Nella prima parte abbiamo discusso del impatto sull’ipertrofia muscolare ormone-correlata dato dal numero, densità e sensibilità dei Recettori degli Androgeni [AR] espressi in modo variabile secondo caratteristiche genetiche individuali. In questa seconda ed ultima parte tratteremo della mutazione del gene della Miostatina e del suo impatto nella suddivisione tra “High” e “Low” gainers/responders.

Introduzione alla mutazione del gene della Miostatina:

Un altro fattore da considerare sarebbe quello della Miostatina e sulla mutazione del suo gene regolatore.

Il gene della Miostatina (MSTN) è un gene che fornisce le istruzioni per la produzione della proteina Miostatina.

La Miostatina regola la crescita del muscolo scheletrico limitandola quando necessario. A sua volta, impedisce all’organismo di aumentare troppo la massa muscolare anche attraverso la regolazione del catabolismo muscolare.

La ricerca attuale che circonda la Miostatina si basa sul suo trattamento di controllo per le malattie degenerative del sistema muscolo-scheletrico.

Per coincidenza, gli animali che presentano mutazioni nel gene codificante MSTN mostrano una maggiore massa muscolare, forza e, in alcune circostanze, anche una riduzione del grasso corporeo.

Esempi di carenze di miostatina si trovano in modelli di roditori da esperimenti e nell’industria zootecnica con bovini carenti di Miostatina, come già accennato nel precedente articolo.

I topi privi del gene per la sintesi della Miostatina hanno una massa muscolare circa doppia rispetto ai topi normali [1].

Confronto tra topi wild-type e F66/Mstn-/- [mutazione del gene della Miostatina].

Gli inibitori della Miostatina sono stati proposti da molti come la più promettente nuova area scientifica nel contesto del bodybuilding, nonché come un trattamento alternativo potenzialmente migliore per le malattie da deterioramento muscolare.

Gli esemplari di Belgian Blu presentano una mutazione del gene della Miostatina, che impedisce il corretto funzionamento del ciclo di feedback di inibizione della crescita muscolare.

Questa mutazione interferisce con il deposito di grasso e può portare a un’accelerazione della crescita muscolare magra.

L’accelerazione della crescita muscolare nei Belgian Blues è dovuta principalmente ai cambiamenti fisiologici delle cellule muscolari (fibre) dell’animale, che passano da una modalità di crescita ipertrofica a una iperplasica.

Questa crescita avviene nel feto e fa sì che un vitello nasca con un numero di fibre muscolari due volte superiore a quello di un vitello senza mutazione del gene della Miostatina [2].

(A) Analisi di sequenziamento dei tipi di mutazione biallelica MSTN nei vitelli clonati. I tipi di mutazione biallelica MSTN consistevano in una delezione di 6 bp in un allele (gli ultimi 4 bp dell’esone 1 e i primi 2 bp dell’introne 1) e in una delezione di 117 bp (posizioni nucleotidiche 8-124 nell’introne 1) e un’inserzione di 9 bp (gli ultimi 2 bp dell’esone 1 e i primi 7 bp dell’introne 1, AG GCACGGG) nell’altro allele, che erano coerenti con la colonia 6. Le lettere rosse rappresentano l’esone 1 di MSTN e le lettere blu rappresentano l’introne 1 di MSTN. (B) I vitelli con mutazioni bialleliche di MSTN mostravano il fenotipo doppio muscoloso e non presentavano effetti negativi. Nei cerchi rossi, la massa muscolare del vitello mutante MSTN (a sinistra) era maggiore di quella del vitello wild-type (a destra). (C) Sezioni trasversali del muscolo quadricipite colorate con ematossilina ed eosina. Le fibre muscolari dei vitelli con mutazioni bialleliche di MSTN (a sinistra) erano ipertrofiche, rispetto a quelle dei vitelli wild-type (a destra). Tutti gli animali avevano un mese di età alla data del prelievo dei campioni di tessuto.

Il paradosso dell’aumento della Miostatina in risposta agli Androgeni:
Anche se probabilmente esistono altri meccanismi di controregolazione nell’organismo che inibiscono la crescita muscolare eccessiva, il fattore principale sembra essere l’aumento della Miostatina. La Miostatina aumenta per impedire l’aumento di massa muscolare non salutare.

In uno studio sono stati valutati gli effetti del Testosterone e del Trenbolone esogeni sui livelli di Miostatina [3]. Questo studio ha dimostrato che dopo 29 giorni di somministrazione di Testosterone o Trenbolone, i livelli di proteina Miostatina erano più alti del 197% nel gruppo castrato e Testosterone e del 209% nel gruppo castrato e Trenbolone rispetto al placebo.

