoidi migliorano le prestazioni aerobiche e massime, ma non influenzano le prestazioni anaerobiche nei soggetti sani.

Gabriel Bellizzi [CEO BioGenTech]

Riferimenti:

  1. Pelt AC (2011). Glucocorticoids: effects, action mechanisms, and therapeutic uses. Hauppauge, N.Y.: Nova Science. ISBN 978-1617287589.[page needed]
  2. Jump up to:a b c Rhen T, Cidlowski JA (Oct 2005). “Antiinflammatory action of glucocorticoids–new mechanisms for old drugs”. The New England Journal of Medicine353 (16): 1711–1723. doi:10.1056/NEJMra050541PMID 16236742S2CID 5744727.
  3. Botía M, Escribano D, Martínez-Subiela S, Tvarijonaviciute A, Tecles F, López-Arjona M, et al. (January 2023). “Different Types of Glucocorticoids to Evaluate Stress and Welfare in Animals and Humans: General Concepts and Examples of Combined Use”Metabolites13 (1): 106. doi:10.3390/metabo13010106PMC 9865266PMID 36677031.
  4. Ralph CR, Tilbrook AJ (February 2016). “INVITED REVIEW: The usefulness of measuring glucocorticoids for assessing animal welfare”. Journal of Animal Science94 (2): 457–470. doi:10.2527/jas.2015-9645PMID 27065116.
  5. Collomp K, Arlettaz A, Buisson C, Lecoq AM, Mongongu C. Glucocorticoid administration in athletes: performance, metabolism and detection. Steroids. (2016) 115:193–202. doi: 10.1016/j.steroids.2016.09.008 PubMed Abstract | CrossRef Full Text | Google Scholar
  6. Fain JN, Cheema P, Tichansky DS, Madan AK. Stimulation of human omental adipose tissue lipolysis by growth hormone plus dexamethasone. Mol Cell Endocrinol. (2008) 295(1):101–5. doi: 10.1016/j.mce.2008.05.014PubMed Abstract | CrossRef Full Text | Google Scholar
  7. Thomasson R, Rieth N, Jollin L, Amiot V, Lasne F, Collomp K. Short-term glucocorticoid intake and metabolic responses during long-lasting exercise. Horm Metab Res. (2011) 43(3):216–22. doi: 10.1055/s-0030-1269919 PubMed Abstract | CrossRef Full Text | Google Scholar
  8. Duclos M, Guinot M, Le Bouc Y, Cortisol GH. Odd and controversial ideas. Appl Physiol Nutr Metab. (2007) 32(5):895–903. doi: 10.1139/h07-064PubMed Abstract | CrossRef Full Text | Google Scholar
  9. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. (2000) 21(1):55–89. doi: 10.1210/edrv.21.1.0389PubMed Abstract | CrossRef Full Text | Google Scholar
  10. Duclos M. Evidence on ergogenic action of glucocorticoids as a doping agent risk. Phys Sportsmed. (2010) 38(3):121–7. doi: 10.3810/psm.2010.10.1817PubMed Abstract | CrossRef Full Text | Google Scholar
  11. Strehl C, Bijlsma JWJ, de Wit M, Boers M, Caeyers N, Cutolo M, et al. Defining conditions where long-term glucocorticoid treatment has an acceptably low level of harm to facilitate implementation of existing recommendations: viewpoints from an EULAR task force. Ann Rheum Dis. (2016) 75(6):952–7. doi: 10.1136/annrheumdis-2015-20891PubMed Abstract | CrossRef Full Text | Google Scholar
  12. WADA. The prohibited list. Available at: https://www.wada-ama.org/en/prohibited-list#search-anchor (Accessed March 4, 2022).
  13. Ventura R, Daley-Yates P, Mazzoni I, Collomp K, Saugy M, Buttgereit F, et al. A novel approach to improve detection of glucocorticoid doping in sport with new guidance for physicians prescribing for athletes. Br J Sports Med. (2021) 55(11):631–42. doi: 10.1136/bjsports-2020-103512
  14. Hanukoglu I (December 1992). “Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis”The Journal of Steroid Biochemistry and Molecular Biology43 (8): 779–804. doi:10.1016/0960-0760(92)90307-5PMID 22217824S2CID 112729Archived from the original on 26 April 2021. Retrieved 20 April 2018.
  15. Miller WL, Auchus RJ (February 2011). “The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders”Endocr Rev32 (1): 81–151. doi:10.1210/er.2010-0013PMC 3365799PMID 21051590.
  16. Oestlund I, Snoep J, Schiffer L, Wabitsch M, Arlt W, Storbeck KH (February 2024). “The glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 catalyzes the activation of testosterone”J Steroid Biochem Mol Biol236: 106436. doi:10.1016/j.jsbmb.2023.106436PMID 38035948.
  17. “IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). The nomenclature of steroids. Recommendations 1989, chapter 3S-4.9”European Journal of Biochemistry186 (3): 429–458. December 1989. doi:10.1111/j.1432-1033.1989.tb15228.xPMID 2606099Archived from the original on 19 February 2024. Retrieved 19 February 2024. 3S‐4.9. Trivial names of important steroids Examples of trivial names retained for important steroid derivatives, these being mostly natural compounds of significant biological activity, are given in Table 2
  18. Curnow KM, Tusie-Luna MT, Pascoe L, et al. (October 1991). “The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex”Mol. Endocrinol5 (10): 1513–22. doi:10.1210/mend-5-10-1513PMID 1775135.
  19. Zhou M, Gomez-Sanchez CE (July 1993). “Cloning and expression of a rat cytochrome P-450 11 beta-hydroxylase/aldosterone synthase (CYP11B2) cDNA variant”. Biochem. Biophys. Res. Commun194 (1): 112–7. doi:10.1006/bbrc.1993.1792PMID 8333830.
  20. Marieb Human Anatomy & Physiology 9th edition, chapter:16, page:629, question number:14
  21. Hu C, Rusin CG, Tan Z, Guagliardo NA, Barrett PQ (June 2012). “Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electrical oscillators”J. Clin. Invest122 (6): 2046–53. doi:10.1172/JCI61996PMC 3966877PMID 22546854.
  22. Hanukoglu A, Fried D, Nakash I, Hanukoglu I (Nov 1995). “Selective increases in adrenal steroidogenic capacity during acute respiratory disease in infants”. Eur J Endocrinol133 (5): 552–6. doi:10.1530/eje.0.1330552PMID 7581984S2CID 44439040.
  23. Barrett, Kim E. (2019). Ganong’s review of medical physiology. Susan M. Barman, Heddwen L. Brooks, Jason X.-J. Yuan, William F. Preceded by: Ganong (26th ed.). [New York]. p. 337. ISBN 9781260122404OCLC 1076268769.
  24. Ehrhart-Bornstein M, Hilbers U (1998). “Neuroendocrine properties of adrenocortical cells”Horm. Metab. Res30 (6–7): 436–9. doi:10.1055/s-2007-978911PMID 9694576S2CID 260169208.
  25. Lefebvre H, Cartier D, Duparc C, et al. (March 2002). “Characterization of serotonin(4) receptors in adrenocortical aldosterone-producing adenomas: in vivo and in vitro studies”. J. Clin. Endocrinol. Metab87 (3): 1211–6. doi:10.1210/jcem.87.3.8327PMID 11889190.
  26. Ye P, Mariniello B, Mantero F, Shibata H, Rainey WE (October 2007). “G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism”J. Endocrinol195 (1): 39–48. doi:10.1677/JOE-07-0037PMID 17911395.
  27. Haidan A, Bornstein SR, Glasow A, Uhlmann K, Lübke C, Ehrhart-Bornstein M (February 1998). “Basal steroidogenic activity of adrenocortical cells is increased 10-fold by coculture with chromaffin cells”Endocrinology139 (2): 772–80. doi:10.1210/endo.139.2.5740PMID 9449652.
  28. Hall, John E. (2021). Guyton and Hall textbook of medical physiology. Michael E. Hall (14th ed.). Philadelphia, PA. p. 956. ISBN 978-0-323-59712-8OCLC 1129099861.
  29.  London E, Wassif CA, Horvath A, Tatsi C, Angelousi A, Karageorgiadis AS, Porter FD, Stratakis CA (2015). “Cholesterol Biosynthesis and Trafficking in Cortisol-Producing Lesions of the Adrenal Cortex”J Clin Endocrinol Metab100 (10): 3660–7. doi:10.1210/jc.2015-2212PMC 4596036.
  30. Pazirandeh A, Xue Y, Prestegaard T, Jondal M, Okret S (May 2002). “Effects of altered glucocorticoid sensitivity in the T cell lineage on thymocyte and T cell homeostasis”FASEB Journal16 (7): 727–729. doi:10.1096/fj.01-0891fjePMID 11923224S2CID 23891076.
