In questa terza parte della serie di articoli dedicati all’approfondimento sul Trenbolone descriverò nel dettaglio le proprietà anabolizzanti della molecola. Vale sempre la pena ribadire che tutti gli studi relativi agli argomenti qui trattati provengono da studi svolti sugli animali. Quindi, il mio obiettivo è quello di riportare ciò che è disponibile nella letteratura scientifica discutendo su ciò che è potenzialmente rilevante per l’essere umano e, più nel dettaglio, per il BodyBuilder. Molti meccanismi biologici riportati di seguito sono simili tra i mammiferi e l’uomo, e farò del mio meglio per sottolineare quando questo sussiste o meno.

Nota: se non avete letto la prima e la seconda parte vi invito a farlo prima di procedere con la lettura del presente articolo.

IX. Anabolismo

Prima di entrare nel dettaglio, è importante sottolineare una cosa ovvia ma che ad alcuni sfugge, e cioè che vi sono differenze tra gli esseri umani e gli animali più comunemente usati negli studi che hanno preso in esame il Trenbolone (ad esempio pecore, topi, mucche, ecc.). Mentre ci si addentra nell’analisi della documentazione scientifica disponibile, è utile che teniate a mente queste differenze, in quanto possono sicuramente avere un impatto rilevante per gli esseri umani nella loro differenza di risposta.

levator ani
Levator ani

 

extensord

La maggior parte dell’apparato muscolo-scheletrico dei roditori possiede una percentuale molto bassa di nuclei AR positivi. Un esempio è dato dalle caratteristiche del extensor digitorum longus, situato vicino alla parte anteriore della zampa posteriore, il quale presenta solo il 7% di mionuclei AR positivi.(1) Questo però non è universalmente vero, poiché il complesso muscolare levator ani / bulbocavernosus (LABC) (situato vicino alla pelvi) presenta il 70-75% di mionuclei AR-positivi e, tale caratteristica, si traduce in una marcata risposta miotropica alla somministrazione di androgeni.(2)(3)(4) Quindi, se si prendono in esame diversi studi svolti sui roditori, nei quali sono stati analizzati i muscoli sopra riportati in modo separato, i risultati saranno nettamente differenti.

toro-3-2
In alto un esemplare di Toro, in basso un esemplare di Manzo.

 

Viceversa, i bovini sono generalmente molto sensibili agli stimoli indotti dagli androgeni a causa delle alte concentrazioni di AR nel loro apparato muscolo-scheletrico e nelle loro cellule satelliti.(5)(6)(7) E’ necessario capire anche che, quando si parla di tori, si parla di bovini di sesso maschile maturi e intatti, mentre quando si parla di manzi, si parla di bovini di sesso maschile i quali hanno subito castrazione prima di raggiungere la maturità sessuale. La stragrande maggioranza degli studi esistenti è stata svolta sui manzo sottoposti ad impianti di Trenbolone, dal momento che tali impianti non presentano effetti rilevanti sui tori. Probabilmente questi animali hanno raggiunto il loro massimo potenziale di crescita muscolare data dai loro livelli elevati di endogeni endogeni, comunque sia sono necessari impianti che combinano TBA ed E2 per produrre la massima crescita ed efficienza alimentare nei bovini castrati.(8) Le giovenche sono giovani bovini di sesso femminile che non hanno mai partorito; sono usate occasionalmente per testare gli impianti.

longissimus

I tori sintetizzano livelli molto elevati di Testosterone. Oltre ad avere una risposta molto scarsa agli impianti, generalmente hanno anche fibre muscolari più grandi rispetto ai manzi.(9) I tori tendono inoltre ad avere una percentuale più elevata di fibre glicolitiche-ossidanti a contrazione rapida combinate con una percentuale inferiore di fibre glicolitiche a contrazione rapida nei muscoli longissimus dorsi (LD) rispetto ai manzi.(10) È per questi motivi che i tori producono un totale di carne più elevate, anche se generalmente di qualità inferiore. I manzi tendono ad avere una percentuale di grasso più elevata ma, tuttavia, sono compensati da una minore velocità di aumento di peso e una minore efficienza alimentare. Quindi, nel tentativo di ottenere maggiori rese con carni di qualità superiore, i ricercatori hanno iniziato a studiare l’effetto degli impianti per verificare se fosse possibile ottenere il meglio di entrambe le caratteristiche che caratterizzano i tori ed i manzi .

Infine, una breve nota a margine: noi esseri umani siamo molto simili ai bovini per quanto concerne la risposta agli androgeni, in quanto rispondiamo in modo marcato agli stimoli androgenici a causa delle alte percentuali di mionuclei AR-positivi.(11)

  • Affinità per il Recettore degli Androgeni

AARreceptor

È stato dimostrato che il Trenbolone si lega con il AR umano, e con il AR di varie specie animali, con una affinità approssimativa pari a tre volte superiore a quella del Testosterone, o approssimativamente uguale a quella del DHT.(12)(13)(14)(15)(16) Nei AR umani, il metabolita attivo 17β-TbOH ha mostrato un’affinità di legame del 109% rispetto al DHT, mentre il metabolita inattivo 17α-TbOH ha mostrato una affinità di legame del 4,5%.(13) Detto questo, gli studi sul legame recettoriale dovrebbero essere visti come uno strumento per una rapida valutazione iniziale di un ligando, non prendendo in considerazione aspetti come la successiva attivazione della trascrizione genica, ecc. In altre parole, anche se il Trenbolone presenta una affinità di legame al AR tre volte superiore rispetto al Testosterone, questo non significa letteralmente che produrrà un ipertrofia tre volte maggiore.

Oltre a questo, negli studi comparativi è stato dimostrato che il Trenbolone produce una crescita uguale o leggermente superiore nel complesso muscolare del LABC rispetto al Testosterone.(14)(17)(18)(19)(20)(21)(22) Il LABC è un tessuto androgeno reattivo che manca dell’enzima 5α-reduttasi. Mentre il Testosterone esercita effetti potenziati nei tessuti che esprimono l’enzima 5α-reduttasi, il Trenbolone esercita effetti uguali in questi tessuti rispetto a quelli che non causano una anabolico:androgeno ratio favorevole in comparazione al Testosterone.(23) Approfondirò questo argomento quando tratterò dei rischi di sviluppare cancro alla prostata.

X. Ipertrofia

medicina-online-dott-emilio-alessio-loiacono-medico-chirurgo-roma-ipertrofia-muscolare-cosa-significa-ragg-riabilitazione-nutrizionista-infrarossi-accompagno-commissioni-cavita

Inizialmente avevo in programma di esporre un’analisi approfondita dei meccanismi alla base dell’ipertrofia, ma trattandosi di un argomento decisamente complesso occorrerebbe un articolo a parte esclusivamente dedicato a questa tematica. Avrò comunque bisogno di esporre alcuni elementi fondamentali dell’ipertrofia, altrimenti molto di quanto tratterò in seguito potrebbe risultare più complicato di quanto dovrebbe. Quindi, non mi dilungherò troppo nella descrizione dei percorsi di segnalazione intracellulare, poiché questo renderebbe il presente articolo inutilmente prolisso. Comunque, se l’argomento dovesse suscitare abbastanza interesse, forse in futuro realizzerò un articolo dedicato esclusivamente all’ipertrofia.

  • Fondamenti di ipertrofia

Prima di tutto è necessario parlare un po ‘di cos’è l’ipertrofia e di come essa si manifesta nei mammiferi. Questo è un passaggio volto a fornire al lettore nozioni base sull’argomento, affinché i termini utilizzati in seguito vengano meglio compresi.

cellsatel

Il numero di fibre muscolari nei mammiferi è essenzialmente fissato alla nascita, quindi la crescita muscolare postnatale è la risultante dell’ipertrofia delle fibre muscolari esistenti. Questa ipertrofia delle fibre richiede un aumento del numero dei mionuclei presenti all’interno di esse; tuttavia i nuclei presenti nelle fibre muscolari non sono in grado di dividersi, quindi, essi, devono provenire dall’esterno della fibra.(24) La fonte dei nuclei necessari per supportare l’ipertrofia delle fibre è rappresentata da un gruppo di cellule miogeniche mononucleate (cellule satelliti) situate tra la lamina basale e la membrana plasmatica (sarcolemma) delle fibre muscolari.(25) Esiste una forte correlazione tra i tassi di crescita postnatale e i tassi con cui le cellule satellite si accumulano all’interno dei tessuti muscolari. Ciò sembrerebbe avere un senso in quanto saranno disponibili più meccanismi generali per alimentare il processo ipertrofico.(26)

Queste cellule satelliti svolgono un ruolo cruciale nella crescita muscolare postnatale fondendosi con le fibre muscolari esistenti, fornendo i nuclei necessari per la crescita delle fibre postnatali. Negli animali appena nati, si riscontra una percentuale molto più alta di nuclei muscolari legati alle cellule satelliti, ma questa percentuale diminuisce significativamente con l’età.(27) Non solo c’è una riduzione del numero di cellule satelliti, ma quelle cellule ancora presenti si ritirano dallo stato proliferativo del ciclo cellulare e entrano in uno stato di quiescenza, che di conseguenza porta ad un plateau della crescita. Quindi, trovare modi per superare questi limiti fisiologici può ipoteticamente portare a tassi di crescita postnatale superiori.