C’è un motivo per cui questo meccanismo è presente nell’organismo umano e non è possibile crescere in modo lineare. I meccanismi omeostatici del corpo cercheranno sempre di ristabilire l’equilibrio, la dove in grado.
Quindi, come già detto, la Miostatina è un inibitore della crescita che aumenta in presenza di androgeni in misura dose-dipendente.

In base alle ricerche attuali, sembra che quanto più alta è la dose di anabolizzanti esogeni, tanto maggiore è il potenziale di crescita muscolare e, di conseguenza, tanto più alta sarà la Miostatina per inibire tassi spropositati di crescita muscolare.

In uno studio che ha valutato l’effetto di dosi graduate di Testosterone sui livelli di Miostatina in uomini giovani e anziani, i livelli di Miostatina erano significativamente più alti al giorno 56 rispetto al basale in entrambi i gruppi [4].

E’ singolare constatare che l’aumento di Miostatina si manifesti a grado significativo dopo 29 giorni di somministrazione cronica di AAS. In effetti, inizialmente la risposta è inversa, cioè inibitoria.

L’ipotesi della Miostatina non è scientificamente teorizzabile al momento. Essa presenta alcune lacune nei dati che contraddicono i suoi effetti di inibizione della crescita muscolare.

Tuttavia, sulla base di ciò che sappiamo finora, la ricerca suggerisce che è più che probabile che sia il principale meccanismo di regolazione coinvolto nella risposta alla crescita muscolare rispetto all’attivazione del Recettore degli Androgeni. È infatti noto che la Miostatina regola negativamente la massa muscolare nei topi, nei bovini, nei cani e nell’uomo [5].

Mutazioni del gene della Miostatina e influenza sui progressi nel bodybuilding:

E’ stato condotto un piccolo studio per scoprire se le mutazioni dello SNP rs1805086 hanno un impatto sulla popolazione maschile che pratica il bodybuilding dal punto di vista dell’ipertrofia muscolare e delle prestazioni muscolari [6].

L’obiettivo secondario era quello di ipotizzare se le mutazioni rare siano più diffuse in coloro che decidono di scegliere uno sport come il bodybuilding, dal momento che la ricerca indica che le mutazioni del MSTN possono indurre un maggiore aumento della massa muscolare e una riduzione del grasso corporeo.

Il polimorfismo Lys(K)153Arg(R) nell’esone 2 (rs1805086, sostituzione 2379 A>G) del gene della Miostatina (MSTN) è candidato a influenzare i fenotipi del muscolo scheletrico ed è elencato su SNPedia come il genotipo a maggior rischio di causare l’ipertrofia muscolare legata alla Miostatina [7, 8].

Il 17% del gruppo di soggetti aveva una mutazione (AG), l’83% aveva l’esito comune (AA) e lo 0% (0) aveva due mutazioni (GG).

I soggetti con genotipo AG avevano una circonferenza media del braccio di 46,37 cm rispetto agli AA che avevano una media di 42,02 cm.

I soggetti con il genotipo AG avevano un punteggio medio di pull-up max di 21, rispetto agli AA che avevano una media di 12.

I soggetti con genotipo AG avevano una media di flessioni massime pari a 61 rispetto agli AA che avevano una media di 40.

Lo studio mostra chiaramente che i soggetti con una mutazione sono rari, tuttavia la mutazione sembra dare al soggetto un vantaggio in termini di prestazioni e di dimensioni rispetto a quelli con il risultato comune.

Un altro studio ha ottenuto risultati simili valutando i polimorfismi A55T e K153R [9].

I ricercatori di questo ultimo studio hanno affermato che i loro risultati indicano che gli individui con genotipo AT + TT del polimorfismo A55T hanno mostrato un aumento significativo dello spessore dei bicipiti (0,292 ± 0,210 cm, P = 0,03), ma non dei quadricipiti (0,254 ± 0,198 cm, P = 0,07), rispetto ai portatori del genotipo AA.

Per il polimorfismo K153R, gli aumenti degli spessori sia del bicipite (0,300 ± 0,131 cm) che del quadricipite (0,421 ± 0,281 cm) erano significativamente più elevati tra gli individui con genotipo KR rispetto a quelli con genotipo KK (P < 0,01 per entrambi i muscoli).

I risultati ottenuti suggeriscono quindi una possibile associazione tra i due polimorfismi e l’ipertrofia muscolare indotta dall’allenamento di forza tra gli uomini di etnia cinese Han.

