Se non avete letto ancora la prima, la seconda, la terza, la quarta e la quinta parte di questa serie di articoli vi invito a farlo: 1° Parte2° Parte – 3° Parte4° Parte5° Parte.

  • Vanadio: caratteristiche e possibili applicazioni.
VanadioS
Vanadio Solfato

Il Vanadio è noto per essere un minerale “ultratraccia” nell’alimentazione umana. (1) Non fa parte delle classiche 24 vitamine e minerali, anche se è necessario per alcune reazioni nel corpo, come la formazione di un Pervanadato richiesto per la fosforilazione di alcuni recettori proteici. (2) Normalmente vengono consumati giornalmente dai 6 ai 20mcg di Vanadio, principalmente attraverso il consumo di peperoni e frutti di mare. (2) Altre fonti alimentare che presentano una concentrazione significativa di questo minerale sono i cereali integrali, la birra, la frutta secca e alcune qualità di funghi. Nei cereali, e in modo particolare nella farina e nel pane, le concentrazioni di Vanadio possono superare i 10mcg/kg.

Il Vanadio ha una storia di utilizzo nel trattamento del diabete, patologia nella quale la somministrazione orale di Vanadio di Sodio rappresentava l’intervento farmacologico di base prima della scoperta dell’Insulina avvenuta nel 1921. (3)

Il Vanadio (Vanadato) può anche formare complessi legandosi al Perossido di Idrogeno (H202) e formando il Perossivanadio (Pervanadato), biologicamente più attivo nell’attività inibitoria nei confronti delle Proteine Fosfotirosina-Fosfatasi (PTP) rispetto al Vanadato. (4) (5)

Il Vanadio, come Vanadato in vivo, inibisce la fosforilazione delle ATPasi di tipo P (6) (7) e delle Proteine Fosfotirosina-Fosfatasi (PTP). (8) La dose per inibire le ATPasi, tuttavia, è clinicamente significativa solo a livelli tossici. L’inibizione delle PTP aumenta i vari processi di fosforilazione della Tirosina (poiché le fosfatasi sono enzimi inibitori nella fosforilazione).

Vari effetti derivano dall’inibizione delle PTP, come l’inibizione dell’assorbimento amminoacidico cellulare del sistema di trasporto A degli AA neutri (5), l’aumento dell’assorbimento del glucosio e la mobilizzazione dei GLUT4 attraverso una via indipendente dal fosfoinositolo-3-chinasi (PI3K) [a differenza dell’Insulina]. (9) Il meccanismo attraverso il quale il Vanadio esplica i suoi effetti si trova nella sua azione insulino-mimetica e nell’aumento della fosforilazione generale che agisce sulla Tirosina Chinasi del recettore insulinico (la quale viene fosforilata sotto l’influenza dell’Insulina, oltre all’inibizione delle PTP).

250px-Protein_IRS1_PDB_1irs.png
Potenziali siti di azione del Vanadio nella cascata di segnalazione dell’Insulina. Il legame del recettore insulinico sulla superficie della cellula determina i cambiamenti conformazionali nel recettore, principale attivazione della via PI3-K, la via principale implicata nella mediazione degli effetti metabolici. I potenziali siti di azione del Vanadio in questo percorso sono riassunti in questa figura. V ()), V (+), denotano effetti negativi, positivi o nulli, rispettivamente. IRS, substrato del recettore dell’insulina; PI3-K, fosfatidilinositolo-3-chinasi; PDK, chinasi 3-fosfoinositide-dipendente; PKB, protein chinasi B; GSK- glicogeno sintasi chinasi-3; PFK-2, fosfofuctokinasi-2; GLUT 4, trasportatore di glucosio di tipo 4; 4E- 4 proteina legante; PTP1B, proteina tirosina fosfatasi 1B; PP-1, proteina fosfatasi-1.
sodio ortovanodato
Sodio Ortovanadato