  31. Carlson NR (2010). Physiology of Behavior (11th ed.). New York: Allyn & Bacon. p. 605. ISBN 978-0-205-23939-9.
  32. Sapolsky RM (October 1994). “Glucocorticoids, stress and exacerbation of excitotoxic neuron death”Seminars in Neuroscience6 (5): 323–331. doi:10.1006/smns.1994.1041.
  33.  de Quervain DJ, Roozendaal B, McGaugh JL (Aug 1998). “Stress and glucocorticoids impair retrieval of long-term spatial memory”. Nature394 (6695): 787–790. Bibcode:1998Natur.394..787Ddoi:10.1038/29542PMID 9723618S2CID 4388676.
  34. Lupien SJ, McEwen BS, Gunnar MR, Heim C (Jun 2009). “Effects of stress throughout the lifespan on the brain, behaviour and cognition”. Nature Reviews. Neuroscience10 (6): 434–445. doi:10.1038/nrn2639PMID 19401723S2CID 205504945.
  35. Cahill L, McGaugh JL (Jul 1998). “Mechanisms of emotional arousal and lasting declarative memory”. Trends in Neurosciences21 (7): 294–299. doi:10.1016/s0166-2236(97)01214-9PMID 9683321S2CID 29839557.
  36. Belanoff JK, Gross K, Yager A, Schatzberg AF (2001). “Corticosteroids and cognition”. Journal of Psychiatric Research35 (3): 127–145. doi:10.1016/S0022-3956(01)00018-8PMID 11461709.
  37.  Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE (Dec 2007). “The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition”. Brain and Cognition65 (3): 209–237. doi:10.1016/j.bandc.2007.02.007PMID 17466428S2CID 5778988.
  38.  Wolkowitz OM, Lupien SJ, Bigler ED (Jun 2007). “The ‘steroid dementia syndrome’: a possible model of human glucocorticoid neurotoxicity”. Neurocase13 (3): 189–200. doi:10.1080/13554790701475468PMID 17786779S2CID 39340010.
  39. Norra C, Arndt M, Kunert HJ (Jan 2006). “Steroid dementia: an overlooked diagnosis?”. Neurology66 (1): 155, author reply 155. doi:10.1212/01.wnl.0000203713.04232.82PMID 16401879S2CID 11524545.
  40. Varney NR, Alexander B, MacIndoe JH (Mar 1984). “Reversible steroid dementia in patients without steroid psychosis”The American Journal of Psychiatry141 (3): 369–372. doi:10.1176/ajp.141.3.369PMID 6703100.
  41.  Liu C, Guan J, Kang Y, Xiu H, Chen Y, Deng B, et al. (2010). “Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat”PLOS ONE5 (12): e15607. Bibcode:2010PLoSO…515607Ldoi:10.1371/journal.pone.0015607PMC 3004933PMID 21187974.
  42. Liu C, Chen Y, Kang Y, Ni Z, Xiu H, Guan J, et al. (Oct 2011). “Glucocorticoids improve renal responsiveness to atrial natriuretic peptide by up-regulating natriuretic peptide receptor-A expression in the renal inner medullary collecting duct in decompensated heart failure”. The Journal of Pharmacology and Experimental Therapeutics339 (1): 203–209. doi:10.1124/jpet.111.184796PMID 21737535S2CID 1892149.
  43.  Revollo JR, Cidlowski JA (Oct 2009). “Mechanisms generating diversity in glucocorticoid receptor signaling”Annals of the New York Academy of Sciences1179 (1): 167–178. Bibcode:2009NYASA1179..167Rdoi:10.1111/j.1749-6632.2009.04986.xPMID 19906239S2CID 28995545.
  44.  Newton R, Holden NS (Oct 2007). “Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor?”. Molecular Pharmacology72 (4): 799–809. doi:10.1124/mol.107.038794PMID 17622575S2CID 52803631.
  45. Tarner IH, Englbrecht M, Schneider M, van der Heijde DM, Müller-Ladner U (2012). “The role of corticosteroids for pain relief in persistent pain of inflammatory arthritis: a systematic literature review”The Journal of Rheumatology. Supplement90: 17–20. doi:10.3899/jrheum.120337PMID 22942324S2CID 31663619.
  46. Haywood A, Good P, Khan S, Leupp A, Jenkins-Marsh S, Rickett K, et al. (2015). “Corticosteroids for the management of cancer-related pain in adults” (PDF). The Cochrane Database of Systematic Reviews2021 (4): CD010756. doi:10.1002/14651858.CD010756.pub2hdl:10072/134448PMC 8127040PMID 25908299.
  47. Chowdhury R, Naaseri S, Lee J, Rajeswaran G (2014). “Imaging and management of greater trochanteric pain syndrome”Postgraduate Medical Journal90 (1068): 576–581. doi:10.1136/postgradmedj-2013-131828PMID 25187570S2CID 24344273.
  48. Mohamadi A, Chan JJ, Claessen FM, Ring D, Chen NC (January 2017). “Corticosteroid Injections Give Small and Transient Pain Relief in Rotator Cuff Tendinosis: A Meta-analysis”Clinical Orthopaedics and Related Research475 (1): 232–243. doi:10.1007/s11999-016-5002-1PMC 5174041PMID 27469590.
  49. Goppelt-Struebe M, Wolter D, Resch K (Dec 1989). “Glucocorticoids inhibit prostaglandin synthesis not only at the level of phospholipase A2 but also at the level of cyclo-oxygenase/PGE isomerase”British Journal of Pharmacology98 (4): 1287–1295. doi:10.1111/j.1476-5381.1989.tb12676.xPMC 1854794PMID 2514948.
  50. Jun SS, Chen Z, Pace MC, Shaul PW (Feb 1999). “Glucocorticoids downregulate cyclooxygenase-1 gene expression and prostacyclin synthesis in fetal pulmonary artery endothelium”Circulation Research84 (2): 193–200. doi:10.1161/01.RES.84.2.193PMID 9933251.
  51.  Flower R, Rang HP, Dale MM, Ritter JM (2007). Rang & Dale’s pharmacology. Edinburgh: Churchill Livingstone. ISBN 978-0-443-06911-6.
  52.  Mizokami T, Hamada K, Maruta T, Higashi K, Tajiri J (September 2016). “Painful Radiation Thyroiditis after 131I Therapy for Graves’ Hyperthyroidism: Clinical Features and Ultrasonographic Findings in Five Cases”European Thyroid Journal5 (3): 201–206. doi:10.1159/000448398PMC 5091234PMID 27843811.
  53.  Rado JP, Blumenfeld G, Hammer S (Nov 1959). “The effect of prednisone and 6-methylprednisolone on mercurial diuresis in patients with refractory cardiac edema”. The American Journal of the Medical Sciences238 (5): 542–551. doi:10.1097/00000441-195911000-00003PMID 14435747S2CID 38687480.
  54.  Riemer AD (Apr 1958). “Application of the newer corticosteroids to augment diuresis in congestive heart failure”. The American Journal of Cardiology1 (4): 488–496. doi:10.1016/0002-9149(58)90120-6PMID 13520608.
  55. Newman DA (Feb 1959). “Reversal of intractable cardiac edema with prednisone”. New York State Journal of Medicine59 (4): 625–633. PMID 13632954.
  56.  Zhang H, Liu C, Ji Z, Liu G, Zhao Q, Ao YG, et al. (Sep 2008). “Prednisone adding to usual care treatment for refractory decompensated congestive heart failure”International Heart Journal49 (5): 587–595. doi:10.1536/ihj.49.587PMID 18971570.
  57.  Liu C, Liu G, Zhou C, Ji Z, Zhen Y, Liu K (Sep 2007). “Potent diuretic effects of prednisone in heart failure patients with refractory diuretic resistance”The Canadian Journal of Cardiology23 (11): 865–868. doi:10.1016/s0828-282x(07)70840-1PMC 2651362PMID 17876376.
  58.  Liu C, Chen H, Zhou C, Ji Z, Liu G, Gao Y, et al. (Oct 2006). “Potent potentiating diuretic effects of prednisone in congestive heart failure”Journal of Cardiovascular Pharmacology48 (4): 173–176. doi:10.1097/01.fjc.0000245242.57088.5bPMID 17086096S2CID 45800521.
  59.  Massari F, Mastropasqua F, Iacoviello M, Nuzzolese V, Torres D, Parrinello G (Mar 2012). “The glucocorticoid in acute decompensated heart failure: Dr Jekyll or Mr Hyde?”. The American Journal of Emergency Medicine30 (3): 517.e5–10. doi:10.1016/j.ajem.2011.01.023PMID 21406321.
  60. Henderson I, Caiazzo E, McSharry C, Guzik TJ, Maffia P (October 2020). “Why do some asthma patients respond poorly to glucocorticoid therapy?”Pharmacological Research160: 105189. doi:10.1016/j.phrs.2020.105189PMC 7672256PMID 32911071.