Per garantire che ci sia un numero adeguato di cellule satelliti utilizzabili, devono prima essere attivate per consentire loro di progredire attraverso il ciclo cellulare e infine di contribuire con il DNA della fibra muscolare esistente. Dopo che queste cellule satelliti dormienti sono state attivate, vi è successivamente la necessità di un rilascio dei fattori di crescita in grado di stimolare la proliferazione e la differenziazione delle cellule satelliti. Sia l’IGF-1 che il Fattore di Crescita dei Fibroblasti 2 (FGF-2) sono esempi di potenti stimolatori della proliferazione delle cellule satelliti.(28)(29) L’IGF-1 è unico in quanto promuove la differenziazione delle cellule muscolari nei muscoli-scheletrici, mentre l’FGF-2 inibisce la differenziazione [30]. Tra poco parlerò più nel dettaglio della relazione tra Trenbolone e IGF-1.

Quindi, facendo un leggero passo indietro, quando si verifica un evento di attivazione dell’ipertrofia (ad esempio esercizio o danno muscolare), questo porta anche alla proliferazione delle cellule satelliti. Questa proliferazione delle cellule satelliti induce queste a fondersi con le fibre muscolari esistenti, fornendo nuovi nuclei per l’ipertrofia e la riparazione e per supportare l’aumentata sintesi proteica. Un modo semplice per comprendere quanto appena detto è il seguente: le cellule satellite possono essere attivate per proliferare (dividere) e donare il loro DNA (nuclei) alle fibre muscolari esistenti (differenziazione).

cellule_satellite

 

Questo DNA donato porta le fibre muscolari a generare la fusione di mioblasti (cellule proliferanti) in fibre muscolari multinucleate denominate miotubi. Questi miotubi possono fondersi con le miofibre esistenti, o anche l’uno con l’altro, generando direttamente nuove fibre muscolari. Per il momento questo è l’approfondimento necessario per tale l’argomento.

  • Effetti di stimolo della crescita

Gli effetti di stimolo della crescita dati dal Trenbolone sono ben noti e sono stati studiati dai ricercatori per decenni. L’obiettivo è sempre stato quello di trovare metodiche per promuovere maggiori rese di carne insieme ad un prodotto finito di qualità superiore. Ci concentreremo principalmente sulle rese di carne per ora, poiché la qualità della carne tende spesso a coincidere con la quantità di grassi intramuscolari ivi contenuti. Questo rientra maggiormente nel campo della lipolisi, che tratteremo nel prossimo articoli.

È stato dimostrato che il Trenbolone aumenta la crescita totale della massa corporea e della massa muscolo-scheletrica in vari studi svolti su animali quando somministrato da solo (3)(14)(17) (19)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44), in combinazione con Estradiolo (45) (46) (47)(48)(49)(50)(51)(52)(53)(54)(55)(56)(57)(58)(59)(60)(61)(62)(63)(64)(65)(66), in combinazione con Testosterone ed Estradiolo (67), nonché in combinazione con Estradiolo e Ormone della Crescita.(68) Questo potenziale ipertrofico è stato universalmente osservato attraverso molteplici metodi di somministrazione in diverse specie animali.

ta1

È interessante notare che numerosi studi hanno dimostrato che un impianto contenente la combinazione TBA / E2 è più efficace rispetto ad un impianto contenente soltanto TBA o E2 nello stimolare la crescita dei manzi all’ingrasso.(8)(45)(52)(54)(55)(69)(70)(71)(72)(73)(74) L’ipotesi secondo la quale l’Estradiolo aumenterebbe gli effetti anabolizzanti del Trenbolone è emersa intorno agli anni ’70 (75)(76). Un fatto ancora più interessante è che il trattamento combinato (TBA/E2) aumenta il potenziale di ipertrofia nonostante il fatto che tale metodo si traduce in livelli di Trenbolone serici effettivamente inferiori, di circa la metà (8).

asseghigf1
Asse GH/IGF-1

 

Uno dei motivi che mi spinge a credere nella concretezza di un effetto potenziale nella cosomministrazione di Trenbolone ed Estradiolo, in particolare nei manzi , è il fatto che gli impianti contenenti solo Trenbolone portano alla soppressione dei livelli di Estradiolo endogeno a causa del impatto del Trenbolone sull’asse HPG limitandone la crescita potenziale. L’Estrogeno e, più specificamente, l’attività dell’aromatasi sono un potente stimolatore dell’asse GH/IGF-1. A supporto di questa ipotesi, gli impianti con solo Trenbolone hanno dimostrato di abbassare i livelli serici di GH.(8,68,69,70,71) Al contrario, è stato dimostrato che i manzi impiantati con E2 hanno aumentato le concentrazioni ematiche sia di GH che di IGF-1.(77-78) Gli impianti contenenti la combinazione TBA / E2 probabilmente determinano un aumento dei livelli di GH e possono persino alterare il numero e/o l’affinità dei GHR nei tessuti come quello epatico.(79) Come abbiamo appreso in precedenza, avere livelli adeguati di fattori di crescita per stimolare la proliferazione e la differenziazione delle cellule satelliti è un fattore significativo nel processo ipertrofico.

  • TBA/E2 ratio ottimale

Poiché i trattamenti combinati sembrano avere caratteristiche anaboliche migliori, molti studi nel corso degli anni hanno cercato di rispondere alla domanda del rapporto ottimale tra TBA / E2 per ottenere il massimo rendimento di crescita. Ce ne sono stati alcuni che hanno affermato che la risposta a tale quesito era un rapporto di 5: 1 e 8: 1 (52,54), tuttavia i risultati hanno subito delle leggere variazioni nel corso degli anni. Infatti, in uno studio, i tassi medi di crescita giornaliera (ADG) erano abbastanza simili nei manzi impiantati con una combinazione di 120mg TBA+25mg E2 o una combinazione di 120mg TBA+24mg E2 (80).

Un altro studio ha dimostrato che 120mg di TBA+24mg E2 hanno aumentato i tassi medi di crescita del 20-25% e l’efficienza dell’alimentazione del 15-20% (55). Infatti, è stato dimostrato che i trattamenti combinati portano al 50% in più nella proliferazione delle cellule satelliti nel muscolo semimembranoso (tendine del ginocchio) dei manzi. (81) Come detto in precedenza, la proliferazione delle cellule satelliti è un fattore significativo nel processo ipertrofico. Altri studi hanno mostrato un aumento indotto dal Trenbolone sia nell’attivazione che nella proliferazione delle cellule satelliti. (82-83) Sembra che il Trenbolone e il Testosterone aumentino il numero di cellule satelliti per fibra muscolare in misura simile (22), quindi questo non è un effetto dato solo dal Trenbolone. I suoi effetti sulle cellule satelliti possono essere, almeno in parte, mediati attraverso il recettore del IGF-1, come l’inibizione di diversi target a valle del IGF-1 (es. MAPK, MEK / ERK, PI3K / Akt) e la successiva soppressione della proliferazione delle cellule satelliti Trenbolone-indotta osservata nelle colture cellulari.(7)

revalorXS

Nel 2007 la FDA ha approvato la commercializzazione del Revalor-XS il quale contiene una combinazione di 200mg di TBA + 40mg di E2, e che è stato progettato per avere un lento rilascio degli ormoni in esso contenuti dovuto all’azione di un rivestimento polimerico presente su sei dei dieci pellet componenti il prodotto. Ciò è utile in quanto i metodi di impianto tradizionali richiedono più impianti con il potenziale di aggiungere stress che potrebbe influire negativamente sul rendimento del bestiame. Gran parte delle variazione dei risultati riscontrate negli studi nel corso degli anni potrebbero benissimo essere correlate a questo fattore. Le studi condotti sul Revalor-XS hanno mostrato che la dose più elevata di TBA / E2 migliora il rendimento dei manzi sono alimentati per periodi più lunghi. (65,140) Nonostante la speculazione sul fatto che più impianti possano causare stress aggiunto ai manzi, il pattern di lento rilascio del Revalor-XS in realtà non fornisce effetti unici sul rendimento delle carni, o della qualità, se confrontato con una strategia di impianto multiplo di pari dosaggio di TBA + E2.

  • Effetti del IGF-1
Molecular-structure-of-human-IGF-1-Dashed-lines-indicate-disulfide-bonds-and-blue_png
Molecola di IGF-1 umano

 

Gli impianti contenenti TBA / E2 hanno dimostrato di aumentare significativamente i livelli di IGF-1. Questi trattamenti combinati hanno portato a un aumento dei livelli serici di IGF-1 (59,84,85,86), aumenti dell’espressione del mRNA del IGF-1 epatico (56) e aumenti dell’espressione del mRNA del IGF-1 nei tessuti muscolo-scheletrici. (59,61,81)

Anche gli impianti contenenti solo TBA hanno dimostrato di aumentare i livelli di IGF-1 in varie specie, tuttavia, però, il grado di aumento dei livelli di IGF-1 non è stato paragonabile a quello riscontrato con impianti contenenti la combinazione TBA/E2.(87,88,89) In effetti, il Trenbolone non aumenta significativamente l’IGF-1 autocrino o endocrino in maniera maggiore rispetto al Testosterone. Uno studio ha anche dimostrato che il Testosterone aumenta i livelli di IGF-1 autocrino in maniera leggermente più elevata rispetto al TBA.(4) L’evidenza sembra suggerire che qualsiasi effetto sull’IGF-1 possa essere mediato attraverso l’estradiolo e possa anche essere stimolato tramite distinti meccanismi dei recettori degli androgeni e degli estrogeni, che includono il coinvolgimento del recettore accoppiato alla proteina G (GPR30).(90) In particolare, uno studio ha rilevato che l’aumento dell’espressione autocrina del IGF-1 nel muscolo scheletrico richiede la presenza di estrogeni e che gli impianti con solo TBA non hanno determinato aumenti dei livelli di mRNA del IGF-1 muscolare.(91) È certamente ragionevole ipotizzare che possa esserci una soglia da rispettare, nonostante il fatto che essa potrebbe non essere realisticamente rapportabile dagli studi sugli animali e l’uomo.