Il polimorfismo K153R è lo stesso polimorfismo Lys(K)153Arg(R) nell’esone 2 (rs1805086, sostituzione 2379 A>G) del gene della Miostatina (MSTN) valutato nel primo studio citato.

Fotografie di un bambino con mutazione del gene della Miostatina all’età di sei giorni e sette mesi (pannello A), ecografie (pannello B) e analisi morfometriche (pannello C) dei muscoli del paziente e di un neonato di controllo e pedigree del paziente (pannello D).
Le punte di freccia nel pannello A indicano i muscoli sporgenti della coscia e del polpaccio del paziente. Nel pannello B, una sezione trasversale ultrasonografica (trasduttore lineare, 10 MHz) attraverso la parte centrale della coscia rivela le differenze tra il paziente e un neonato di controllo della stessa età, sesso e peso. VL indica il vasto laterale, VI il vasto intermedio, VM il vasto mediale, RF il retto femorale e F il femore. Nel pannello C, i ritracciamenti dei contorni dei muscoli e i risultati dell’analisi morfometrica dei piani delle sezioni muscolari dei due neonati rivelano differenze marcate. Il pannello D mostra il pedigree del paziente. I simboli solidi indicano i membri della famiglia che sono eccezionalmente forti, secondo le informazioni della loro storia clinica. I simboli quadrati indicano i membri della famiglia di sesso maschile e i cerchi quelli di sesso femminile.

Gli SNP influenzano l’ipertrofia muscolare correlata alla Miostatina:

Secondo SNPedia, questi 3 SNP sono sicuramente correlati all’ipertrofia muscolare legata alla Miostatina:

L’SNP rs1805086, in particolare, è quello più comunemente esaminato in relazione ai risultati del bodybuilding.

Viene spesso citato nelle discussioni sul “gene del bodybuilder”.

Il genotipo AA dello SNP rs1805086 è considerato quello comunemente presente, mentre gli alleli di rischio sono il genotipo GG dello SNP rs1805086.

La malattia letteralmente elencata come esito potenziale del possesso di questo genotipo di rischio è l’ipertrofia muscolare legata alla Miostatina.

Avere un solo allele G è raro, ed essere omozigoti per esso è molto raro.

E’ stato ipotizzato che Flex Wheeler avesse probabilmente il genotipo GG più raro per l’SNP rs1805086.

Victor Conte, Flex Wheeler e la “sua mutazione”:

Si presume che Flex Wheeler abbia partecipato a uno studio condotto in collaborazione con il dipartimento di genetica umana dell’Università di Pittsburgh, che ha coinvolto 62 uomini.

Durante questo studio, Flex avrebbe scoperto di avere una mutazione molto rara della Miostatina nella posizione dell’esone 2 del gene.

Flex Wheeler

In teoria, questa presunta mutazione genetica impediva al suo organismo di produrre quantità normali di Miostatina, determinando di conseguenza un numero di fibre muscolari molto più elevato rispetto agli uomini nella media.

Gli animali e gli esseri umani con livelli di Miostatina inibiti hanno costantemente dimostrato di avere livelli di muscolatura molto più elevati rispetto alle loro controparti non inibite, e sulla base di ciò non è assurdo supporre che i mostri di genetica nel bodybuilding abbiano sviluppato il loro fisico come risultato anche di una mutazione genetica simile.

In teoria, chi ha bassi livelli di Miostatina potrebbe continuare a progredire a ritmi che sarebbero impossibili per chi ha livelli normali del peptide.

Il risultato finale di livelli cronicamente bassi di Miostatina potrebbe essere un aumento muscolare sostanzialmente maggiore a parità di variabili.

Victor Conte è una delle persone associate allo studio sulla mutazione della Miostatina condotto su Flex Wheeler e su una serie di altri bodybuilder professionisti IFBB.

Il 99% di coloro che nella comunità del bodybuilding discutono della carenza di Miostatina di Flex fanno riferimento a una lettera scritta nell’ottobre 1998 da Victor Conte.

Non è chiaro se questa lettera sia legittima e inalterata, ma per quanto possa valere, la considereremo legittima in quanto è quella che è circolata nella comunità del bodybuilding per anni.

1 ottobre 1998

Oggetto: Flex Wheeler

A chi può interessare:

Scrivo questa lettera su richiesta di Flex Wheeler.