Clomifene/Enclomifene [SERM] durante l’uso di AAS e risposta terapeutica su HPTA

Introduzione:

La maggior parte degli “addetti ai lavori” e degli atleti, è perfettamente a conoscenza del fatto che una “base” di Testosterone sia necessaria all’interno di un ciclo di AAS/SARM al fine di avere un adeguato livello di metaboliti connessi [vedi E2 e DHT] evitando o riducendo quei problemi legati ad un loro marcato calo: alterazioni dell’umore, letargia, sonnolenza, spossatezza, ridotta libido, difficoltà a raggiungere e mantenere l’erezione ecc… .

Esistono altresì soggetti che decidono di non avvalersi dell’uso di una base di Testosterone optando, per esempio, per una somministrazione “rivista” di hCG. Ma vi sono altri, i così detti “agofobici” [si, esistono…si dopano e hanno paura dell’ago] che cercano di ripiegare con l’uso spesso fallimentare di DHEA [il quale, attraverso la conversione in Androstenediolo e Androstenedione converte maggiormente in E1 che a sua volta possiede una scarsa tendenza alla conversione nel più utile E2. Altri decidono di usare il Clomifene Citrato (Clomid®) o l’Enclomifene Citrato (Androxal®) per cercare di mantenere una attività dell’Asse HPT tale da garantire loro adeguati livelli di E2.

Sappiamo benissimo che i SERM agiscono a livello dei ER ipotalamici stimolando il rilascio di GnRH e, successivamente, a livello ipofisario, di LH e FSH. E’ infatti pratica comune nella PCT utilizzare tali farmaci per avere una risposta di “recupero” iniziale della produzione endogena di Testosterone dopo l’uso di AAS e loro azione soppressiva del sistema endocrino in questione.

A questo punto la domanda è: è possibile che l’uso di SERM come il Clomifene Citrato o il suo enantiomero attivo Enclomifene possa avere una risposta terapeutica anche durante l’uso di AAS?

Facciamo un pò di ripasso e cerchiamo di arrivare ad una conclusione logica e, per lo meno, accademica …

SERM e loro caratteristiche:

  • Siti di legame [ERα e ERβ]

I SERM sono agonisti parziali competitivi dell’ER.[1] I diversi tessuti hanno gradi diversi di sensibilità all’attività degli estrogeni endogeni, quindi i SERM producono effetti estrogenici o antiestrogenici a seconda del tessuto specifico in questione e della percentuale di attività intrinseca (IA) del SERM. [2] Un esempio di SERM con un’elevata IA e quindi con effetti prevalentemente estrogenici è il clorotrianisene, mentre un esempio di SERM con una bassa IA e quindi con effetti prevalentemente antiestrogenici è l’etamoxitripetolo. SERM come il clomifene e il tamoxifene sono relativamente più a metà strada per quanto riguarda l’IA e l’equilibrio tra attività estrogenica e antiestrogenica. Il raloxifene è un SERM più antiestrogenico del tamoxifene; entrambi sono estrogenici nelle ossa, ma il raloxifene è antiestrogenico nell’utero mentre il tamoxifene è estrogenico in questa parte del corpo.[2]

Da sinistra a destra: ERβ e ERα .

I SERM agiscono sul recettore degli estrogeni (ER), che è un attivatore trascrizionale intracellulare ligando-dipendente e appartiene alla famiglia dei recettori nucleari.[4] Sono stati identificati due diversi sottotipi di ER, ERα e ERβ. ERα è considerato il principale mezzo in cui i segnali estrogenici vengono trasdotti a livello trascrizionale ed è l’ER predominante nel tratto riproduttivo femminile e nelle ghiandole mammarie, mentre ERβ si trova principalmente nelle cellule endoteliali vascolari, nell’osso e nel tessuto prostatico maschile.[5] È noto che la concentrazione di ERα ed ERβ è diversa nei tessuti durante lo sviluppo, l’invecchiamento o lo stato patologico.[6] Molte caratteristiche sono simili tra questi due tipi, come le dimensioni (~600 e 530 aminoacidi) e la struttura. ERα ed ERβ condividono circa il 97% dell’identità di sequenza aminoacidica nel dominio che lega il DNA e circa il 56% nel dominio che lega il ligando.[4][6] La differenza principale dei domini che legano il ligando è determinata da Leu-384 e Met-421 in ERα, che sono sostituiti da Met-336 e Ile-373, rispettivamente, in ERβ.[7] La variazione è maggiore sull’N-terminus tra ERα ed ERβ.[8]

Strutture chimiche di diverse classi di SERM (Trifeniletilene, Benzotiofene, Indolo e Tetraidronaftalene).

Il dominio di legame al DNA è costituito da due sottodomini. Uno ha un box prossimale che è coinvolto nel riconoscimento del DNA, mentre l’altro contiene un box distale responsabile della dimerizzazione DNA-dipendente del dominio DNA-binding. La sequenza del box prossimale è identica tra ERα ed ERβ, il che indica una specificità e un’affinità simili tra i due sottogruppi. Le proteine globulari del dominio DNA-binding contengono otto cisteine e consentono una coordinazione tetraedrica di due ioni zinco. Questa coordinazione rende possibile il legame di ER con gli elementi di risposta agli estrogeni.[5] Il dominio legante il ligando è una struttura globulare a tre strati composta da 11 eliche e contiene una tasca per il ligando naturale o sintetico.[5][4] I fattori che influenzano l’affinità di legame sono principalmente la presenza di una frazione fenolica, la dimensione e la forma molecolare, i doppi legami e l’idrofobicità.[9]

Il posizionamento differenziale dell’elica 12 della funzione attivante 2 (AF-2) nel dominio di legame del ligando da parte del ligando legato determina se il ligando ha un effetto agonista o antagonista. Nei recettori legati all’agonista, l’elica 12 è posizionata adiacentemente alle eliche 3 e 5. Le eliche 3, 5 e 12 insieme formano una superficie di legame per un motivo NR box contenuto nei coattivatori con la sequenza canonica LXXLL (dove L rappresenta la leucina o l’isoleucina e X è un amminoacido qualsiasi).

I recettori non bloccati (apo) o i recettori legati a ligandi antagonisti allontanano l’elica 12 dalla superficie di legame LXXLL, il che porta al legame preferenziale di un motivo più lungo ricco di leucina, LXXXIXXX(I/L), presente sui corepressori NCoR1 o SMRT. Inoltre, alcuni cofattori si legano all’ER attraverso i terminali, il sito di legame del DNA o altri siti di legame. Pertanto, un composto può essere un agonista ER in un tessuto ricco di coattivatori ma un antagonista ER in tessuti ricchi di corepressori.[4]

  • Meccanismo d’azione

I composti estrogenici coprono uno spettro di attività che va da:

  • Agonisti completi (agonisti in tutti i tessuti) come l’ormone endogeno naturale Estradiolo
  • Agonisti misti/antagonisti (agonisti in alcuni tessuti e antagonisti in altri) come il Tamoxifene (SERM).
  • Antagonisti puri (antagonisti in tutti i tessuti), come il Fulvestrant.

I SERM sono noti per stimolare l’azione estrogenica in tessuti come il fegato, le ossa e il sistema cardiovascolare, ma anche per bloccare l’azione degli estrogeni laddove la stimolazione non è auspicabile, come nel seno e nell’utero. [10] Questa attività agonistica o antagonistica provoca vari cambiamenti strutturali dei recettori, con conseguente attivazione o repressione dei geni bersaglio degli estrogeni.[10][11] I SERM interagiscono con i recettori diffondendosi nelle cellule e legandosi alle subunità ERα o ERβ, con conseguente dimerizzazione e cambiamenti strutturali dei recettori. Ciò facilita l’interazione dei SERM con gli elementi di risposta agli estrogeni, che portano all’attivazione di geni inducibili dagli estrogeni e mediano gli effetti di questi ultimi.[10]

Impatto dei SERM sul omeostasi del Colesterolo.