Composti contenenti Vanadio sono noti per inibire le PTP (10) (11) poiché essi tendono a formare una struttura bipirramidale trigonale che può agire come un inibitore competitivo del trasferimento di fosforile (come nel caso del Sodio Ortovanadato) o un ossidante del residuo di cisteina del ciclo PTP (complessi Perossivanadati). (12) Similmente ad altri composti inibitori delle PTP (gli inibitori PTP1B includono Berberina e Acido Ursolico) il Vanadio può prolungare la segnalazione attraverso il Recettore dell’Insulina prevenendo la regolazione negativa della degradazione dell’IRS-1, che è indotta a valle del segnale del recettore insulinico (tramite mTOR [13] S6K1 (14) ) e funziona tramite le PTP per sopprimere (15) e stimolare la degradazione (16) (17) delle IRS-1 come forma di feedback negativo.

250px-Protein_IRS1_PDB_1irs
IRS-1

L’Ortovanadato di Sodio a 1mmol/L sembra migliorare la segnalazione (miocita L6) di circa il 25% ed è associato all’inibizione del declino dell’attività complessa PI3K/IRS-1, ma è stato osservato che non inibisce la perdita di massa della proteina IRS-1. (18)

In uno studio nel quale sono stati presi in esame diabetici di tipo II e soggetti obesi ma ancora considerabili come sani (gruppo di controllo) è emerso che 100mg di Vanadio per 3 settimane sono stati in grado di sopprimere la gluconeogenesi epatica in entrambi i gruppi, ma solo il gruppo dei diabetici ha riscontrato un aumento della sensibilità all’Insulina mentre i soggetti del gruppo di controllo non hanno avuto cambiamenti significativi nei parametri della glicemia. (19)

Uno studio svolto su esseri umani (n = 14) di età compresa tra i 40 e i 50 anni con alterata tolleranza al glucosio, ha mostrato che la somministrazione di Vanadio ad un dosaggio di 50mg due volte al giorno (100mg al giorno) per un periodo di un mese (30 giorni), in risposta ad una condizione iperinsulinemica euglicemica, non ha prodotto miglioramenti della sensibilità all’Insulina e ha portato ad un piccolo ma significativo aumento dei Trigliceridi. (20) In questo studio non si sono osservate modifiche del LDL-C, HDL-C o del Colesterolo totale mentre il prima citato aumento dei Trigliceridi consisteva in un incremento delle concentrazioni ematiche da 1,4 +/- 0,6mmol/L a 1,7 +/- 0,5mmol/L.

Uno studio condotto su diabetici di tipo II (n = 6) ha osservato che dopo la somministrazione di Vanadio a 100mg al giorno durante 3-5 settimane di un periodo complessivo di 7 settimane (con placebo somministrato all’inizio e nell’ultimo fase dello studio) ha osservato che dopo 3 settimane di somministrazione di Vanadio si assisteva ad un aumento dell’assorbimento di glucosio e della sensibilità all’Insulina che era ancora presente due settimane dopo la cessata somministrazione del minerale; questi miglioramenti sono stati accompagnati da una diminuzione dell’HbA1c da 9,6 + 0,6% a 8,8 ± 0,6%. (21) L’utilizzo del Vanadio (come Solfato) ad un dosaggio di 150mg per 6 settimane è stato associato a una riduzione del 20% della glicemia a digiuno e ad una diminuzione del HbA1c da 8,1 ± 0,4 a 7,6 ± 0,4%. (22) Sebbene questo studio abbia rilevato una riduzione della produzione endogena di glucosio del 20% nei diabetici, la correlazione di questa riduzione alla diminuzione della glicemia a digiuno è stata di r = 0.6. (22)

Tuttavia, la qualità di questi studi è stata messa in discussione. E’ stata svolta una review sistemica la quale mirava a valutare tutti gli studi in doppio cieco controllati con placebo sul Vanadio e la ricerca preliminare terminò quando non ne trovarono nessuno. (23) Gli studi esistenti e quelli citati sopra tendono a non avere alcun gruppo placebo e sono limitati a campioni di dimensioni ridotte; i loro risultati significativi hanno perciò una potenza statistica molto inferiore rispetto ad altri composti.