Vorrei innanzitutto fornirvi alcune informazioni di base sui Laboratori BALCO. BALCO lavora con atleti olimpici e professionisti d’élite da oltre quindici anni. BALCO ha fornito test e consulenze a oltre 250 giocatori della NFL, tra cui l’intera squadra dei Denver Broncos, campione del Super Bowl 1998, e l’intera squadra dei Miami Dolphins. BALCO lavora con atleti professionisti in molti sport, tra cui tennis (Michael Chang, Jim Courier, ecc.), hockey, bodybuilding (10 dei 16 concorrenti di Mr. Olympia 1998), atletica leggera, calcio e basket (Seattle SuperSonics).

Nell’ultimo anno i Laboratori BALCO hanno effettuato test e monitoraggi di routine su Flex. Sono stati eseguiti esami come quelli ematochimici (SMAC), emocromo completo (CBC), PSA, livelli di ormoni anabolizzanti, genotipizzazione e analisi complete degli elementi nutrizionali. I risultati dei test di Flex sono stati confrontati con quelli di altri ventiquattro bodybuilder professionisti e nel complesso il suo profilo è tra i più sani. In sostanza, Flex gode di ottima salute e ha dimostrato la disciplina necessaria per mantenere un livello di preparazione ottimale.

Flex ha partecipato a uno studio condotto di recente in collaborazione con il Dipartimento di Genetica Umana dell’Università di Pittsburgh, che ha coinvolto 62 uomini che hanno ottenuto aumenti di massa muscolare insolitamente elevati in risposta all’allenamento della forza (extreme responders). Flex era uno dei soli nove rispondenti estremi che presentavano la rarissima “mutazione della Miostatina”. Il gene della Miostatina regola il peptide che “limita la crescita muscolare”. In particolare, Flex presentava la forma più rara di mutazione della Miostatina nella posizione “esone 2” del gene. Ciò significa semplicemente che Flex ha un numero molto maggiore di fibre muscolari rispetto agli altri soggetti o alla popolazione normale. Riteniamo che questi siano i primi risultati di una mutazione della Miostatina nell’uomo e i risultati di questo studio di riferimento sono già stati presentati per la pubblicazione. In Flex è stato anche riscontrato un tipo di gene IGF-1 molto insolito. Infatti, Flex è stato l’unico partecipante allo studio a non avere una “corrispondenza”. Tutti gli altri rispondenti estremi avevano almeno altri tre soggetti con un gene IGF-1 corrispondente. Sulla base del profilo genetico unico di Flex, abbiamo intenzione di pubblicare rapidamente un documento scientifico che riveli il suo genotipo completo in modo dettagliato. La pubblicazione dei suoi straordinari dati genetici dovrebbe generare un’enorme esposizione mediatica.

Spero che queste informazioni siano utili e vi prego di chiamarmi se posso esservi d’aiuto.

Cordiali saluti,

/Victor Conte

Victor Conte

Presidente

BALCO Laboratories, Inc.

Da sinistra: Flex Wheeler, Victor Conte e Gunter Schlierkamp

Lo studio sulla mutazione della Miostatina condotto su Flex Wheeler e altri professionisti IFBB:

Questo studio è comunemente citato, ma devo ancora venire a conoscenza di qualcuno che lo abbia effettivamente trovato e che abbia incrociato i dati in esso contenuti con le affermazioni fatte nella lettera di Victor Conte.

Ma, facendo qualche ricerca, l’ho trovato.

Lo studio si chiama “frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes” [10].

In base a quanto dichiarato da Victor nella sua lettera, c’erano nove rispondenti estremi con una mutazione molto rara della Miostatina.

Si suppone che Flex Wheeler avesse la mutazione più rara di tutte nella posizione dell’esone 2 del gene, che lo rendeva unico rispetto a tutti gli altri individui dello studio.

Soggetti dello studio:

Il sequenziamento di regioni selezionate del gene della Miostatina e la genotipizzazione di varianti comuni sono stati eseguiti in un campione di confronto di 96 soggetti caucasici e 96 afroamericani selezionati a caso dalla popolazione generale.

Altri 72 individui sono stati sottoposti a screening per la presenza di una variante comune dell’esone 2.

Centocinquantatré soggetti, tra cui 127 uomini (32 afroamericani, 91 caucasici e 4 asiatici) e 26 donne (9 afroamericani, 16 caucasici e 1 asiatico), sono stati classificati in base all’entità dell’aumento della massa muscolare registrato con l’allenamento della forza.