Studi in vitro svolti utilizzando cellule satelliti bovine (BSC) hanno mostrato una relazione dose-dipendente tra Trenbolone e livelli del mRNA del IGF-1. Nelle cellule trattate con 1nM o 10nM di Trenbolone per 48 ore, i livelli del mRNA del IGF-1 erano 1,7 volte più alti, tuttavia i livelli di mRNA non erano influenzati dai trattamenti con 0,001, 0,01 o 0,1 nM. (92) È anche emerso che gli effetti sono stati almeno parzialmente AR-mediati in quanto il co-trattamento con Flutamide (inibitore AR) ha completamente annullato l’aumento dell’espressione di IGF-1 osservata in queste colture cellulari.(90)

Non ci vuole molto tempo per osservare un aumento dei livelli di IGF-1 dopo l’applicazione di un impianto. In uno studio, agnelli impiantati con Revalor-S (120mg TBA / 24mg E2) hanno mostrato un aumento dei livelli serici di IGF-1 entro il 3° e il 10 ° giorno rispettivamente del 43% e del 62% (56). Questo aumento del IGF-1 è stato mantenuto per tutti i 24 giorni dello studio e i livelli del mRNA del IGF-1 epatico erano risultati del 150% più alti negli agnelli impiantati rispetto a quelli di controllo, suggerendo che il fegato è probabilmente una fonte primaria dalla quale provengono gli aumenti di IGF-1 circolante. I livelli del mRNA del IGF-1 autocrino erano del 68% più alti nei muscoli longissimus degli agnelli impiantati rispetto a quelli osservati negli animali di controllo. Il dosaggio di TBA ed E2, per chilogrammo di peso corporeo, era circa tre volte superiore a quello approvato per l’uso nei manzi. A causa delle differenze tra le specie e il dosaggio, si dovrebbe usare cautela quando si tenta di prendere questi risultati e applicarli ai manzi.

L’uso di questa stessa dose nei manzi ha dimostrato di produrre livelli di IGF-1 serici più elevati rispetto ai bovini non impiantati, entro 6-42 giorni dall’impianto.(93) In sole 48 ore, i manzi impiantati hanno avuto un aumento del 13,4% delle concentrazioni seriche di IGF-1.(84) Nei giorni 21 e 40, i manzi impiantati presentavano livelli di IGF-1 superiori del 16% e del 22% rispetto agli animali di controllo. La cosa interessante è che i livelli di IGF-1 raggiunsero il picco durante questo periodo di tempo e successivamente iniziarono a calare fino al giorno 115 dello studio, dove finirono per assomigliare ai valori del giorno 1. Detto questo, i manzi di controllo avevano ancora livelli IGF-1 più bassi rispetto al primo giorno. Quindi, anche se gli aumenti dei livelli di IGF-1 appaiono transitori, gli impianti sembrano ancora fornire un effetto additivo complessivo, anche con un uso a lungo termine.

 Altri studi sul bestiame hanno mostrato campioni muscolari con un più alto livello del mRNA del IGF-1 entro 30-40 giorni dall’applicazione dell’impianto. (56,61) Questi animali impiantati mostravano anche cellule satelliti più proliferanti rispetto ai manzi non impiantati suggerendo che gli aumenti della massa muscolare osservati con la combinazione TBA / E2 possono essere almeno in parte ricondotti all’aumento del IGF-1. Come abbiamo discusso in precedenza, è ben noto che la crescita muscolare postnatale dipende dalla fusione delle cellule satelliti con le fibre esistenti per fornire i mionuclei necessari a sostenere la crescita.(24) Questo aumento è importante anche perché solo un piccolo numero di cellule satelliti sono presenti nei bovini di un anno e molte delle cellule esistenti sono diventate inattive o hanno lasciato il ciclo cellulare. Vale anche la pena ricordare che la sovraespressione del IGF-1 estende la durata della vita replicativa delle cellule satelliti, almeno nelle colture cellulari. (94) Pertanto, sembra ragionevole ipotizzare che l’aumentata espressione del IGF-I muscolare giochi un ruolo nell’aumento indotto dall’AAS nel numero delle cellule satelliti muscolari.

In un altro studio, i livelli del mRNA del IGF-1 allo stato stazionario sono stati mostrati essere del 69% più alti nei manzi impiantati, suggerendo ancora una volta che il fegato può essere un fattore importante nell’aumento dell’IGF-1 circolante negli animali sottoposti ad impiantati.(61) Si prega di notare che c’è stato almeno uno studio, di cui sono a conoscenza, che non ha mostrato differenze nelle concentrazioni di IGF-1 tra manzi impiantati e di controllo.(95) Comunque, questo risultato può benissimo essere considerato come l’eccezione che conferma la regola.

Un elemento di risposta agli androgeni (ARE) è stato identificato nella regione del promotore del gene IGF-1, suggerendo che il complesso recettore-ligando androgeno possa interagire con questo ARE per stimolare la trascrizione del gene IGF-1. Gli androgeni tendono ad agire attraverso meccanismi multipli sui muscoli, e l’estrogeno tende ad agire sull’ipotalamo / pituitaria anteriore per stimolare l’asse GH / IGF-1.(96) La relazione tra l’estrogeno e l’asse GH / IGF-1 ha dimostrato di essere additiva.(97-98)

  • Elementi sugli Estrogeni

Dato che l’impatto degli estrogeni è stato parzialmente trattato, è corretto concentrarsi sul loro ruolo nel contesto di cui stiamo trattando prima di andare avanti.

Studi in vitro hanno dimostrato che il trattamento di colture di cellule satelliti bovine con E2 per 48 ore porta ad un aumento significativo dell’espressione del mRNA del IGF-1.(92) Ciò è in linea con quello che già sappiamo sull’E2, poiché è stato dimostrato che stimola l’espressione dell’mRNA dell’IGF-1 in un certo numero di tessuti. (99-100) È interessante notare che il co-trattamento con ICI (antagonista del recettore dell’estrogeno) non ha soppresso l’espressione del IGF-1 stimolata con l’E2. Ciò sembra suggerire che il meccanismo attraverso il quale l’E2 stimola l’espressione dell’mRNA del IGF-I nelle BSC può essere diverso dal meccanismo che si attua in altri tessuti che sono stati esaminati fino ad oggi.

Cross-talking-between-ER-a-ER-b-and-GPR30-signaling-pathways

Anche se il gene del IGF-1 non contiene un tradizionale elemento di risposta agli estrogeni (ERE) nella sua regione di regolazione, la stimolazione da parte dell’E2 dell’espressione dell’mRNA del IGF-1 può avvenire tramite un percorso che coinvolge il fattore di trascrizione AP-1.(101) Come accennato in precedenza, oltre ai recettori degli estrogeni classici, il recettore GRP30) può svolgere un ruolo nella mediazione delle azioni degli estrogeni.(102,103,104) Questo è rilevante per i nostri interessi in quanto il tessuto muscolare contiene l’mRNA del GPR30 e gli studi immunoistochimici hanno localizzato la proteina del recettore GPR30 all’interno delle cellule muscolo-scheletriche.(105) Inoltre, gli effetti dell’agonista / antagonista GPR indicano fortemente che il recettore GPR30 è coinvolto nell’aumento dello stimolo del E2 sul mRNA del IGF-1 osservato nelle colture di cellule satelliti bovine.(90)

  • Effetti sulle fibre muscolari
Differenze-nelle-fibre-muscolari-1
(Fonte immagine “Project Invictus”)

 

Gli impianti contenenti TBA / E2 aumentano l’area della sezione trasversale delle fibre muscolari (CSA) a causa di un iniziale aumento della trascrizione del DNA seguito da un aumento dei nuclei all’interno delle fibre muscolari che supportano l’ipertrofia.(106) Il TBA (da solo o in combinazione con E2) ha dimostrato di aumentare il CSA delle fibre muscolari di tipo I ma non di quelle di tipo II (9,107). È stato anche dimostrato che l’impianto nei manzi combinato con iperalimentazione aumenta il CSA nei muscoli LM nelle fibre di tipo I e IIA.(110) Ci sono state comunque delle eccezioni, dal momento che è stato dimostrato che uno studio ha aumentato le fibre di tipo IIB senza alcun impatto sulla dimensione o sul numero delle fibre di tipo I.(57) Questi studi, se considerati nel loro complesso, sembrano suggerire che il Trenbolone induca la conversione delle fibre muscolari da glicolitiche a ossidative, il che indica un aumento della capacità ossidativa delle fibre del muscolo-scheletrico.