rapamicina

Uno studio nel quale è stata utilizzata la Rapamicina (un inibitore dell’mTOR, utilizzato in questo studio per inibire la degradazione dell’IRS-1 che è un regolatore negativo della segnalazione dell’Insulina) ha osservato che la cosomministrazione di questa con l’Ortovanadato di Sodio (1mmol/L) risultava sinergica nell’aumento dell’assorbimento di glucosio in un miocita L6 in presenza di Insulina da 26,42 +/- 3,73% (osservata con il solo Vanadio) a 97,83 +/- 8,54% (in combinazione: la sola Rapamicina ha causato un assorbimento del 39,9 ± 3,39%). (18) Ciò era dovuto all’inibizione della degradazione dell’IRS-1 e al prolungamento della segnalazione attraverso il Recettore dell’Insulina, che promuoveva l’assorbimento del glucosio indotto dal PI3K, ed era probabilmente legato al fatto che il Vanadio poteva inibire la degradazione dell’associazione PI3K / IRS-1 (Rapamicina inefficace) mentre la Rapamicina impediva l’effettiva degradazione delle concentrazioni della proteina IRS-1 (Vanadio inefficace). (18)

La carenza di Vanadio non è stata descritta nell’uomo. Un suo scarso apporto, o mancanza, negli animali causa sterilità, riduzione della eritropoiesi (con conseguente anemia), difetti del metabolismo del ferro, alterata formazione ossea, dentale e cartilagginea. Non esiste quindi un RDA per il Vanadio: si è ipotizzato che un’assunzione giornaliera nel range dei 10 – 100mcg sia con tutta probabilità sufficiente.

vanadyl-sulfate-10mg-100-tabs

Il Vanadio viene commercializzato come integratore alimentare sotto forma di Vanadilsolfato [VOSO4]. La biodisponibilità del Vanadio supplementare è scarsa (meno del 5%) e la maggior parte di esso viene espulso attraverso le feci.

Alcuni prodotti conteneti Vanadilsolfato riportano in etichetta che il composto “aumenta i livelli plasmatici di Insulina”, ma, da quanto è possibile estrapolare dalle informazioni sopra riportate, e cioè da quanto la letteratura scientifica ci dice sull’azione del composto,  il Vanadio facilita il meccanismo d’azione dell’ormone peptidico, con una probabile azione (parzialmente dimostrata) insulino-mimetica.

Prendendo in attenta considerazione le informazioni derivanti dalla letteratura scientifica sulle possibili potenzialità del Vanadio nei confronti del metabolismo glucidico si evince, e non è un caso isolato tra i GDA, che la sua efficacia sia di grado significativo nei soggetti patologici (vedi soggetti con diabete di tipo II) e non negli individui sani. Ipoteticamente si potrebbero avere dei vantaggi dal suo utilizzo nei soggetti con una insulino-resistenza di base genetica, nei periodi di alimentazione ipercalorica prolungata (vedi peggiormanto dell’insulino-resistenza in tale contesto)  e/o durante e dopo l’uso dell’Insulina esogena: durante, il suo potenziale effetto insulino-mimetico potrebbe permettere di per se di utilizzare dosi inferiori dell’ormone mentre, nel periodo successivo, potrebbe agevolare il ripristino di un ottimale insulino-sensibilità in concerto con altri GDA. L’effetto del Vanadio sulla riduzione della gluconeogenesi epatica potrebbe rappresentare un vantaggio nei periodi di restrizione calorica, in specie durante le diete Ketogeniche o simil tali. Sicuramente, l’impatto negativo del Vanadio sui Trigliceridi potrebbe causare un ulteriore peggioramento della dislipidemia indotta dall’uso di AAS.