I soggetti erano costituiti da:

  • 18 culturisti di livello mondiale (classificati tra i primi 100 al mondo)
  • 25 culturisti agonisti non classificati tra i primi 100
  • 7 sollevatori di potenza d’élite
  • 9 giocatori di calcio universitari
  • 55 soggetti non allenati in precedenza, ai quali è stato misurato il volume del muscolo quadricipite mediante risonanza magnetica prima e dopo 9 settimane di allenamento di resistenza pesante degli estensori del ginocchio
  • 61 non atleti, che sono stati interrogati sulla loro capacità di aumentare la massa muscolare in risposta a un allenamento di forza intenso e prolungato.

5 dei 18 bodybuilder di livello mondiale erano concorrenti di Mr. Olympia, classificati tra i primi 10 al mondo.

Il punteggio di 5 è stato assegnato a coloro che erano bodybuilder di livello mondiale e a coloro che avevano aumentato la massa muscolare dei quadricipiti di oltre 400 cm³ dopo solo 9 settimane di allenamento della forza, mentre il punteggio di 0 è stato assegnato a coloro che non avevano registrato un aumento notevole della massa muscolare dopo un allenamento della forza vigoroso per almeno 6 mesi.

Diciotto soggetti hanno ricevuto un punteggio di 5, mentre 13 hanno ricevuto un punteggio di 0. I restanti soggetti hanno avuto una valutazione intermedia.

Le valutazioni dei restanti soggetti si collocano tra questi due estremi.

62 soggetti con valutazione 4 o 5 sono stati classificati come responder estremi e sono stati confrontati con 48 soggetti con valutazione 0 o 1, classificati come non responder.

I soggetti sono stati anche raggruppati e confrontati per etnia.

Le informazioni sulle variazioni della massa muscolare con l’allenamento della forza nei restanti soggetti sono state ottenute attraverso le stime della massa priva di grasso valutate con l’assorbimetria a raggi X a doppia energia o l’idrodensitometria oppure, nel caso di bodybuilder agonisti, sollevatori di potenza, giocatori di calcio e non atleti, attraverso i dati del questionario sui precedenti successi nelle competizioni di bodybuilding e/o sulle variazioni della massa muscolare con l’allenamento della forza.

Risultati dello studio:

Senza annoiarvi con i dettagli meno rilevanti dello studio, la parte più rilevante è la conclusione.

La mancanza di una relazione significativa tra i genotipi della Miostatina e la risposta complessiva della massa muscolare all’allenamento della forza suggerisce che la risposta non è influenzata in modo significativo dalla variazione del locus della Miostatina.

Tuttavia, è interessante notare che tre dei non responder afroamericani erano omozigoti per l’allele meno comune (Arg) nel sito K153R dell’esone 2, mentre nessuno dei responder era omozigote per questo allele.

Tre delle cinque mutazioni che causano il fenotipo del muscolo doppio nei bovini si verificano nell’esone 2 e sono recessive, ma due sono mutazioni di terminazione della catena e una è una delezione, che dovrebbe produrre una proteina della Miostatina non funzionale.

Per stabilire se le variazioni nel gene della Miostatina influenzino fenotipi muscolari diversi dall’aumento della massa muscolare in risposta all’allenamento per la forza, sono necessari ulteriori approfondimenti.

L’allele Arg, meno comune, a cui si fa riferimento nelle conclusioni dello studio, è la mutazione che ci si aspetterebbe da Flex Wheeler.

Ma non sembra che ce l’abbia.

A metà dello studio si parla di ciò che potrebbe evidenziare la vera radice della superiorità genetica di Flex.

Tra i sei cambiamenti nucleotidici, due, P198A e l’introne 2 A/G, sono stati osservati in un singolo individuo e due, I225T e E164K, sono stati osservati in due individui, sempre eterozigoti con l’allele wildtype.

Gli altri due erano presenti nella popolazione generale come polimorfismi comuni.

Le varianti (A55T) e (K153R) sono comuni in entrambi i gruppi etnici, con l’allele meno frequente che ha una frequenza da tre a quattro volte superiore negli afroamericani.

Questi siti variabili sono potenzialmente in grado di alterare la funzione del prodotto genico della Miostatina e potrebbero alterare la ripartizione dei nutrienti negli individui eterozigoti o omozigoti per l’allele della variante.

Possiamo presumere che Flex Wheeler abbia due cambiamenti nucleotidici, P198A e l’introne 2 A/G.

Questa è l’unica nota dell’intera pubblicazione che distingue un individuo dello studio dagli altri.

Quelle che possiamo presumere essere le variazioni nucleotidiche di Flex Wheeler non sono nemmeno menzionate nell’elenco di SNPedia dei genotipi a rischio correlati.

L’unico vago riferimento che abbiamo è in uno studio che ha esaminato l’associazione tra le varianti esoniche MSTN e la potenza “esplosiva” delle gambe in 214 studenti universitari maschi [11].