Tornando alle potenziali differenze osservate tra le diverse specie animali, nonostante l’aumento del peso muscolare e della dimensione delle fibre muscolari, il numero dei mionuclei per fibra non ha subito miglioramenti nei ratti ai quali è stato somministrato Trenbolone o Testosterone.(22) Ciò contraddice i risultati di uno studio precedente il quale, però, ha visto la somministrazione di Testosterone all’inizio della pubertà, una fase caratterizzata da una crescita rapida del muscolo LABC rispetto a quanto osservabile negli esemplari maturi dello studio precedente.(108) È altamente probabile che l’ipertrofia indotta dagli androgeni nei ratti adulti senza stimoli fisici non richieda l’aggiunta mionucleare (109), il che va contro senso rispetto a ciò di cui abbiamo parlato nell’intero articolo. Ma queste sono le differenze da tenere in considerazione quando si osservano studi su animali e si cerca di stabilire modelli che potrebbero potenzialmente essere tradotti negli esseri umani.

  • Effetti dei Recettori degli Androgeni
il-recettore-di-androgeni-modello-molecolare-c5hpx6
Recettore degli Androgeni, modello molecolare.

 

Ci sono stati più esperimenti in vitro che hanno indicano una sovra regolazione dell’espressione del mRNA del AR (111-112). Tuttavia, sembra che vi sia un limite massimo oltre il quale anche con dosi più elevate non si riesce a modificare i livelli di mRNA in misura relativa a quelli presenti nelle colture di controllo non trattate.(92)

Tuttavia, ciò non è stato universalmente dimostrato negli studi, in quanto alcuni non hanno mostrato effetti mediati dal Trenbolone sull’espressione del mRNA del AR.(4,91) Questa discrepanza può essere dovuta al fatto che l’espressione elevata del AR si verifica in un punto temporale precedente rispetto alla raccolta dei dati effettuata in questi studi, ma ciò è speculativo. L’evidenza in vitro indica anche che il Trenbolone induce la traslocazione del AR umano nel nucleo cellulare in modo dose-dipendente e stimola anche la trascrizione del gene almeno allo stesso grado del DHT.(14)

XI. Atrofia/Anti-Catabolismo

La reputazione del Trenbolone come AAS fortemente anti-catabolico è in realtà ben meritata. Anche in questo caso, è utile trattare brevemente le basi dell’atrofia muscolo-scheletrica prima di proseguire con l’esposizione della letteratura associata al Trenbolone.

2_Pro_deg_2
Il Proteosoma spezza i substrati ubiquitinilati in corti peptidi, riciclando le molecole di Ubiquitina.

 

Durante diversi stati catabolici, la via dell’ubiquitina-proteasoma aumenta la disgregazione proteica che porta all’atrofia muscolare. Nello specifico, due ubiquitin ligasi, MuRF1 e MAFbx (anche denominate Atrogin-1) fungono da marker dell’atrofia muscolare in diverse condizioni cataboliche come il digiuno, il cancro, l’insufficienza renale e il diabete.(113,114,115) È stato dimostrato che il Trenbolone riduce significativamente l’espressione del mRNA del MuRF1 e del Atrogin-1 nei tessuti muscolo-scheletrici di un fattore 3 nei ratti castrati. I tassi di Atrogina-1 sono stati soppressi in questi animali ad un livello ancora maggiore rispetto a quanto osservato con la somministrazione di Testosterone.(4)

  • Glucocorticoidi
Cortisol
Cortisolo, il principale Glucocorticoide sintetizzato dalla Corteccia Surrenale.

 

I Glucocorticoidi sono ormoni steroidei che aiutano a regolare l’omeostasi metabolica dell’intero organismo. Essi esercitano anche la loro influenza sul muscolo-scheletrico, infatti una elevata esposizione del tessuto muscolare a questi ormoni può potenzialmente portare all’atrofia dei tessuti. I membri principali della famiglia dei Glucocorticoidi sono il Cortisolo, il Corticosterone e il Cortisone. Si legano con il recettore Glucocorticoidi intracellulare (GRα) attivandolo ed esercitando i loro effetti. Vale la pena ricordare che il Cortisolo può legarsi sia al recettore glucocorticoide (GRα) che al recettore mineralcorticoide (MR), tuttavia un approfondimento in tal senso va oltre lo scopo di questa serie di articoli.

timthumb

È stato dimostrato che il Trenbolone riduce la capacità di legame dei Glucocorticoidi causando una riduzione nel numero di GRα nei tessuti muscolo-scheletrici. (36,116) Studi in vitro hanno dimostrato che il Trenbolone agisce come un antagonista del recettore glucocorticoide [14] nonostante il 17β-TbOH possegga solo un’affinità di legame relativa del 9,4% per il recettore glucocorticoide bovino rispetto al cortisolo [13]. Altri studi hanno dimostrato che il Trenbolone riduce la capacità del Cortisolo di legarsi ai GR nel muscolo-scheletrico e sottoregola l’espressione complessiva dei GR. (117-118) Infatti, il Trenbolone sopprime l’espressione dei GRα del 50% in più rispetto al Testosterone.(4) E le sue azioni anti-glucocorticoidi probabilmente aiutano a creare un’inibizione significativamente più marcata della degradazione delle proteine muscolari (MPB) rispetto al Testosterone, che riduce solo leggermente l’MPB aumentando contemporaneamente l’MPS. (119)

È stato dimostrato che il Trenbolone riduce le concentrazioni circolanti di Corticosterone nei roditori (37,39,116,120) e del Cortisolo nei bovini impiantati.(50) L’evidenza suggerisce che il Trenbolone agisca a livello delle ghiandole surrenali sopprimendo la sintesi del Cortisolo ACTH-stimolata e sopprimendo il rilascio di Cortisolo.(121)

Ora possiamo provare ad estrapolare un po’ di informazioni correlate alle possibilità che si presentano in un contesto dove i livelli di glucocorticoidi sono abbassati. Ad esempio, i glucocorticoidi inibiscono l’assorbimento del glucosio e aiutano a stimolare la disgregazione del glicogeno immagazzinato nel muscolo-scheletrico attenuando la traslocazione dei GLUT4 nelle membrane cellulari indotta dall’insulina.(122) La segnalazione dell’insulina nei tessuti muscolari è essenzialmente soppressa dai glucocorticoidi.(123) Detto questo, è possibile che la somministrazione di Trenbolone possa portare ad un maggiore utilizzo del glucosio? Abbiamo già visto la capacità del Trenbolone di aumentare la sensibilità all’insulina nei ratti, ma cosa succederebbe se lo si co-somministrasse con l’insulina esogena?

I Glucocorticoidi tendono anche ad aumentare i livelli di trigliceridi intramuscolari.(124) È quindi ragionevole ipotizzare che gli effetti cosmetici tradizionalmente attribuiti al Trenbolone possano avere qualcosa a che fare con questo? Se il Trenbolone riduce ì i livelli di trigliceridi intramuscolari, allora questo potrebbe essere un fattore primario dietro all’aspetto muscolare poco “voluminoso” (nonostante la presenza di un carico glicemico pienamente sufficiente) che molti tendono ad avere? Cercherò di tornare su queste domande nelle mie osservazioni conclusive di questa serie di articoli.

  • Effetti sulla sintesi e degradazione proteica

Sintesi-Proteica

Una delle caratteristiche più paradossali riscontrate sul Trenbolone è rappresentata da un tasso di sintesi proteica muscolare (MPS) diminuito in seguito alla somministrazione di questo AAS. Ciò è stato dimostrato in studi nei quali si sono osservati gli effetti del trattamento con impianti contenenti TBA o TBA+E2.(17,32,48) Molti si chiedono come sia possibile che una molecola notoriamente molto anabolizzante come il Trenbolone riduca i tassi di MPS. La chiave per comprendere ciò risiede nell’impatto del Trenbolone sul MPB, in quanto il Trenbolone possiede un azione riduttiva sui tassi di MPB maggiore rispetto a quelli sul MPS, il che si traduce in uno stato nettamente anabolico.

Infatti, nonostante la riduzione dei tassi di MPS, è stato dimostrato che il Trenbolone aumenta la ritenzione di azoto di tutto il corpo in varie specie animali. (32,125,126,127) Ancora una volta, questo ha molto a che fare con l’impatto del Trenbolone sui tassi di MPB. È stato dimostrato che causa una riduzione significativa dei tassi di MPB totale e miofibrillare in varie specie animali.(32,34,36,120,128)

Vale la pena notare che studi in vitro hanno effettivamente mostrato aumenti dipendenti dalla concentrazione indotti dal Trenbolone nei tassi di MPS. Possono essere significativi, con un aumento fino a 1,7 volte utilizzando la dose più alta di 10 nM [129]. Quindi, similmente a quello che abbiamo visto prima con l’espressione del IGF-1, potrebbe esserci una soglia oltre la quale il Trenbolone smette di sopprimere la MPS e inizia ad aumentarla. È probabile che questa soglia si estenda oltre i realistici casi d’uso del mondo reale, dato che studi in vivo su vari animali non mostrano questo effetto. A livello cellulare, anche le percentuali di degradazione delle proteine ​​sono state abbassate, con la dose massima di TBA che causa un tasso di degradazione pari al 70% in meno di quello mostrato nelle colture senza TBA. Questo è stato un effetto parzialmente AR-mediato in quanto il Flutamide sopprime la capacità del Trenbolone di stimolare la sintesi proteica e di sopprimere i tassi di degradazione delle proteine. Anche il trattamento delle colture cellulari con JB1 (inibitore del IGF-1) influisce sugli effetti del Trenbolone sulla sintesi / degradazione delle proteine, quindi è altamente probabile che questi effetti richiedano in una certa misura l’attivazione dei recettori degli androgeni e del IGF-1.