La caratteristica unica dei SERM è la loro attività selettiva per tessuti e cellule. Ci sono sempre più prove a sostegno del fatto che l’attività dei SERM è determinata principalmente dal reclutamento selettivo di corepressori e coattivatori ai geni bersaglio dell’ER in specifici tipi di tessuti e cellule.[11][12] I SERM possono avere un impatto sulla stabilità delle proteine dei coattivatori e possono anche regolarne l’attività attraverso modifiche post-traslazionali come la fosforilazione. Molteplici vie di segnalazione della crescita, come HER2, PKC, PI3K e altre, sono downregolate in risposta al trattamento anti-estrogeno. Il coattivatore 3 dei recettori steroidei (SRC-3) viene fosforilato da chinasi attivate che ne potenziano l’attività di coattivatore, influenzano la crescita cellulare e contribuiscono alla resistenza ai farmaci.[12]

Il rapporto tra ERα ed ERβ in un sito bersaglio può essere un altro modo per determinare l’attività dei SERM. Alti livelli di proliferazione cellulare sono ben correlati con un alto rapporto ERα:ERβ, ma la repressione della proliferazione cellulare è correlata alla dominanza di ERβ su ERα. Il rapporto tra ER nel tessuto mammario neoplastico e normale potrebbe essere importante quando si considera la chemioprofilassi con i SERM.[10][11]

Per quanto riguarda le differenze tra ERα ed ERβ, sono importanti la Funzione di Attivazione 1 (AF-1) e la Funzione di Attivazione 2 (AF-2). Insieme svolgono un ruolo importante nell’interazione con altre proteine co-regolatrici che controllano la trascrizione genica.[10] AF-1 si trova nella terminazione amminica dell’ER ed è omologa solo al 20% in ERα ed ERβ. D’altra parte, AF-2 è molto simile in ERα e ERβ, e solo un aminoacido è diverso. Gli studi hanno dimostrato che scambiando le regioni di AF-1 in ERα e ERβ, si ottengono differenze specifiche nell’attività di trascrizione. In generale, i SERM possono attivare parzialmente geni ingegnerizzati attraverso ERα da un elemento del recettore degli estrogeni, ma non attraverso ERβ.[10][11] Tuttavia, il raloxifene e la forma attiva del tamoxifene possono stimolare geni reporter regolati da AF-1 sia in ERα che in ERβ.

La scoperta dell’esistenza di due sottotipi di ER ha portato alla sintesi di una serie di ligandi specifici per il recettore in grado di attivare o disattivare un particolare recettore. Tuttavia, la forma esterna del complesso risultante è ciò che diventa il catalizzatore per modificare la risposta di un tessuto bersaglio a un SERM.[10][11]

La cristallografia a raggi X di estrogeni o antiestrogeni ha mostrato come i ligandi programmino il complesso recettoriale per interagire con altre proteine. Il dominio legante dell’ER dimostra come i ligandi promuovano e impediscano il legame del coattivatore in base alla forma del complesso estrogeno o antiestrogeno. L’ampia gamma di ligandi che si legano all’ER può creare uno spettro di complessi ER completamente estrogenici o antiestrogenici in uno specifico sito bersaglio.[11] Il risultato principale del legame di un ligando all’ER è un riarrangiamento strutturale della tasca di legame del ligando, principalmente nell’AF-2 della regione C-terminale. Il legame dei ligandi all’ER porta alla formazione di una tasca idrofobica che regola i cofattori e la farmacologia del recettore. Il corretto ripiegamento del dominio di legame con i ligandi è necessario per l’attivazione della trascrizione e per l’interazione di ER con una serie di coattivatori.

Basi strutturali del meccanismo d’azione degli agonisti e degli antagonisti dei recettori degli estrogeni. Le strutture qui mostrate sono del dominio di legame del ligando (LBD) del recettore degli estrogeni (diagramma a fumetti verde) complessato con l’agonista Dietilstilbestrolo (in alto, PDB: 3ERD) o con l’antagonista 4-idrossitamossifene (in basso, 3ERT). I ligandi sono rappresentati come sfere che riempiono lo spazio (bianco = carbonio, rosso = ossigeno). Quando un agonista è legato a un recettore nucleare, l’alfa elica C-terminale della LBD (H12; azzurro) è posizionata in modo tale che una proteina coattivatrice (rosso) possa legarsi alla superficie della LBD. Qui è mostrata solo una piccola parte della proteina coattivatrice, la cosiddetta scatola NR contenente il motivo di sequenza aminoacidica LXXLL. Gli antagonisti occupano la stessa cavità di legame del ligando del recettore nucleare. Tuttavia, i ligandi antagonisti hanno un’estensione della catena laterale che sposta stericamente H12 per occupare all’incirca la stessa posizione nello spazio in cui si legano i coattivatori. Di conseguenza, il legame del coattivatore alla LBD viene bloccato.

I coattivatori non sono solo partner proteici che collegano tra loro i siti di un complesso. I coattivatori svolgono un ruolo attivo nel modificare l’attività di un complesso. La modificazione post-traduzionale dei coattivatori può dar luogo a un modello dinamico di azione degli ormoni steroidei attraverso molteplici vie chinasiche avviate dai recettori dei fattori di crescita della superficie cellulare. Sotto la guida di una moltitudine di rimodellatori proteici per formare un complesso multiproteico di coattivatori in grado di interagire con l’ER fosforilato in uno specifico sito promotore genico, il core coactivator deve prima reclutare una serie specifica di coattivatori. Le proteine che il core coactivator assembla come complesso di coattivatori hanno attività enzimatiche individuali per metilare o acetilare le proteine adiacenti. I substrati ER o il coenzima A possono essere poliubiquitinati da più cicli della reazione oppure, a seconda delle proteine di legame, possono essere ulteriormente attivati o degradati dal proteasoma 26S.[10]

Di conseguenza, per avere una trascrizione genica efficace, programmata e mirata dalla struttura e dallo stato di fosforilazione dell’ER e dei coattivatori, è necessario un processo dinamico e ciclico di capacità di rimodellamento per l’assemblaggio trascrizionale, dopo il quale il complesso di trascrizione viene poi istantaneamente distrutto dal proteasoma.[10]

  • Effetti sull’Asse HPT

Gli estrogeni sono un importante regolatore dell’Asse HPT. L’ipofisi si trova al di fuori della barriera ematoencefalica e accumula alti livelli di SERM. Inoltre, i SERM possono bloccare l’aumento di peso dell’ipofisi indotto dagli estrogeni [12], suggerendo un’azione anti-estrogenica. Antagonizzando i recettori estrogenici e bloccando l’attivazione di questi da parte del E2, i SERM stimolano il rilascio da parte dell’Ipotalamo di GnRH che a sua volta induce la sintesi ed il rilascio di Ormone Luteinizzante [LH] e Ormone Follicolo Stimolante [FSH]. Ciò, di conseguenza, aumenta la sintesi testicolare di Testosterone e la spermatogenesi.

Ciclo di feedback negativo dell’Asse HPT E2 dipendente.

L’affinità del Clomifene per l’ER rispetto all’estradiolo varia dallo 0,1 al 12% in diversi studi, un valore simile a quello del tamoxifene (0,06-16%).[13][14][15] Il 4-idrossiclomifene, uno dei principali metaboliti attivi del Clomifene/Enclomifene, e l’Afimoxifene (4-idrossitamoxifene), uno dei principali metaboliti attivi del Tamoxifene, mostrano rispettivamente l’89-251% e il 41-246% dell’affinità dell’Estradiolo per l’ER nelle cellule di cancro al seno MCF-7 umano. [16] L’affinità per l’ER degli isomeri del 4-idrossiclomifene era del 285% per l'(E)-4-idrossiclomifene e del 16% per lo (Z)-4-idrossiclomifene rispetto all’Estradiolo. [16] Il 4-idrossi-N-desmetilclomifene ha un’affinità simile a quella del 4-idrossi-clomifene per l’ER.[17] In uno studio, l’affinità del Clomifene e dei suoi metaboliti per l’ERα era di ~100 nM per il Clomifene, ~2,4 nM per il 4-idrossi-clomifene, ~125 nM per l’N-desmetilclomifene e ~1,4 nM per il 4-idrossi-N-desmetilclomifene.[17]

Anche se il Clomifene ha un certo effetto estrogenico, dato dalla componente di Zuclomifene, si ritiene che la proprietà antiestrogenica sia la fonte principale della stimolazione dell’ovulazione, data dal Enclomifene. Il Clomifene sembra agire soprattutto nell’ipotalamo, dove esaurisce gli ER ipotalamici e blocca l’effetto di feedback negativo dell’Estradiolo endogeno circolante, che a sua volta determina un aumento della frequenza degli impulsi ipotalamici dell’ormone di rilascio delle gonadotropine (GnRH) e delle concentrazioni circolanti di ormone follicolo-stimolante (FSH) e ormone luteinizzante (LH).