E’ bene tenere a mente che le dosi efficaci per ottenere un qualche effetto positivo dall’integrazione con Vanadio (Vanadilsolfato) sono considerevoli per via della bassa biodisponibilità che, però, non elimina la possibilità di intossicazione proprio a causa di queste.  I possibili effetti derivanti dall’assunzione di livelli tossici di Vanadio comprendono  nausea, mal di stomaco, diarrea, ipertrigliceridemia, disfunzioni epatiche, danni renali, ipoglicemia, leucopenia, ritardo dello sviluppo ed inappetenza.

La dose tossica di Vanadio è quantificata essere di 25mg al giorno. Quindi, considerando anche la bassa biodisponibilità del composto, una dose potenzialmente efficace ma che garantisca comunque un buon margine di sicurezza è di circa 100mg/die di Vanadilsolfato (20mg di Vanadio) divisa in due-tre somministrazioni prima dei pasti principali.

La supplementazione di Vanadio può comportare delle interazioni farmacologiche con Warfarin e Coumadin (difficoltà di coagulazione) o con farmaci con azione ipoglicemizzante diretta e/o indiretta come Aspirina e Exubera (riduzione eccessiva della glicemia ematica).

Quindi, nel caso si decidesse di testare l’efficacia di questo minerale, il potenziale utilizzatore dovrebbe prestare particolare attenzione a quanto appena esposto partendo dalla dose giornaliera assunta.

Fine 6° Parte…

Gabriel Bellizzi

Riferimenti:

  1. Nielsen FH. The importance of diet composition in ultratrace element research. J Nutr. (1985)
  2. Nielsen FH. Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. FASEB J. (1991)
  3. Sakurai H. A new concept: the use of vanadium complexes in the treatment of diabetes mellitus. Chem Rec. (2002)
  4. Kadota S, et al. Peroxide(s) of vanadium: a novel and potent insulin-mimetic agent which activates the insulin receptor kinase. Biochem Biophys Res Commun. (1987)
  5. http://ajpcell.physiology.org/content/272/1/C156.abstract.
  6. Cantley LC Jr, et al. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem. (1977)
  7. Nechay BR, Saunders JP. Inhibition by vanadium of sodium and potassium dependent adenosinetriphosphatase derived from animal and human tissues. J Environ Pathol Toxicol. (1978)
  8. Swarup G, Cohen S, Garbers DL. Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun. (1982)
  9. Tsiani E, et al. Tyrosine phosphatase inhibitors, vanadate and pervanadate, stimulate glucose transport and GLUT translocation in muscle cells by a mechanism independent of phosphatidylinositol 3-kinase and protein kinase C. Diabetes. (1998)
  10. Jackson TK, et al. Insulin-mimetic effects of vanadate in primary cultures of rat hepatocytes. Diabetes. (1988)
  11. Heffetz D, et al. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem. (1990)
  12. Solow BT, et al. Differential modulation of the tyrosine phosphorylation state of the insulin receptor by IRS (insulin receptor subunit) proteins. Mol Endocrinol. (1999)
  13. Takano A, et al. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol. (2001)
  14. Haruta T, et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol. (2000)
  15. Aguirre V, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. (2002)
  16. Rice KM, Turnbow MA, Garner CW. Insulin stimulates the degradation of IRS-1 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. (1993)
  17. Pederson TM, Kramer DL, Rondinone CM. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes. (2001)
  18. O’Connor JC, Freund GG. Vanadate and rapamycin synergistically enhance insulin-stimulated glucose uptake. Metabolism. (2003)
  19. Halberstam M, et al. Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes. (1996)
  20. Jacques-Camarena O, et al. Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab. (2008)
  21. Cohen N, et al. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. (1995)
  22. Vanadyl Sulfate Improves Hepatic and Muscle Insulin Sensitivity in Type 2 Diabetes.
  23. Smith DM, Pickering RM, Lewith GT. A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM. (2008)

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...