Metabolismo degli amminoacidi nel fegato

È stato anche dimostrato che il Trenbolone sopprime la degradazione degli amminoacidi nel fegato.(37,130) Questo può anche essere un fattore chiave per gli effetti complessivi sul MPB, in quanto il primo passo nella degradazione degli aminoacidi avviene a livello epatico – la rimozione dell’azoto. In effetti, il principale sito di degradazione degli amminoacidi nei mammiferi è il fegato.

  • Effetti sull’osso

osteoporosi-cause

L’ipogonadismo legato all’età è un fattore importante che contribuisce alla perdita di tessuto osseo negli uomini anziani.(131) Come abbiamo discusso in precedenza, il trattamento di fatto per l’ipogonadismo è la terapia sostitutiva del Testosterone (TRT). Il problema è che con le TRT si vengono a creare solo modesti miglioramenti della densità minerale ossea nei soggetti trattati. (132-133) Al contrario, le dosi sovrafisiologiche di Testosterone offrono una protezione completa dalla perdita ossea ma, tuttavia, a tali dosaggi si manifestano molti effetti collaterali indesiderati. (134,135,136) Quindi, sono tornato a trattare un punto già esposto nella prima parte di questa serie di articoli, e cioè cercare di ottenere con l’uso del Trenbolone gli effetti protettivi dati dalla somministrazione di dosi sovra fisiologiche di Testosterone, ma senza gli effetti indesiderati.

Le prime indicazioni in questo senso sono promettenti in quanto gli studi sui roditori dimostrano che il Trenbolone impedisce la perdita di tessuto osseo indotta dal ipogonadismo in ratti castrati a un livello uguale a quello rilevato con dosi sovra fisiologiche di Testosterone, ma senza causare ipertrofia prostatica o aumenti dell’emoglobina che sono frequentemente osservati con trattamenti a base di Testosterone.(3,20)

220px-Corticosterone-2D-skeletal_svg
Corticosterone

 

Il Trenbolone potenzialmente esercita parte della sua influenza sull’osso attraverso la riduzione del Corticosterone circolante, attraverso la sua attività anti-glucocorticoide.(14,39) E, nonostante l’azione soppressiva del Trenbolone sui livelli estrogenici, questa molecola possiede ancora caratteristiche di conservazione del tessuto osseo simili al Testosterone. Questo è similare a quanto osservato con il DHT, quindi sembra che gli androgeni non aromatizzabili siano in grado di proteggere le ossa direttamente attraverso percorsi AR-mediati.(137-138) Ci sono ancora persone convinte che un lieve grado di aromatizzazione del testosterone in E2 a livello scheletrico sia essenziale per garantire la protezione delle ossa nei maschi.(139) Quindi, prima di poter trarre conclusioni, dovranno essere condotti studi sul Trenbolone a lungo termine.

Anche per questa terza parte siamo arrivati al termine. Nella quarta ed ultima parte di questa serie di articoli tratterò della lipolisi, dei potenziali rischi legati all’uso del Trenbolone ed esporrò le mie osservazioni e raccomandazioni riguardo a quanto trattato.

Stay tuned!

Gabriel Bellizzi

Riferimenti:

  1. Monks DA, O’Bryant EL, Jordan CL. Androgen receptor immunoreactivity in skeletal muscle: enrichment at the neuromuscular junction. J Comp Neurol. 2004 May 17;473(1):59-72.
  2. Monks DA, Kopachik W, Breedlove SM, Jordan CL. Anabolic responsiveness of skeletal muscles correlates with androgen receptor protein but not mRNA. Can J Physiol Pharmacol. 2006 Feb;84(2):273-7
  3. McCoy SC, Yarrow JF, Conover CF, Borsa PA, Tillman MD, Conrad BP, Pingel JE, Wronski TJ, Johnson SE, Kristinsson HG, Ye F, Borst SE. 17β-Hydroxyestra-4,9,11-trien-3-one (Trenbolone) preserves bone mineral density in skeletally mature orchiectomized rats without prostate enlargement. Bone. 2012 Oct;51(4):667-73.
  4. Ye F, McCoy SC, Ross HH, Bernardo JA, Beharry AW, Senf SM, Judge AR, Beck DT, Conover CF, Cannady DF, Smith BK, Yarrow JF, Borst SE. Transcriptional regulation of myotrophic actions by testosterone and trenbolone on androgen-responsive muscle. Steroids. 2014 Sep;87:59-66.
  5. Sauerwein H, Meyer HH. Androgen and estrogen receptors in bovine skeletal muscle: relation to steroid-induced allometric muscle growth. J Anim Sci. 1989 Jan;67(1):206-12.
  6. Brandstetter AM, Pfaffl MW, Hocquette JF, Gerrard DE, Picard B, Geay Y, Sauerwein H. Effects of muscle type, castration, age, and compensatory growth rate on androgen receptor mRNA expression in bovine skeletal muscle. J Anim Sci. 2000 Mar;78(3):629-37.
  7. Kamanga-Sollo E, White ME, Hathaway MR, Chung KY, Johnson BJ, Dayton WR. Roles of IGF-I and the estrogen, androgen and IGF-I receptors in estradiol-17beta- and trenbolone acetate-stimulated proliferation of cultured bovine satellite cells. Domest Anim Endocrinol. 2008 Jul;35(1):88-97.
  8. Hunt DW, Henricks DM, Skelley GC, Grimes LW. Use of trenbolone acetate and estradiol in intact and castrate male cattle: effects on growth, serum hormones, and carcass characteristics. J Anim Sci. 1991 Jun;69(6):2452-62.
  9. Clancy MJ, Lester JM, Roche JF. The effects of anabolic agents and breed on the fibers of the longissimus muscle of male cattle. J Anim Sci. 1986 Jul;63(1):83-91.
  10. Young OA, Bass JJ. Effect of castration on bovine muscle composition. Meat Sci. 1984;11(2):139-56.
  11. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S. Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab. 2004 Oct;89(10):5245-55.
  12. Sinnett-Smith PA, Palmer CA, Buttery PJ. Androgen receptors in skeletal muscle cytosol from sheep treated with trenbolone acetate. Horm Metab Res. 1987 Mar;19(3):110-4.
  13. Bauer ER, Daxenberger A, Petri T, Sauerwein H, Meyer HH. Characterisation of the affinity of different anabolics and synthetic hormones to the human androgen receptor, human sex hormone binding globulin and to the bovine progestin receptor. APMIS. 2000 Dec;108(12):838-46.
  14. Wilson VS, Lambright C, Ostby J, Gray LE Jr. In vitro and in vivo effects of 17beta-trenbolone: a feedlot effluent contaminant. Toxicol Sci. 2002 Dec;70(2):202-11.
  15. Ankley GT, Defoe DL, Kahl MD, Jensen KM, Makynen EA, Miracle A, Hartig P, Gray LE, Cardon M, Wilson V. Evaluation of the model anti-androgen flutamide for assessing the mechanistic basis of responses to an androgen in the fathead minnow (Pimephales promelas). Environ Sci Technol. 2004 Dec 1;38(23):6322-7.
  16. Lee HS, Jung DW, Han S, Kang HS, Suh JH, Oh HS, Hwang MS, Moon G, Park Y, Hong JH, Koo YE. Veterinary drug, 17β-trenbolone promotes the proliferation of human prostate cancer cell line through the Akt/AR signaling pathway. Chemosphere. 2018 May;198:364-369.
  17. Vernon BG, Buttery PJ. Protein turnover in rats treated with trienbolone acetate. Br J Nutr. 1976 Nov;36(3):575-9.
  18. Freyberger A, Ellinger-Ziegelbauer H, Krötlinger F. Evaluation of the rodent Hershberger bioassay: testing of coded chemicals and supplementary molecular-biological and biochemical investigations. Toxicology. 2007 Sep 24;239(1-2):77-88.
  19. Hotchkiss AK, Nelson RJ. An environmental androgen, 17beta-trenbolone, affects delayed-type hypersensitivity and reproductive tissues in male mice. J Toxicol Environ Health A. 2007 Jan 15;70(2):138-40.
  20. Yarrow JF, Conover CF, McCoy SC, Lipinska JA, Santillana CA, Hance JM, Cannady DF, VanPelt TD, Sanchez J, Conrad BP, Pingel JE, Wronski TJ, Borst SE. 17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone) exhibits tissue selective anabolic activity: effects on muscle, bone, adiposity, hemoglobin, and prostate. Am J Physiol Endocrinol Metab. 2011 Apr;300(4):E650-60.
  21. Beck DT, Yarrow JF, Beggs LA, Otzel DM, Ye F, Conover CF, Miller JR, Balaez A, Combs SM, Leeper AM, Williams AA, Lachacz SA, Zheng N, Wronski TJ, Borst SE. Influence of aromatase inhibition on the bone-protective effects of testosterone. J Bone Miner Res. 2014 Nov;29(11):2405-13.
  22. Dalbo VJ, Roberts MD, Mobley CB, Ballmann C, Kephart WC, Fox CD, Santucci VA, Conover CF, Beggs LA, Balaez A, Hoerr FJ, Yarrow JF, Borst SE, Beck DT. Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle. Andrologia. 2017 Apr;49(3).
  23. Yarrow JF, McCoy SC, Borst SE. Tissue selectivity and potential clinical applications of trenbolone (17beta-hydroxyestra-4,9,11-trien-3-one): A potent anabolic steroid with reduced androgenic and estrogenic activity. Steroids. 2010 Jun;75(6):377-89.
  24. Campion DR. The muscle satellite cell: a review. Int Rev Cytol. 1984;87:225-51. Review.
  25. Moss FP, Leblond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 1971 Aug;170(4):421-35.
  26. Allen Trenkle, D. L. DeWitt, David G. Topel; Influence of Age, Nutrition and Genotype on Carcass Traits and Cellular Development of the M. Longissimus of Cattle, Journal of Animal Science, Volume 46, Issue 6, 1 June 1978, Pages 1597–1603
  27. Cardasis CA, Cooper GW. A method for the chemical isolation of individual muscle fibers and its application to a study of the effect of denervation on the number of nuclei per muscle fiber. J Exp Zool. 1975 Mar;191(3):333-46.
  28. Johnson SE, Allen RE. The effects of bFGF, IGF-I, and TGF-beta on RMo skeletal muscle cell proliferation and differentiation. Exp Cell Res. 1990 Apr;187(2):250-4.
  29. Allen RE, Rankin LL. Regulation of satellite cells during skeletal muscle growth and development. Proc Soc Exp Biol Med. 1990 Jun;194(2):81-6. Review.
  30. Allen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol. 1989 Feb;138(2):311-5.
  31. Best JM. The use of trienbolone acetate implants in heifer beef production at pasture. Vet Rec. 1972 Dec 16;91(25):624-6
  32. Vernon BG, Buttery PJ. The effect of trenbolone acetate with time on the various responses of protein synthesis of the rat. Br J Nutr. 1978 Nov;40(3):563-72.
  33. Galbraith H. Effect of trenbolone acetate on growth, blood metabolites and hormones of cull beef cows. Vet Rec. 1980 Dec 13;107(24):559-60.
  34. Ranaweera KN, Wise DR. The effects of trienbolone acetate on carcass composition, conformation and skeletal growth of turkeys. Br Poult Sci. 1981 Mar;22(2):105-14.
  35. Henricks DM, Edwards RL, Champe KA, Gettys TW, Skelley GC Jr, Gimenez T. Trenbolone, estradiol-17 beta and estrone levels in plasma and tissues and live weight gains of heifers implanted with trenbolone acetate. J Anim Sci. 1982 Nov;55(5):1048-56.
  36. Santidrian S, Thompson JR. Effect of sex, testosterone propionate and trienbolone acetate on the rate of growth and myofibrillar protein degradation in growing young rats. Reproduccion. 1982 Jan-Mar;6(1):33-41.
  37. Thomas KM, Rodway RG. Effects of trenbolone acetate on adrenal function and hepatic enzyme activities in female rats. J Endocrinol. 1983 Jul;98(1):121-7.
  38. Hunter RA, Vercoe JE. Reduction of energy requirements of steers fed on low-quality-roughage diets using trenbolone acetate. Br J Nutr. 1987 Nov;58(3):477-83.
  39. Sillence MN, Rodway RG. Effects of trenbolone acetate and testosterone on growth and on plasma concentrations of corticosterone and ACTH in rats. J Endocrinol. 1990 Sep;126(3):461-6.
  40. Castaldo DJ, Jones JE, Maurice DV. Growth and carcass composition of female turkeys implanted with anabolic agents and fed high-protein and low-protein diets. Arch Tierernahr. 1990 Aug;40(8):703-12.
  41. Apple JK, Dikeman ME, Simms DD, Kuhl G. Effects of synthetic hormone implants, singularly or in combinations, on performance, carcass traits, and longissimus muscle palatability of Holstein steers. J Anim Sci. 1991 Nov;69(11):4437-48.
  42. Freyberger A, Hartmann E, Krötlinger F. Evaluation of the rodent Hershberger bioassay using three reference (anti)androgens. Arh Hig Rada Toksikol. 2005 Jun;56(2):131-9.
  43. Foutz CP, Dolezal HG, Gardner TL, Gill DR, Hensley JL, Morgan JB. Anabolic implant effects on steer performance, carcass traits, subprimal yields, and longissimus muscle properties. J Anim Sci. 1997 May;75(5):1256-65.
  44. Donner DG, Beck BR, Bulmer AC, Lam AK, Du Toit EF. Improvements in body composition, cardiometabolic risk factors and insulin sensitivity with trenbolone in normogonadic rats. Steroids. 2015 Feb;94:60-9.
  45. Galbraith H, Watson HB. Performance, blood and carcase characteristics of finishing steers treated with trenbolone acetate and hexoestrol. Vet Rec. 1978 Jul 8;103(2):28-31.
  46. Galbraith H, Dempster DG. Effect of hexoestrol on the response of finishing steers to treatment with trenbolone acetate. Vet Rec. 1979 Sep 22;105(12):283-4.
  47. Wise DR, Ranaweera KN. The effects of trienbolone acetate and other anabolic agents in growing turkeys. Br Poult Sci. 1981 Mar;22(2):93-104.
  48. Sinnett-Smith PA, Dumelow NW, Buttery PJ. Effects of trenbolone acetate and zeranol on protein metabolism in male castrate and female lambs. Br J Nutr. 1983 Sep;50(2):225-34.
  49. Renaville R, Burny A, Sneyers M, Rochart S, Portetelle D, Théwis A. Effects of an anabolic treatment before puberty with trenbolone acetate-oestradiol or oestradiol alone on growth rate, testicular development and luteinizing hormone and testosterone plasma concentrations. Theriogenology. 1988 Feb;29(2):461-76.