Negli uomini normali, è stato riscontrato che 50mg/die di Clomifene per 8 mesi aumentano i livelli di Testosterone di circa 870ng/dL negli uomini più giovani e di circa 490ng/dL negli uomini più anziani.[18] I livelli di Estradiolo aumentano di 62pg/mL negli uomini più giovani e di 40pg/mL negli uomini più anziani.[18] Questi risultati suggeriscono che gli effetti progonadotropi del Clomifene sono più forti negli uomini più giovani che in quelli più anziani. Negli uomini con ipogonadismo, il Clomifene è risultato in grado di aumentare i livelli di Testosterone da 293 a 362ng/dL e i livelli di Estradiolo da 5,5 a 13pg/mL.[18] In un ampio studio clinico su uomini con bassi livelli di Testosterone (<400ng/dL), 25mg/die di Clomifene [circa 15.5mg di Enclomifene] hanno aumentato i livelli di Testosterone da 309ng/dL a 642ng/dL dopo 3 mesi di terapia. Non sono stati osservati cambiamenti significativi nei livelli di colesterolo HDL, trigliceridi, glucosio a digiuno o Prolattina, sebbene i livelli di colesterolo totale siano diminuiti significativamente.[18][19]

E’ di interesse sottolineare che la miscela racemica del Clomifene è composta per il 38% da Zuclomifene e per il 62% da Enclomifene. Lo Zuclomifene è lo stereoisomero (Z) del Clomifene, mentre l’Enclomifene è lo stereoisomero (E). Lo Zuclomifene è leggermente estrogenico, e a differenza dell’Enclomifene, esso ha azione antigonadotropa a causa dell’attivazione del recettore degli estrogeni con successiva riduzione dei livelli di Testosterone negli uomini. È inoltre circa cinque volte più potente dell’Enclomifene nell’indurre l’ovulazione nelle donne.

Il primo studio pubblicato sul Enclomifene comprendeva solo 12 uomini e non era in cieco [20]. In altre parole, sia i partecipanti che i ricercatori sapevano quale trattamento stavano ricevendo gli uomini. I partecipanti erano uomini con ipogonadismo secondario trattati in precedenza con Testosterone topico. Sono stati randomizzati a ricevere nuovamente Testosterone topico o Enclomifene (25mg al giorno).

Dopo sei mesi di trattamento, i livelli di Testosterone erano praticamente gli stessi tra i gruppi: 545ng/dL (18,9nmol/L) nel gruppo che riceveva il gel e 525ng/dL (18,2nmol/L) nel gruppo che riceveva l’Enclomifene. Anche i livelli di Testosterone libero sono aumentati e sono rimasti praticamente invariati tra i gruppi. Inoltre, e naturalmente, il numero di spermatozoi è stato ridotto negli uomini che ricevevano Testosterone, con numeri intorno ai 20milioni/mL. Inoltre, come previsto, il numero di spermatozoi è aumentato negli uomini che hanno ricevuto l’Enclomifene, con una media di circa 150milioni/mL.

Due interessanti studi [21][22]sull’Enclomifene hanno utilizzato lo stesso protocollo e l’aspetto forse più interessante è stata la dimensione del campione: 256 soggetti in totale. L’intervento è durato 16 settimane e i soggetti del gruppo Enclomifene hanno ricevuto 12,5mg al giorno e sono stati trattati fino a 25mg al giorno se i livelli di Testosterone non erano aumentati ad almeno 450ng/dL (15,6nmol/L) alla quarta settimana. La dose è stata aumentata per la metà dei soggetti che ricevevano l’Enclomifene. A questo punto le cose iniziano a farsi interessanti: sebbene metà dei soggetti sia stata modificata nel dosaggio alla quarta settimana, non è successo assolutamente nulla con la concentrazione media di Testosterone:

E, in effetti, alla fine dell’intervento, la media del gruppo era appena al di sotto del valore limite di 450ng/dL (15,6nmol/L) per l’up-titration. Infine, 29 degli 85 uomini del gruppo Enclomifene non hanno visto il loro Testosterone aumentare al di sopra del valore limite di ipogonadismo di 300ng/dL (10,4nmol/L) dopo 16 settimane di trattamento. Inoltre, i ricercatori hanno fatto un lavoro non propriamente apprezzabile nel trattare correttamente il gruppo che utilizzava il gel di Testosterone, come si può vedere dalla concentrazione media di Testosterone di quel gruppo.

E’ interessante notare che il Clomifene mostra in realtà risultati molto simili, anche mg per mg, a quelli dell’Enclomifene.

Uso dei SERM nella terapia per la fertilità in pazienti sottoposti a TRT

Uno studio ha assegnato i pazienti oligozoospermici a due gruppi di trattamento: (1) 20mg/die di Tamoxifene Citrato e 120mg/die di Testosterone Undecanoato [forma orale; pari a 75.9mg di Testosterone effettivo con una biodisponibilità del 8% = 6.072mg circa di principio attivo in circolo nelle 24h] (n = 106) e (2) trattamento con placebo (n = 106) per 6 mesi. Nel gruppo Tamoxifene/T, il numero totale di spermatozoi è aumentato da una mediana [25°, 75° percentile] di 27,1 × 106 cellule/mL [9,4, 54,0 × 106 cellule/mL] a 61,5 × 106 cellule/mL [28,2, 119,6 × 106 cellule/mL], la motilità progressiva è aumentata dal 29,7% ± 12,0% al 41,6% ± 13,1% e la morfologia normale è aumentata dal 41,2% ± 14,0% al 56,6% ± 11,5% dopo 6 mesi. Il tasso di gravidanza spontanea è stato del 33,9% nel gruppo Tamoxifene/T e del 10,3% nel gruppo placebo. Questo metodo di somministrazione concomitante di Testosterone e SERM potrebbe essere efficace nel mantenere la fertilità in una certa fetta di pazienti sottoposti a TRT. L’uso concomitante di hCG o Clomifene [o altro SERM] durante la TRT potrebbe non essere ottimale negli uomini in cerca di fertilità.[https://www.mdpi.com/1648-9144/60/2/275]

E’ interessante anche un piccolo studio del 1979 che ha preso in esame l’effetto delle somministrazione cronica di Clomifene in concomitanza con diversi androgeni…

Nelle osservazioni dello studio, l’infusione di Testosterone (T; 7,5mg/die per 4 giorni) ha prodotto un calo del 40% delle concentrazioni sieriche di LH e FSH. L’infusione di estradiolo (E2) in dosi equivalenti a quelle derivate dal T infuso (45μg/die) ha provocato un calo dell’LH sierico pari al 60% di quello osservato con il T, indicando che la maggior parte della soppressione dell’LH mediata dal T può essere attribuita alla sua aromatizzazione a E. Anche l’infusione di diidrotestosterone ha provocato una diminuzione del 35% dell’LH sierico medio e una diminuzione del numero di impulsi spontanei di LH simile a quella osservata con il T, a sostegno di un ruolo della componente androgenica pura nella soppressione dell’LH mediata dal T. Durante la terapia cronica con Clomifene, né il T né l’E2, se somministrati in dosi pari al doppio del loro tasso di produzione medio negli uomini normali, né gli androgeni non aromatizzabili, il Diidrotestosterone e il Fluoxymesterone, in dosi equipotenti al T infuso, sono stati in grado di sopprimere i livelli sierici di LH e FSH o di alterare le risposte di LH e FSH alla somministrazione di GnRH. La resistenza della gonadotropina alla soppressione da parte degli androgeni durante il blocco del Clomifene rimane ma con probabili variabili dose-temporali.[https://www.researchgate.net/]

  • Punti chiave

Abbiamo ripassato la funzionalità documentata del Clomifene e dell’Enclomifene di causare un aumento del GnRH con conseguente incremento di LH, FSH, Tetstosterone (e metaboliti annessi) e spermatogenesi in soggetti sani e ipogonadici [ipogonadismo secondario e AAS-indotto]. Ma durante l’uso di AAS/SARM è possibile avere una risposta terapeutica?