E in quello studio l’unica cosa menzionata è che nessun soggetto dello studio presentava la variante esonica P198A di MSTN.

Sembra che, nonostante l’allele non comune (Arg) nel sito K153R dell’esone 2 sia il fulcro della maggior parte dei lavori sulla miostatina e sia stato considerato la radice del “gene del bodybuilder”, alla fine dei conti non sembra avere un impatto così significativo sulla risposta della crescita muscolare all’allenamento come molti pensavano.

La mancanza di una relazione significativa tra i genotipi della miostatina e la massa muscolare complessiva è molto significativa, dato che questo studio includeva 5 bodybuilder del calibro di Mr. Olympia e diversi altri professionisti IFBB di alto livello.

La cosa più interessante da notare è che tre dei non rispondenti afroamericani erano omozigoti per l’allele meno comune (Arg) nel sito K153R dell’esone 2, mentre nessuno dei rispondenti era omozigote per questo allele.

Tra le variazioni GDF8 identificate nell’uomo, il polimorfismo Lys(K)153Arg(R) nell’esone 2 (rs1805086, sostituzione 2379 A>G) del gene della Miostatina (MSTN) è candidato a influenzare i fenotipi del muscolo scheletrico [12].

Tuttavia, nessuno dei bodybuilder extreme responder era omozigote per questo allele.

Nel primo video ho detto che il genotipo AG in generale è raro.

Nello studio che ho descritto all’inizio dell’articolo, è stato riscontrato un impatto significativo sulle dimensioni e sulla forza muscolare.

A rigor di logica, si potrebbe ipotizzare che il genotipo GG (ancora più raro) comporti una mancanza di miostatina e un livello di crescita muscolare pazzesco.

In base a questo studio, però, non sembra essere così.

3 dei soggetti che hanno avuto una scarsa risposta all’allenamento e una crescita muscolare inferiore (non rispondenti) erano quelli che avevano questo genotipo raro.

Solo tre individui presentavano cambiamenti nucleotidici estremamente rari.

Tra questi c’è colui che presumo sia Flex, che presenta due alterazioni nucleotidiche, P198A e l’introne 2 A/G, e altri due individui con alterazioni nucleotidiche I225T e E164K, tutti eterozigoti con l’allele wildtype.

Ciò lascia due culturisti di alto livello del calibro di Mr. Olympia, diversi altri culturisti professionisti IFBB di livello mondiale e molti altri atleti d’élite con genotipi MSTN che hanno dimostrato di avere un impatto minimo sulla risposta della crescita muscolare all’allenamento in questo studio.

Le altre due variazioni nucleotidiche che causano il doppio fenotipo muscolare nei bovini sono le varianti A55T e K153R e sono presenti nella popolazione generale come polimorfismi comuni.

Questi siti variabili hanno dimostrato di poter alterare la funzione del prodotto genico della miostatina e potrebbero alterare la ripartizione dei nutrienti in individui eterozigoti o omozigoti per l’allele della variante.

Tuttavia, i dati di questo studio dimostrano che non esiste una relazione significativa tra i genotipi della miostatina e la risposta complessiva della massa muscolare all’allenamento della forza.

Inconsistenza dei dati tecnici nella lettera di Victor Conte:

Non si sa da dove provengano le affermazioni contenute nella lettera scritta da Victor.

Egli sostiene che Flex Wheeler aveva la forma più rara di mutazione della Miostatina nell’esone 2 del gene.

Ma se guardiamo lo studio stesso, si legge che 3 dei non responders erano omozigoti.

Nessuno dei responders era omozigote.

Flex Wheeler sarebbe stato senza dubbio classificato come un responder estremo, eppure non era uno degli individui con la variazione GDF8 nell’uomo che ci aspetteremmo di vedere in un individuo carente di Miostatina.

In base a ciò, possiamo presumere che si tratti dell’individuo menzionato nello studio con due variazioni nucleotidiche, P198A e l’introne 2 A/G.

Victor ha anche menzionato come “nove soggetti con risposta estrema presentavano la rarissima mutazione della Miostatina”.

Dai dati si evince che solo tre individui presentavano mutazioni nucleotidiche non comuni, non nove, mentre il resto dei soggetti presentava polimorfismi comuni presenti nella popolazione generale.

Inoltre, tra le mutazioni citate, anche se un numero maggiore di bodybuilder di alto livello presentasse mutazioni degne di nota, la conclusione dello studio afferma comunque che non esiste una relazione significativa tra i genotipi della Miostatina e la risposta complessiva della massa muscolare all’allenamento della forza.