  50. Lee CY, Henricks DM, Skelley GC, Grimes LW. Growth and hormonal response of intact and castrate male cattle to trenbolone acetate and estradiol. J Anim Sci. 1990 Sep;68(9):2682-9.
  51. Perry TC, Fox DG, Beermann DH. Effect of an implant of trenbolone acetate and estradiol on growth, feed efficiency, and carcass composition of Holstein and beef steers. J Anim Sci. 1991 Dec;69(12):4696-702.
  52. Bartle SJ, Preston RL, Brown RE, Grant RJ. Trenbolone acetate/estradiol combinations in feedlot steers: dose-response and implant carrier effects. J Anim Sci. 1992 May;70(5):1326-32.
  53. Cecava MJ, Hancock DL. Effects of anabolic steroids on nitrogen metabolism and growth of steers fed corn silage and corn-based diets supplemented with urea or combinations of soybean meal and feathermeal. J Anim Sci. 1994 Feb;72(2):515-22.
  54. Herschler RC, Olmsted AW, Edwards AJ, Hale RL, Montgomery T, Preston RL, Bartle SJ, Sheldon JJ. Production responses to various doses and ratios of estradiol benzoate and trenbolone acetate implants in steers and heifers. J Anim Sci. 1995 Oct;73(10):2873-81.
  55. Johnson BJ, Anderson PT, Meiske JC, Dayton WR. Effect of a combined trenbolone acetate and estradiol implant on feedlot performance, carcass characteristics, and carcass composition of feedlot steers. J Anim Sci. 1996 Feb;74(2):363-71.
  56. Johnson BJ, White ME, Hathaway MR, Christians CJ, Dayton WR. Effect of a combined trenbolone acetate and estradiol implant on steady-state IGF-I mRNA concentrations in the liver of wethers and the longissimus muscle of steers. J Anim Sci. 1998 Feb;76(2):491-7.
  57. Fritsche S, Solomon MB, Paroczay EW, Rumsey TS. Effects of growth-promoting implants on morphology of Longissimus and Semitendinosus muscles in finishing steers. Meat Sci. 2000 Nov;56(3):229-37.
  58. McClure KE, Solomont MB, Loerch SC. Body weight and tissue gain in lambs fed an all-concentrate diet and implanted with trenbolone acetate or grazed on alfalfa. J Anim Sci. 2000 May;78(5):1117-24.
  59. Dunn JD, Johnson BJ, Kayser JP, Waylan AT, Sissom EK, Drouillard JS. Effects of flax supplementation and a combined trenbolone acetate and estradiol implant on circulating insulin-like growth factor-I and muscle insulin-like growth factor-I messenger RNA levels in beef cattle. J Anim Sci. 2003 Dec;81(12):3028-34.
  60. Scheffler JM, Buskirk DD, Rust SR, Cowley JD, Doumit ME. Effect of repeated administration of combination trenbolone acetate and estradiol implants on growth, carcass traits, and beef quality of long-fed Holstein steers. J Anim Sci. 2003 Oct;81(10):2395-400.
  61. White ME, Johnson BJ, Hathaway MR, Dayton WR. Growth factor messenger RNA levels in muscle and liver of steroid-implanted and nonimplanted steers. J Anim Sci. 2003 Apr;81(4):965-72.
  62. Kreikemeier WM, Mader TL. Effects of growth-promoting agents and season on yearling feedlot heifer performance. J Anim Sci. 2004 Aug;82(8):2481-8.
  63. Lefebvre B, Malouin F, Roy G, Giguère K, Diarra MS. Growth performance and shedding of some pathogenic bacteria in feedlot cattle treated with different growth-promoting agents. J Food Prot. 2006 Jun;69(6):1256-64.
  64. Mader TL, Kreikemeier WM. Effects of growth-promoting agents and season on blood metabolites and body temperature in heifers. J Anim Sci. 2006 Apr;84(4):1030-7.
  65. Parr SL, Chung KY, Hutcheson JP, Nichols WT, Yates DA, Streeter MN, Swingle RS, Galyean ML, Johnson BJ. Dose and release pattern of anabolic implants affects growth of finishing beef steers across days on feed. J Anim Sci. 2011 Mar;89(3):863-73.
  66. Parr SL, Chung KY, Galyean ML, Hutcheson JP, DiLorenzo N, Hales KE, May ML, Quinn MJ, Smith DR, Johnson BJ. Performance of finishing beef steers in response to anabolic implant and zilpaterol hydrochloride supplementation. J Anim Sci. 2011 Feb;89(2):560-70.
  67. Cranwell CD, Unruh JA, Brethour JR, Simms DD, Campbell RE. Influence of steroid implants and concentrate feeding on performance and carcass composition of cull beef cows. J Anim Sci. 1996 Aug;74(8):1770-6.
  68. Hongerholt DD, Crooker BA, Wheaton JE, Carlson KM, Jorgenson DM. Effects of a growth hormone-releasing factor analogue and an estradiol-trenbolone acetate implant on somatotropin, insulin-like growth factor I, and metabolite profiles in growing Hereford steers. J Anim Sci. 1992 May;70(5):1439-48.
  69. Heitzman RJ, Harwood DJ, Kay RM, Little W, Mallinson CB, Reynolds IP. Effects of implanting prepuberal dairy heifers with anabolic steroids on hormonal status, puberty and parturition. J Anim Sci. 1979 Apr;48(4):859-66.
  70. Hancock, D. L., J. F. Wagner, and D. B. Anderson 1991. Effects of estrogens and androgens on animal growth. Pages 255–297 in Growth Regulation in Farm Animals. Advances in Meat Research. Vol. 7. A. M. Pearson and T. R. Dutson ed. Elsevier Applied Science, New York, NY.
  71. Hayden JM, Bergen WG, Merkel RA. Skeletal muscle protein metabolism and serum growth hormone, insulin, and cortisol concentrations in growing steers implanted with estradiol-17 beta, trenbolone acetate, or estradiol-17 beta plus trenbolone acetate. J Anim Sci. 1992 Jul;70(7):2109-19.
  72. Henricks DM, Brandt RT Jr, Titgemeyer EC, Milton CT. Serum concentrations of trenbolone-17 beta and estradiol-17 beta and performance of heifers treated with trenbolone acetate, melengestrol acetate, or estradiol-17 beta. J Anim Sci. 1997 Oct;75(10):2627-33.
  73. Foutz CP, Dolezal HG, Gardner TL, Gill DR, Hensley JL, Morgan JB. Anabolic implant effects on steer performance, carcass traits, subprimal yields, and longissimus muscle properties. J Anim Sci. 1997 May;75(5):1256-65.
  74. Schneider BA, Tatum JD, Engle TE, Bryant TC. Effects of heifer finishing implants on beef carcass traits and longissimus tenderness. J Anim Sci. 2007 Aug;85(8):2019-30.
  75. Heitzman RJ. The effectiveness of anabolic agents in increasing rate of growth in farm animals; report on experiments in cattle. Environ Qual Saf Suppl. 1976;(5):89-98. Review.
  76. Buttery, P., Vernon, B., & Pearson, J. (1978). Anabolic agents—some thoughts on their mode of action. Proceedings of the Nutrition Society, 37(3), 311-315
  77. Grigsby ME, Trenkle 1986 Plasma growth hormone, insulin, glucocorticoids and thyroid hormones in large, medium and small breeds of steers with and without an estradiol implant Domestic Animal Endocrinology p.261-267
  78. Breier, B. H., P. D. Gluckman, and J. J. Bass. 1988. Influence of nutritional status and oestradiol-17b on plasma growth hormone, insulin-like growth factors-I and -II and the response to exogenous growth hormone in young steers. J. Endocrinol. 118:243
  79. Breier BH, Gluckman PD, Bass JJ. The somatotrophic axis in young steers: influence of nutritional status and oestradiol-17 beta on hepatic high- and low-affinity somatotrophic binding sites. J Endocrinol. 1988 Feb;116(2):169-77.
  80. Chung KY, Baxa TJ, Parr SL, Luqué LD, Johnson BJ. Administration of estradiol, trenbolone acetate, and trenbolone acetate/estradiol implants alters adipogenic and myogenic gene expression in bovine skeletal muscle. J Anim Sci. 2012 May;90(5):1421-7.
  81. Johnson BJ, Halstead N, White ME, Hathaway MR, DiCostanzo A, Dayton WR. Activation state of muscle satellite cells isolated from steers implanted with a combined trenbolone acetate and estradiol implant. J Anim Sci. 1998 Nov;76(11):2779-86.
  82. Thompson SH, Boxhorn LK, Kong WY, Allen RE. Trenbolone alters the responsiveness of skeletal muscle satellite cells to fibroblast growth factor and insulin-like growth factor I. Endocrinology. 1989 May;124(5):2110-7.
  83. Johnson BJ, Chung KY. Alterations in the physiology of growth of cattle with growth-enhancing compounds. Vet Clin North Am Food Anim Pract. 2007 Jul;23(2):321-32, viii. Review.
  84. Johnson BJ, Hathaway MR, Anderson PT, Meiske JC, Dayton WR. Stimulation of circulating insulin-like growth factor I (IGF-I) and insulin-like growth factor binding proteins (IGFBP) due to administration of a combined trenbolone acetate and estradiol implant in feedlot cattle. J Anim Sci. 1996 Feb;74(2):372-9.
  85. Schoonmaker JP, Loerch SC, Fluharty FL, Turner TB, Moeller SJ, Rossi JE, Dayton WR, Hathaway MR, Wulf DM. Effect of an accelerated finishing program on performance, carcass characteristics, and circulating insulin-like growth factor concentration of early-weaned bulls and steers. J Anim Sci. 2002 Apr;80(4):900-10.
  86. Pampusch MS, Johnson BJ, White ME, Hathaway MR, Dunn JD, Waylan AT, Dayton WR. Time course of changes in growth factor mRNA levels in muscle of steroid-implanted and nonimplanted steers. J Anim Sci. 2003 Nov;81(11):2733-40.
  87. Lee CY, Lee HP, Jeong JH, Baik KH, Jin SK, Lee JH, Sohnt SH. Effects of restricted feeding, low-energy diet, and implantation of trenbolone acetate plus estradiol on growth, carcass traits, and circulating concentrations of insulin-like growth factor (IGF)-I and IGF-binding protein-3 in finishing barrows. J Anim Sci. 2002 Jan;80(1):84-93.
  88. Walker DK, Titgemeyer EC, Sissom EK, Brown KR, Higgins JJ, Andrews GA, Johnson BJ. Effects of steroidal implantation and ractopamine-HCl on nitrogen retention, blood metabolites and skeletal muscle gene expression in Holstein steers. J Anim Physiol Anim Nutr (Berl). 2007 Oct;91(9-10):439-47.
  89. Winterholler SJ, Parsons GL, Walker DK, Quinn MJ, Drouillard JS, Johnson BJ. Effect of feedlot management system on response to ractopamine-HCl in yearling steers. J Anim Sci. 2008 Sep;86(9):2401-14.
  90. Kamanga-Sollo E, White ME, Chung KY, Johnson BJ, Dayton WR. Potential role of G-protein-coupled receptor 30 (GPR30) in estradiol-17beta-stimulated IGF-I mRNA expression in bovine satellite cell cultures. Domest Anim Endocrinol. 2008 Oct;35(3):254-62.