Oltre ai dati riportati in contesto TRT e SERM, se leggiamo con attenzione i dati sopra riportati, con una risposta di legame con effetto antagonista del ER ipotalamico dei mataboliti del Clomifene/Enclomifene del 285%, possiamo ipotizzare che la sua efficacia in presenza di molecole aromatizzabili sia proporzionale ai livelli di E2 o di suoi più potenti analoghi metilati in C7α o in C17α in circolo. In assenza di queste e in cosomministrazione con molecole non aromatizzabili, il suo potenziale di legame risulterebbe analogo al contesto di non utilizzo di AAS.

Possiamo chiuderla qui con un “si, ha una azione terapeutica anche in cosomministrazione con AAS/SARM, specie se non aromatizzabili!”? Purtroppo no, perchè il controllo dell’attività dell’Asse HPT non è regolato solo ed esclusivamente dal feedback negativo del E2.

I fattori che sopprimo l’Asse HPT

Come detto pocanzi, la sottoregolazione/soppressione dell’Asse HPT non è solo dipendente dal feedback negativo dato da un aumento del E2 circolante. Infatti, i fattori che influenzano la sottoregolazione/soppressione dell’Asse HPT sono:

  1. L’origine del AAS, e di conseguenza…
  2. Il tasso di conversione del  AAS ad estrogeno, attraverso l’enzima aromatasi in alcuni tessuti (adiposo, mammario)
  3. L’attività estrogenica intrinseca della molecola
  4. L’attività progestinica dell’AAS
  5. Dose e tempo d’uso/abuso del AAS
  6. Attività androgena del AAS

Come possiamo vedere, oltre al fattore estrogenico vi sono quello diretto dall’AAS, la sua attività progestinica e la sua affinità con l’AR.

Sebbene l’utilizzatore del “tampone SERM” per cercare di garantirsi livelli di E2 e DHT nella norma (indi minimamente funzionali) raramente utilizza progestinici, la cosa non è impossibile vista la presenza di PH/AAS orali con attività progestinica [vedi 19-Nor-5-androstenediolo, MENTDIONE, MENT, Trenbolone Acetato, Metribolone ecc…].

Struttura molecolare del 19-nor-5-androstenediolo, noto anche come estr-5-ene-3β,17β-diolo, il proormone del Nandrolone e di altri 19-norandrostani.

Il Progesterone svolge inoltre un ruolo cruciale nell’Asse HPT. Durante la fase luteale, l’ipotalamo rilascia l’ormone di rilascio delle gonadotropine (GnRH), che agisce su una ghiandola chiamata ipofisi anteriore. Una quantità eccessiva di Progesterone o la presenza di Progestinici provoca un’inibizione a feedback negativo a livello ipotalamico/ipofisario, con conseguente cessazione marcata del rilascio di ormoni; maggiore di quella riscontrata con il ciclo di feedback del E2. Questo processo, nella maggior parte dei casi (se non in una estrema maggioranza con uno scarto di possibilità limitato) non è compensabile con l’uso di SERM.

Un altro fattore che interviene a livello del feedback negativo dell’Asse HPT risiede della attività AR della molecola. Di conseguenza, dovrebbe essere chiaro che anche farmaci puramente androgeni o essenzialmente anabolizzanti e con forte potenziale di legame con il AR [vedi SARM non steroidei] possono causare una sotto-regolazione della funzionalità dell’Asse HPT, quindi con meccanismi indipendenti dalla aromatizzazione della molecola.

Infatti, gli AAS [ed i SARM non steroidei] attraversano la barriera ematoencefalica e si legano ai recettori Ipotalamici.  Ciò comporterà una marcata soppressione dell’HPTA per via di intermediari quali i peptidi oppioidi endogeni.

Quindi, bisogna sapere che l’attività di soppressione/sottoregolazione dell’Asse HPT androgeno-dipendente ha come intermediari i peptidi oppioidi endogeni, con attività principale da parte della Beta-Endorfina, delle Encefaline e Dinorfine attraverso il legame con i recettori oppioidi μ.

Recettori μ-opioidi attivi e inattivi

Tale effetto ridurrà comunque l’efficacia terapeutica dei SERM utilizzati anche se questi limiteranno il feedback negativo del E2. In breve, lo stimolo del GnRH e, di conseguenza, di LH e FSH saranno potenzialmente ridotti in rapporto AAS-dipendente e dose-dipendente. Ciò significa che non sarà possibile garantire livelli adeguati di E2 secondari alla aromatizzazione del Testosterone stimolato dalla attività del LH legata alla somministrazione di Clomifene o Enclomifene.

Struttura molecolare del Fluoxymesterone

Con l’uso del Fluoxymesterone le cose si complicherebbero ulteriormente. La sua capacità inibitiva sull’Asse HPT è più marcata di quella esercitata dal Methyltestosterone, nonostante non sia aromatizzabile, e si manifesta maggiormente a livello testicolare. Nel range dei 20mg/die non sembra mostrare un significativo impatto su FSH e LH ma già sul Testosterone circolante. Il Fluoxymesterone possiede una biodisponibilità del 100%, dovuta alla metilazione in posizione 17α la quale inibisce il metabolismo epatico per ossidazione enzimatica del 17β-idrossile, consentendo l’assorbimento nel flusso sanguigno della molecola. Come molti altri steroidi metilati in C-17, il Fluoxymesterone presenta una scarsa affinità con i recettori AR, ciononostante le sue azioni sono mediate dal recettore degli androgeni, molto probabilmente a causa della sua prolungata emivita plasmatica che è di circa 9,2 ore.(Seth Roberts “Anabolic Pharmacology”. 2009)

Effetto dei SERM sull’Asse hGH/IGF1

Esistono poche differenze tra i vari SERM nell’influenzare negativamente l’Asse hGH/IGF1, in quanto è stato riportato che il Raloxifene ha indotto una minore diminuzione dei livelli di IGF1 rispetto al Tamoxifene, considerando che entrambi i farmaci sono stati somministrati a un dosaggio massimo di 120mg/die e 20mg/die, rispettivamente [94].

Cozzi et al. [95] hanno provato per la prima volta a utilizzare il tamoxifene come possibile trattamento dell’acromegalia; nel 1997 hanno trattato 19 soggetti acromegalici (6 maschi, 13 femmine) per due mesi con un dosaggio crescente, fino a raggiungere i 40 mg/die. L’IGF1 medio è diminuito del 29,5%, con un range compreso tra il 18% e il 60%, in 13 dei 19 pazienti, raggiungendo un controllo ormonale completo in quattro di essi (21%). I livelli di GH sono leggermente aumentati rispetto al basale, mentre dopo la sospensione del tamoxifene l’IGF1 sierico è prontamente aumentato.
Molti anni dopo, Balili et al. [31] hanno riportato che 17 pazienti (15 maschi e 2 femmine) con acromegalia resistente sono stati trattati con tamoxifene (dose massima 40mg/die) per un periodo mediano di quattro mesi. È stata evidenziata una riduzione significativa dell’IGF1 nell’82% dei pazienti, raggiungendo il controllo della malattia nel 47% dei casi. I livelli sierici di IGF1 si sono ridotti del 17,5%, mentre i livelli di GH non hanno subito variazioni significative.

Schema semplificato dell’azione di E2 e SERM sull’Asse hGH/IGF1

Duarte et al. [35] nel 2016 hanno studiato 16 maschi con acromegalia non controllata, dimostrando l’efficacia del Clomifene Citrato (CC) come terapia aggiuntiva a SRL o Cabergolina. I pazienti sono stati trattati per tre mesi con CC 50mg/die, mostrando una riduzione media dei livelli di IGF1 del 41% (con valori compresi tra il 16,8% e il 68,3%), che ha portato il 44% dei pazienti a raggiungere il controllo ormonale.
Gli estrogeni e i SERM hanno ampiamente dimostrato una significativa attività di riduzione dell’IGF1.