Nella sua lettera, Victor ha anche affermato che Flex è uno dei bodybuilder professionisti più sani tra quelli che ha monitorato e che gode di ottima salute.

Abbiamo eseguito esami che comprendono la chimica del sangue (SMAC), l’emocromo completo (CBC), il PSA, i livelli di ormoni anabolizzanti, la genotipizzazione e un’analisi completa degli elementi nutrizionali.

I risultati dei test di Flex sono stati confrontati con quelli di altri ventiquattro bodybuilder professionisti e nel complesso il suo profilo è tra i più sani.

In sostanza, Flex gode di ottima salute e ha dimostrato la disciplina necessaria per mantenere un livello di preparazione ottimale.

Questo articolo è stato scritto il 1° ottobre 1998.

Se conoscete la storia di Flex Wheeler, saprete che ha dovuto smettere di gareggiare dopo aver scoperto, nel 1999, di essere affetto da glomerulosclerosi focale segmentaria (una forma di malattia renale) e si è ritirato poco dopo.

Non so come una cosa così grave possa essere trascurata a tal punto.

Mi fa dubitare della legittimità di questa lettera.

Se Flex era davvero sull’orlo di un’insufficienza renale, non capisco come sia stato possibile stabilire che era uno dei bodybuilder più sani seguiti da Victor, e come questi test approfonditi non l’abbiano rilevato.

La prima cosa che mi viene in mente è la curiosità di sapere se c’era o meno una qualche forma di guadagno associata a questa vicenda.

Negli anni ’90, l’industria degli integratori era impazzita.

Gli steroidi erano venduti legalmente al banco, e si potevano fare affermazioni ridicole e false su praticamente tutto ciò che si voleva e poi vendere prodotti basati su questo.

Le affermazioni false esistono ancora oggi, ma oggi abbiamo a disposizione le risorse necessarie per capire la spazzatura che ci viene propinata, mentre negli anni ’90 nessuno ne sapeva di più e un integratore che inibisce la miostatina e che può farvi diventare grossi come Flex Wheeler avrebbe probabilmente fatto il botto.

Forse questa ipotesi è molto lontana da quelle che erano le reali intenzioni, ma non capisco quale possa essere stata la motivazione di questa lettera, o quale sia il suo scopo.

È del tutto possibile che stessero pensando di collaborare per creare una sorta di integratore inibitore della Miostatina basato sul genotipo unico di Flex.

Conclusioni:

Non so se l’ulteriore pubblicazione di cui parla Victor nella lettera sia mai stata realizzata.

Sulla base del profilo genetico unico di Flex, abbiamo intenzione di pubblicare rapidamente un articolo scientifico che riveli il suo genotipo completo in modo dettagliato.

La pubblicazione dei suoi notevoli dati genetici dovrebbe generare un’enorme esposizione mediatica.

Presumo che questo progetto sia stato probabilmente accantonato dopo i problemi di salute di Flex verificatisi nel 1999.

Non so quale fosse l’obiettivo di questa lettera e ci sono diverse incongruenze tra la lettera e lo studio vero e proprio che necessitano di ulteriori chiarimenti per poter fare affermazioni conclusive.

A chi era indirizzata questa lettera e perché Flex Wheeler ha chiesto di scriverla?

A parte il mistero di questa lettera, che mi interessa relativamente, sembra che possiamo almeno concludere, sulla base dei risultati dello studio, che la maggior parte delle mutazioni del gene della Miostatina non sembra essere il fattore di differenziazione tra i migliori atleti responder estremi del calibro di Mr. Olympia e persone comuni, o almeno non il solo.

La complessità della biochimica e delle risposte genetiche non interessano quasi mai un solo fattore ma più fattori correlati aventi tra loro influenza diretta e/o indiretta.

Con molta probabilità, sia il fattore di mutazione del gene della Miostatina che il numero, la densità e sensibilità dei AR nel muscolo scheletrico rappresentino due delle maggiori determinanti di separazione tra lo spettro di soggetti che vanno dai rarissimi “No Responders” agli altrettanto rari “Freak”.

Prima che qualcuno di voi cambi sport perchè scoraggiato dalle evidenze, ho da darvi una buona e scontata notizia. Quale? Che tra voi, con molta probabilità, vi siano alcuni convinti di essere dei low responders ma in realtà rientrano nella media. È molto probabile che non stiate migliorando come vorreste, o a causa di aspettative irrealistiche, o perché state facendo alcune cose decisamente controproducenti al miglioramento della condizione ipertrofica muscolare.