  91. Pampusch MS, White ME, Hathaway MR, Baxa TJ, Chung KY, Parr SL, Johnson BJ, Weber WJ, Dayton WR. Effects of implants of trenbolone acetate, estradiol, or both, on muscle insulin-like growth factor-I, insulin-like growth factor-I receptor, estrogen receptor-{alpha}, and androgen receptor messenger ribonucleic acid levels in feedlot steers. J Anim Sci. 2008 Dec;86(12):3418-23.
  92. Kamanga-Sollo E, Pampusch MS, Xi G, White ME, Hathaway MR, Dayton WR. IGF-I mRNA levels in bovine satellite cell cultures: effects of fusion and anabolic steroid treatment. J Cell Physiol. 2004 Nov;201(2):181-9.
  93. Bryant TC, Engle TE, Galyean ML, Wagner JJ, Tatum JD, Anthony RV, Laudert SB. Effects of ractopamine and trenbolone acetate implants with or without estradiol on growth performance, carcass characteristics, adipogenic enzyme activity, and blood metabolites in feedlot steers and heifers. J Anim Sci. 2010 Dec;88(12):4102-19.
  94. Barton-Davis ER, Shoturma DI, Sweeney HL. Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand. 1999 Dec;167(4):301-5.
  95. Reinhardt CD, Lee TL, Thomson DU, Mamedova LK, Bradford BJ. Restricted nutrient intake does not alter serum-mediated measures of implant response in cell culture. J Anim Sci Biotechnol. 2013 Nov 19;4(1):45.
  96. Wu Y, Zhao W, Zhao J, Pan J, Wu Q, Zhang Y, Bauman WA, Cardozo CP. Identification of androgen response elements in the insulin-like growth factor I upstream promoter. Endocrinology. 2007 Jun;148(6):2984-93.
  97. Preston RL, Bartle SJ, Kasser TR, Day JW, Veenhuizen JJ, Baile CA. Comparative effectiveness of somatotropin and anabolic steroids in feedlot steers. J Anim Sci. 1995 Apr;73(4):1038-47.
  98. Elsasser TH, Rumsey TS, Kahl S, Czerwinski SM, Moseley WM, Ono Y, Solomon MB, Harris F, Fagan JM. Effects of Synovex-S and recombinant bovine growth hormone (Somavubove) on growth responses of steers: III. Muscle growth and protein responses. J Anim Sci. 1998 Sep;76(9):2346-53.
  99. Martin MB, Stoica A. Insulin-like growth factor-I and estrogen interactions in breast cancer. J Nutr. 2002 Dec;132(12):3799S-3801S.
  100. Venken K, Schuit F, Van Lommel L, Tsukamoto K, Kopchick JJ, Coschigano K, Ohlsson C, Movérare S, Boonen S, Bouillon R, Vanderschueren D. Growth without growth hormone receptor: estradiol is a major growth hormone-independent regulator of hepatic IGF-I synthesis. J Bone Miner Res. 2005 Dec;20(12):2138-49.
  101. Umayahara Y, Kawamori R, Watada H, Imano E, Iwama N, Morishima T, Yamasaki Y, Kajimoto Y, Kamada T. Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem. 1994 Jun 10;269(23):16433-42.
  102. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005 Mar 11;307(5715):1625-30.
  103. Prossnitz ER, Arterburn JB, Sklar LA. GPR30: A G protein-coupled receptor for estrogen. Mol Cell Endocrinol. 2007 Feb;265-266:138-42.
  104. Filardo E, Quinn J, Pang Y, Graeber C, Shaw S, Dong J, Thomas P. Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane. Endocrinology. 2007 Jul;148(7):3236-45.
  105. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol. 2008;70:165-90.
  106. Kellermeier JD, Tittor AW, Brooks JC, Galyean ML, Yates DA, Hutcheson JP, Nichols WT, Streeter MN, Johnson BJ, Miller MF. Effects of zilpaterol hydrochloride with or without an estrogen-trenbolone acetate terminal implant on carcass traits, retail cutout, tenderness, and muscle fiber diameter in finishing steers. J Anim Sci. 2009 Nov;87(11):3702-11.
  107. Gonzalez JM, Carter JN, Johnson DD, Ouellette SE, Johnson SE. Effect of ractopamine-hydrochloride and trenbolone acetate on longissimus muscle fiber area, diameter, and satellite cell numbers in cull beef cows. J Anim Sci. 2007 Aug;85(8):1893-901.
  108. Joubert Y, Tobin C, Lebart MC. Testosterone-induced masculinization of the rat levator ani muscle during puberty. Dev Biol. 1994 Mar;162(1):104-10.
  109. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development. 2011 Sep;138(17):3657-66.
  110. Hughes, N. J., G. T. Schelling, M. J. Garber, J. S. Eastridge, M. B. Solomon, and R. A. Roeder 1998. Skeletal muscle morphology alterations due to Posilac® and Revalor S® treatments alone or in combination in feedlot steers. J. Anim. Sci. 49(Proceedings Western Section):90–93
  111. Sone K, Hinago M, Itamoto M, Katsu Y, Watanabe H, Urushitani H, Tooi O, Guillette LJ Jr, Iguchi T. Effects of an androgenic growth promoter 17beta-trenbolone on masculinization of Mosquitofish (Gambusia affinis affinis). Gen Comp Endocrinol. 2005 Sep 1;143(2):151-60.
  112. Zhao JX, Hu J, Zhu MJ, Du M. Trenbolone enhances myogenic differentiation by enhancing β-catenin signaling in muscle-derived stem cells of cattle. Domest Anim Endocrinol. 2011 May;40(4):222-9.
  113. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001 Nov 23;294(5547):1704-8.
  114. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14440-5.
  115. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004 Jan;18(1):39-51.
  116. Danhaive PA, Rousseau GG. Evidence for sex-dependent anabolic response to androgenic steroids mediated by muscle glucocorticoid receptors in the rat. J Steroid Biochem. 1988 Jun;29(6):575-81.
  117. Sharpe PM, Buttery PJ, Haynes NB. The effect of manipulating growth in sheep by diet or anabolic agents on plasma cortisol and muscle glucocorticoid receptors. Br J Nutr. 1986 Jul;56(1):289-304.
  118. Reiter M, Walf VM, Christians A, Pfaffl MW, Meyer HH. Modification of mRNA expression after treatment with anabolic agents and the usefulness for gene expression-biomarkers. Anal Chim Acta. 2007 Mar 14;586(1-2):73-81.
  119. Sheffield-Moore M. Androgens and the control of skeletal muscle protein synthesis. Ann Med. 2000 Apr;32(3):181-6. Review.
  120. Santidrián S, Thompson JR, Young VR. Effect of trienbolone acetate on the rate of myofibrillar protein breakdown in young adrenalectomized male rate treated with corticosterone. Arch Farmacol Toxicol. 1981 Dec;7(3):333-40.
  121. Isaacson WK, Jones SJ, Krueger RJ. Testosterone, Dihydrotestosterone, trenbolone acetate, and zeranol alter the synthesis of cortisol in bovine adrenocortical cells. J Anim Sci. 1993 Jul;71(7):1771-7.
  122. Morgan SA, Sherlock M, Gathercole LL, Lavery GG, Lenaghan C, Bujalska IJ, Laber D, Yu A, Convey G, Mayers R, Hegyi K, Sethi JK, Stewart PM, Smith DM, Tomlinson JW. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes. 2009 Nov;58(11):2506-15.
  123. Coderre L, Srivastava AK, Chiasson JL. Role of glucocorticoid in the regulation of glycogen metabolism in skeletal muscle. Am J Physiol. 1991 Jun;260
  124. Gounarides JS, Korach-André M, Killary K, Argentieri G, Turner O, Laurent D. Effect of dexamethasone on glucose tolerance and fat metabolism in a diet-induced obesity mouse model. Endocrinology. 2008 Feb;149(2):758-66.
  125. Chan KH, Heitzman RJ, Kitchenham BA. Digestibility and N-balance studies on growing heifers implanted with trienbolone acetate. Br Vet J. 1975 Mar-Apr;131(2):170-4.
  126. van Weerden EJ, Grandadam JA. The effect of an anabolic agent on N deposition, growth, and slaughter quality in growing castrated male pigs. Environ Qual Saf Suppl. 1976;(5):115-22.
  127. Lobley GE, Connell A, Mollison GS, Brewer A, Harris CI, Buchan V, Galbraith H. The effects of a combined implant of trenbolone acetate and oestradiol-17 beta on protein and energy metabolism in growing beef steers. Br J Nutr. 1985 Nov;54(3):681-94.
  128. Kerth CR, Montgomery JL, Morrow KJ, Galyean ML, Miller MF. Protein turnover and sensory traits of longissimus muscle from implanted and nonimplanted heifers. J Anim Sci. 2003 Jul;81(7):1728-35.
  129. Kamanga-Sollo E, White ME, Hathaway MR, Weber WJ, Dayton WR. Effect of trenbolone acetate on protein synthesis and degradation rates in fused bovine satellite cell cultures. Domest Anim Endocrinol. 2011 Jan;40(1):60-6.
  130. Rodway RG, Galbraith H. Effects of anabolic steroids on hepatic enzymes of amino acid catabolism. Horm Metab Res. 1979 Aug;11(8):489-90.
  131. Compston JE. Sex steroids and bone. Physiol Rev. 2001 Jan;81(1):419-447. Review.
  132. Leifke E, Körner HC, Link TM, Behre HM, Peters PE, Nieschlag E. Effects of testosterone replacement therapy on cortical and trabecular bone mineral density, vertebral body area and paraspinal muscle area in hypogonadal men. Eur J Endocrinol. 1998 Jan;138(1):51-8.
  133. Martin AC. Osteoporosis in men: a review of endogenous sex hormones and testosterone replacement therapy. J Pharm Pract. 2011 Jun;24(3):307-15.
  134. Bhasin S, Tenover JS. Age-associated sarcopenia–issues in the use of testosterone as an anabolic agent in older men. J Clin Endocrinol Metab. 1997 Jun;82(6):1659-60.
  135. Calof OM, Singh AB, Lee ML, Kenny AM, Urban RJ, Tenover JL, Bhasin S. Adverse events associated with testosterone replacement in middle-aged and older men: a meta-analysis of randomized, placebo-controlled trials. J Gerontol A Biol Sci Med Sci. 2005 Nov;60(11):1451-7.
  136. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM; Task Force, Endocrine Society. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010 Jun;95(6):2536-59.
  137. Kasperk CH, Wakley GK, Hierl T, Ziegler R. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res. 1997 Mar;12(3):464-71.
  138. Wiren KM, Zhang X-W, Olson DA, Turner RT, Iwaniec UT. Androgen prevents hypogonadal bone loss via inhibition of resorption mediated by mature osteoblasts/osteocytes. Bone. 2012;51(5):835-846.
  139. Vandenput L, Ohlsson C. Estrogens as regulators of bone health in men. Nat Rev Endocrinol. 2009 Aug;5(8):437-43.
  140. Smith ZK, Thompson AJ, Hutcheson JP, Nichols WT, Johnson BJ. Evaluation of Coated Steroidal Implants Containing Trenbolone Acetate and Estradiol-17β on Live Performance, Carcass Traits, and Sera Metabolites in Finishing Steers. J Anim Sci. 2018 Mar 9.

 

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...