Le concentrazioni plasmatiche seriali di hGH sono state misurate ogni 20 minuti per 24 ore prima e dopo la somministrazione di Clomifene Citrato (100mg/die per 7 giorni) a quattro soggetti sani maschi giovani adulti. Il numero di episodi secretori di hGH e l’entità del picco delle concentrazioni plasmatiche durante la veglia e il sonno sono diminuiti dopo i periodi di trattamento con Clomifene Citrato.[https://www.sciencedirect.com/science/article/abs]

In uno studio sono stati inclusi sette bracci, comprendenti donne in postmenopausa con diabete mellito di tipo 2, donne in postmenopausa con cancro al seno, donne sane in postmenopausa e uomini anziani sani. La terapia con Raloxifene ha ridotto significativamente i livelli di IGF-1 (WMD: -2,92 nmol/L, 95% CI: -3,49, -2,35, p < 0,001) rispetto al placebo. Il dosaggio di raloxifene ˃60mg/die (WMD: -3,29 ng/mL, 95% CI: -3,50-3,08, I2 = 0,0%) ha ridotto i livelli di IGF-1 più di 60 mg/die (WMD: -2,29 ng/mL, 95% CI: -2,90 -1,69, I2 = 16%). Inoltre, la durata dell’intervento ˃26 settimane (WMD: -3,48 ng/mL, 95% CI: -5,26 a -1,69, I2 = 0,0%) ha ridotto i livelli di IGF-1 più di ˂26 settimane (WMD: -2,55 ng/mL, 95% CI: -3,31 a -1,79, I2 = 92%). Al contrario, i risultati complessivi del modello a effetti casuali non hanno suggerito un cambiamento significativo nei livelli di IGFBP-3 con la terapia con raloxifene. La terapia con Raloxifene ha ridotto significativamente i livelli sierici di IGF-1, ma senza variazioni nei livelli di IGFPB-3.[https://www.sciencedirect.com/science/article/abs/pii/S1096637421000447]

Il Tamoxifene è in grado di ridurre l’IGF-1 biodisponibile (calcolato come rapporto tra IGF-1 e IGF-BP3) per almeno 18 mesi. Sebbene le concentrazioni di IGF-1 non si siano ridotte in modo significativo, le concentrazioni della sua principale proteina legante IGF-BP3 sono aumentate in modo significativo, riducendo così la quantità di IGF-1 disponibile. Tuttavia, il rapporto tra IGF-1 e IGF-BP3 non era significativamente ridotto rispetto al basale a 27 mesi, per cui l’effetto di un trattamento più lungo resta da chiarire. Anche il Tamoxifene ha aumentato significativamente le concentrazioni di IGF-BP1 rispetto al basale dopo 18 mesi di trattamento. Questo aumento è stato osservato anche in altri studi.

In alcuni studi sul Tamoxifene è stata notata paradossalmente un’assenza di effetti sulle concentrazioni di IGF-1 a differenza di altri studi che hanno dimostrato una riduzione dell’IGF-1 da parte del Tamoxifene. Questo potrebbe essere il risultato del numero ridotto di pazienti degli studi in questione o della selezione della popolazione. Tuttavia, uno studio non ha mostrato un effetto sull’IGF-1 a un follow-up mediano di 29 mesi. Questi ricercatori avevano osservato una diminuzione significativa dei valori di IGF-1 dopo sei mesi di trattamento con Tamoxifene e i loro dati indicano un effetto limitato dopo un trattamento a lungo termine. Anche altri dati da campioni più piccoli indicano una riduzione iniziale (sebbene non significativa) dell’IGF-1, che si perde con l’aumentare del tempo di follow-up. Ciò indica un effetto potenzialmente importante della durata del trattamento sull’esito e sottolinea la necessità di ulteriori studi longitudinali con periodi di follow-up rigorosamente tempificati.

Uno studio a lungo termine controllato con placebo ha mostrato una riduzione significativa dell’IGF-1 dopo un follow-up medio di 27 mesi (follow-up minimo di tre mesi), ma non sono stati prelevati campioni longitudinali. È possibile che i campioni provenienti dagli studi di prevenzione con Tamoxifene in corso (come l’IBIS) vengano utilizzati per ulteriori ricerche sugli effetti del Tamoxifene sul sistema IGF. In alcuni studi i campioni utilizzati non erano a digiuno e questo può essere importante perché i valori possono fluttuare in base all’assunzione di nutrienti.

Il meccanismo con cui il Tamoxifene altera lo stato dell’IGF non è stato completamente chiarito. Tuttavia, si ritiene che il Tamoxifene alteri i valori di IGF-1 riducendo la produzione di hGH da parte dell’ipofisi, abbassando così la quantità di IGF-1 prodotta dal fegato [endocrina] e rilasciata in circolo. Sappiamo che il Tamoxifene ha anche un’azione diretta come antagonista dell’E2 in diversi tessuti del corpo oltre che sulle cellule del cancro al seno, e sembrerebbe alterare la quantità di IGF-1 e di proteine leganti rilasciate dalle cellule stesse.

Il Tamoxifene, quindi, può aumentare l’IGF-BP1, l’IGF-BP3 e ridurre il rapporto tra IGF-1 e IGF-BP3. Gli effetti a lungo termine dell’uso del Tamoxifene sullo stato dell’IGF devono ancora essere stabiliti. Non è ancora del tutto chiaro quando e per quanto tempo il Tamoxifene può ridurre l’IGF-1 circolante.[https://www.ncbi.nlm.nih.gov/]

  • Aumento delle SHBG

L’effetto del Clomifene Citrato (CC) sulle SHBG è stato studiato in 10 pazienti oligozoospermici con varicocele e 6 uomini normospermici. Le SHBG plasmatiche, Testosterone (T), Estradiolo (E2), FSH, LH. Prolattina (Prl), Tiroxina (T4) e 17-OH-progesterone (17-OH-P) sono stati determinati prima e durante la terapia. La concentrazione di SHBG è aumentata da 38,1 ± 18,3 a 54,3 ± 16,0 nmol/l (P < 0,01), mentre il T e l’E2 hanno mostrato aumenti significativi da 31,2 ± 10,8 nmol/***l e 24,6 ± 5,4 pg/ml a 52,0 ± 3,6 e 43,3 ± 14,9, rispettivamente nei pazienti oligozoospermici, con aumenti simili osservati negli uomini normospermici. L’FSH, l’LH e il 17-OH-P sono risultati marcatamente elevati durante la somministrazione di CC, mentre Prl e T4 sono rimasti invariati. I risultati di questo studio indicano che la CC provoca un aumento della concentrazione di SHBG, probabilmente correlato anche all’aumento della concentrazione di E2. Questa variazione della SHBG, combinata con l’attività estrogenica intrinseca del CC, potrebbe essere uno dei fattori responsabili, attraverso una diminuzione del T libero e uno squilibrio tra T ed E2, della mancanza di un effetto significativo sui parametri della qualità seminale nei pazienti così trattati. [https://onlinelibrary.wiley.com/doi/abs/]

Schema semplificato dell’azione dei SERM e E2 sull’espressione del gene SHBG e sintesi delle SHBG.

In uno studio, tredici pazienti sono stati sottoposti a trattamento con Tamoxifene dopo la classificazione secondo Nydick (gruppo 1). Il gruppo 2 era composto da otto pazienti seguiti senza trattamento. La ginecomastia era presente bilateralmente in 15 pazienti. In entrambi i gruppi si è verificata una riduzione statisticamente significativa delle dimensioni del seno. Si è verificata una diminuzione significativa della SHBG sierica solo nel gruppo 2. Questi risultati suggeriscono che la SHBG sierica è aumentata dal trattamento con Tamoxifene negli adolescenti maschi trattati. I livelli di SHBG sono diminuiti per tutta la durata del follow-up nei pazienti che sono guariti con o senza trattamento. Tuttavia, questa diminuzione era statisticamente significativa nel gruppo non trattato, ma non in quello trattato con Tamoxifene. In conclusione, è stato suggerito che il calo puberale dei livelli di SHBG sia attenuato dal trattamento con tamoxifene somministrato per la ginecomastia puberale, poiché il Tamoxifene aumenta i livelli di SHBG negli adolescenti maschi.[https://pubmed.ncbi.nlm.nih.gov/15379424/]

Ma gli Inibitori della Aromatasi?

Gli IA possono essere in alcuni casi un modo efficace per controllare i livelli di E2 durante la TRT. Tuttavia, il dosaggio necessario per mantenere i livelli di E2 nell’intervallo ottimale dipende da ciascun individuo e richiede un attento monitoraggio da parte di un professionista sanitario. Ma in un contesto di alterazione del ciclo di feedbeack negativo del E2, specie se cosomministrati con AAS non aromatizzabili, possono portare a peggioramento delle condizioni più che ad una risposta positiva nel mantenimento di una certa attività dell’Asse HPT.