Assicuratevi di…

  1. Consumare un surplus calorico adeguato e ben tarato. Quanto meno siete geneticamente portati per la costruzione di muscoli, tanto maggiore sarà la cura della percentuale di macronutrienti (in particolare proteine, ma anche di carboidrati) del surplus necessario.
  2. Cercate di assumere da 1.5 a 2,5 grammi di proteine per chilo di peso corporeo. Questo vi garantirà la quantità di proteine necessaria per avviare i processi ipertrofici al vostro ritmo ottimale. Un consumo eccessivo di proteine, superando queste linee guida, non accelererà la crescita muscolare, a meno che non siate “resistenti all’anabolismo”: in questo caso la quota proteica può aumentare fino a 3g/Kg. Quando si raggiungono i 2,5 g/Kg peso, il puntare sull’aggiunta di carboidrati è più vantaggioso.
  3. Cercate di dormire otto ore di qualità a notte. Potreste arrivare a sette ogni tanto e va bene, ma una media di otto è ottimale. L’assunzione di più carboidrati a fine giornata può aiutare a dormire meglio aumentando il trasporto del Triptofano a livello cerebrale e con esso migliorare la sintesi di Serotonina e Melatonina.
  4. Nella maggior parte dei casi, l’obiettivo principale dell’allenamento dovrebbe essere quello di fare meglio dell’ultima volta. Questo può significare usare più peso almeno in alcuni esercizi [carico progressivo]. Ma può anche significare fare più ripetizioni con lo stesso peso [aumento del volume], fare lo stesso carico e le stesse ripetizioni con meno riposo tra le serie [aumentare la densità] e assicurarsi di eseguire meglio gli esercizi.
  5. Non esagerate con il volume. In caso di dubbio, fate circa 24 serie settimanali per i distretti come petto e schiena e 12 serie per i distretti come bicipiti, tricipiti e spalle.
  6. Non fate più di quanto vi permette il vostro adattamento. Se oltre le quattro sedute settimanali vedete che i recuperi non sono ottimali e iniziano ad emergere problemi di stanchezza cronica e calo della prestazione, concentratevi sul volume di lavoro adatto a voi. In questo modo riuscirete a rendere al massimo delle vostre capacità ad ogni allenamento con miglioramenti tra i mesocicli.
  7. Non pensate che l’uso di PEDs vi risolva i problemi. Dopo la lettura di questi due articoli dovreste aver capito che il farmaco esalta determinati caratteri genetici ma non li cambia. Inoltre, prima di prendere in considerazione un eventuale (ed illegale) uso di PEDs assicuratevi o di essere seguiti da anni da un professionista degno di tale appellativo oppure di essere in possesso delle conoscenze necessarie per gestire nel migliore dei modi i pilastri fondanti del bodybuilding, la dieta e l’allenamento.

E no… L’utilizzo di inibitori della Miostatina non vi renderà immuni dalle limitazioni date da una deficienza del gene MSTN. Al massimo, e torniamo sempre al solito discorso che giova sempre sottolineare, ridurranno l’attività della Miostatina, che è cosa molto variabile e ben diversa dall’avere una mutazione del gene in questione…

Per concludere, non state troppo a cruciarvi sulle vostre limitatezze genetiche, il lamentarsi e il negare lo stato delle cose non cambierà nulla. Piuttosto, sarebbe molto più produttivo agire iniziando ad essere consapevoli di ciò che si è con lo scopo di fare il meglio nei limiti delle proprie possibilità, qualunque esse siano. Certamente, le informazioni che ho esposto in questi due articoli, per coloro in grado di comprenderle, non sono semplicemente finalizzate ad una compressione dei limiti individuali, ma sono poste anche in modo tale da permettere di agire seguendo le scelte logiche migliori per raggiungere gli stessi.

Gabriel Bellizzi

Riferimenti:

  1. https://www.ncbi.nlm.nih.gov/pubmed/11459935
  2. https://www.ncbi.nlm.nih.gov/pubmed/9314496
  3. https://www.ncbi.nlm.nih.gov/pubmed/27246614
  4. https://www.ncbi.nlm.nih.gov/pubmed/19356623
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407187/
  6. https://encyclopedia.pub/108
  7. https://www.ncbi.nlm.nih.gov/pubmed/21283721
  8. https://www.snpedia.com/index.php/Rs1805086
  9. https://www.ncbi.nlm.nih.gov/pubmed/24479661
  10. https://www.ncbi.nlm.nih.gov/pubmed/10610713
  11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024427/
  12. https://www.ncbi.nlm.nih.gov/pubmed/21283721

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...