Conclusioni:

Nonostante la ricerca abbia mostrato in studi su animali sottoposti a somministrazione di AAS (Oxymetholone) abbinata al Clomifene Citrato una qualche conservazione del Testosterone endogeno [Growth-hormone-secretagogue-GHRP-6-and-clomiphene?redirectedFrom=fulltext], e che nelle terapie per la fertilità in soggetti in TRT, o in soggetti trattati per brevi periodi con AAS e.v., la somministrazione di Clomifene Citrato ha mostrato un effetto misurabile [ma qui parliamo comunque di condizioni più che altro “mimiche-fisiologiche”], sul campo la misurazione dell’efficacia della somministrazione di SERM (soprattutto Clomifene e Enclomifene) per mantenere una certa sintesi endogena di Testosterone e consequenzialmente dei suoi metaboliti E2 e DHT, non è lineare e chiara, sia per la difficile identificazione della qualità dei PEDs utilizzati e sia per la difficolta di svolgere esami ematici che non siano basati sul fallace (ormonalmente) metodo ECLIA/ELISA. La rara possibilità (almeno in Italia) di poter accedere a laboratori dove sono svolti test LC/MS-MS ultra sensibile [vedi spettrometria di massa accoppiata] limita le valutazioni precise necessarie dal momento che con i metodi sopra citati ormoni diversi possono essere letti come il medesimo ormone. Nonostante ciò, siamo stati in grado di notare degli effetti terapeutici sufficienti con cicli a medio/basso dosaggio di AAS come Oxandrolone e Stanozololo [media 30mg/die]. In altre circostanze, e in una buona fetta di popolazione, l’andamento dell’efficacia variava all’interno dello stesso arco temporale del ciclo al quale i soggetti si sottoponevano.

Basandoci sulla ricerca diretta, possiamo teoricamente elencare gli AAS/SARM/PH e DS con l’effetto ipoteticamente raggiungibile in combinazione con SERM:

  • Effetto buono
  • Oxandrolone [=30mg di media]
  • Stanozololo [=20mg di media]
  • Methyldrostanolone [=30mg di media]
  • 4-clorodeidrometiltestosterone [=40mg di media]
  • Ostarina [=20mg di media]
  • RAD140 [=20mg di media]
  • Effetto discreto/moderato
  • Testosterone Undecanoato [<120mg/die di media]
  • Methandrostenolone [<20mg di media]
  • Oxymetholone [<50mg di media]
  • LGD4033 [<10mg di media]
  • Effetto non sufficiente
  • Fluoxymesterone [≥10mg di media]
  • MENTDIONE [≥50mg di media]
  • MENT [≥25mg di media]
  • Metribolone [≥250mcg di media]
  • Norethandrolone [≥20mg di media]
  • Trenbolone Acetato (orale) [≥25mg di media]
  • 19-Nor-5-androstenediolo [≥50mg di media]

Chi sceglie di prendere la “via del Enhanced” e la sua paura principale è basata sulle iniezioni beh, forse è meglio che abbandoni tale possibile scelta… no?…

Paradossalmente, è di gran lunga più funzionale l’inserimento di piccole dosi di Methandrostenolone [15mg/die circa] come base “sostitutiva” del Testosterone compensando il DHT con la versione metilata in C1 di questo, il Mesterolone.

Amedeo Bellizzi [CEO BioGenTech]

Riferimenti:

  1. Cameron JL, Cameron AM (20 November 2013). Current Surgical Therapy. Elsevier Health Sciences. pp. 582–. ISBN 978-0-323-22511-3.
  2. Huang X, Aslanian RG (19 April 2012). Case Studies in Modern Drug Discovery and Development. John Wiley & Sons. pp. 392–394. ISBN 978-1-118-21967-6.
  3. Kremoser C, Albers M, Burris TP, Deuschle U, Koegl M (Oct 2007). “Panning for SNuRMs: using cofactor profiling for the rational discovery of selective nuclear receptor modulators”. Drug Discovery Today12 (19–20): 860–9. doi:10.1016/j.drudis.2007.07.025PMID 17933688.
  4. Rosano C, Stec-Martyna E, Lappano R, Maggiolini M (2011). “Structure-based approach for the discovery of novel selective estrogen receptor modulators”. Current Medicinal Chemistry18 (8): 1188–94. doi:10.2174/092986711795029645PMID 21291367.
  5.  Nilsson S, Koehler KF, Gustafsson JÅ (Oct 2011). “Development of subtype-selective oestrogen receptor-based therapeutics”. Nature Reviews. Drug Discovery10 (10): 778–92. doi:10.1038/nrd3551PMID 21921919S2CID 23043739.
  6. Koehler KF, Helguero LA, Haldosén LA, Warner M, Gustafsson JA (May 2005). “Reflections on the discovery and significance of estrogen receptor beta”Endocrine Reviews26 (3): 465–78. doi:10.1210/er.2004-0027PMID 15857973.
  7. Dutertre M, Smith CL (Nov 2000). “Molecular mechanisms of selective estrogen receptor modulator (SERM) action”The Journal of Pharmacology and Experimental Therapeutics295 (2): 431–7. PMID 11046073.
  8. Xu X, Yang W, Li Y, Wang Y (Jan 2010). “Discovery of estrogen receptor modulators: a review of virtual screening and SAR efforts”. Expert Opinion on Drug Discovery5 (1): 21–31. doi:10.1517/17460440903490395PMID 22823969S2CID 207492889.
  9. Musa MA, Khan MO, Cooperwood JS (2007). “Medicinal chemistry and emerging strategies applied to the development of selective estrogen receptor modulators (SERMs)”. Current Medicinal Chemistry14 (11): 1249–61. doi:10.2174/092986707780598023PMID 17504144.
  10. Lewis JS, Jordan VC (Dec 2005). “Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance”. Mutation Research591 (1–2): 247–63. doi:10.1016/j.mrfmmm.2005.02.028PMID 16083919.
  11. Feng Q, O’Malley BW (Nov 2014). “Nuclear receptor modulation–role of coregulators in selective estrogen receptor modulator (SERM) actions”Steroids90: 39–43. doi:10.1016/j.steroids.2014.06.008PMC 4192004PMID 24945111.
  12. Wittliff JL, Kerr II DA, Andres SA (2005). “Estrogens IV: Estrogen-Like Pharmaceuticals”. In Wexler P (ed.). Encyclopedia of Toxicology, 2nd Edition. Vol. Dib–L. Elsevier. pp. 254–258. ISBN 9780080548005.
  13. Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, et al. (March 2000). “The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands”Toxicological Sciences54 (1): 138–53. doi:10.1093/toxsci/54.1.138PMID 10746941.
  14. Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W, et al. (March 2001). “Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens”. Chemical Research in Toxicology14 (3): 280–94. doi:10.1021/tx000208yPMID 11258977.
  15. Baumann RJ, Bush TL, Cross-Doersen DE, Cashman EA, Wright PS, Zwolshen JH, et al. (March 1998). “Clomiphene analogs with activity in vitro and in vivo against human breast cancer cells”. Biochemical Pharmacology55 (6): 841–51. doi:10.1016/s0006-2952(97)00574-1PMID 9586957.
  16. Sutherland RL, Watts CK, Ruenitz PC (October 1986). “Definition of two distinct mechanisms of action of antiestrogens on human breast cancer cell proliferation using hydroxytriphenylethylenes with high affinity for the estrogen receptor”. Biochemical and Biophysical Research Communications140 (2): 523–9. doi:10.1016/0006-291x(86)90763-1PMID 3778464.
  17. Obach RS (April 2013). “Pharmacologically active drug metabolites: impact on drug discovery and pharmacotherapy”. Pharmacological Reviews65 (2): 578–640. doi:10.1124/pr.111.005439PMID 23406671S2CID 720243.
  18. Trost LW, Khera M (July 2014). “Alternative treatment modalities for the hypogonadal patient”. Current Urology Reports15 (7): 417. doi:10.1007/s11934-014-0417-2PMID 24817260S2CID 20304701.
  19. Rambhatla A, Mills JN, Rajfer J (2016). “The Role of Estrogen Modulators in Male Hypogonadism and Infertility”Reviews in Urology18 (2): 66–72. doi:10.3909/riu0711 (inactive 31 January 2024). PMC 5010627PMID 27601965.
  20. Kaminetsky, Jed, et al. “Oral enclomiphene citrate stimulates the endogenous production of testosterone and sperm counts in men with low testosterone: comparison with testosterone gel.” The journal of sexual medicine 10.6 (2013): 1628-1635.
  21. Kim, Edward D., Andrew McCullough, and Jed Kaminetsky. “Oral enclomiphene citrate raises testosterone and preserves sperm counts in obese hypogonadal men, unlike topical testosterone: restoration instead of replacement.” BJU international 117.4 (2016): 677-685.
  22. Earl, Joshua A., and Edward D. Kim. “Enclomiphene citrate: A treatment that maintains fertility in men with secondary hypogonadism.” Expert review of endocrinology & metabolism 14.3 (2019): 157-165.